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Abstract. This paper evaluates an automatically extracted domain
model from textbooks and applies learning curve analysis to assess its
ability to represent students’ knowledge and learning. Results show that
extracted concepts are meaningful knowledge components with varying
granularity, depending on textbook authors’ perspectives. The evalua-
tion demonstrates the acceptable quality of the extracted domain model
in knowledge modeling.
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1 Introduction

Automation of the creation of domain models (DMs) has been a long-standing
practical and research problem in the field of Artificial Intelligence in Educa-
tion. Most types of adaptive educational systems require high-quality composite
fine-grained representations of domain knowledge to be able to model students’
abilities and provide meaningful support of their learning. Development of such
representations has been traditionally a manual task demanding a great deal
of time and expertise. Over the last decade, a range of approaches have been
introduced capable of extracting different elements of domain semantics from
domain-oriented documents and user data [6,7,11]. However, very few studies
examined the applicability of automatically extracted domain semantics to the
task of modeling student knowledge [13].

This paper presents an evaluation of a DM that has been automatically
extracted from a collection of textbooks in the same domain—Python program-
ming. Section 2 briefly outlines the approach developed to produce such a model.
The quality of the DMs extracted from textbooks with this approach has been
evaluated before in terms of accuracy [2], semantic completeness [1], coverage
[1], and domain specificity [4]. This paper explores the quality of the concepts
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extracted from textbooks as Knowledge Components (KCs) assessing their cog-
nitive validity and applicability for knowledge modeling and assessment. Addi-
tionally, the concepts are evaluated to see if they cover too much or too little
knowledge (granularity).

The best approach to validate the extracted concepts from this perspective
is the learning curve analysis [9]1. Learning curves are graphs that plot per-
formance on a task versus the number of attempts to practice. Performance is
usually measured using the proportion of incorrect responses (the error rate) for
a KC that is being practiced. Learning curve analysis is used to qualify learning
performance. If learning occurs for the KC being measured, the learning curve
should follow the power law [10]. That is, the error rate of a KC should decrease
as a power function of the number of attempts involving this component. A pos-
itive slope (α) indicates a decreasing curve and, therefore, a learning effect. A
high fit (R2) indicates that the KC successfully identifies the student’s learning.

Motivated by the mentioned learning curve analysis, this paper describes an
experiment to assert the cognitive validity and granularity of concepts extracted
from textbooks. The analysis of the learning curves showed the DMs automati-
cally extracted from textbooks consist of cognitively valid knowledge components
for domain knowledge modeling. Additionally, textbooks provide both fine- and
coarse-grained concepts; smaller concepts are shown to support more accurate
student modeling.

2 Background

Fig. 1. Stages for the extraction of DMs from textbooks.

We have developed a workflow for the automated extraction of DMs from text-
books [1–4]. Figure 1 shows the main stages of this approach. The first three
stages use an extensive set of rules that capture common conventions and guide-
lines for textbook formatting, structuring, and organization. The textbook’s
structure (chapters and subchapters), content (words, lines, text fragments,
pages, and sections), and domain terms (terminology used in the textbook and
the domain) are extracted. In the following three stages, the domain terms are
used as a bridge to link the textbooks to entities in DBpedia2. The linking with
1 The reader is directed to this source for a comprehensive introduction to learning

curves.
2 https://www.dbpedia.org/.
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DBpedia allows for the enrichment of the domain terms with semantic informa-
tion (e.g., abstracts and categories). In the seventh stage, terms from multiple
textbooks are integrated into a single model to get better coverage of the target
domain. Then, in the next stage, terms are categorized according to their rele-
vance to the target domain (main, related, or unrelated domain). Finally, all the
extracted knowledge is serialized as a descriptive XML file3.

3 Experiment

This experiment examines the conceptual representation of knowledge in DMs
from textbooks, exploring the validity of concepts as cognitive KCs and ana-
lyzing their granularity. Learning curve analysis is used to quantify learning
performance for these concepts.

Data. Concepts extracted from three introductory Python programming text-
books4 are analyzed using learning activities and learner data from Python-
Grids [5], a personalized practice system for Python programming. PythonGrids
learning activities are grouped into 15 ordered topics, from simple (e.g., “Vari-
ables and Operations”) to advanced (e.g., “Classes/Objects”). Eleven datasets
of students’ interactions with PythonGrids are used for this experiment5. A final
combined dataset containing 57929 interactions of 465 students with 85 activities
was used in this experiment.

Procedure. The experiment has four steps. The first step is extracting the domain
knowledge from textbooks and selecting the relevant concepts. Then, the learning
activities are annotated with the selected concepts according to their expected
learning outcomes. After that, the interactions from the students are aggregated,
filtered out, and augmented. Finally, learning curves are generated for each con-
cept.

1. Domain Knowledge Generation. A DM is extracted and enriched for each
textbook (see Sect. 2). The models are combined into a single model to merge
repeated terms. The model contains 600 terms, with 266 considered relevant for
Python programming, which are used to annotate learning activities.

2. Content Annotation. Learning activities are annotated with the selected con-
cepts by experts to indicate expected learning outcomes. Annotators assess top-
ics, prerequisite/outcome relations, and activity outputs to choose the relevant
concepts. In total, 54 concepts are used in annotations (the KCs), including
“variable”, “function call”, “for loop”, “function”, and “exception”.

3 https://tei-c.org/.
4 Python for everybody, Think Python, and Introduction to computation and pro-

gramming using Python.
5 Provided through the PSLC DataShop at http://pslcdatashop.web.cmu.edu.
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3. Data Preparation. The used dataset comes from students using the Python-
Grids system in real and diverse settings with no control over the environment.
Therefore, the data have to be treated with caution. Reliable learning sequences
that help to evaluate the concepts need to be extracted from the data. Sequences
with no evidence of learning have to be regarded as noise. First, the interactions
in the dataset are grouped into sequences containing all student attempts per
concept [12]. In total, 10946 student-concept-attempts are generated. Correct
outcomes are marked with 1’s, incorrect ones with 0’s. After that, we identify
rapid-guessing [8] to reduce the number of incorrect attempts (smoothing) in
the sequences of activities where the trial-and-error strategy works exception-
ally well. Then, noise in the student-concept-attempts sequences is filtered out.
Sequences are labeled with four tags: known, understood strong, understood weak,
and not understood. These tags identify students who already know the concept,
have practiced until mastery, practiced until getting a correct answer, or stopped
before showing any learning, respectively. Sequences without learning (known
and not understood) are filtered out, leaving 8079 student-concept-attempts
(73.8% of all sequences). After filtering, new attempts are generated by aug-
menting student-concept-attempts sequences to maintain the learning evidence
for students who stopped practicing earlier. This ensures the same number of
concept-attempts for each student. Correct attempts (1’s) are inserted in under-
stood strong sequences, while the average of the original attempts are inserted in
understood weak sequences until the maximum number of attempts is reached.

4. Learning Curves Generation. The learning curves are generated using the
processed student-concept-attempts sequences. For each concept, the error rates
at each attempt are calculated using 1− sum of all outcomes

total number of outcomes . After generating
and analyzing the learning curves, a cut-off point was selected when the number
of attempts was less than 25% of the first attempts. This threshold maintains a
good balance between the number of attempts and the fit of the learning curves.

4 Results and Analysis

In total, 46 unique learning curves have been generated (eight concepts have
had learning curves identical to other concepts’). Figure 2 displays representative
examples of learning curves to guide the discussion of the results. All 46 learning
curves are available online6.

Cognitive Validity. Five7 of 46 concepts show no learning, while the remaining
41 display a positive learning trend. The mean fit (R2) of 0.65 (SD = 0.27)
for these 41 positive curves indicates that the assessed textbook concepts
are cognitively valid units of knowledge. The results align with similar
literature evaluating fine-grained knowledge components [9,12]. Learning curves
are classified using the power law parameters, with higher fit indicating more
6 https://github.com/isaacalpizar/learning curves.
7 “Exception”, “conditional statement”, “value”, “variable”, and “iteration”.
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Fig. 2. Examples of learning curves.

reliable learning and steeper slope suggesting faster learning. Of the 41 downward
learning curves, four are high-quality, 28 are medium-quality, and nine are low-
quality. High-quality curves, such as “string” (R2 = 0.94, α = 0.65, Fig. 2-left),
demonstrate more and faster learning compared to the other categories, with
other concepts in this category including “hello, world”, “optional parameter”,
and “counter”. A low-quality learning curve corresponds to the “while loop”
concept (Fig. 2-right), with a fit (R2 = 0.14) indicating some learning but a
low slope (α = 0.03) suggesting slow progress. This may imply students struggle
with while loops and that activities could be improved. Concepts “instance” and
“reference” have similar curves.

Granularity. Regarding granularity, concepts in only one topic in PythonGrids
are considered fine-grained (e.g., “float” in “Variables and Operations”), while
those in multiple topics are coarse-grained (e.g., “iteration” in “While Loops”
and “For Loops”). Fine-grained concepts have acceptable learning curves, while
coarse-grained concepts are a special case. Out of these concepts, all but “iter-
ation” produce downward learning curves, though not smooth. We can analyze
the “indentation” concept. In Python, indentation is semantically meaningful
and is used to indicate a block of code in many statements or expressions. This
concept is linked to the “conditional statement”, “while loop”, “for loop”, and
“function” concepts. The learning curve for “indentation” is uneven with mul-
tiple upticks (bumps). The other coarse-grained concepts show similar learning
curves. “Bumpy” learning curves may result from concepts being learned in the
context of associated concepts. When a new associated concept is introduced,
the probability of making a mistake is high, but the central concept eventually
shows a downward trend after all associated concepts have been trained. This
finding aligns with previous studies observing worse learning curves for more
general groupings [9,12].

5 Conclusion and Future Work

This paper explored the quality of DMs extracted from textbooks regarding
their ability to model students’ knowledge and learning. Learning curve analysis
showed textbook concepts in Python programming measure students’ learning
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(cognitive validity) and displayed different granularity levels. In conclusion, this
paper provided strong evidence of the richness of the extracted models for domain
modeling and assessment. Future work includes a more complex experiment with
an educational system designed with textbook concepts at the core.
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