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Abstract
Current artificial intelligence (AI) approaches to handle geographic information (GI) reveal a fatal blindness for the infor-
mation practices of exactly those sciences whose methodological agendas are taken over with earth-shattering speed. At the 
same time, there is an apparent inability to remove the human from the loop, despite repeated efforts. Even though there is 
no question that deep learning has a large potential, for example, for automating classification methods in remote sensing 
or geocoding of text, current approaches to GeoAI frequently fail to deal with the pragmatic basis of spatial information, 
including the various practices of data generation, conceptualization and use according to some purpose. We argue that this 
failure is a direct consequence of a predominance of structuralist ideas about information. Structuralism is inherently blind 
for purposes of any spatial representation, and therefore fails to account for the intelligence required to deal with geographic 
information. A pragmatic turn in GeoAI is required to overcome this problem.
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1  Introduction

Based on technological developments in Machine Learn-
ing (ML), Artificial Intelligence (AI) has made impressive 
progress in imitating, substituting, and challenging human 
competencies in various domains of human culture that 
have long been difficult to handle by computers [59]. An 
often-cited example is deep learning methods in self-driv-
ing vehicles that effectively recognize moving objects and 
street signs. The recent AI wave also affects central methods 
of geographic information and the geosciences, including 
distant reading, harvesting, and georeferencing of spatial 
information in natural language texts [33, 77], or geographic 
question-answering (geoQA) and geo-information retrieval 
(GIR) [9, 57, 72], as well as recognition and retrieval of 
objects in geo-referenced images, in particular, remote 

sensing imagery and point clouds [90]. Today, AI methods 
are being used for modelling geospatial phenomena across 
all spheres of the earth [78]. The trend of applying AI meth-
ods to such problems is sometimes called GeoAI [43].

Since AI affects or even substitutes the more traditional 
approaches to all these tasks mentioned above, the under-
lying sciences (e.g., geosciences, life or social sciences 
making use of geographic information) are modified, too. 
Geoscientists are beginning to put their trust into general-
ized, automated learning to accomplish tasks they previously 
tackled with tailored methods because machine learning 
methods often accomplish higher accuracy on test data [78]. 
Furthermore, there is a corresponding trend to regard the 
practices within these sciences less as a precious methodo-
logical heritage requiring careful reconsideration, but rather 
as a burden that needs to be overcome, to make place for the 
next, “geographic” variant of a universal, AI fuelled data sci-
ence [74]. In the latter, geographic information practices are 
either becoming obsolete or are being transformed into mere 
applications of (what is essentially) ML to a specific kind of 
georeferenced data. Such substitution may appear beneficial 
for any information practices. We know that human cogni-
tion is biased and error-prone [46], so isn’t the prospect of 
such substitutions desirable? Looking at the problem more 
closely, however, reveals that this argument is seriously 
flawed.
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For one, there is an apparent inability to remove the 
human from the loop [20, 44, 59]. For example, image rec-
ognition may fail miserably in unforeseen ways when images 
are manipulated or for unforeseen visual scenes1. It is cur-
rently highly doubtful whether human intervention will ever 
become obsolete for self-driving cars [20]. To prevent errors, 
humans frequently need to intervene at discrete moments 
in AI algorithms, even if they were in principle designed 
to substitute human practice. This applies also to OpenAI’s 
novel dialogue system ChatGPT2. Therefore, in reality, the 
human role is not substituted but rather shifted. We seem 
to run into the so-called paradox of automation [4]. The 
more developed an automated system is, the more attentive 
and skilled human controllers need to be. However, since 
human practices are substituted with ML algorithms, human 
operators lack practice and are, thus, becoming less and less 
skilled [20].

Furthermore, it becomes more and more apparent that 
data-driven models fail to capture human-level intelligence 
in important respects required to solve certain problems. 
This includes both human capacities of conceptualisation 
[60] as well as the use of data [20, 54]. Yann LeCun, one 
of the leading researchers in the field of deep learning, has 
recently started questioning a purely data-driven approach 
to AI [54]. He argues that general (artificial) intelligence 
requires the ability to account for levels of detail and for 
simulations using world models3. According to LeCun, the 
two main approaches of data-driven AI, namely supervised 
(deep) learning and reinforcement learning, are dead ends, 
at least when pursuing the goal of general AI. Correspond-
ingly, cognitive scientists such as Gerd Gigerenzer [20] 
have warned that the flexibility of ML solutions, which is 
the main reason for their success and which was meant to 
prevent bias errors [31], comes at a high price. In contrast 
to cognitive models, unbiased ML models become brittle 
and, thus, cause errors in unforeseen situations, which go 
unnoticed in the data [22]. As a consequence, human heu-
ristics can outperform complex models precisely because 
of their inherent bias [21]. Thus, in contrast to what one 
might assume, human cognition and its inherent biases play 
an essential role in handling a particular kind of uncertainty 
that goes unnoticed by current AI models. From the view-
point of information science, this uncertainty manifests itself 
in a lack of knowledge about the usefulness of data for a 
given purpose [70]. It has at least three dimensions [20, cf. 
chapter 5]: 

1.	 our world described by the data is unstable and thus 
concepts need to change.

2.	 human conceptualizations or good theories needed to 
interpret the data are not well understood or remain 
unclear.

3.	 procedures used to generate data (provenance) and the 
purposes of using data remain intransparent, and, thus, 
the data’s quality cannot be assessed.

In this discussion article, we argue that the uncertainty about 
data quality and use is a consequence of a lack of pragmatic 
models. What is largely missing in today’s (geo)AI is what 
philosophers call pragmatic knowledge, i.e., knowledge of 
information practice [42]. Current data-driven GeoAI there-
fore becomes blind to exactly those practices that it tries to 
substitute. As a result, accuracy measures become mislead-
ing, because they assume these practices without mastering 
them. To address this blind spot, GeoAI needs to become 
pragmatic. It needs to put possibilities, purposes and pro-
cedures underlying geographic information in the centre of 
modelling, at least to a degree that allows controlled interac-
tions between GeoAI and human experts.

In the remainder, we first illustrate this challenge using 
a typical example of geographic information practice. We 
then argue that the reasons for the discussed blind spot 
emerge from a particularly popular background philosophy 
of AI, which we call structuralist AI. We discuss the short-
comings of the structuralist approach to GeoAI in terms 
of 8 challenges. This is followed by a definition of what 
GeoAI should be, and a sketch of an alternative methodical 
approach we call pragmatic GeoAI. At its core, it is based on 
an information-theoretic action model, which explains what 
kinds of knowledge need to build on each other. Finally, we 
discuss how such an approach might be used to handle the 
previously identified challenges.

2 � The Problem in a Nutshell

The inability of substituting information practices by 
machine learning due to missing concepts in the data, and 
due to a corresponding lack of understanding of the purposes 
underlying data, is a recurrent topic in AI. Take the well-
known example of the Bongard problems (Fig. 1), discussed 
in [32].

The task is to find a principle that distinguishes the 
images on the left from those on the right. In the illustrated 
case, the concept in question is convexity, but there are 
unlimited further possibilities. As [60] explains, current ML 
approaches not only fail to learn solutions from data beyond 
any specific principles, they also rely on (large amounts of) 

1  Cf. e.g. Uber’s fatal experiment with a self-driving car in 2016, and 
numerous other examples collected in [20, 59].
2  https://​openai.​com/​blog/​chatg​pt/.
3  By the way, this is an insight gained decades ago in cognitive sci-
ence and linguistics [5, 45].

https://openai.com/blog/chatgpt/


19KI - Künstliche Intelligenz (2023) 37:17–31	

1 3

data examples4. In contrast, human solvers can figure out 
new concepts based on seeing a single example. This sug-
gests that the practice people use to solve these problems 
is different from general-purpose pattern recognition [59]. 
It involves a repertoire of concepts that can be applied to 
the given sketches by problem inventors and solvers alike, 
and which can be searched for equivalences. Note that this 
repertoire is not in any way “contained” in the data. Instead, 
it is part and parcel of the practice of any competent human 
interpreter of geometric figures. Furthermore, the repertoire 
is extensible, as there are unlimited possibilities for coming 
up with Bongard problems. Finally, the underlying concepts, 
such as convexity, can be considered the purposes of Bon-
gard problems, namely to learn what distinguishes sides.

Bongard problems are similar to the problem of handling 
geographic information in terms of maps. Maps require 
interpretation, generation and composition from diverse 
origins [63, 89]. In principle, there is potential for GeoAI 
methods to make geographic information better accessible 
and usable by automating the interpretation, retrieval and 
composition of maps [14, 30, 50, 81]. However, it remains 
unclear how precisely machines could substitute the inter-
pretation and transformation skills of GIS analysts based 
on data-driven methods. For example, to quantify the effect 
of noise on the health of citizens, we may need to retrieve 
and transform a noise contour map (Fig. 2) into a statisti-
cal summary to derive the proportion of the area covered 
by 70dB noise in Amsterdam. The latter information serves 

the purpose of assessing the health conditions of living in 
Amsterdam. Deriving this information is a typical GIS task. 
How should a map like the one in Fig. 2 be interpreted for 
this purpose? Which transformations are possible and mean-
ingful for this purpose? And how can we know that they 
satisfy this purpose?

Possible practices of solving this problem manually with 
GIS software are illustrated in Fig. 3. These practices reveal 
that having the data or the analytic algorithms is not even 
close to being sufficient for solving this task. More precisely, 
it is not enough to know that the map is in (vector) poly-
gon format covering certain kinds of regions in space, nor 
that noise values consist of integers within a certain range. 
Instead, we would need to know that the map can be inter-
preted as a spatially continuous field represented as con-
tours, and not as a collection of objects [51]. Yet whether a 
map can be interpreted in this way is neither contained in the 
data nor is it generally known (and thus could be retrieved 

Fig. 1   Bongard problem: the left side shows only convex shapes, as 
opposed to concavity shown on the right side

Fig. 2   Map of noise contours in 
Amsterdam. Source: Amster-
dam municipality, https://​maps.​
amste​rdam.​nl/​geluid

4  While it is possible to train an ML model to recognize a particular 
principle, Bongard problems require picking from an extensible rep-
ertoire.

https://maps.amsterdam.nl/geluid
https://maps.amsterdam.nl/geluid
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as a fact) [71]. At the same time, conceptualisations of geo-
graphic quantities [80] inform us that aggregations cannot be 
counts or densities of objects, but should be field integrals or 
field coverages, measuring the area covered by some inter-
val over the noise field [71] (cf. dotted boxes in Fig. 3). We 
furthermore need to know that such aggregations could be 
implemented in terms of both raster (zonal map algebra) as 
well as vector overlay (combining, e.g., intersect and dis-
solve methods) (cf. schematized workflows in Fig. 3). In 
summary, the knowledge needed to solve this task goes well 
beyond data, data structures, and algorithms: On the one 
hand, it goes beyond what and how data is encoded in a map, 
by drawing on a repertoire of concepts that require inter-
pretation. On the other hand, it goes beyond the knowledge 
of map algorithms, by drawing on a space of possibilities 
for transforming concepts. Finally, data-driven approaches 
fail because gathering data about these practices is very 
hard [63]. It requires expertise, and thus presupposes exactly 
those skills that we intend to substitute. We thus run into a 
severe cold start problem.

There is a lesson in modesty underlying this. If AI is sup-
posed to “revolutionize” the geosciences, it should be able 
to deal with this simple example of everyday GIS practice. 
However, current approaches to GeoAI fail to handle not 
only the required interpretations of maps in terms of infor-
mation concepts, such as fields and proportions, but also 
corresponding transformation practices [72], and as a con-
sequence, cannot deal with analytic purposes.

3 � Structuralist AI

These apparent limitations of data-driven AI are reflected 
in certain legacies in thinking about information in general. 
These legacies still influence and constrain our modern 
understanding of AI. The subsequent explanations largely 
follow the argumentation of Janich, cf. [42].

3.1 � Structuralism and Related Legacies

For one, there is the legacy of naturalism. In this background 
philosophy, information appears as a quantity occurring in 
nature extractible with scientific means. In Shannon’s infor-
mation theory [73], e.g., information is treated as if it was 
obtainable from signals using thermodynamic entropy, flow-
ing like energy through nature from a sender to a receiver. 
Yet, any modern-day talk about information in nature is 
nothing more than a metaphor. In scientific practice, instead, 
information about nature is always dependent on the techno-
logical practice used to obtain it [39, 41]. Our understanding 
of nature is therefore a sophisticated abstraction of culture 
via technical means, e.g., via standardized measurement 
scales and repeatable experiments [39].

A second and related legacy is (scientific or epistemic) 
structuralism [75]5. This background philosophy assumes 
that theories could be reduced to the structure and relation 
of symbols abstracted from their content. The old idea that 
scientific knowledge could be handled as a purely formal 
structure without any grounding [12, 75], in terms of a 
”self-stabilizing” network of concepts with free interpreta-
tions (cf. the critique in [18] and [29]), finds its modern-day 
equivalent in the idea of knowledge graphs [15] (see below). 
Yet, structuralism underestimates culture and practice as a 
source of scientific knowledge, in particular, as a source for 
establishing reference, trans-subjectivity and reproducibility 
of information [42].

A third legacy is the mechanization of communication. 
The undoubted success of the mechanization of signal trans-
mission may lead us to think that the human communica-
tion process constitutive of information can be similarly 
mechanized. However, in doing so, we tend to abstract away 
dimensions critical for the success of communication [69], 
such as the underlying intentions and purposes as well as 
the actions and practices which are means to such ends. For 
instance, the map in Fig. 2 was designed to determine the 
spatial distribution of a noise field. What we can do with 
the map, e.g., summarize noise, needs to correspond to this 
purpose. These aspects, falling under the term information 
pragmatics, typically get lost in the course of mechanization.

Fig. 3   How to transform a noise contour map into a measure of the 
proportion of noisy area? The dotted transformations are on a con-
ceptual level, in parallel to different computational procedures on dif-
ferent data structures (blue: vector version, red: raster version). Pro-
cedures are schematized versions of real GIS workflows (color figure 
online)

5  Not to be confused with structuralism in social science.
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To summarize, hoping that syntax might constitute 
semantics, and that semantics might be used to handle prag-
matics (giving rise to the information pyramid as depicted in 
Fig. 4a, cf. [61]), has demonstrably not worked in practice 
[11]. We believe this is a misconception due to the legacies 
of naturalist, structuralist, and mechanistic thinking about 
information. To make progress, we need to take pragmatics 
seriously. We cannot dispense with the pragmatic dimen-
sion as the most fundamental level of information, from 
which other aspects such as semantics and syntax need to 
be abstracted. This turns the pyramid upside down (Fig. 4b). 
Note that this new ordering reflects how information is con-
stituted, not the sequence of its occurrence. In practice, we 
are frequently moving up and down in the pyramid so that 
symbols might feed into actions and back. Yet, the inverted 
pyramid implies that we can do so only because action pos-
sibilities constitute any semantic concept denoted by a sym-
bol, even if only implicitly. And as the pyramid gets thinner 
towards its top, the following challenges appear as mere 
consequences of a pragmatic deficit.

3.2 � Pragmatic Challenges for AI

The structuralist view of information has become predom-
inant in AI and data science. Paraphrasing this view, we 
might say that information is a structure observed in nature. 
Data is a way to share such structures. Therefore, informa-
tion about nature can be read out of structural patterns in 
data. In consequence, communication is just data exchange, 

and intelligence becomes just pattern recognition. For exam-
ple, in the representation learning paradigm [6], “informa-
tion” is a pattern of vectors learned from examples such 
that the distances between vectors are tweaked to capture 
conceptual similarity in a highly context-sensitive manner. 
Yet, while these methods can be immensely useful to auto-
mate classifications and retrieval, we are struggling with 
their information theoretic problems:

Abundance of data, but lack of shared procedural and 
pragmatic knowledge

Challenge 1  The information needed to make use of data is 
not contained in this data. It consists of a (tacit) repertoire 
of shared information practices, including procedural knowl-
edge, purposes and requirements (pragmatic knowledge).

This represents a genuine logical problem for structural-
ist AI: to serve a given purpose, trying to extract the miss-
ing information from the data is not feasible, because the 
data misses essential concepts needed to interpret the data, 
including its purpose. Yet, trying to add the missing infor-
mation by learning meta-data is running into the same prob-
lem. Therefore, current AI approaches, though themselves 
very useful, largely fail to account for the usefulness of data. 
When we ask what kind of knowledge is missing, we need 
to refer to repertoires of shared information practices as the 
bottom of our knowledge pyramid. Yet the core of struc-
turalist AI is formed by data or formal structures devoid 
of the underlying generating procedures. This also explains 
why we need to distinguish externalized and internalized 
sources of knowledge. Only part of the procedural knowl-
edge underlying the use of data is made explicit in data or 
in accompanying documentation, a lot of it is internalized, 
tacit knowledge. However, though implicit, this knowledge 
can still be shared within a community. For example, people 
can understand data produced by another person by reca-
pitulating its generation procedures. Furthermore, they can 
account for the usefulness of this data by understanding the 
purposes of procedures.

Lack of reflection and imagination

Challenge 2  Reasoning with procedures requires reflection, 
i.e., procedures for reasoning with other procedures, their 
purposes and requirements.

Challenge 3  To assess the possibilities of data, it is neces-
sary to understand purposes and to reason with procedures 
that would satisfy such a purpose (imagination).

To model the use of data, we need to reflect on what 
is possible, not on what was done. We need to reason 
with information procedures, not simply with data. Fur-
thermore, we need to be able to simulate such procedures 

(a) Pyramid of layers of information from
a structuralist standpoint.

(b) Pyramid of layers of information from
a pragmatic standpoint.

Fig. 4   Knowledge pyramids with layers of information
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without performing them. Both require making use of 
procedures themselves without committing to their appli-
cation. For example, in Fig. 2, figuring out that there are 
two ways to generate the goal map requires reasoning 
over GIS procedures. This corresponds to reasoning with 
higher-order functions (functions that take other func-
tions as input). Since structuralist AI models data and not 
the procedures that generate its structures, it is difficult 
to simulate possibilities and, thus, to deal with reflection 
and imagination (“what would happen if I do this?”).

Lack of reproducibility, reusability and interoperability

Challenge 4  The reproducibility crisis is due to a lack of 
understanding of the provenance of results. Yet knowledge 
of provenance requires procedural knowledge to be machine 
readable/reproducible.

Challenge 5  Missing reusability and interoperability indi-
cate a lack of understanding of the possibilities, and, thus, 
of the requirements and purposes of procedures.

One of the weaknesses of current approaches to AI is 
related to the reproducibility/reusability crisis [34]. Mod-
els (especially ML models, but also computational models) 
are rarely reused because it is unknown whether they can 
be reused or trusted in a different context. This problem 
has triggered various reparation initiatives [85]. However, 
at its core, there seems to be a fundamental pragmatic 
problem.

Lack of modularity and composability

Challenge 6  Modularity and composability of workflows 
require understanding the possibilities, and, thus, both pur-
poses and requirements of procedures within and between 
modules.

For similar reasons, the current approaches to AI make 
it hard to modularize and compose software solutions. 
Currently, models and software solutions are distrib-
uted over millions of developments forming redundant 
resources. How is it possible to know that a certain model 
or computational function solves a particular problem such 
that it can be reused in combination with others in a work-
flow for a certain purpose [70]? Structuralist AI inherently 
lacks data on procedures and purposes. Furthermore, even 
if there was data about procedures available, how to make 
sure it is not biased according to certain habits and, thus, 
misses out on options that were never tried? Again, the 
way to deal with the challenge requires an in-depth under-
standing of what is possible, beyond what was done.

Lack of quality, value and validity

Challenge 7  To discover the quality and value of data, it 
is necessary to model the requirements and results of the 
procedures of data generation and use and to compare them 
with purposes. Furthermore, the validity of scientific claims 
requires quality criteria defined with respect to purposes of 
data analysis.

Concepts of data quality (such as completeness, accu-
racy, and level of detail) form requirements and are real-
ized as results of the procedures of data generation and 
use. For example, resolution is a result of measurement, 
whereas accuracy and completeness are a result of compar-
ing measurements [62]. Furthermore, data is of value only 
as a requirement for a specific purpose. For example, the 
noise contour map is of value for health exposure assess-
ment because it satisfies the requirement of representing an 
environmental factor for health. Finally, the value of data 
for a purpose is the very basis for judging whether scientific 
claims based on data analysis methods can be considered 
valid. Validity is a core notion of the scientific method which 
is dependent on criteria defined relative to purposes implied 
by claims [38]. For example, aggregating a noise contour 
map might be a valid method for supporting claims about 
the noise exposure of citizens living in a particular building. 
Yet, such claims are only valid if the resolution, accuracy, 
the spatial and temporal extent of the map correspond to 
this purpose. Structuralist AI lacks notions of both purpose 
and requirement, yet without these notions it becomes very 
difficult to handle data quality, fitness for use, as well as 
validity in a data-driven way.

Lack of ethics

Challenge 8  Effective data ethics requires understanding and 
restricting the potential (mis-)uses of data. This is only pos-
sible if we can licence purposes and procedures.

Finally, one of the most pressing current problems of AI, 
namely data ethics and privacy, becomes problematic in 
structuralist AI exactly for the same reasons. Data privacy 
is, in essence, not threatened by data (despite what the term 
may suggest), but rather by what can be done with data, in 
particular by what goes against one’s interest. For example, 
a person’s right to affordable health insurance is not threat-
ened by their personal data, but by the usage of this data to 
estimate their health risks. To effectively protect a person’s 
privacy, we, therefore, need to restrict potential misuse of 
the data [84].
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4 � Pragmatic Framework

Pragmatic GeoAI can build on pragmatic theory which may 
be reused as a framework. We discuss such sources in the 
following.

4.1 � Theoretic Predecessors

With the ”linguistic turn,” language moved into the centre 
of interest of philosophy in the 20th century [86]. However, 
while the failure to reconstruct the language of science from 
empirical observations with formal means [65] resulted in 
methodical relativism and modern structuralism [75], it is 
easily overlooked that pragmatics formed the starting point 
of the philosophy of language [3].

In pragmatics, the signs of a language appear only as a 
superficial structure of underlying possibilities for actions. 
For example, [67] discovered that the competence of lan-
guage speakers to formulate meaningful sentences requires 
more than the knowledge of grammar. It implies knowledge 
of actions. This insight leads to the foundation of speech act 
theory [3, 26], which continues to play an important role 
in modelling the meaning of sentences in natural language 
processing (recently e.g. in terms of rational speech act mod-
els (RSA) [25]), as well as in the modern theory of mind 
[17]. Ryle [67] also realized that pragmatics forms a much 
broader basis underlying any kind of shared human com-
petence. For example, knowing how to play chess requires 
more than knowing the rules of chess. Knowing the rules 
is not sufficient to claim that a person is a competent chess 
player. Ryle suggested that explicit knowledge (knowing 
that) is always grounded in knowing how6. According to 
Ryle, knowledge, and likewise intelligence, occurs in the 
implicit form of know-how, i.e., it consists of operational 
dispositions that allow people to do things competently. 
Furthermore, such dispositions become trans-subjective 
when taught and learned by agents. They can be specified 
in terms of procedures, i.e., instructions built based on such 
dispositions. In chess, it is only when the game is taught to 
other players that this know-how is (partially) turned into 
an explicit form. A chess player might explain a strategy in 
terms of configurations that go beyond the rules of chess, 
such as moving a bishop to force the opposing queen to 
cease to threaten one’s king. Yet, since know-how generally 
surpasses the rules of the game and the conditions of its 
mechanics, it is an error to reduce the former to the latter. So 
there is always a loss of understanding involved when going 
from know-how to knowing that.

In the second half of the 20th century, similar insights 
motivated methodical constructivist scholars7 to put action 
dispositions of humans at the core of their epistemology 
[37, 56, 82]. Among these, the ”Erlangen” school of con-
structivism is particularly interesting, because it focused on 
the methodical reconstruction of scientific language starting 
from elementary operations that can be learned in introduc-
tory lessons. From these, more abstract terminology includ-
ing mathematical concepts [56] can be established based 
on equivalence operations [47]. Similarly, other researchers 
embarked on the pragmatic justification of methods in the 
sciences, e.g., of Physics, Chemistry, Biology, and Psychol-
ogy, by making explicit the craftsmanship underlying them 
[41]. Janich’s “proto-physics” and “proto-geometry” [35, 
36], e.g., reveal procedures for generating artefacts needed 
for practical geometry and time measurement, without pre-
supposing existing technical measurement standards. We 
will not go into the details of such methodical reconstruc-
tions, but rather introduce basic ideas taken from Janich’s 
pragmatic theory [38] and his theory of information [39, 
42]8.

4.2 � A Pragmatic Model of Know‑how 
and Information

In the following, we explain the basic terminology under-
lying Janich’s logic-pragmatic propedeutics [38] (Fig. 5). 
Regarding the influence and state of discussion of Janich’s 
theory, cf. [8]. An important difference compared to tra-
ditional action theory or cognitive architectures, such as 
ACT-R [2], is that at its core there is not an individual agent, 
but the practice of people cooperating in a community. 
Another key difference is that it allows for defining what it 
means for information to be useful in this community.

In a community of acting persons, people can attrib-
ute9 actions to people. Furthermore, people can also direct 
actions at one another. Since people can take sides in this, 
they can train each other to obtain the capacity to perform 
actions. For example, when teaching children how to throw 

Fig. 5   Pragmatic action model according to Janich (cf. [38])

6  Note: not the other way around.
7  Not to be confused with post-structuralist philosophers.

8  As the original texts are in German, a certain uncertainty in our 
translation of the terminology is inevitable. This is why we add Ger-
man originals to each technical term.
9  ‘zurechnen’
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a ball, adults may take turns in throwing and prompting10 
children to throw the ball.

The capacity to act is called an action schema11. As illus-
trated by the ball-throwing example, such schemas can be 
shared among members of a community, and thus allow dif-
ferent people to repeat “the same” actions and to recognize 
others doing so. This is called trans-subjectivity. When we 
attribute actions to people and recognize the schema that is 
involved, we call this action an actualization of this schema.

Action schemas can have purposes12, which are simply 
further schemas that this schema points to. When people 
attribute schemas to the actions of a person, they assume that 
the purposes of those schemas are followed by this person. 
For example, when we assume a person throws a ball at 
another person, then we also assume that the former wants 
the latter to catch the ball. If the latter person catches the 
ball, then this catching is an action which is an actualization 
of a catching schema. At the same time, it is a result of the 
throwing. The catching schema, in turn, is the purpose of the 
throwing schema. In case all these four relations hold (the 
right-hand side in Fig. 5), then we can say that the throwing 
was successful. Similar to purposes, action schemas can have 
requirements, which are schemas that need to be actualized 
before an action can take place. An action that occurs before 
another action is called a condition for this action. Being 
both an actualization of a requirement and a condition of the 
actualization of the schema turns a condition into an expla-
nation. For example, a teacher can explain why the throwing 
was unsuccessful by noticing that one of its requirements, 
namely the absence of heavy wind, was not actualized before 
throwing the ball.

Success can be defined as the result of an action that 
corresponds to an actualization of the purpose schema that 
was attributed to this action. Furthermore, success can be 
explained by actualized requirements in an analogous way. 
However, action schemas do not necessarily have purposes, 
and therefore do not always lend themselves to talking about 
success. Consider the making of art, where such a purpose 
often remains unclear. Janich distinguishes actions that suc-
ceed (‘erfolgreich’) and actions that work (‘gelingen’). An 
action that does not work is one that simply cannot be actual-
ized, regardless of any purpose. For example, throwing does 
not work if the ball is too heavy for the child, regardless of 
whether the child had the purpose of throwing the ball to 
somebody else.

Furthermore, some entities are not actions or action 
schemas. For example, actualized purposes do not need 
to be actions, they can also be artefacts. When a carpenter 

successfully teaches an apprentice how to make a table, and 
the apprentice successfully performs this action schema, 
then the result of the actualization will be a table (an arte-
fact). Again, the teaching is successful precisely when this 
table actualizes the purpose of being a table of a certain 
quality.

This mechanism of testing and explaining success based 
on checking whether conditions satisfy requirements and 
results satisfy purposes takes on a central role in human 
learning (Fig. 5). Being able to explicitly recognize arte-
facts, actions, and their schemas, as well as the way they 
are related in terms of purposes, requirements, conditions, 
results, and attributions to people, is a capacity which can 
be taught by competent speakers of a language community 
by giving feedback on success (and switching roles in this), 
in the same way that they can teach each other to become 
carpenters or to throw a ball. It is not only the mechanism 
by which members of a language community can make sure 
their schemas become trans-subjective. It is also the way 
how they organize cooperation and, thus, how information 
comes into the world [42]. Information derives from the verb 
to inform. More precisely, speech13 is an action attributed to 
some person, which is directed at other people, and which 
prompts some schema. Speakers understand each other 
when this prompting is successful, in which case we can 
also say they successfully informed each other. For exam-
ple, when we inform someone about a meeting “at 17:00 at 
home,” we are prompting the use of a particular calendar 
and a particular place (schema), and we know our prompt-
ing was successful when the right schema was used and the 
person shows up in time. A community of speakers and their 
success in performing such acts are the objects by which any 
theory of information must prove itself useful, whether or 
not some of them are externalized in the form of information 
artefacts14 (written text, computer code, gestures, speaking 
robots, etc).

To summarize, Janich’s theory provides a way to explain 
the usefulness of information for purposeful action. In a nut-
shell, information is useful if it is successful in prompting 
actions, which would generate some result that actualizes 
some purpose schema.

5 � Pragmatic GeoAI

In the following, we discuss what a non-structuralist alterna-
tive of GeoAI might look like, which builds on geographic 
information practice and is centred around the action model 
sketched above.

12  ‘Zweck’

13  This includes not only audible speech but all forms of utterances.
14  Janich calls this ”technical substitution of communicative compe-
tence” [40].

10  ‘auffordern’
11  ‘Handlungsschema’
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5.1 � What is GeoAI?

In current approaches to GeoAI [43], the value of a-priori 
knowledge is considered obsolete given more data15. As a 
result, and despite efforts towards “spatially explicit model-
ling” [43], GeoAI is seen largely as AI on georeferenced 
data [55]:

Definition 1  GeoAI is the practice of AI applied to georef-
erenced data as used by geoscientists.

In turn, the practices of geoscientists are seen as a tradi-
tion standing in the way of data-driven innovation (“just 
give us your data, we are not interested in your practice”). 
We believe that Definition 1 is truly misleading because it 
falls prey to all the structuralist problems discussed above. 
So what would be a better way to define GeoAI?

Following the inverted pyramid (Fig. 4b), we should 
instead hook our definition of GeoAI into the levels of prac-
tice, and then work our way towards the data. Georeferenced 
data is not the basis, but rather requires cartographic and 
semantic interpretation, e.g., in terms of a theme, resolution 
and extent. To leave open whether we talk about digital rep-
resentations or analogue maps, and whether for the purpose 
of visualisation or computation, we just use the term map 
in the following:

Definition 2  GeoAI consists of all geographic information 
practices mastered by geoscientists using maps, which a 
computer cannot (yet) master.

While this definition does justice to the fundamental role 
of practice, it constrains GeoAI to the practices of the past 
and of a particular group (geoscientists). However, GeoAI 
enables us to invent entirely new practices in disciplines out-
side of the geosciences. To account for this, we simply adopt 
potential practices in our definition:

Definition 3  GeoAI consists of all geographic information 
practices that make use of maps to satisfy some information 
purpose, but which a computer cannot (yet) master.

Note that information purposes and possibilities become 
central here. Furthermore, since practice (as a form of 
higher-order knowledge) is always rooted in other practices, 
it follows that substitution must always be partial:

Remark 1   Since geographic information practices are 
always rooted in other human practices, GeoAI can only 

partially substitute human practice. Human practice is 
therefore never obsolete, yet it can take on new roles.

In this article, we suggest discarding Definition 1 and 
adopting Definition 3 with Remark 1.

5.2 � Predecessors of Pragmatic GeoAI

Some earlier work has followed a pragmatic approach to 
GeoAI and geographic information. For instance, Brodaric 
[7] recognized that many concepts depicted in geological 
maps are dependent on the historical context in which they 
evolved, such as “Baker Brook basalt.” Similar to place in 
human geography, this makes semantic concepts in geol-
ogy situated, i.e., dependent on history. Yet, here, prag-
matic information is considered from a naturalist viewpoint 
(evolution vs. design), and only as an addition to semantic 
information. In contrast, Helen Couclelis puts the notions of 
purpose and design at the center of her theory of geographic 
information [10]. Yet, purposes and practices still form the 
highest level of abstraction in this theory [11]. Thus, both 
approaches appear to commit to a knowledge pyramid of a 
structuralist flavour (Fig. 4a). Pragmatics has played a larger 
role in the context of wayfinding research [16, 79, 83], where 
it was applied to the specific case of route instructions. In 
summary, the question remains how a general model of the 
pragmatics of spatial information should look like, how it 
would apply to our example from Sect. 2, and how this could 
help address the challenges discussed above.

5.3 � A Pragmatic Model of Knowledge in GeoAI

Following the idea of the inverted knowledge pyramid 
and Janich’s action model introduced in Sect. 4.2, GeoAI 
requires the explicit modelling of actions of informing 
someone about the geography of some phenomenon, e.g., 
about the geography of noise in Amsterdam. Actions are 
performed on particular artefacts, called maps, to satisfy this 
purpose. Knowledge of geographic information therefore 
simply means knowing how to transform16 maps according 

Fig. 6   Core action model for GeoAI

15  ”GeoAI research will have to make a case for spatially explicit 
models ”.

16  With the term transformation, we denote any derivation of map 
artefacts, not just coordinate system transformations.
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to some purpose (see Fig. 6). This implies that in GeoAI, 
action schemas become transformation schemas, artefacts 
become maps, actions become tool applications (because 
tools implement transformations), and schema actualiza-
tions become map interpretations. Furthermore, a successful 
transformation implies that the resulting map is an actual-
ized purpose of a transformation schema. In essence, prag-
matic GeoAI means to be able to reason over transformations 
of maps.

Based on different kinds of reasoning, we can highlight 
different forms of knowledge including their dependencies 
(Fig. 7).

The first and most important distinction is the one 
between internalized and externalized knowledge. This 
acknowledges the fact that the most relevant form of geo-
graphic knowledge is tacit, and thus not externalized in 
terms of map symbols or other representations [71]. For 
example, the fact that the noise map in Sect. 2 is in polygon 
vector format is explicitly represented in the meta-data, but 
the fact that these polygons represent contours of a noise 
field is usually implicit knowledge.

Let us first highlight the different forms of internalized 
knowledge in this example. Conceptualizations (Fig. 7) cor-
respond to actualizations of schemas in map artefacts, e.g., 
the interpretation of the noise contour map in terms of the 
core concept field. With procedural knowledge, we denote 
knowledge of transformation schemas that may be concat-
enated to form larger schemas. For example, “measuring the 
spatial coverage of a field” is a transformation schema that 

consists of many steps transforming a field into a measure 
of the space it covers.

On the next level, knowledge of results and conditions as 
well as of requirements and purposes depend on knowledge 
of conceptualizations and transformation schemas (Fig. 7). 
More precisely, transformation schemas can be actualized 
(performed) and then give rise to tool applications which 
have conditions and results. For example, “measuring the 
spatial coverage of a field” can be performed using the 
tool zonal map algebra, which has some raster map as a 
condition and some vector map as result, or else by some 
equivalent transformations on vector maps. By connecting 
conceptualizations to transformation schemas, we can refer 
to their requirements and purposes. The requirement of the 
transformation schema “measuring the spatial coverage of a 
field” is that the condition represents a field (e.g. of noise), 
and its purpose is a resulting map interpreted as the “area 
covered by this field within some object.”

Based on this kind of knowledge, we can introduce 
knowledge of data content and data quality on the next level. 
Knowledge of data content means knowing that a result was 
generated by a particular procedure starting from a particular 
condition. For example, since we know that the result in the 
workflow of Fig. 3 is generated from a noise contour map, 
we know it is a map of noise. More precisely, procedures 
can be used to concatenate results, and, thus, to parameter-
ize result schemas with input schemas. In this way, we can 
infer, e.g., that the resulting map depicts the “area covered 
by noise > 70 dB within postcode areas” because the input 
field of the transformation can be conceptualized as “70 dB 
noise” and the input objects as “postcode areas.” If schemas 
are higher-order they allow us to reason across transfor-
mations. Likewise, knowledge of how this map was pro-
duced gives us knowledge of its data quality. For example, 
to determine its resolution, we need to know which cell size 
was used when generating the raster map, or which vector 
regions were used when aggregating noise.

If a transformation result cannot be interpreted in terms of 
the purpose, then the transformation is not successful. This 
way we can learn whether the resulting map is useful for 
this purpose. This level of reasoning is based on comparing 
both data quality and data content with a given purpose or 
requirement. For example, if our purpose is a map of noise 
coverage for city blocks, but our result is on the level of post-
code areas, then we can explain that our result is not useful 
because it misses the requirement of city blocks. Finally, if 
we can assess the usefulness of a map transformation for 
a purpose, we can define criteria for the validity of claims 
[38] made based on this map, and thus justify whether such 
claims can be considered geographic knowledge. Such 
claims may be about static geography, but may also involve 
geographic causality [1, 23] and explanations of geographic 
phenomena in terms of constituting processes [19].

Fig. 7   Pragmatic knowledge sources in GeoAI. Arrows denote 
dependencies between different forms of internalized/externalized 
knowledge. Since procedural knowledge is specific for geographic 
information, GeoAI is more specific than general AI. ML appears as 
part of a particular externalization strategy that relies on data
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The problem of data-driven GeoAI is that only small parts 
of these sources of knowledge are externalized, and, thus, 
available for supervised learning. We can externalize proce-
dural knowledge in terms of formal procedures, e.g., algo-
rithms. In our example, the transformation schema measur-
ing the spatial coverage can be implemented in terms of a 
zonal map algebra function, which can be executed on raster 
data. Furthermore, maps are artefacts externalized in terms 
of vector or raster data and as such depend on measurement 
procedures. The conceptualisation of a map as a noise field 
can be externalized as a measurement or estimation pro-
cedure for noise [13]. For example, we could estimate the 
amount of noise using a supervised ML model. Whether this 
externalisation is successful depends on whether we would 
come to similar conclusions when using measurements. Our 
model then depends not only on an externalization of the 
noise concept (a concept model) but also on data produced 
according to some formal procedure. Finally, theories are 
artefacts that are dependent on data artefacts. For exam-
ple, a theory of core concepts can be used to annotate data 
examples and can be externalized as a knowledge graph 
[71]. However, note that in our model, theories also depend 
indirectly on knowledge of the usefulness of data for the 
purposes given by the theory. In consequence, they depend 
on the entire implicit knowledge pyramid, including the full 
stack of conceptualizations and procedural knowledge which 
underlies them.

6 � Discussion and outlook

Finally, we discuss to what extent the proposed core model 
of pragmatics may be capable of addressing the problems 
presented in the introduction and the challenges of Sect. 3.2. 
We use examples from GIScience and AI to illustrate pos-
sible technical approaches as well as areas of future work.

Challenge 1 implies that the information needed to make 
use of geodata is not in the data. Therefore, it cannot be 
extracted by a data-driven GeoAI. From the viewpoint of 
pragmatic GeoAI, this is rather a theorem. It follows from 
the fact that knowledge on which GeoAI relies is mainly 
internalized know-how of informing somebody about the 
geography of some phenomenon. Thus, solving this prob-
lem requires not starting with geodata but to externalize this 
procedural knowledge as far as possible. This requires prag-
matic modelling techniques for both conceptualizations and 
transformations.

Modeling conceptualisations Interpretability, consist-
ency and limited labeling appear among the top challenges 
of deep learning for the geosciences [66]. Papadakis et al. 
[64] recently requested a ”clear reasoning path from data 
to conclusions” for explainable GeoAI (X-GeoAI), similar 
to traditional geo-analysis, by combining concepts with 

statistics (cf. also [87]). Unfortunately, we are still far from 
knowing enough about the concepts needed for modelling 
purposes of geographic information [51, 52], at least to an 
extent which would enable GeoAI. The role of core con-
cepts of spatial information for map selection was recently 
studied with an online experiment in [63]. To implement 
conceptual models [28] formal ontologies may be used. We 
have recently tested an OWL ontology of core concept data 
types for annotation and data retrieval [71]. However, we 
currently face two methodological challenges. One concerns 
the standardization and automation of the annotation of map 
resources with such concepts. Annotation instructions are 
needed to generate high-quality annotations (with a high 
inter-annotator agreement) for such concepts [63]. Based on 
these, supervised methods, such as vector embeddings [27] 
on texts or graphs can be used to learn and expand the anno-
tation of documents and data. A second challenge relates 
to the large variability of pragmatic concepts, which is a 
challenge for (manual) ontology design. Take, e.g., the vari-
ability of a concept like “the area covered by this field within 
some object” applied to objects ranging from buildings to 
countries and to fields from temperature to noise. This can 
be addressed using transformation models as a vehicle for 
generating conceptual possibilities, i.e., the space of pos-
sible conceptualizations, as described below. Based on this 
idea, we have recently developed a grammar that can be used 
to interpret geo-analytical questions as concept transforma-
tions [88].

Modeling transformations In the past, scripts and frames 
were proposed in AI to capture knowledge in terms of 
storylines [68]. More recently, process models have been 
proposed to describe business workflows or development 
processes [58]. However, such models target stereotyped 
storylines or actual workflows, not transformations of (geo-
graphic) information concepts according to some purpose. 
One way to model the transformation of geographic infor-
mation would be to simulate it with a learned model of the 
map artefact. This comes close to the suggestions made by 
[45, 54], however, we currently lack any methods that would 
use simulations for assessing the space of possibilities pro-
vided by geodata. The relevance of process simulations for 
AI models in the earth sciences has recently been discussed 
in [66]. Another option is to use planning theory, which can 
be used to infer possible transformations based on reason-
ing. Loose programming [53] may be useful in this respect, 
which is a way to search for GIS workflow graphs satisfying 
some goal, given a model of transformation steps specified 
by classes of inputs and outputs taken from a semantic tax-
onomy [48]. This method has already been used successfully 
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for modelling possible GIS transformations [50]. To address 
the challenge of conceptual variability, we have developed 
and tested a concept transformation algebra17 for combin-
ing and transforming core concepts [76]. The underlying 
bounded parametric polymorphic type system can be used 
for concept inference18 by propagating information about 
concept types through transformation graphs. This technol-
ogy can be used to construct concepts, to reason over possi-
ble conceptual transformations, and to query GIS workflows 
[76].

Challenges 2 (about reflection on procedures) and 3 (on 
imagination of data possibilities) are closely related to how 
procedural knowledge is modeled. If we can reason over pos-
sible conceptualizations based on possible transformations 
in GIS, then we obtain a way to imagine what is possible 
with a geodata set, i.e., which questions can be answered in 
more or less direct ways [72]. Furthermore, as mentioned 
above, the needed reasoning may be realized based on para-
metric polymorphism [76]. This gives us a way to reflect 
on (reason over) procedures. Thus, powerful transformation 
models can provide ways of dealing with the first three chal-
lenges at the same time.

Handling challenges 4, 5 and 6 (reproducibility, interop-
erability and composability/modularity) might be addressed 
using higher level pragmatic knowledge as defined in our 
model. Reproducibility of maps requires procedural models, 
both for modelling data provenance as well as conceptual 
theory, as acknowledged in recent work [85]. Assessing 
the interoperability of maps requires models for generating 
potential workflows that make use of those maps. Further-
more, recent work [89] on composability of maps stresses 
the role of purpose-oriented refinement of mashups, as 
opposed to strict compliance with standards. Thus, mod-
els of purposes would allow assessing how a map could be 
reused in a different context.

Regarding challenge 7 about data quality, we argue that a 
pragmatic model of spatial data quality would be more gen-
eral than current approaches. Spatial data quality is usually 
conceived in terms of uncertainty, e.g., in terms of statistical 
error models or fuzzy values. Yet, we know that a model of 
provenance would give us the advantage of analysing error 
in terms of uncertainty propagation, as illustrated, e.g., 
in the work on measurement-based GIS [24]. This insight 
does not only apply to accuracy but also to other spatial data 
quality dimensions, such as resolution and completeness. 
In general, assessing spatial data quality is best modelled 
in pragmatic terms since quality is a consequence of data 
generation according to some purpose.

Challenge 8 about geoprivacy and geodata ethics was 
approached in the past mainly based on licensing or obfus-
cating sensitive data [49]. Yet, as argued in [84], a more 
effective and less restrictive way of protecting location pri-
vacy would be to restrict the potential use of private location 
data instead. This requires licensing (and thus modelling) 
purposes of data use depending on whether they run against 
one’s interests. To realize such a model of privacy and ethics 
requires procedural and pragmatic knowledge of potential 
data use.

7 � Conclusion

Pragmatic GeoAI addresses major issues regarding the 
use of geographic information: the procedural knowledge 
needed to account for data provenance and data possibilities, 
the purposes and requirements of map transformations, and 
the conceptualizations needed to interpret maps. These are 
blind spots of current GeoAI, due to a legacy of misleading 
background philosophies including structuralist, naturalist, 
and mechanized views of information. Correspondingly, ML 
models, such as vector embeddings of knowledge graphs and 
texts, are based on structural similarities in the data, and, 
thus, need to handle both pragmatics and semantics based 
on syntax. In contrast, pragmatic GeoAI turns the knowl-
edge pyramid upside down, by building data on concepts 
and concepts on actions. This is needed to overcome brittle 
models and to handle uncertainty with the necessary biases. 
Though pragmatic GeoAI cannot directly address unstable 
worlds, it contains knowledge on how conceptual changes 
can be accommodated for. We have suggested a core action 
model for pragmatic GeoAI and discussed geo-information 
examples showing how the challenges of structuralist GeoAI 
might be addressed. Though ML and georeferenced data will 
still play an important role in externalizing conceptualisa-
tions of maps, they are less central in this approach, while 
transformation models become essential. Future work should 
concentrate on further developing and testing pragmatic 
models of geographic information, instead of throwing out 
the baby of practice with the bathwater.
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