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Abstract
Pragmatic trials evaluating health care interventions often adopt cluster ran-
domization due to scientific or logistical considerations. Systematic reviews have
shown that coprimary endpoints are not uncommon in pragmatic trials but are
seldom recognized in sample size or power calculations. While methods for
power analysis based on 𝐾 (𝐾 ≥ 2) binary coprimary endpoints are available
for cluster randomized trials (CRTs), to our knowledge, methods for continu-
ous coprimary endpoints are not yet available. Assuming a multivariate linear
mixed model (MLMM) that accounts for multiple types of intraclass correlation
coefficients among the observations in each cluster, we derive the closed-form
joint distribution of 𝐾 treatment effect estimators to facilitate sample size and
power determination with different types of null hypotheses under equal clus-
ter sizes. We characterize the relationship between the power of each test and
different types of correlation parameters. We further relax the equal cluster size
assumption and approximate the joint distribution of the𝐾 treatment effect esti-
mators through the mean and coefficient of variation of cluster sizes. Our simu-
lation studies with a finite number of clusters indicate that the predicted power
by ourmethod agrees well with the empirical power, when the parameters in the
MLMM are estimated via the expectation-maximization algorithm. An applica-
tion to a real CRT is presented to illustrate the proposed method.

KEYWORDS
coefficient of variation, general linear hypothesis, intersection-union test, multivariate linear
mixed model, sample size determination, unequal cluster size

1 INTRODUCTION

The importance of pragmatic trials is increasingly being
recognized by patients, clinicians, and health care system
stakeholders. Pragmatic trials are distinct from explana-
tory trials in that they are designed to mimic real-world
practice so as to directly inform clinical decision making
(Loudon et al., 2015). To reflect priorities of multiple stake-
holders, pragmatic trials commonly select coprimary end-
points (also known as multiple primary outcomes), for
example, to demonstrate effectiveness on both clinical and
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patient-reported outcomes (Nevins et al., 2022). In other
circumstances, multiple subscales from a questionnaire-
based scale may be of interest and considered equally
important, or an outcome may be assessed on both a
patient and their caregiver and analyzed as a multivari-
ate response to account for the mutual influences of the
patient and their caregiver on the response to an interven-
tion. Sample size considerations for coprimary endpoints
have been previously investigated for individually random-
ized trials (IRTs)with a recommendation to account for the
intrasubject correlation between the coprimary endpoints
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(Micheaux et al., 2014). However, methods for design-
ing cluster randomized trials (CRTs) with coprimary end-
points are sparse.
In a CRT, participants are randomized in intact groups,

while outcomes are observed on the individual partici-
pants (Murray et al., 1998). Cluster randomization is com-
monly used in pragmatic trials evaluating health care inter-
ventions, for example, because the intervention must nec-
essarily be delivered at the cluster level, to avoid contami-
nation, or for logistical reasons. A notable feature of CRTs
is that the observations from multiple subjects belonging
to the same cluster are no longer independent, and there-
fore the design and analysis of CRTs necessitate account-
ing for the intraclass correlation coefficient (ICC). There
has been an extensive literature addressing sample size
and power calculation procedures for CRTs with a sin-
gle primary endpoint (Rutterford et al., 2015; Turner et al.,
2017). In the presence of coprimary endpoints however,
the endpoints themselves are usually correlated for the
same subject, requiring adjustment for both the intrasub-
ject and intersubject ICCs during the design phase. For
binary coprimary endpoints, Li et al. (2020) developed a
power analysis approach based on generalized estimat-
ing equations (GEEs) with a working independence cor-
relation structure. However, the working independence
assumption is often not fully efficient and can lead to a
larger sample size than necessary in CRTs even with a sin-
gle endpoint (Li and Tong, 2021). Furthermore, to date,
there has been no work investigating power analysis for
CRTs with continuous coprimary endpoints. Continuous
coprimary endpoints are common in some clinical areas.
For example, as found in a review of pragmatic trials in
Alzheimer’s disease and related dementias, 10 of the 17 tri-
als (59%) with coprimary outcomes were CRTs (Taljaard
et al., 2022), and 9 of these 10 CRTs had continuous copri-
mary endpoints. Moreover, a review of pragmatic trials
across a broad range of clinical areas (Vanderhout et al.,
2022) found that 56 of 415 trials (13.5%) reported multi-
ple coprimary endpoints, and within that set, 22 out of 152
CRTs (14.5%) reported multiple coprimary endpoints and 7
had continuous coprimary endpoints (personal communi-
cation with Dr. Monica Taljaard, 2022). These proportions
are likely to understate the prevalence of coprimary end-
points, as they represent current practices as opposed to
ideal practices when new methods become available.
In this article, we fill the methodological gap by devel-

oping an analytical approach for power analysis of CRTs
with continuous coprimary endpoints. Our development
is based on a multivariate linear mixed model (MLMM),
which accounts for the multiple types of correlation
parameters in the estimation of treatment effects and
therefore has potential to lead to a smaller sample size
compared to separate, endpoint-specific analyses. Second,

our approach with the MLMM allows for unstructured
variance component matrices for random intercepts and
random errors, so that in principle, our approach does not
require the intersubject ICCs to be the same across each
endpoint. On the contrary, assuming common endpoint-
specific ICCs may not always be appropriate, for example,
when the selected coprimary endpoints reflect clinical and
patient-reported measures, or when the coprimary end-
points are measured on patient-caregiver dyads. Finally,
we derive the approximate joint distribution of the multi-
variate test statistic allowing for anunbalanced designwith
variable cluster sizes. While the impact of variable clus-
ter sizes on sample size calculation for CRTs with a sin-
gle endpoint has been previously studied (van Breukelen
et al., 2007), the impact of variable cluster sizes in CRTs
with coprimary endpoints remains unclear. Through ana-
lytical derivation and numerical illustration, we show that
the efficiency loss due to cluster size variability can be
mitigated to some extent by accounting for the coprimary
endpoint, thus providing new motivation for the recom-
mendation to account for coprimary endpoints through
an MLMM in both the design and analysis phases of
a CRT.

2 MLMM

Consider a parallel CRTwith 𝑛 clusters randomly assigned
to either control or treatment condition. Suppose contin-
uous coprimary endpoints are measured for each subject,
and we define 𝑦𝑖𝑗𝑘 as the 𝑘th (𝑘 = 1,… , 𝐾) continuous
endpoint for the 𝑗th (𝑗 = 1,… ,𝑚𝑖) subject in the 𝑖th (𝑖 =

1, … , 𝑛) cluster. Let𝒚𝑖𝑗 = (𝑦𝑖𝑗1, … , 𝑦𝑖𝑗𝐾)
𝑇 denote the collec-

tion of all 𝐾 endpoints for each subject, which is modeled
by an MLMM as

𝒚𝑖𝑗 =

⎛⎜⎜⎜⎝
𝛾1

⋮

𝛾𝐾

⎞⎟⎟⎟⎠ +
⎛⎜⎜⎜⎝
𝛽1

⋮

𝛽𝐾

⎞⎟⎟⎟⎠𝑧𝑖 +
⎛⎜⎜⎜⎝
𝜙𝑖1

⋮

𝜙𝑖𝐾

⎞⎟⎟⎟⎠ +
⎛⎜⎜⎜⎝
𝑒𝑖𝑗1

⋮

𝑒𝑖𝑗𝐾

⎞⎟⎟⎟⎠, (1)

where 𝑧𝑖 is the cluster-level treatment indicatorwith 𝑧𝑖 = 1

for the treatment condition. Inmodel (1), 𝛾𝑘 represents the
mean of the 𝑘th endpoint under the control condition, 𝛽𝑘
represents the average treatment effect for the 𝑘th end-
point, 𝝓𝑖 = (𝜙𝑖1, … , 𝜙𝑖𝐾)

𝑇 is the vector of random intercepts
for cluster 𝑖 across all𝐾 endpoints and is assumed to follow
 (𝟎𝐾×1, 𝚺𝝓), and 𝒆𝑖𝑗 = (𝑒𝑖𝑗1, … , 𝑒𝑖𝑗𝐾)

𝑇 is the vector of ran-
dom errors for each subject and follows (𝟎𝐾×1, 𝚺𝒆). For
identifiability, we assume independence between 𝝓𝑖 and
𝒆𝑖𝑗 , but do not place further restrictions on 𝚺𝝓 and 𝚺𝒆 other
than requiring them to be positive definite.We denote each
diagonal element of 𝚺𝝓 and 𝚺𝒆 as 𝜎2𝜙𝑘 and 𝜎2

𝑒𝑘
, and off-

diagonal element as 𝜎𝜙𝑘𝑘′ and 𝜎𝑒𝑘𝑘′ , thus the marginal
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TABLE 1 Definition and interpretations of multiple ICCs in cluster randomized trials with coprimary endpoints from the multivariate
linear mixed model: endpoint-specific ICC (𝜌𝑘0 ), intersubject between-endpoint ICC (𝜌

𝑘𝑘′

1 ), and intrasubject ICC (𝜌𝑘2 ) for 𝑘, 𝑘
′ = 1, … , 𝐾

Definition Expression Interpretation

𝜌𝑘0 = corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗′𝑘|𝑧𝑖) 𝜎2
𝜙𝑘

𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

The intraclass correlation parameter between two outcomes from
subject 𝑗 and 𝑗′ but corresponding to the same endpoint 𝑘, or
endpoint-specific ICC.

𝜌𝑘𝑘
′

1 = corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗′𝑘′ |𝑧𝑖) 𝜎𝜙𝑘𝑘′√
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

√
𝜎2
𝜙𝑘′

+ 𝜎2
𝑒𝑘′

The intraclass correlation parameter between two outcomes from
subject 𝑗 and 𝑗′ and corresponding to two different endpoint 𝑘
and 𝑘′, or inter-subject between-endpoint ICC.

𝜌𝑘2 = corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘′ |𝑧𝑖) 𝜎𝜙𝑘𝑘′ + 𝜎𝑒𝑘𝑘′√
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

√
𝜎2
𝜙𝑘′

+ 𝜎2
𝑒𝑘′

The intraclass correlation parameter between two outcomes from
the same subject 𝑗 but corresponding to two different endpoint 𝑘
and 𝑘′, or intra-subject (between-endpoint) ICC.

variance of each endpoint is𝜎2
𝑦𝑘

= 𝜎2
𝜙𝑘

+ 𝜎2
𝑒𝑘
, andmay vary

across 𝑘.
With the𝐾(𝐾 + 1)∕2 variance component parameters in

𝚺𝝓 and 𝐾(𝐾 + 1)∕2 variance component parameters in 𝚺𝒆,
Table 1 summarizes the multiple types of ICCs among the
endpoints implied from the above MLMM. Specifically,
we define (1) 𝜌𝑘

0
= corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗′𝑘|𝑧𝑖) = 𝜎2

𝜙𝑘
∕(𝜎2

𝜙𝑘
+ 𝜎2

𝑒𝑘
),

representing the intersubject correlation of the same
endpoint, or the endpoint-specific ICC; (2) 𝜌𝑘𝑘

′

1
=

corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗′𝑘′ |𝑧𝑖) = 𝜎𝜙𝑘𝑘′∕(
√
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

√
𝜎2
𝜙𝑘′

+ 𝜎2
𝑒𝑘′
),

representing the intersubject correlation of two out-
comes corresponding to two different endpoints 𝑘

and 𝑘′, or equivalently the intersubject between-
endpoint ICC; and (3) 𝜌𝑘𝑘

′

2
= corr(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘′ |𝑧𝑖) =

(𝜎𝜙𝑘𝑘′ + 𝜎𝑒𝑘𝑘′)∕(
√
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

√
𝜎2
𝜙𝑘′

+ 𝜎2
𝑒𝑘′
), represent-

ing the intrasubject between-endpoint ICC, or abbreviated
by intrasubject ICC. By the MLMM assumption, we
have symmetry such that 𝜌𝑘𝑘′

1
= 𝜌𝑘

′𝑘
1
, 𝜌𝑘𝑘′

2
= 𝜌𝑘

′𝑘
2

and
degeneracy such that 𝜌𝑘𝑘

1
= 𝜌𝑘

0
, 𝜌𝑘𝑘

2
= 1, ∀ 𝑘, 𝑘′. Define

𝝆0 = {𝜌𝑘
0
, 𝑘 = 1,… , 𝐾}, 𝝆1 = {𝜌𝑘𝑘

′

1
, 𝑘 ≤ 𝑘′, 𝑘, 𝑘′ = 1, … , 𝐾},

and 𝝆2 = {𝜌𝑘𝑘
′

2
, 𝑘 ≤ 𝑘′, 𝑘, 𝑘′ = 1, … , 𝐾}. Therefore, 𝝆0, 𝝆1,

and 𝝆2 are of size 𝐾, 𝐾(𝐾 − 1)∕2, and 𝐾(𝐾 − 1)∕2, respec-
tively. In addition, there is a one-to-one mapping between
the variance component matrices {𝚺𝝓, 𝚺𝒆} and the set of
correlations and marginal variances {𝝆0, 𝝆1, 𝝆2, 𝝈2𝒚}, where
𝝈2𝒚 = {𝜎2

𝑦𝑘
, 𝑘 = 1,… , 𝐾}. Although not required for our

methodology, a parsimonious parameterization that does
not distinguish the ICCs by different endpoints is 𝜌𝑘

0
= 𝜌0,

𝜌𝑘𝑘
′

1
= 𝜌1, and 𝜌𝑘𝑘

′

2
= 𝜌2, ∀ 𝑘, 𝑘′ (Li et al., 2020). This

specification engenders the block exchangeable correlation
model for 𝒚𝑖𝑗 , which has been previously proposed for
designing longitudinal CRTs (Li et al., 2018).
While our primary focus is power analysis of CRTs with

coprimary endpoints based onMLMM (1), we also include
details for estimating the MLMM parameters during the
analytical stage in Supporting Information A. We adopt
the expectation-maximization (EM) algorithm by treating
the random intercepts as missing variables and outline the

iterative approach for estimating both the treatment effect
and variance component matrices. The associated stan-
dard errors are then obtained from numerically differen-
tiating the log-likelihood function evaluated at the maxi-
mum likelihood estimators. In Section 4, we demonstrate
via simulations that the EM approach can provide good
control of type I error rate and precise empirical power
compared to formula predictions.

3 POWER ANALYSIS OF CRTSWITH
CONTINUOUS COPRIMARY ENDPOINTS

3.1 Joint distribution of 𝑲 treatment
effect estimators

Wederive the analytical formof the joint distribution of the
𝐾Wald test statistics for the𝐾 treatment effect parameters
𝜷 = (𝛽1, … , 𝛽𝐾)

𝑇 in the MLMM. To begin with, we assume
the cluster sizes are all equal such that𝑚𝑖 = 𝑚. We define
𝑧 = 𝔼(𝑧𝑖) as the allocation probability at the cluster level
and reparameterize the MLMM such that

𝒚𝑖𝑗 =

⎛⎜⎜⎜⎜⎝
𝛾1

⋮

𝛾𝐾

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
𝛽1

⋮

𝛽𝐾

⎞⎟⎟⎟⎟⎠
(𝑧𝑖 − 𝑧) +

⎛⎜⎜⎜⎜⎝
𝜙𝑖1

⋮

𝜙𝑖𝐾

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
𝑒𝑖𝑗1

⋮

𝑒𝑖𝑗𝐾

⎞⎟⎟⎟⎟⎠
, (2)

where the updated intercept for each endpoint is 𝛾𝑘 = 𝛾𝑘 +

𝛽𝑘𝑧, while the treatment effect parameter for each endpoint
remains unchanged. Recall that the total marginal vari-
ance of 𝑦𝑖𝑗𝑘 conditional on 𝑧𝑖 is var(𝑦𝑖𝑗𝑘|𝑧𝑖) = 𝜎2

𝜙𝑘
+ 𝜎2

𝑒𝑘
, and the

covariance for any pair of endpoints in the same cluster is

cov(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗′𝑘′ |𝑧𝑖) = 𝜎2
𝜙𝑘
𝟙{𝑗 ≠ 𝑗′, 𝑘 = 𝑘′} + 𝜎𝜙𝑘𝑘′𝟙{𝑗 ≠ 𝑗′,

𝑘 ≠ 𝑘′} + (𝜎𝜙𝑘𝑘′ + 𝜎𝑒𝑘𝑘′ )𝟙{𝑗 = 𝑗′, 𝑘 ≠ 𝑘′},

where 𝟙(∙) is the indicator function. In matrix notation,
let 𝒚𝑖 = (𝒚𝑇

𝑖1
, … , 𝒚𝑇

𝑖𝑚
)𝑇 denote the vector of all coprimary
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endpoints in cluster 𝑖, then the MLMM implies the
covariance matrix 𝑽𝒊 = cov(𝒚𝑖|𝑧𝑖) = 𝑰𝑚 ⊗ 𝚺𝒆 + 𝑱𝑚 ⊗ 𝚺𝝓 ,where
𝑰𝑚 is the 𝑚 ×𝑚 identity matrix, 𝑱𝑚 is the 𝑚 ×𝑚 matrix of
ones. Furthermore, we write the design matrix for each
cluster based on model (2) as 𝑾𝑖 = 𝟏𝑚 ⊗ (𝑰𝐾, 𝑰𝐾(𝑧𝑖 − 𝑧)),
and 𝑾𝑖𝑗 = (𝑰𝐾, 𝑰𝐾(𝑧𝑖 − 𝑧)) as the design matrix for each
subject. Then the best linear unbiased estimator of
𝜽 = (𝛾1, … , 𝛾𝐾, 𝛽1, … , 𝛽𝐾)

𝑇 is given by the feasible gen-
eralized least square (FGLS) estimator, denoted by
𝜽 = (

∑𝑛

𝑖=1
𝑾𝑇

𝑖
𝑽−1
𝑖
𝑾𝑖)

−1(
∑𝑛

𝑖=1
𝑾𝑇

𝑖
𝑽−1
𝑖
𝒚𝑖), whose large-sample

variance is given by var(𝜽) = 𝑼−1
𝑛 , with 𝑼𝑛 =

∑𝑛

𝑖=1
𝑾𝑇

𝑖
𝑽−1
𝑖
𝑾𝑖.

We derive an explicit form of var(𝜽) to facilitate analytical
power analysis in the design stage. Specifically, we use the
results in Leiva (2007) to obtain the inverse of 𝑽𝒊 as

𝑽−1
𝑖

= 𝑰𝑚 ⊗ 𝚺−1𝒆 + 𝑱𝑚 ⊗
1

𝑚

{(
𝚺𝒆 + 𝑚𝚺𝝓

)−1
− 𝚺−1𝒆

}
. (3)

The explicit inverse (3) facilitates the simplification of 𝑼𝑛

and leads to the following result.

Theorem 1. Under the MLMM (2) and assuming equal cluster sizes
such that𝑚𝑖 = 𝑚, the FGLS estimator for the vector of treatment effect
estimators 𝜷 = (𝛽1, … , 𝛽𝐾)

𝑇 = {
∑𝑛

𝑖=1
(𝑧𝑖 − 𝑧)2}−1{

∑𝑛

𝑖=1

∑𝑚

𝑗=1
𝑚−1(𝑧𝑖 −

𝑧)𝒚𝑖𝑗} and is free of any ICCs. Furthermore, the lower right 𝐾 × 𝐾

block of 𝛀𝜷 , or the asymptotic variance of the scaled FGLS estimator√
𝑛(𝜷 − 𝜷), has a simple form

𝛀𝜷 =
1

𝑚𝜎2𝑧

(
𝚺𝒆 + 𝑚𝚺𝝓

)
. (4)

Based on the one-to-onemappings from the variance componentmatri-
ces and the three types of ICCs, the covariance parameters in the joint
distribution of 𝜷 are equivalently written as

𝜔2
𝑘
= 𝑛var(𝛽𝑘) =

(
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

){
1 + (𝑚 − 1)𝜌𝑘0

}
𝑚𝜎2𝑧

, (5)

𝜔𝑘𝑘′ = 𝑛cov(𝛽𝑘, 𝛽𝑘′ )

=

√
𝜎2
𝜙𝑘
+ 𝜎2

𝑒𝑘

√
𝜎2
𝜙𝑘′

+ 𝜎2
𝑒𝑘′

{
𝜌𝑘𝑘

′

2 + (𝑚 − 1)𝜌𝑘𝑘
′

1

}
𝑚𝜎2𝑧

,

(6)

for 𝑘 = 1,… , 𝐾, and 𝑘′ ≠ 𝑘. One can further set 𝜎2𝑧 = 1∕4 under equal
treatment allocation.

The proof of Theorem 1 is found in Supporting Informa-
tion B. Several comments are in order based on Equations
(5) and (6). First, under the assumption of equal cluster
sizes (𝑚𝑖 = 𝑚), the variance of the treatment effect esti-
mator corresponding to each endpoint, 𝜔2

𝑘
, based on the

MLMM, is identical to that obtained by analyzing each
endpoint via a separate linear mixed model (LMM). In

particular, the variance inflation factor (VIF) for estimat-
ing 𝛽𝑘 in a CRT relative to an IRT equals the usual VIF,
1 + (𝑚 − 1)𝜌𝑘

0
, which is an increasing function of 𝑚 and

the endpoint-specific ICC (but not other types of ICCs). If
the interest lies in testing𝐻0 ∶ 𝛽𝑘 = 0 for one specific end-
point 𝑘, then the conventional power analysis approach
developed for CRTs with a single endpoint (Murray et al.,
1998) can be directly used even if an MLMM is consid-
ered in the primary analysis. Second, the MLMM allows
for objective comparisons between the treatment effects
across different endpoints, but the power of such compar-
isons can depend on the covariance parameter,𝜔𝑘𝑘′ , which
is an increasing function of the marginal variance of end-
points 𝑘, 𝑘′, the intersubject between-endpoint ICC, 𝜌𝑘𝑘′

1
,

and the intrasubject ICC, 𝜌𝑘𝑘′
2
. Expression (6) further sug-

gests the covariance inflation factor (cVIF) in a CRT rela-
tive to an IRTwith coprimary endpoints is given by cVIF =
1 + (𝑚 − 1)(𝜌𝑘𝑘

′

1
∕𝜌𝑘𝑘

′

2
), which is an increasing function of

cluster size𝑚 as well as the ratio between the intersubject
between-endpoint ICC and intrasubject ICC. In particular,
a larger cluster size increases the magnitude of each ele-
ment in the covariance matrix for the 𝐾 treatment effect
estimators, but at a differential rate for the variance ele-
ment (rate of increase is 𝜌𝑘

0
) and the covariance element

(rate of increase is 𝜌𝑘𝑘′
1

∕𝜌𝑘𝑘
′

2
). The explicit characteriza-

tion of the joint distribution for
√
𝑛(𝜷 − 𝜷) based on the

MLMM allows us to develop an analytical sample size pro-
cedure for testing any general linear hypothesis concerning
the treatment effects.

3.2 Power analysis for testing general
linear hypotheses

The characterization of 𝛀𝜷 provides an analytical
approach to quantify the power of any general linear
hypothesis test concerning the treatment effect parame-
ters 𝜷 in the MLMM (1). Specifically, a testable general
linear hypothesis of interest in CRTs can be written
as 𝐻0 ∶ 𝑳𝜷 = 𝟎, versus 𝑳𝜷 ≠ 𝟎, where 𝑳 is an 𝑆 × 𝐾

(𝑆 ≤ 𝐾) contrast matrix whose rows represent linearly
independent hypotheses concerning the treatment effect
parameter 𝜷. A commonly used test statistic for 𝐻0 is the
𝐹-statistic (Roy et al., 2007),

𝐹∗ =
𝑛(𝑳𝜷)𝑇(𝑳�̂�𝜷𝑳

𝑇)−1(𝑳𝜷)

𝑆
, (7)

where �̂�𝜷 is the estimated variance-covariance matrix
for the treatment effect estimator 𝜷. Under the null,
𝐹∗ approximately follows a central 𝐹-distribution with
numerator and denominator degrees of freedom (𝑆, 𝜈).
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YANG et al. 1297

Under the alternative, 𝐹∗ approximately follows a non-
central 𝐹-distribution with noncentrality parameter 𝜏, and
degree of freedom (𝑆, 𝜈), where 𝜈, for example, can be spec-
ified as 𝑛 − 𝑆 − 𝐾. Of note, in a CRT with a single end-
point such that 𝑆 = 𝐾 = 1, this degree of freedom coin-
cides with the between-within degree of freedom and has
been previously demonstrated to have adequate control of
type I error rate inCRTswith a small number of clusters (Li
et al., 2017). The noncentrality parameter can be approxi-
mated by �̂� = 𝑛(𝑳𝜷)𝑇(𝑳�̂�𝜷𝑳

𝑇)−1(𝑳𝜷), and serves as a basis
for power analysis. For prespecified type I error rate 𝛼, the
power under𝐻1 ∶ 𝑳𝜷 = 𝜹 ≠ 𝟎 based on (7) is

1 − 𝜆 = ∫
∞

𝐹1−𝛼(𝑆,𝑛−𝑆−𝐾)

𝑓(𝑥; 𝜏, 𝑆, 𝑛 − 𝑆 − 𝐾)𝑑𝑥, (8)

where 𝜆 is the type II error rate, 𝐹1−𝛼(𝑆, 𝑛 − 𝑆 − 𝐾) is the
critical value of the central 𝐹(𝑆, 𝑛 − 𝑆 − 𝐾) distribution,
and𝑓(𝑥; 𝜏, 𝑆, 𝑛 − 𝑆 − 𝐾) is the probability density function
of the noncentral 𝐹(𝜏, 𝑆, 𝑛 − 𝑆 − 𝐾) distribution with non-
centrality parameter 𝜏 = 𝑛𝜹𝑇(𝑳𝛀𝜷𝑳

𝑇)−1𝜹 . Alternatively,
Equation (8) can be numerically solved to determine the
required number of clusters or cluster size to achieve a
desired level of power. With 𝐾 coprimary endpoints in a
CRT,we explore the relationship between the three types of
ICC parameters and the power of typical hypothesis tests.
First, we focus on the omnibus test for detecting any depar-
ture from the global null 𝐻0 ∶ 𝛽𝑘 = 0 ∀ 𝑘, corresponding
to a contrast matrix 𝑳 = 𝑰𝐾 (ie, 𝑆 = 𝐾). For this test, reject-
ing 𝐻0 indicates that the treatment has a statistically sig-
nificant effect on at least one of the endpoints. In Sup-
porting Information C, we show that with all other design
parameters fixed, a larger value of the endpoint-specific
ICC, 𝜌𝑘

0
∀ 𝑘, is always associated with a smaller power of

the omnibus test, namely, a larger required sample size,
while the relationship between 𝜌𝑘𝑘

′

1
, 𝜌𝑘𝑘′

2
∀ 𝑘 ≠ 𝑘′, and

the power of the omnibus test is generally indeterminate.
However, under a simpler parameterization with the block
exchangeable correlation structure, we further obtain the
following result.

Theorem 2. (Omnibus test) Under the parsimonious block
exchangeable correlation structure such that𝜌𝑘

0
= 𝜌0,𝜌𝑘𝑘

′

1
=

𝜌1, 𝜌𝑘𝑘
′

2
= 𝜌2 ∀ 𝑘, 𝑘′, and assuming equal standardized

effect sizes such that 𝛽𝑘∕𝜎𝑦𝑘 = 𝛽𝑘′∕𝜎𝑦𝑘′ ∀ 𝑘 ≠ 𝑘′, a larger
value of the endpoint-specific ICC, 𝜌0, and larger values of
between-endpoint ICCs, 𝜌1 or 𝜌2, are always associated with
a smaller power of the omnibus test (larger sample size).

Because the power of the 𝐹-test is an increasing func-
tion of the noncentrality parameter, the proof of Theorem 2
boils down to assessing the monotonicity of 𝜏 as a function
of different types of ICCs. Without further assumptions,

we show in Supporting Information B that larger values
of the endpoint-specific ICCs, 𝝆0, lead to smaller power of
the omnibus test, suggesting that 𝝆0 plays a similar role in
CRTs with coprimary endpoints as the conventional ICC
does in a CRT with a single primary endpoint. Ignoring 𝝆0
in the design stagewill necessarily result in the sample size
being underestimated. While the relationship between 𝝆1,
𝝆2, and the power is generally unclear, Theorem 2 clari-
fies the role of the between-endpoint ICCs for study power
under further restrictions on correlations across endpoints
(ie, assuming the block exchangeable correlation struc-
ture and equalizing the standardized effect sizes). That is,
ignoring the common between-endpoint ICCs (𝜌1 or 𝜌2)
will result in the sample size being underestimated when
studying the global hypothesis with the omnibus test.
In Supporting Information B, we additionally explore

the test for treatment effect homogeneity across𝐾 endpoints
with 𝐻0 ∶ 𝛽𝑘 = 𝛽𝑘′ ∀ 𝑘 ≠ 𝑘′, corresponding to a contrast
matrix 𝑳 = (𝒆1 − 𝒆2, 𝒆2 − 𝒆3, … , 𝒆𝐾−1 − 𝒆𝐾)

𝑇 (ie, 𝑆 = 𝐾 −

1), where 𝒆𝑘 is the 𝐾 × 1 vector with 1 at the 𝑘th position
and zero elsewhere. Rejecting 𝐻0 implies that the treat-
ment effect is different for at least one of the coprimary
endpoints compared to the other endpoints. In Support-
ing Information B, we prove that the endpoint-specific ICC
plays a similar role in the power of the test for treatment
effect homogeneity just like the omnibus test. However, in
contrast to Theorem 2, larger values of between-endpoint
ICCs are associated with a larger power of the test for
homogeneity under the parsimonious block exchangeable
correlation structure (smaller required sample size). We
provide a summary of these relationships in Table 2.

3.3 Power analysis for simultaneously
testing treatment effects across all
endpoints

With coprimary endpoints, the intersection-union test has
also been considered to avoid inflation of the type I error
rate (Chuang-Stein et al., 2007; Sozu et al., 2010). Unlike
the omnibus test whose null hypothesis is simple, the
intersection-union test focuses on a simple alternative but
a composite null such that the test rejects only when the
treatment effect is nonzero across all endpoints. We con-
sider testing𝐻0 ∶ 𝛽𝑘 = 0 for at least one 𝑘 against the one-
sided alternative 𝐻1 ∶ 𝛽𝑘 > 0 ∀ 𝑘. Although we focus on
the one-sided alternative, extensions to a class of noninfe-
riority tests or a two-sided intersection union test are also
straightforward with the following characterization of the
joint distribution of the test statistics—an example of two-
sided intersection-union test can be found in Tian et al.
(2022). For testing 𝐻0, we consider the vector of Wald test
statistics 𝜻 = (𝜁1, … , 𝜁𝐾)

𝑇 , where 𝜁𝑘 =
√
𝑛𝛽𝑘∕𝜔𝑘, 𝜔𝑘 is the
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1298 YANG et al.

TABLE 2 Concise summary of the relationships between ICC parameters and the power of tests

Test Assumption 𝝆𝟎 𝝆𝟏 𝝆𝟐

Omnibus test General ⇓ INDET INDET
BEX, {𝛽𝑘∕𝜎𝑦𝑘 = 𝛽𝑘′∕𝜎𝑦𝑘′ , ∀ 𝑘 ≠ 𝑘′} ⇓ ⇓ ⇓

Test for effect homogeneity General ⇓ INDET INDET
BEX, {𝜎2

𝑦𝑘
= 𝜎2

𝑦𝑘′
, ∀ 𝑘 ≠ 𝑘′} ⇓ ⇑ ⇑

Intersection-union test General ⇓ ⇑ ⇑

BEX ⇓ ⇑ ⇑

Note: Abbreviation and notation: “General” indicates no restrictive assumption on the correlation structure, “BEX” stands for block exchangeable correlation
structure; “INDET” indicates that the relationship is indeterminate; “⇑” indicates a monotonically increasing relationship, and “⇓” indicates a monotonically
decreasing relationship.

estimated standard error of the treatment effect estimator
from the MLMM (1). Based on the results in Section 3.1,
because the test statistic is standardized by the standard
error, the vector of standardized test statistics 𝜻 asymptoti-
cally follows amultivariate normal distribution withmean
𝜼 = (

√
𝑛𝛽1∕𝜔1, … ,

√
𝑛𝛽𝐾∕𝜔𝐾)

𝑇 and correlation matrix 𝚽,
whose diagonal and off-diagonal elements are given by

𝜙𝑘𝑘′ = 𝟙{𝑘 = 𝑘′} +
𝜔𝑘𝑘′

𝜔𝑘𝜔𝑘′
𝟙{𝑘 ≠ 𝑘′}. (9)

Given the total number of clusters 𝑛, cluster size 𝑚, as
well as the true effect size parameters𝜷, the power function
to simultaneously detect the effect for all𝐾 endpoints are

1 − 𝜆 = ℙ

{
 =

𝐾⋂
𝑘=1

(𝜁𝑘 > 𝑐𝑘) ∣ 𝐻1

}

= ∫
∞

𝑐1

…∫
∞

𝑐𝐾

𝑓𝑾(𝑤1, … ,𝑤𝐾)𝑑𝑤1 …𝑑𝑤𝐾, (10)

where  denotes the prespecified rejection region,
{𝑐1, … , 𝑐𝐾} are the corresponding endpoint-specific critical
values for rejection, and 𝑓𝑾 is the density function of the
Wald test statistics under the alternative. While a typical
choice of 𝑓𝑾 is the multivariate normal distribution
with mean 𝜼 and covariance matrix 𝚽, a multivariate
𝑡-distribution with location vector 𝜼, shape matrix 𝚽, and
degrees of freedom 𝑛 − 2𝐾 can account for the uncertainty
in estimating the covariance parameters and better control
for the type I error rate with a limited number of clusters
(Li et al., 2020; Tian et al., 2022). We henceforth assume
𝑓𝑾 to be the multivariate 𝑡-distribution for design cal-
culations throughout. The specification of critical values
𝒄 can lead to an intersection-union test with different
operating characteristics (Kordzakhia et al., 2010). We
follow the simple approach suggested by Li et al. (2020)
such that 𝑐1 = ⋯ = 𝑐𝐾 = 𝑡𝛼(𝑛 − 2𝐾), where 𝑡𝛼(𝑛 − 2𝐾) is
the (1 − 𝛼) quantile of the univariate 𝑡 distribution. This
specification of critical values is conservative such that

the type I error rate is controlled strictly below 𝛼 within
the composite null space (𝐻0 ∶ 𝛽𝑘 = 0 for at least one
𝑘). In the most extreme case where all but one endpoint
correspond to a large treatment effect, the size of the test
is exactly 𝛼. Of note, the performance of this approach can
critically depend on the number of clusters and number
of endpoints. For example, when the number of clusters
is small but several endpoints are being considered, the
estimated degrees of freedom 𝑛 − 2𝐾 may be very small
and therefore, the test may be conservative. While we
have presented the power equation in (10), we can obtain
the required sample size based on the target power 1 − 𝜆

by solving for 𝑚 or 𝑛 based on any standard iterative
algorithm. Finally, similar to testing the general linear
hypotheses in Section 3.2, there exists a monotonic rela-
tionship between the power of the intersection-union test
and the three types of ICC parameters, without further
restrictions on the variance components.

Theorem 3. (Intersection-union test) With all other design
parameters fixed, a larger value of the endpoint-specific
ICC, 𝜌𝑘0 ∀ 𝑘, is always associated with a smaller power of
the intersection-union test (a larger sample size), whereas a
larger value of the between-endpoint ICC, 𝜌𝑘𝑘′

1
or 𝜌𝑘𝑘′

2
∀ 𝑘 ≠

𝑘′, is always associated with a larger power (a smaller sam-
ple size).

The proof of Theorem 3 can be found in Supporting
Information D. Evidently, a larger endpoint-specific ICC
leads to a larger required sample size for the intersection-
union test and therefore ignoring the endpoint-specific
ICC can result in an underpowered trial. This observa-
tion suggests that the endpoint-specific ICC plays the same
role in the power of the intersection-union test as the
omnibus test (Theorem 2). On the contrary, a larger value
of any between-endpoint ICC will lead to a higher power
of the intersection-union test. During the design stage,
Theorem 3 suggests that assuming smaller values for any
between-endpoint ICC will increase the required sample
size and will therefore be a conservative approach. Finally,
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YANG et al. 1299

with continuous coprimary endpoints, Theorem 3 can be
considered as the analogue of the result of Li et al. (2020)
derived for binary coprimary endpoints, even though we
have focused on the analysis with MLMM in contrast to
that earlier work using independence GEE.

3.4 Generalization to accommodate
unequal cluster sizes for power analysis

To operationalize the power analysis of CRTs with con-
tinuous coprimary endpoints in more pragmatic settings,
we further develop an approximate variance expression for
the treatment effect estimators, 𝜷, when the cluster sizes,
𝑚𝑖 , are variable. To derive a modified variance expression
adjusting for unequal cluster sizes, we assume the clus-
ter sizes come from a common distribution 𝑓(𝑚𝑖) with
bounded mean 𝑚 and variance 𝜎2𝑚. Using the Neumann
series for matrix inverse up to the second order (Beilina
et al., 2017), we show in Supporting Information E that
the limit of the variance of the scaled FGLS estimator√
𝑛(𝜷 − 𝜷) takes the form

𝛀𝜷 ≈
(𝚺𝒆 + 𝑚𝚺𝝓)

𝑚𝜎2𝑧

×
[
𝑰𝐾 − CV2

{
𝑚𝚺𝝓(𝚺𝒆 + 𝑚𝚺𝝓)

−1𝚺𝒆(𝚺𝒆 + 𝑚𝚺𝝓)
−1
}]−1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Correction Matrix 𝚯

, (11)

where we define CV = 𝜎𝑚∕𝑚 as the coefficient of variation
for 𝑓(𝑚𝑖), and 𝚯 can be considered as a correction matrix to
(4) due to unequal cluster sizes. In Supporting Information
E, we also derive a correction matrix using the Neumann
series up to the fourth order, which further depends on the
skewness and kurtosis of the cluster size distribution 𝑓(𝑚𝑖).
In practice, however, the higher order moments of 𝑓(𝑚𝑖)

is often more difficult to elicit in the design stage, which
renders themore complex fourth-order approximation less
useful. We also show in the ensuing simulation study that
the second-order approximation (11) already provides an
adequate approximation for power analysis. Finally, when
the between-endpoint ICCs are all identically zero such
that 𝜌𝑘𝑘

′

1
= 𝜌𝑘𝑘

′

2
= 0 ∀ 𝑘 ≠ 𝑘′, the variance of the treatment

effect estimator 𝛽𝑘 based on (11) becomes

𝜔2
𝑘
≈

(
𝜎2
𝜙𝑘

+ 𝜎2
𝑒𝑘

){
1 + (𝑚 − 1)𝜌𝑘

0

}
𝑚𝜎2𝑧

×

{
1 − CV2

𝑚𝜌𝑘
0
(1 − 𝜌𝑘

0
)

{1 + (𝑚 − 1)𝜌𝑘
0
}2

}−1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Correction Factor 𝜃𝑘

,

(12)

and the correction factor due to unequal cluster sizes 𝜃𝑘

reduces to the familiar expression derived in vanBreukelen
et al. (2007) with a single primary endpoint. Inmore general
cases, the diagonal element in (11) is different from (12) and

power analysis for the general linear hypothesis test and
the intersection-union test should proceed based on (11).
Under unequal cluster sizes, the multiplicative correc-

tion matrix 𝚯 in variance expression (11) suggests that the
efficiency for estimating the treatment effect for endpoint
𝑘 can differ when the analysis proceeds with MLMM or
when the analysis proceeds with a separate LMM for each
endpoint 𝑘. To illustrate their difference, we numerically
compare the efficiency for estimating 𝛽𝑘 using MLMM
and separate LMM. Specifically, we consider a CRT
with 𝐾 = 2 continuous coprimary endpoints with equal
randomization such that 𝜎2𝑧 = 1∕4. We assume mean
cluster size 𝑚 = 60, unit marginal total variance for each
endpoint, and a block exchangeable correlation structure
such that 𝜌0 = 𝜌1

0
= 𝜌2

0
. Figure 1A presents the values of

𝜃𝑘 as a function of CV∈ [0, 0.8] and three different values
of endpoint-specific ICC 𝜌0 ∈ {0.01, 0.05, 0.1}. These
values are commonly used in the literature to investigate
the impact of unequal cluster sizes on the efficiency of
estimating 𝛽𝑘 from a separate LMM, as in Eldridge et al.
(2006) and van Breukelen et al. (2007). When CV = 0, the
cluster sizes are all equal to 60, and when CV = 0.8, the
cluster sizes can have substantial variability, ranging from
2 to 200, as the density plot in Supporting Information
Figure S1 demonstrates. Figure 1B-D additionally presents
the values of 𝚯𝑘𝑘 (diagonal values of the correction
matrix 𝚯) on the same set of design parameters but
with 𝜌1∕𝜌0 ∈ {0.5, 0.75, 0.9} and 𝜌2 = 0.2. These values
correspond to the impact of unequal cluster sizes on
the efficiency of estimating 𝛽𝑘 from the MLMM. In
addition, Supporting Information Figure S2 presents the
counterpart of Figure 1 when 𝜌2 = 0.5. Clearly, a larger
CV of cluster sizes leads to a larger correction factor
for estimating 𝛽𝑘 and hence reduces the efficiency, for
both LMM and MLMM analyses. However, comparisons
between 𝚯𝑘𝑘 and 𝜃𝑘 imply that MLMM can mildly
protect against efficiency loss due to unequal cluster
sizes from separate LMM analyses when the intersubject
between-endpoint ICC becomes larger, or the intrasubject
ICC is smaller (Supporting Information Figure S2). Under
unequal cluster sizes, the intuition underlying the efficient
improvement from MLMM over separate LMM analyses
is that the FGLS estimator of 𝛽𝑘 obtained from MLMM
additionally depends on the between-endpoint ICCs (𝜌𝑘𝑘′

1
,

𝜌𝑘𝑘
′

2
) in a complex fashion, whereas the corresponding

FGLS estimator of 𝛽𝑘 obtained from separate LMM only
depends on the endpoint-specific ICC (𝜌𝑘

0
). This is in sharp

contrast to the case with equal cluster sizes, where the
FGLS estimators of 𝛽𝑘 obtained fromMLMM and separate
LMM analyses are identical and are free of any ICCs (The-
orem 1). Finally, in Figure 2 and Supporting Information
Figures S3 and S4, we numerically explore the relationship
between power of the general linear hypothesis test and
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1300 YANG et al.

F IGURE 1 Correction factor or variance inflation due to unequal cluster sizes for MLMM and separate LMM analyses of CRTs with
coprimary endpoints. (A) Variance inflation for the treatment effect estimator for separate LMM analysis of each endpoint; (B) variance
inflation for the treatment effect estimator for MLMM analysis of two coprimary endpoints when 𝜌1∕𝜌0 = 0.5, 𝜌2 = 0.2; (C) variance inflation
for the treatment effect estimator for MLMM analysis of two coprimary endpoints when 𝜌1∕𝜌0 = 0.75, 𝜌2 = 0.2; (D) variance inflation for the
treatment effect estimator for MLMM analysis of two coprimary endpoints when 𝜌1∕𝜌0 = 0.9, 𝜌2 = 0.2. In (B-D), the gray lines replicate the
results in (A) and facilitate efficiency comparisons between MLMM and separate LMM analyses

F IGURE 2 Power of the omnibus test with 𝐾 = 2 coprimary endpoints as a function of (A) endpoint-specific ICC 𝜌0, when fixing
𝜌1∕𝜌0 = 0.5 and 𝜌2 = 0.2; (B) intersubject between-endpoint ICC 𝜌1 when fixing 𝜌0 = 0.1 and 𝜌2 = 0.2; (C) intrasubject ICC 𝜌2, when fixing
𝜌0 = 0.1 and 𝜌1∕𝜌0 = 0.5. All scenarios assume 𝑛 = 30,𝑚 = 60, 𝜷 = (0.3, 0.3)𝑇 , 𝜎2

𝑦𝑘
= 1, and equal randomization with 𝜎2𝑧 = 1∕4. All

figures assume the block exchangeable correlation structure such that 𝜌𝑘0 = 𝜌0, 𝜌𝑘𝑘
′

1 = 𝜌1, 𝜌𝑘𝑘
′

2 = 𝜌2 for 𝑘 ≠ 𝑘′ ∈ {1, 2}. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version
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YANG et al. 1301

the intersection-union test with different ICC parameters
based on variance expression (11). Figure 2 appears in color
in the electronic version of this article, and any mention of
color refers to that version. Our limited numerical studies
suggest that the findings are consistent with the analytical
results derived in Section 3.2 and Section 3.3 even when
the cluster sizes are unequal.

4 SIMULATION STUDY

We evaluate the proposed method in terms of achieving
the desired level of power while maintaining the nominal
type I error rate through simulation studies. To focus ideas,
we consider the intersection-union test to jointly study
the treatment effect across 𝐾 coprimary endpoints, where
𝐾 ∈ {2, 3} is chosen as the most commonly reported values
in practice (Offen et al., 2007). We assume balanced ran-
domization such that 𝑧 = 1∕2 and 𝜎2𝑧 = 1∕4. For simplic-
ity, we consider 𝜌𝑘𝑘′

1
= 𝜌1, 𝜌𝑘𝑘

′

2
= 𝜌2 ∀ 𝑘 ≠ 𝑘′ but set 𝝆0 =

(𝜌1
0
, … , 𝜌𝐾

0
)𝑇 to be a length-𝐾 equal-distanced sequence

between 𝜅 and 0.1. We vary 𝜅 ∈ {0.01, 0.05} and assume
0.1 to be the upper bound of 𝝆0 to represent common
endpoint-specific ICC values reported in the parallel CRT
literature (Murray and Blitstein, 2003). We further specify
𝜌1 = 𝜅∕2 such that 𝜌1 is smaller than each element of 𝝆𝟎,
and consider 𝜌2 ∈ {0.2, 0.5}, representing moderate values
of the intrasubject ICC. Throughout we fix the marginal
endpoint variance (𝜎2

𝑦1
, … , 𝜎2𝑦𝐾)

𝑇 = (1, … , 𝐾)𝑇 , and specify
the variance component matrices 𝚺𝝓 and 𝚺𝒆 based on the
marginal variances and ICCs. To further assess the accu-
racy of our approximate power procedure under unequal
cluster sizes, we consider mean cluster size 𝑚 = 60, and
coefficient of variation of cluster size CV ∈ {0, 0.2, 0.4, 0.8},
representing different degrees of variability in cluster size
used in previous simulations (Li and Tong, 2021). When
CV > 0, the cluster sizes 𝑚𝑖s are drawn from a Gamma
distribution with shape and scale parameter 1∕CV2 and
𝑚CV2, rounded to the nearest integer. We vary the true
treatment effect parameters 𝜷 = (𝜂, 0.7)𝑇 and 𝜷 = (𝜂, (𝜂 +

0.7)∕2, 0.7)𝑇 for 𝐾 = 2, 3, where 𝜂 ∈ {0.3, 0.5}. Supporting
Information Table S1 summarizes the simulation parame-
ters for a quick reference.
For each of the above parameter combinations, we solve

Equation (10) for 𝑛 to obtain the required number of clus-
ters to achieve at least 80% power (based on 5% nomi-
nal type I error rate), rounded to the nearest even integer
above. We ensure that the estimated 𝑛 is no larger than 30
to resemble typical number of clusters in published paral-
lel CRTs (Ivers et al., 2011). Given the estimated 𝑛, we then
simulate 𝐾 continuous coprimary endpoints fromMLMM
(1), and fit theMLMMto obtain the point and variance esti-
mates for 𝜷. We consider the EM approach for estimating

the model parameters (details in Supporting Information
A). To perform the intersection-union test, we set the crit-
ical values 𝑐1 = ⋯ = 𝑐𝐾 = 𝑡𝛼(𝑛 − 2𝐾), and calculate the
empirical power as the proportion of 𝕀{

⋂𝐾

𝑘=1
(𝜁𝑘 > 𝑐𝑘)} = 1

across 1000 simulated CRTs. In each scenario, we compare
the empirical power by simulation and the predicted power
by formula (10) to assess the accuracy of our procedure.
Finally, we follow Li et al. (2020) and report the empirical
type I error rate as the proportion of false rejections when
the CRTs are simulated under 𝜷 = (0, 0.7)𝑇 for 𝐾 = 2 and
𝜷 = (0, (𝜂 + 0.7)∕2, 0.7)𝑇 for 𝐾 = 3.
Table 3 presents the estimated required number of clus-

ters 𝑛, predicted power, empirical power, and type I error
rate with 𝐾 = 2 coprimary endpoints and 𝑚 ∈ {60, 80}.
Consistent with the exploration in Section 3.4, the esti-
mated number of clusters 𝑛 increases mildly when the
CV of cluster sizes increases. Overall, the empirical pow-
ers of the Wald tests are in reasonable agreement with
the predicted powers by the proposed formula, and the
empirical type I error rates are generally close to the nom-
inal level. Similar trends are also observed in Support-
ing Information Table S2 with𝐾 = 3 coprimary endpoints.
Supporting Information Tables S3 and S4 summarize the
expected standard errors of the empirical power, which are
all around 1% and thus fairly small (Morris et al., 2019).
Finally, Supporting Information Tables S5 to S10 summa-
rize the bias in estimating the variance component param-
eters in 𝚺𝝓, 𝚺𝒆 with𝐾 = 2 and𝐾 = 3 coprimary endpoints.
Across all simulation scenarios with nomore than 30 clus-
ters, the EM approach leads to relatively small bias in esti-
mating the variance parameters, suggesting no evidence
of nonidentifiability.

5 APPLICATION TO THE KERALA
DIABETES PREVENTION PROGRAM
(K-DPP) TRIAL

We illustrate the proposed method using the K-DPP study
(Thankappan et al., 2018), which is a parallel CRT aimed
to evaluate the efficacy of a peer-support lifestyle inter-
vention in preventing type 2 diabetes among high-risk
individuals. A total of 60 polling areas (clusters) were
randomized in a 1:1 ratio to either participate in the
peer-support program (intervention) or simply receive
the education booklet (usual care). The study included
two secondary clinical endpoints: change in systolic and
diastolic blood pressure measured from baseline to 24
months. To illustrate our new methodology, we consider a
scenario where the investigators are interested in planning
a CRT to study the effect of the K-DPP intervention on two
continuous coprimary endpoints: change in systolic and
diastolic blood pressure (𝐾 = 2). We consider the omnibus
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1302 YANG et al.

TABLE 3 Estimated required number of clusters 𝑛, predicted power 𝜓, empirical power 𝜓 , and type I error rate 𝑒 with 𝐾 = 2, different
levels of effect sizes, CV of cluster sizes, ICC values, and mean cluster sizes𝑚

𝒎 = 𝟔𝟎 𝒎 = 𝟖𝟎

Effect size CV 𝜿 𝝆𝟐 𝒏 𝝍 𝝍 𝒆 𝒏 𝝍 𝝍 𝒆

(0.3, 0.7) 0.0 0.01 0.20 16 0.841 0.854 0.048 14 0.804 0.823 0.055
0.01 0.50 16 0.843 0.855 0.048 14 0.806 0.822 0.059
0.05 0.20 22 0.810 0.815 0.050 22 0.831 0.847 0.057
0.05 0.50 22 0.812 0.828 0.050 22 0.833 0.840 0.052

0.2 0.01 0.20 16 0.838 0.865 0.046 14 0.802 0.824 0.037
0.01 0.50 16 0.841 0.871 0.047 14 0.804 0.826 0.044
0.05 0.20 22 0.807 0.835 0.063 22 0.829 0.845 0.074
0.05 0.50 22 0.809 0.823 0.059 22 0.830 0.849 0.079

0.4 0.01 0.20 16 0.832 0.844 0.039 16 0.856 0.865 0.059
0.01 0.50 16 0.834 0.847 0.042 16 0.858 0.870 0.061
0.05 0.20 24 0.836 0.855 0.058 22 0.822 0.841 0.046
0.05 0.50 24 0.837 0.865 0.058 22 0.823 0.833 0.050

0.8 0.01 0.20 16 0.800 0.784 0.043 16 0.833 0.833 0.049
0.01 0.50 16 0.805 0.804 0.050 16 0.836 0.841 0.055
0.05 0.20 24 0.802 0.810 0.046 24 0.831 0.867 0.060
0.05 0.50 26 0.832 0.841 0.047 24 0.828 0.856 0.054

(0.5, 0.7) 0.0 0.01 0.20 14 0.814 0.854 0.041 14 0.825 0.839 0.055
0.01 0.50 14 0.814 0.857 0.047 14 0.825 0.839 0.059
0.05 0.20 16 0.853 0.870 0.054 14 0.809 0.826 0.062
0.05 0.50 16 0.854 0.874 0.055 14 0.810 0.829 0.066

0.2 0.01 0.20 14 0.813 0.838 0.037 14 0.824 0.846 0.037
0.01 0.50 14 0.813 0.834 0.035 14 0.824 0.843 0.044
0.05 0.20 16 0.851 0.875 0.061 14 0.808 0.832 0.052
0.05 0.50 16 0.852 0.882 0.061 14 0.809 0.838 0.060

0.4 0.01 0.20 14 0.808 0.829 0.045 14 0.821 0.863 0.045
0.01 0.50 14 0.809 0.826 0.040 14 0.821 0.867 0.051
0.05 0.20 16 0.846 0.862 0.050 14 0.803 0.840 0.063
0.05 0.50 16 0.847 0.859 0.044 14 0.805 0.845 0.061

0.8 0.01 0.20 16 0.842 0.841 0.043 14 0.806 0.854 0.059
0.01 0.50 16 0.847 0.851 0.050 14 0.810 0.851 0.071
0.05 0.20 16 0.822 0.817 0.054 16 0.842 0.857 0.051
0.05 0.50 16 0.825 0.820 0.057 16 0.845 0.853 0.057

test and the intersection-union test, and determine the
number of clusters required to achieve 80% power at the
5% significance level when each one of these tests are
of primary interest. In the context of the K-DPP study,
rejecting the null with the omnibus test means that the
peer-support lifestyle program has an effect on at least
one of the systolic and diastolic blood pressure outcomes,
whereas rejecting the null with the intersection-union
test means that the peer-support lifestyle program has
an effect on both outcomes. To proceed, we estimate
the design parameters from the K-DPP study. The mean
cluster size is estimated from the study as 𝑚 = 17 and

the CV of cluster size is 0.19. We fit the MLMM using
the EM algorithm and obtain the variance matrices as

𝚺𝝓 =

(
8.3 9.1

9.1 11.2

)
and 𝚺𝒆 =

(
170.0 94.2

94.2 84.8

)
. These values

correspond to marginal variances 𝝈2𝑦 = (178.4, 96.0) and
ICC values (𝜌1

0
, 𝜌2

0
, 𝜌12

1
, 𝜌12

2
) = (0.05, 0.12, 0.07, 0.79). For

the omnibus test, solving Equation (8) with variance (11)
suggests that 𝑛 = 48 clusters are required to detect effect
sizes (𝛽1, 𝛽2) = 0.3 × 𝝈𝑦 with 80% power. Furthermore,
for the intersection-union test, solving Equation (10) with
variance (11) suggests that 𝑛 = 50 clusters are needed to
detect effect sizes (𝛽1, 𝛽2) = 0.3 × 𝝈𝑦 with 80% power.
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YANG et al. 1303

F IGURE 3 Predicted power for the intersection-union test with 𝑛 = 60 clusters with varying ICC values as additional sensitivity
analysis. The predicted power corresponding to the ICC values estimated from the K-DPP trial is highlighted with a solid black dot

Assuming that the study can feasibly recruit up to 𝑛 =

60 clusters (the actual number of clusters in the K-DPP
study), we further investigate the range of power predic-
tions based on our formulas when the ICC values deviate
from the above design assumptions. In this evaluation, we
vary the ICC for change in systolic blood pressure 𝜌1

0
∈

[0.01, 0.09], and fix 𝜌2
0
= 2.4 × 𝜌1

0
based on the proportion-

ality relationship in the estimates in the K-DPP study.
Figure 3 presents a power contour for the intersection-
union test when the intersubject between-endpoint ICC
𝜌12
1
∕𝜌1

0
∈ ×[0.1, 1.5], intrasubject ICC 𝜌12

2
∈ {0.4, 0.79} for

the effect size (𝛽1, 𝛽2) = 0.3 × 𝝈𝑦 . The predicted power
ranges between [0.67, 0.99], and it is evident that power
decreases with larger values of 𝜌1

0
and smaller values of

𝜌12
2
. Supporting Information Figure S5 presents the corre-

sponding power contour for the omnibus test. Across the
range of ICC values we considered, the predicted power
of the omnibus test are within the range [0.76, 1.00]. The
figure indicates that the larger between-endpoint ICCs
lead to smaller power of the omnibus test, matching the
theoretical prediction from Theorem 2, even when the
cluster sizes are mildly variable. Finally, we provide an
illustrative example of power calculation based on the test
for treatment effect homogeneity in Supporting Informa-
tion F.

6 DISCUSSION

In this article, we have developed a new analytical
approach for power analysis of CRTs with continuous
coprimary endpoints, addressing one of the pressing chal-
lenges in many current pragmatic clinical trials with mul-
tivariate endpoints (Taljaard et al., 2022). Specifically, we
describe an MLMM to account for three different types of
ICCs within each cluster: the endpoint-specific ICC, the
intersubject between-endpoint ICC, and the intra-subject
ICC. In addition, we derive the joint distribution of the
vector of treatment effect estimators based on the FGLS
approach, and elucidate the impact of different ICCs on
power for three types of tests that can be considered
for analyzing multivariate endpoints. We show that the
usual implications of the endpoint-specific ICC values
hold in the multivariate setting, namely, higher ICC val-
ues are associated with larger required sample size. For
the intersubject between-endpoint ICCs and the intrasub-
ject ICCs, it is difficult to predict generally, but under
conditions of block-exchangeability, we show that their
implications differ, depending on whether the omnibus
test or intersection-union test is used. For the omnibus
test, higher values for these ICCs lead to a larger required
sample size, whereas for the intersection-union test, larger
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1304 YANG et al.

values lead to a smaller required sample size. We also
show that when cluster sizes vary, using a multivariate
approach has advantages in that larger values of intersub-
ject between endpoint ICCs can possibly protect against
efficiency loss due to cluster size variability. Finally, we
extend our approach to accommodate unequal cluster
sizes, where the power formula further depends on the CV
of the cluster size distribution. Our simulation study sug-
gests that the power formula is accurate evenwhen there is
a limited number of clusters as well as small to large degree
of cluster size variation,which encompass frequent scenar-
ios seen in CRT applications (Ivers et al., 2011)
With multivariate coprimary outcomes, the

intersection-union test is a simple and practical approach
when the interest lies in detecting treatment effect signals
across all endpoints. To operationalize this test for study
design, we considered a multivariate 𝑡-distribution with
degrees of freedom, 𝑛 − 2𝐾. While in our simulation stud-
ies with 𝑛 ≥ 14 and 𝐾 ∈ {2, 3}, the intersection-union test
has demonstrated nominal type I error rate and adequate
empirical power, this test is likely conservative when
either the number of clusters further decreases or the
number of endpoints further increases. For example, in a
CRT with eight clusters and 𝐾 = 3 endpoints, the critical
value 𝑡𝛼(𝑛 − 2𝐾 = 2) will be substantially larger than
the corresponding normal critical value, and therefore
the intersection-union test may frequently fail to reject
the null. This is also the situation where the empirical
power of this test may be low. The implication of this
observation for study planning with coprimary outcomes
is that the number of clusters should be at least a handful
to support 𝐾 ∈ {2, 3} coprimary endpoints. With an even
larger number of endpoints, additional clusters will be
necessary to ensure sufficient degrees of freedom for the
intersection-union test, and it would be useful to develop
a rule of thumb in future research.
A different approach for power analysis of CRTs is based

on the marginal model coupled with GEE for parame-
ter estimation (Preisser et al., 2003). For instance, with
binary coprimary endpoints, Li et al. (2020) developed
the analytical variance expression of the GEE treatment
effect estimators assuming equal cluster sizes and an inde-
pendence working correlation structure. It is possible to
extend their approach to accommodate continuous copri-
mary endpoints as an alternative to our proposed method.
However, previous work has shown that a GEE with an
independence working correlation structure can result in
an inflated sample size compared to an efficient GEE with
correct working correlation model even with a single pri-
mary endpoint (Li and Tong, 2021). It would be interest-
ing to quantify the efficiency gain by MLMM versus inde-
pendenceGEEwith coprimary endpoints. Second,wehave
assumed all coprimary endpoints are continuous, whereas

in certain applications there can be a mix of continu-
ous and binary coprimary endpoints. It would be worth-
while to further develop our method to accommodate
coprimary endpoints with mixed types. Finally, coprimary
endpoints can also arise in multiple-period CRTs, which
requires consideration of even more complex correlation
structures. We plan to pursue an extension of our methods
to multiple-period CRTs (eg, stepped wedge CRTs) in our
future work.
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