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If we use, to achieve our purposes, a mechanical agency with
whose operation we cannot efficiently interfere … we had better
be quite sure that the purpose put into the machine is the
purpose which we really desire …

N. Wiener (1960, p. 1358)

Abstract A semantic property of autonomous robots is called non-trivial if some
robots satisfy it and some do not, like adherence to rules of ethics or compliance with
legal regulations. In order to study the validation problem for these properties, we
model robots as cyber-physical systemswith programmable control. Their behaviour
is modelled by the infinite streams of interactions that they generate. We show that,
undermild conditions, there can be no algorithmicmethod for deciding froma robot’s
program whether it satisfies a given non-trivial semantic property or not. The result
provides a compelling analogue to Rice’s theorem from classical computability the-
ory, now for autonomous robots.We also show that no interactive verifiers of any kind
whatsoever can exist for the problem. The results are fundamental to understanding
the difficulty of validations in artificial intelligence.
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1 Introduction

Autonomous robots pose increasingly complex challenges. To deal with it, their pur-
pose and intended properties must permeate every step of their design (Dignum et al.
2018). However, can one be sure that robots ultimately possess the specified quali-
ties? For example, will they always act ethically, or in accordance with international
law as expected? Can one determine effectively whether they do, by inspecting their
program or interactive behaviour?

To study the validation problem, we model robots as cyber-physical systems
with programmable control units (van Leeuwen & Wiedermann 2021). We model
their behaviour by the infinite streams of interactions that they generate. Semantic
properties can then be identified with the sets of generated streams that satisfy them.
The properties usually cannot be detected or measured by any kind of sensors, and
often one can say little more than that they are non-trivial, i.e. that some robots have
a given property and some do not. However, already this can be significant to know,
as we will show.

The semantic properties we study are not to be confused with the semantic prop-
erties of system abstractions that have been studied extensively for cyber-physical
systems in the last decades. These studies have usually concentrated on the semantics
of the events and sensory data that originate from the physical world, and that relate
to the understanding of the system (cf. Dillon et al., 2012). We will focus entirely on
the semantic properties of robot behaviour.

Results In order to reason about autonomous robots and their programs, we model
the salient features of their interactive operation in formal terms. The model enables
us to define semantic properties of robots as properties of their behaviour over time.
The model is simple, yet powerful enough to obtain strong and meaningful results.

We will argue that, for any non-trivial semantic property P , and under mild
assumptions, there is no algorithmic method that can always decide from a robot’s
programwhether the robot always satisfies P . The result is a compelling analogue of
Rice’s theorem on the undecidability of non-trivial semantic properties of computer
programs (Rogers 1967), now proved for robots.

Extending the scenario, one might ask whether there are any verifiers that can
successfully decide P after observing a robot for finite time during a course chosen
by the verifier, where the robot can keep track of the verifier’s findings in return. We
will argue that, under mild conditions, no interactive verifiers of this kind can exist
again, algorithmic or otherwise.

Discussion Our results generalize initial observations in van Leeuwen and Wie-
dermann (2021). The analogue of Rice’s theorem does not follow from its classical
counterpart, despite its appearance. Robot programs differ from the programs usually
considered in computability theory: they are interactive, potentially never terminate,
always respond to situational inputs in finite—or even bounded—time, and usually
are not composable. Nevertheless, an analogue of ‘Rice’ can still be obtained, in our
model.
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Semantic properties of robotic behavior are often considered mostly from the
viewpoint of various soft sciences, with a non-technical background (cf. Kopacek,
2019). Nowadays it is recognized that insights fromdisciplines like robotics, artificial
intelligence, and computer science are needed as well. Verifying properties of AI
systems is generally considered to be a formidable challenge (Bremner et al. 2019;
Charisi et al. 2017; Wing 2021).

Our results contribute a theoretical note to the ideas in AI on developing robots
with a verifiable ethical or legal behavior (cf. Kopacek, 2019; Lin et al., 2011; Luck-
cuck et al. 2019; Sharkey, 2020; Winfield et al., 2019). The results apply to any
class of autonomous machines that fit our model. We refer to van Leeuwen and
Wiedermann (2021) for an appraisal of the results for e.g. machine ethics.

Outline The paper is organized as follows. In Sect. 2 we describe the key ingredients
of our model of autonomous robots and their behaviour. In Sect. 3 we define the
concept of (semantic) robot properties and what it means for these properties to be
regular and non-trivial, respectively.

In Sect. 4 we prove an analogue of Rice’s theorem for verifying non-trivial robot
properties, in our model. Subsequently, in Sect. 5 we prove an impossibility theorem
for verifying robot properties interactively. Finally, in Sect. 6, we reflect on the results
and give some conclusions for the design of provable AI systems in general.

2 Robot Modelling

In the remainder some acquaintancewith Turingmachines, computability theory, and
the theory of automata on infinite words is assumed (Rogers 1967; Thomas 1990).

We view robots as cyber-physical systems (Wiedermann & van Leeuwen 2021),
i.e. constructs of physical components controlled by general processors and operating
in actively manipulated environments. To function, robots are equipped with sensors
and effectors that communicate via ports with the relevant processors using a finite
assortment of digital signals. We assume that a central control program supervises
their operation. Their processors can range in computational power from finite-state
machines to, here, random-access machines or Turing machines.

NotionsLetR be any robot,M its controlling program or ‘automaton’.Wewill iden-
tify them if no confusion can arise.We distinguish the following concepts concerning
robots and their programs.

• Let � be the finite set of signals that can be read on the input ports, and � the
finite set of signals that can be written to the output ports, together with the special
output signal nil. Assuming k input and � output ports, any pair (s, b) consisting
of an input situation s ∈ �k and a corresponding behaviour b ∈ �� as output is
called an interaction of R. Let b ≡ nil denote that R responds by ‘idling’.

• R acts by iterating a single operational cycle of functional parts (Wiedermann &
van Leeuwen 2021), working like a transducer that reads (‘senses’) a next input
s, and computes and generates (‘acts’) a next output b on its ports over and over.
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R thus produces unbounded sequences (or, streams) of consecutive interactions
(s0, b0)(s1, b1) . . . over time. Any such sequence is called an interactive run,
generated byR in response to the input sequence s0, s1, . . . .. Every next si depends
on R’s surrounding and prior interactions in the current stream. We require that
the iterations of the operational cycle all take at most constantly bounded ‘cost’,
and thus bounded time each, where cost is defined as the number of instructions
executed during an iteration.

• Let LR denote the set of all interactive runs generated by R, for all unbounded
sequences of situations that R can encounter. LR is called the robotic language
generated byR.Any interactive run τ ∈ LR is called an eligible run forR.LR rep-
resents the overall behaviour of the robot. Two robots are called (observationally)
equivalent if and only if they have the same behaviour.

• We assume that there are robots that can only be idle, i.e. behave by always out-
putting nil. Thus, all idle robots are observationally equivalent. However, idle
robots can still run own internal processes and use these to detect temporal con-
ditions (Vardi 1996). A condition is fulfilled when the internal process linked to
it satisfies it. We require that detectable conditions are defined such that, once
they turn false, they remain false. Detection processes are assumed to be paced
automatically so at most constantly many instructions of them are executed per
iteration of the operational cycle, to obey the bounded-cost constraint of the itera-
tions. For all practical purposes, idle robots can just be given as virtual machines.
Their existence can be assumed without loss of generality.

• We assume that robots, viz. their operational controls, are programmable in some
common language framework, with the natural constraint that only straight-line
(i.e. non-looping) code occurs inside their operational cycle. (It guarantees that
iterations take only constantly bounded ‘cost’, as required.) If execution of a pro-
gram halts or leads to a jam, which is detected at runtime when an iteration of the
operational cycle does not complete normally within the cost bound set for it, then
we assume that the program outputs nil by default and continues with the next
iteration. Thus, syntactically correct programs can always be interpreted as valid
robot programs (and vice versa). As we may assume that syntactic correctness is
decidable, it follows that the valid robot programs form a recursive set.

• We make no assumptions on how robots can actually be programmed, nor about
their composability. Indeed, the latter need not even make sense, e.g. for robots of
different designs or brands. However, we posit that idle robots can be composed
in series or parallel with any other robot, as their embodied robot presence is not
needed to simulate them. In this case, the compositions can easily be realized by
combining and composing the respective operational cycles within the constraints
of the programming model.

Compositions The two types of composition we allow are described in the following
definitions. Let M be any robot (program), I DM an idle robot that we intend to
compose withM, C = C(t) a detectable condition, andΘ a detecting process linked
to C. Let I DM[Θ, C] denote the instance of I DM that ‘internally’ runs process Θ



Validating Non-trivial Semantic Properties of Autonomous Robots 95

to detect condition C. We assume that programs exist for the following composed
robots.

Definition 1 (Composition) (i) I DM[Θ, C] � M: the robot that starts by simulat-
ing an instance of I DM[Θ, C] (thus, outputting nil’s) until C turns false for it and
then, if and when it does, continues as (freshly started) robot M from then onward.
(ii) M � I DM[Θ, C]: the robot that starts as M and proceeds as M while also
simulating an instance of I DM[Θ, C] ‘in parallel’ (suppressing its outputs in favor
of those of M) unless and until C turns false, in which case M stops (if it hasn’t
stopped already) and the robot turns idle, i.e. continues as (freshly started copy of)
I DM from then onward.

The compositions correspond to modifying an existing robot (M) such that its ‘acti-
vated behaviour’ is either ‘postponed’ until, or ‘pre-empted’ after, a detectable con-
dition is satisfied by an ‘otherwise idle’ subsystem. In both cases, the instance of
I DM can be integrated seamlessly. M only needs to accommodate the detecting
process and the idling when called for. Idle moves may not have been programmed
forM initially.

In the sequel we consider any ‘family’ of robots of interest that fit our model,
that operate in the same environment and that allow for the types of composition we
defined. We assume, as we may, that these compositions can be obtained by effective
constructions.Wecontend that this includes all familiar classes of autonomous robots.

3 Semantic Properties of Robots

We are interested in checking semantic properties of robots, i.e. properties of the
robotic languages they generate. Let LP be the set of all interactive runs (over the
common alphabets of the robots) that satisfy P .

Definition 2 (Robot property) Robot R is said to satisfy property P if LR ⊆ LP .
Given a property P , let RP consist of all (programs of) robots R that satisfy P . If
R ∈ RP , we say that R satisfies P, otherwise we say that R does not satisfy P.

By definition, deciding whether a given robot R satisfies a given property P is a
matter of decidingwhetherLR is contained inLP . The general language containment
problem is decidable, for example, when the languages involved, hereLR andLP , are
definable by finite-state automata on infinite streams (Thomas 1990). However, robot
languages can be much more powerful than this, and we make no prior assumptions
about the property languages LP either. This calls for a further exploration of the
languages and properties we deal with here.

There is little in the definition of robot properties that links them to actual robots. It
makes sense to ‘postulate’ that semantic properties should at least be ‘regular’ under
the compositions with idle robots that we permitted. This leads to the following
definition.
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Definition 3 (Regularity) A robot property P is called regular if the following two
conditions hold, for all streams:

(i) if a stream (s0, b0)(s1, b1) · · · does not satisfy P , then preceding it by any finite
period of idling interactions does not change this, and

(ii) if a stream (r0, nil)(r1, nil) · · · does not satisfy P , then preceding it by any finite
period of ‘arbitrary’ interactive activity does not change this.

A robot property P may be called non-trivialwhen some robots (i.e., their robotic
languages) satisfy P and some do not. The concept is inspired by Rice’s theorem
in computability theory for the case of classical programs and their non-interactive
computations (Rogers 1967).

Definition 4 (Non-triviality) A robot property P is called non-trivial if and only if
there are robotsM and N such that M satisfies P but N does not.

For instance, always adhering to accepted rules of ethics, is an example of a non-
trivial robot property (van Leeuwen & Wiedermann 2021). For robot-driven cars,
the property of always ‘driving in accordance with the traffic rules’ is non-trivial. A
robot property is called trivial if and when it is not non-trivial.

4 Verifying Semantic Properties of Robots

We now consider the following question: given a robot property P , is there an algo-
rithmic procedure that can always decide whether a given robot R satisfies P in all
its eligible interactive runs? We show that, under mild assumptions, the answer to
this question is always no, whenever P is non-trivial.

4.1 Preliminaries

In later constructions we want to know whether and how the ‘switch-to-false’ of
a detectable condition C during a run of a robot like I DM[Θ, C] � M or M �
I DM[Θ, C] can make the difference between the robot satisfying property P or not.
The following observations can be made.

Lemma 1 Let P be a regular property,M a robot (program), I DM any idle robot
that wewant to composewithM, C a detectable condition, andΘ a detection process
linked to it.

(i) Suppose that I DM has property P, but that M does not have property P.
Then C turns false during some eligible run of I DM[Θ, C] � M if and only if
I DM[Θ, C] � M does not have property P.
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(ii) Suppose that I DM does not have property P, but that M does have property
P. Then C turns false during some eligible run ofM � I DM[Θ, C] if and only
ifM � I DM[Θ, C] does not have property P.

Proof To prove (i), suppose that I DM has property P , but that M does not. First,
consider any eligible run τ of I DM[Θ, C] � M. Suppose that C turns false in finite
time during τ . Then τ will be of the form (r0, nil) · · · (rk−1, nil)(s0, b0) · · · , for some
k ≥ 0 and (s0, b0) · · · any eligible run of M. Because M does not have property
P , there will be a τ in which M chooses to follow an interactive run that does not
satisfy P . However, by the fact that P is regular it then follows that the resulting
run (r0, nil) · · · (rk−1, nil)(s0, b0) · · · of I DM[Θ, C] � M does not satisfy P either.
Hence, I DM[Θ, C] � M does not satisfy P .

To prove the converse, assume that I DM[Θ, C] � M does not have property P .
Suppose thatC does not switch to falseduring any eligible runof I DM[Θ, C] � M. It
follows that all eligible runs τ of I DM[Θ, C] � Mmust be of the form (r0, nil) · · · ,
where (r0, nil) · · · is any eligible run of I DM. Because I DM has property P , it
follows that all these runs are in LP and, thus, that I DM[Θ, C] � M has property
P also. Contradiction. Hence, C must turn false during at least one eligible run of
I DM[Θ, C] � M.

To prove (ii), assume that M has property P , but that I DM does not. The proof
proceeds as for case (i). First, consider any eligible run τ of M � I DM[Θ, C].
Suppose that C turns false in finite time during τ . Then τ will be of the form
(s0, b0) · · · (sk−1, bk−1) · S · (r0, nil) · · · for some k ≥ 0, with S a finite sequence
of interactions generated while M comes to a stop (if any) and (r0, nil) · · · any
eligible run of I DM. Because I DM does not have property P , there will be
a τ in which I DM chooses to follow an interactive run that does not satisfy
P . However, by the fact that P is regular it then follows that the complete run
(s0, b0) · · · (sk−1, bk−1) · S · (r0, nil) · · · of M � I DM[Θ, C] does not satisfy P
either. Hence, M � I DM[Θ, C] does not satisfy P .

To prove the converse, assume thatM � I DM[Θ, C] does not have property P .
Suppose that C does not switch to false during any eligible run ofM � I DM[Θ, C].
It follows that all eligible runs τ ofM � I DM[Θ, C]must be of the form (s0, b0) · · · ,
where (s0, b0) · · · is any eligible run of M. Because M has property P , it follows
that all these runs are in LP and, thus, that M � I DM[Θ, C] has property P also.
Contradiction. Thus, C must turn false during at least one eligible run of M �
I DM[Θ, C]. �

Lemma 2 Let P be a robot property that is regular and non-trivial, C a detectable
condition, andΘ a detection process linked to it. Then there is robotM = M(Θ, C)

depending on Θ and C only such that C turns false during some eligible interactive
run of M (as the result of its detection by Θ) if and only ifM does not satisfy P.

Proof As P is non-trivial, there are robotsM andN , such thatM satisfies P butN
does not. Let I DM, I DN be two idle robots, both designated to run process Θ for
detecting condition C. Clearly, the two robots are observationally equivalent. Now
distinguish the following two cases.
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• Case (a): I DM satisfies P . Then, by equivalence, I DN must satisfy P also.
By Lemma 1(i) it follows that robot M(Θ, C) = I DN [Θ, C] � N satisfies the
required property.

• Case (b): I DM does not satisfy P . It follows from Lemma 1(ii) that now robot
M(Θ, C) = M � I DM[Θ, C] satisfies the theorem.

�

Lemma 2 shows that, at least for some robots, a variation in the occurrence of
an ‘internal’ event (namely, whether a condition C ever turns false during a run or
not) is reflected in an ‘external’ property that can be observed (namely, whether M
satisfies P or not). There need not be any link between C and the semantic property
P that is traced.

4.2 Undecidability Result—Analogy to Rice’s Theorem

We now exploit this property for detectable conditions that are determined by ‘closed
processes’, i.e. processes that do not depend on the robot that happens to simulate
them nor on any of the situational inputs that this robot receives. A useful feature of
these conditions is that, if they ever turn false during the execution of their supporting
process, then they will turn false during any run of every idle robot on which their
detection is activated, and vice versa.

The observations lead to the following analogue of Rice’s theorem, now for
autonomous robots. Assume that all robots in the ‘family of robots’ we consider
either have universal processors themselves (i.e. are equivalent to Turing machines)
or can off-load closed processes to outside agents (in ‘the cloud’) that inform them
of detected conditions during their computation.

Theorem 1 For all regular robot properties P, P is trivial if and only if RP is
recursive.

Proof Let P be trivial. Then RP is either ‘empty’ or equal to the set of all robot
programs. Thus, in either case, RP is recursive.

Conversely, let RP be recursive. Suppose that P was non-trivial. We now unravel
the proof of Lemma 2, using the following choice of detectable conditions C. First,
let K = {e ∈ N | the Turing machine with Gödel number e halts on input e} be the
Halting Set (Rogers 1967). Next, let e ∈ N be arbitrary, and let Ce = Ce(t) be the
temporal condition defined by:

Ce(t) = “Turing machine e on input e has not halted within time t (or, within t steps)”

Let Θe be a computational process that simulates Turing machine e on input e,
programmed so as to execute only constantly (non-zero) many instructions in every
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iteration of the operational cycle of a robot as long as e does not halt, thusmaintaining
the bounded-cost requirement for the iterations.

Clearly, for every e, Ce is detectable using process Θe, where indeed, if Ce(t)
turns false, it remains false forever after. Note that Θe is a closed process that can be
implemented on every robot in our family of robots or, alternatively, be off-loaded
to an external agent with universal computing power that reports back when Ce(t)
‘switches’ during the simulation.

As property P is regular and non-trivial, it follows from Lemma 2 that for every e,
there is a robot (program)M(e) = M(Θe, Ce) such that Ce turns false during some
eligible interactive run of M(e) (as the result of its detection by Θe) if and only if
M(e) does not satisfy P . However, as Θe is a closed process, this means that:

Ce turns false within finite time if and only if M(e) does not satisfy P .

Note that, by the assumed effectiveness of the allowed compositions, it follows from
the proof of Lemma 2 that program M(e) can be effectively determined, for every
e.

It follows, then, that e ∈ K if and only if M(e) does not have property P or,
alternatively, that e ∈ K if and only ifM(e) ∈ RP . As RP is assumed to be recursive,
this would mean that K is recursive as well. This is a contradiction, as K̄ is not
recursive (Rogers 1967). Hence P cannot be non-trivial. �

Theorem 1 is perhaps better recognized as an analogue of Rice’s theorem if it is
stated in the following form.

Corollary 1 For all regular robot properties P, P is non-trivial if and only if RP is
non-recursive.

Interestingly, if P is non-trivial, then the proof of Theorem 1 can be extended to
show that RP is not even recursively enumerable.

Theorem 1 is not only an analogue of Rice’s theorem, but it can also be applied
with the same ease. For example, as being ethical or legal are easily seen to be
regular and non-trivial properties, it follows immediately that these properties are
not generally decidable for autonomous robots in our model.

5 Interactive Verification

Wenow consider the, potentially,more powerful approach to the verification problem
in which robots are tested interactively. In this case, a robot’s program is no longer
the only source of information like it was before, but its behaviour is observed as
well, for some time. Any automated tool for this task will be called a P-verifier, if
it is used for verifying property P . By the results from Sect. 4, we may not expect
P-verifiers to be fully algorithmic. However, can they exist at all, by some means?
We show that even this answer is no.
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To prove this, we assume by way of contradiction that P-verifiers exist. We will
argue that, under mild conditions, the presumed interaction between a robot R and
a P-verifier enable the robot to ‘fool’ the verifier and invalidate its verdict. To this
end, we first consider how a P-verifier is assumed to proceed, and then show that its
decision need not always be correct, no matter what (deterministic) capability it has.
P-verifiers To begin with, a P-verifier has access to the complete program of a
robot, M, once it is connected to it. It is anticipated that the verifier will be able to
conclude that P holds for all eligible runs ofM, if it can do a (finite) experiment with
one (or, some) of them. We assume that the verifier can select any initial segment of
any eligible run of M for its testing.

Once connected toM, the verifier operates in rounds. In every round it interacts
with M to let the robot make a next ‘move’ that is eligible, i.e. ‘possible’ in its
environment, by presenting it with a next situational input of its choice. In return,
M has access to the verifier’s progress. Finally, we assume that, as it inspects the
interactive run that unfolds round after round, the verifier eventually stops within
finite time, and gives a definite yes/no-verdict after it stops.

For consistency we require that, if a P-verifier answers ’no’, then it must answer
‘no’ regardless of the initial segment it choose for its testing process. It means that,
when there is evidence that P is not satisfied, then a P-verifier is assumed to be able
to pick this up during any testing session of its choice. It follows that the same holds
in case the verifier answers ‘yes’.

We now argue that, under mild conditions, no P-verifier of this kind can exist,
whenever P is (regular and) non-trivial.

5.1 Preliminaries

A bit of reflection indicates why interactive verification may not always work. Sup-
pose there is a robot whose program M is designed to let it satisfy P , unless some
detectable condition C ‘switches’ that causes M to respond in a way that does not
satisfy P . If a P-verifier V must decide after some time whetherM satisfies P , and
C hasn’t occurred yet, the validity of V ′s verdict—whatever it is—will depend on
whether C will still happen later or not. It seems that V cannot always know this.
However, can we always exclude that it doesn’t have some hidden knowledge of the
detectable condition that is used?

In the testing process, a P-verifier can ‘push’ robot R on a selected course, to
trace it during an initial segment of an eligible interactive run of its choice. After the
verifier stops, it must give its verdict. The following lemma shows what information
a verifier might infer from this, in some cases. We first distinguish the following
useful concept.

Definition 5 A condition is called primed if it is of the form: Z(C) ≡ {‘no verifier
is (was) connected or a verifier is connected but has not stopped’ ∨ ‘C’ }, where C is
any detectable condition.
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In interactive testing, primed conditions are interactively detectable ‘by default’.
Note that primed conditions are well-determined, and once they turn from true to
false, they remain false forever. In fact, assuming a verifier is ever connected, Z(C)

turns false if and only C does. The detection process ofZ(C) combines the detection
of the verifier’s progress and the detection process for C.

It is natural to assume that all machines are prepared for being subjected to interac-
tive verification and, thus, for P-verifiers to be ‘imposed’ on their normal operation.
We assume, for the sake of argument, that at most one verifier is ever connected to
a machine during a run.

Lemma 3 Let P be a robot property that is regular and non-trivial, and Z = Z(C)

a primed condition with C detectable. Let Θ be a supporting detection process for
Z . Then there is a robotM = M(Θ,Z) such that, if a P-verifier V is connected to
M, then:

– if the finite initial interactive segment that V chooses for its testing process can be
extended to an eligible interactive run τ such that C turns false during τ , thenM
does not satisfy P.

– if M does not satisfy P, then there is initial segment that can be chosen by V for
its testing process, and an eligible continuation of it (i.e. after V has stopped) such
that C turns false sometime during the resulting run.

Proof By Lemma 2 there is a robotM = M(Θ,Z) such thatZ turns false in finite
time during some eligible interactive run ofM if and only ifM does not satisfy P .
Consider robot M, and connect a P-verifier to it.

Suppose that the finite interactive segment that V chooses to trace can be extended
to an eligible run τ such that condition C switches sometime during τ (before or after
the verifier stops). As V is guaranteed to stop in finite time, it follows from its
definition that Z turns false during τ as well. By Lemma 2, it follows that M does
not satisfy P .

Conversely, suppose that M does not satisfy Z . By Lemma 2 there must be an
eligible interactive run τ during which Z turns false. It is certainly feasible that V
sets course on τ for its testing process, as no eligible segments are excluded from
testing. Suppose that the first clause ofZ , the one which traces the end of the activity
of V , turns false when the t th interaction in the run is generated. Then the segment
that the verifier is choosing for its testing process is τ [t], the initial segment of τ of
length t . Now note that, because Z switches in finite time during τ , so must C. �

5.2 Impossibility Result

In interactive testing, a robot may reveal its true nature only after a verifier has
stopped and announced its verdict. However, couldn’t a verifier tell from a robot’s
program that it intends to fool it?
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We now show the following impossibility result for interactive verification, for all
robot properties that are regular and non-trivial.

Theorem 2 Let P be a robot property that is regular and non-trivial. Then there is
no P-verifier of whatever kind that always correctly decides for any given robot R
whether it satisfies P or not.

Proof Suppose there exists a P-verifier V . Let Z = Z(C) be the primed condition
with C ≡ ‘a verifier is (or was) connected and stopped, and decided no’. LetΘ be the
supporting detection process of Z . Consider the robot M = M(Θ,Z) as implied
by Lemma 3, and connect verifier V to it. Clearly V will carve out an initial segment
of some eligible run τ during which it does its testing. After finite time, at the end
of the segment, V stops. Now two cases can arise.

• V answers ‘yes’. This means that C, and thus Z , will turn false after the verifier
stops. By Lemma 3 it then follows thatM does not satisfy P , a contradiction with
the verifier’s finding.

• V answers ‘no’. Then, by assumption, the verifier will answer ‘no’ after all its
testing sessions. However, if indeedMwould not satisfy P , then Lemma 3 implies
that there must be an initial segment that can be chosen by V for its testing process
and a continuation such that C, and thus Z , turns false during that run. But this
can only happen if, after the testing ended, V did not answer ‘no’. This is, again,
a contradiction.

As all cases lead to a contradiction, we conclude that our initial assumption that a
P-verifiers V existed cannot hold. �

Note that Theorem 2 did not require that robots are necessarily universal. The
implicit consistency requirement for P-verifiers is, of course, quite strong but it is
the only one to make if P-verifiers are to be reliable. In general, the theorem shows
the fallibility of interactive testing.

6 Conclusion

Our model of autonomous robots enabled us to study the validation problem for
semantic properties of robots.We proved both an undecidability and an impossibility
result for it. Theorems 1 and 2 point to the intrinsic non-transparency of robot
programs: inspecting and testing them does not offer any advantage for deciding
their non-trivial semantic properties, as we showed these to be non-recursive and
even impossible to verify interactively.
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The results exclude the feasibility of general, off-line or interactive, verification
of ethical or legal behaviours of robots, in our model. For example, it rules out
the existence of so-called ethical governors, which should keep autonomous robots
from acting unethically, in an on-line manner (cf. Arkin et al. 2009; van Leeuwen
and Wiedermann 2021; Winfield et al., 2019).

The results also formally identify the “hard problem” of designing AI systems,
namely, to endow such systemswith a set of verifiable non-trivial semantic properties
that guarantee a desirable behavior under all circumstances which these systems can
face. It underscores the need for ‘correctness-by-construction’ methods in the design
of all modern AI systems (Wing 2021).
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