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Abstract
Taken literally, geoAI is the use of Artificial Intelligence methods and techniques in solving geo-spatial problems. Similar to 
AI more generally, geoAI has seen an influx of new (big) data sources and advanced machine learning techniques, but also 
a shift in the kind of problems under investigation. In this article, we highlight some of these changes and identify current 
topics and challenges in geoAI.
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1  Introduction

The term ‘geoAI’ is a combination of ‘geo,’ as in ‘geo-
graphic’ or ‘geography,’ and ‘AI,’ i.e., ‘Artificial Intel-
ligence.’ The ‘correct’ definition of geoAI is debatable.1 
However, it seems safe to say that methods and techniques 
of Artificial Intelligence (AI) have been for a long time—and 
continue to be—applied to solving problems of a geographic 
nature. In that, the last 10–15 years have seen many changes. 
There is a lot more, and a lot more diverse, data available, 
the kinds of problems addressed have become broader, but 
also focus shifted, and following developments in AI more 
generally, methods and approaches applied in geoAI have 
changed. In this paper, we aim at providing an overview 
of some of the current developments and challenges in 
geoAI. We start with the (data) sources and some currently 
dominant areas of research. We then explain how increasing 
digitalization of our environments has led to more dynamic 
and more complex situations and requirements for geoAI, 
and briefly discuss some issues the new methods may bring 

along. We end the article with a short excursion into the 
‘geography of indoors.’

2 � Spatial is Special, or is it?

“Spatial is special” is a claim often made in the geo-spatial 
sciences [3]. Different aspects or properties of geographic 
space and the phenomena playing out in these spaces have 
been identified that may make it special [13, 36], among 
them the underlying physical and geometric properties and 
restrictions that hold in the real world, the fact that results 
of spatial computations are dependent on scale and location, 
and an inherent uncertainty in the data. Tobler’s first law 
of geography is often cited in this context: “everything is 
related to everything else, but near things are more related” 
[65]. Among others, an important consequence of these 
inherent properties of spatial data is that data points (sam-
ples) are usually not independent, as it is often assumed in 
various statistical and machine learning methods.

Because geographic space may have specific properties 
that make spatial data different from other kinds of data, 
some researchers call for designing spatially explicit models 
(see, e.g., [30, 36]). For such models, some form of spatial 
representation (e.g., coordinates or place names) would be 
an essential part of their implementation, and they would 
make use of fundamental spatial concepts, for example, 
neighborhood. Their results would also depend on the loca-
tion of the phenomena under investigation [30]. An example 
would be to explicitly account for geographic distance and 
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distance decay, i.e., Tobler’s first law (“near things are more 
related”), in determining the similarity of different point of 
interest (POI) types [32, 73]. Employing (spatially or other) 
explicit models usually results in a more complex model 
architecture, which may turn out to be unnecessary given 
enough data to train more general models. Whether or not 
such explicit models are needed is a current debate in geoAI 
(e.g., [30, 77]; see also both interviews and the discussion 
article in this issue).

3 � Crowdsourcing and Volunteered 
Geographic Information

As in several other domains, over the last two decades many 
more, and much more diverse, data sources have become 
available. Assessing and processing geographic data used to 
be expensive and left to specialists working in government 
agencies, industry, or academia. But developments in Web 
technology (Web 2.0 and beyond), social media, and open 
source and open data movements have changed the situation 
tremendously. This holds true for ‘obviously’ geographic 
data, such as freely available Landsat earth observation data2 
or topographic data in OpenStreetMap3, which has been 
compiled and maintained by volunteers around the world. 
But it also results in data that is less obviously geographic 
being used to answer geographic questions.

Previous to what might be considered ‘the data revolu-
tion,’ geographic data in particular was usually curated by 
trained experts often working for some government agency 
(e.g., surveyors and GIS experts). These agencies guaran-
tee certain criteria regarding data quality and correctness. 
With the ‘new’ data created by volunteer amateurs in crowd-
sourcing and volunteered geographic information attempts 
[19], these guarantees essentially vanished. Consequently, 
research has investigated the quality of VGI data sources, 
in particular OpenStreetMap, regarding, for example, their 
completeness (coverage), accuracy, or plausibility [18, 24]. 
Generally, findings show that given enough ’eyeballs,’ i.e., 
contributors, for an area, data quality can have a high stand-
ard, but there are also large differences between different 
geographic areas (e.g., urban vs. rural, but also between 
countries) [25, 46]. Such research also includes approaches 
to automatically detecting potential data quality issues 
using geoAI methods [2, 32]. We expect that possible future 
methods used in a geographic context will likewise need to 
account for specific quality dimensions of spatial informa-
tion, such as spatial resolution, completeness and accuracy.

There have also been several efforts to collect and pro-
vide spatial data for specific (research) questions, such as 
people’s perception of place [4, 55], or data to train models 
for visual question answering [43] or place recognition [76].

4 � Major Areas of Research

There are various areas of research in geoAI. Here, we name 
a few of the (currently) dominant ones.

4.1 � GeoAI for Handling Geographic Information 
Sources

In recent years a large focus has been on extracting ‘geog-
raphy’ from data that is not obviously geographic, at least 
not in the same structured way as topographic data. Such 
data includes (large) corpora of text (e.g., travel guides, 
hiking protocols), annotated photographs (possibly coming 
with coordinate information of where the photo was taken), 
recordings of movements (trajectories), or social media data, 
e.g., Twitter streams or Foursquare check-ins, again possibly 
being georeferenced. Georeferencing allows for anchoring 
essentially any kind of data, such as maps, photographs, or 
texts, in a geographic space by annotating the data with a 
geographic coordinate [26]. All this data contains more or 
less hidden geographic information that research aims to 
exploit for inferring all kinds of information and answering 
various geographic questions.

Such work can roughly be seen as data mining in that 
it aims at extracting information that is not immediately 
accessible in the underlying data. Today, most of this work 
applies methods and techniques from (deep) machine learn-
ing, such as clustering, decision trees, or neural networks. 
Research is data-driven, methods often ‘black box,’ and the 
chosen methods do not always seem to (explicitly) account 
for properties and principles of (geographic) space. On the 
other hand, results are often highly interesting and useful, 
and the chosen approaches in combination with the large 
amounts of data now available allow answering questions 
or solving problems that were not possible before [30, 77].

Image processing and image understanding turn out to 
be one of the most successful areas deep learning methods 
are applied to. Image processing and understanding are also 
crucial in environmental remote sensing. Thus, not surpris-
ingly, machine learning, and deep learning in particular, 
sees prevalent use in remote sensing as well [74, 77]. Deep 
learning is used for various tasks in remote sensing, for 
example, landcover classification [10, 39], data fusion and 
downscaling [49], or the reconstruction of missing data [75]. 
Deep learning is also employed in extracting environmental 
parameters, which relates to the debate of whether explicit 2  https://​lands​at.​gsfc.​nasa.​gov

3  https://​www.​opens​treet​map.​org/
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models are needed for processing geospatial data [71] (see 
also the interview with D. Tuia; this issue).

Similar to image processing, deep learning has led to tre-
mendous advances in natural language processing (NLP) 
[48]. These advances allow for extracting geographic infor-
mation from (unstructured) textual descriptions in natural 
language [29], often for identifying locations [62] or places 
[5], or for interpreting narratives about landscapes [50]. 
Such work is considered part of geographic information 
retrieval (GIR) [31] and may also be useful for geographic 
question answering (geoQA) [43, 44, 56], dealing with ques-
tions of plausibility and relevance, among others.

Finally, given the ubiquity of mobile devices, which 
offer a plethora of sensors, and the popularity of social 
media, many humans nowadays leave a digital trace while 
going about their everyday (and not so everyday) activities. 
Analyzing these digital traces to better understand human 
dynamics is often called social sensing [1]. Work in social 
sensing includes extracting human mobility patterns [60], 
identifying familiarity with an environment [51], or urban 
planning [52]. Place is often a fundamental concept in social 
sensing, used as a reference system and to anchor human 
behavior in a space. Accordingly, identifying places from 
human digital traces is another important topic [28, 57, 58].

4.2 � Modeling Dynamic Spatial Systems

The ever increasing digitalization of every day life and the 
push of AI systems out of research labs and specialist hands 
into our everyday environments provide a lot of challenges 
and opportunities, many of them (geo-)spatial in nature. 
Smart cities [22] and smart homes [64]—including the idea 
of digital twins [7, 66], self-driving vehicles [20], robots in 
healthcare, retail, and our homes, but also tackling global 
pandemics all act and happen in (geographic) space, entail 
the need to solve spatial problems, and require some under-
standing of space. They all have in common that they oper-
ate in (highly) dynamic situations with changes that are often 
hard to fully predict, a high degree of uncertainty [13], and 
that they require interacting (in a broad sense) with people 
who are not experts on the respective systems’ inner work-
ings [53]. One particular method useful for modeling such 
systems are spatial simulation methods, for example, cellu-
lar automata [8] or agent-based simulations [12], which can 
be used to study health interventions in a city [61], among 
others.

5 � Interacting with geoAI Systems

Instead of using geoAI to interact with geographic data 
sources in novel ways, or to model complex spatial systems, 
”intelligence” is also needed on another level, namely to 

help users interact with geoAI systems themselves. This is 
required since, although geoAI systems tend to substitute 
human skills, removing humans (entirely) from the loop has 
turned out to be difficult or is unwanted. Furthermore, since 
geoAI models often remain opaque, it becomes difficult for 
humans to interact with them. Thus, human-computer inter-
action is becoming more and more relevant for research in 
geoAI (see also the discussion article in this issue).

The influx of modern machine learning methods, in par-
ticular deep learning, has also imported the well-known 
issues that these methods bring along, namely issues of 
transparency, explainability, fairness, and so on. Since many 
questions these methods are applied to have far-reaching 
implications, such as in urban planning [40], demograph-
ics [42], or environmental conservation [68], the issues 
become highly critical and relevant. Some authors argue 
that given the special nature of geo-spatial phenomena and 
data, explainable AI (XAI) techniques cannot be applied 
‘out of the box’ to geoAI, but instead spatially explicit XAI 
is required [72].

One approach towards more explainable geoAI is to 
explicitly model the procedures and the kind of data they 
operate on in terms of geo-analytic purposes and corre-
sponding data transformations. Currently, knowledge about 
the provenance and quality of data products, as well as the 
choice of data and workflows towards particular goals is still 
largely dependent on human intelligence. Yet, dealing with 
purposes of geographic information is essential for scal-
ing up intelligent use of data across many geoinformation 
sources [11]. Current geoAI methods are hardly capable of 
incorporating purposes and procedures for automating geo-
computation, which remains an important bottleneck. To 
tackle this challenge, geoAI may need to build on research 
about workflow synthesis [34], service description and 
composition [38], as well as cyberinfrastructures [69]. Fur-
thermore, geoAI requires pragmatic knowledge to handle 
the information possibilities given in geodata, be it for the 
purpose of geo-information retrieval [31], automating geo-
computational workflows [27], or for geo-analytic (indirect) 
question-answering [56] (see also the discussion article in 
this issue).

Another example for focusing on human-computer inter-
action in geoAI is the use of spatial concepts and relations 
in spatial representations and processing that match human 
concepts. Often used in applications targeted to layman 
users, such as navigation assistance or location-based ser-
vices, work includes qualitative spatial representations and 
reasoning [14], the use of spatial and semantic hierarchical 
structures in representing environments [54, 67], identifying 
features of an environment that allow linking local actions or 
views, e.g., in wayfinding, with the overall, global structure 
of a space [59, 63], or the generation [45] and resolution [21] 
of spatial referring expressions, among others.
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6 � The Geography of Indoors

Finally, an increasing number of geoAI research and 
researchers turn their attention to indoor spaces. This is 
often motivated by similar reasons as discussed in Sec-
tion 4.2. The incorporation of digital technology as being 
fundamental to operating indoor spaces, for example, in 
smart homes and digital twins, is fundamentally a spatial 
(or spatio-temporal) problem. Despite this, there seem to 
be important differences between outdoor (or proper geo-
graphic) spaces and indoor spaces that pose certain chal-
lenges [54]. For example, there appears less general agree-
ment on how best to represent the base ‘topographic’ data of 
indoor spaces, even if there are standardization efforts and 
standards available, e.g., indoorGML4, or BIM [33]. Spatial 
data tends to be relative to a given building (or ensemble of 
buildings); there is no global coordinate system employed 
across buildings in different cities or countries. In part, this 
may be due because the seamless integration of indoor and 
outdoor is still a largely unsolved problem [41]. And maybe 
also in part because global positioning, as provided, e.g., 
by the Global Positioning System (GPS), is not available 
indoors for lack of satellite visibility (the GPS signal does 
not penetrate walls). There is no globally available, uniform 
way of positioning somebody or something in an indoor 
space. Thus, reliably positioning people and other (mobile) 
items indoors is another ongoing research issue [70]. Tech-
niques here often use some form of inference or (implicit) 
reasoning about likelihoods over some sensor readings (e.g., 
WiFi, Bluetooth, or infrared) to determine a position [23, 37, 
47]. Many of the application areas mentioned in Section 4.2 
then also transfer to indoors, with self-driving vehicles 
maybe of lesser concern, even though mobile robots may 
take their place in some sense. Most work in indoor geoAI 
seems to focus either on the (smart) management of large 
indoor complexes or on providing location-based services to 
a building’s users. Just like indoor spaces appear to be more 
segregated than outdoor spaces, research on indoors seems 
to make less use of ‘common solutions’ than its outdoors 
counterpart.

7 � Summary

In this short article, we aimed at providing an overview on 
current developments, topics, and challenges in geoAI. As 
discussed, similar to other areas of AI, the processing of 
geo-spatial data faces issues of transparency and explain-
ability (among others) that come with the use of largely 
black box (deep) machine learning methods. On the other 

hand, these methods together with a large range of vari-
ous data, which have become available over the last dec-
ade or two, allow tackling much more complex problems 
than was previously possible. At the same time we are faced 
with increasingly complex systems of an inherently spatial 
nature, e.g., smart cities and self-driving vehicles, which 
require advanced and fast processing of potentially large 
amounts of data, and potentially new forms of interaction. 
Finally, while it remains an open question whether ‘spatial’ 
is as ‘special’ as it is often claimed, i.e, whether explicit 
models are required to properly deal with spatial data and 
problems, in our opinion, repeated illustrations of general 
models’ (seemingly) nonsensical failures, which can have 
drastic consequences (as in the case of self-driving vehicles), 
make a need for spatial model explainability and a focus on 
the transparency of model purposes appear rather likely. In 
that, current geoAI can benefit and make use of a large body 
of previous work addressing the formal representation of 
space and spatial relationships (e.g., [9, 15–17]), including 
‘spatial’ ontologies [6, 35].
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