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Abstract
A hedonic approach is typically performed to identify housing rental or sales price determinants.
However, standard hedonic regression models disregard spatial autocorrelation of prices and
heterogeneity of housing preferences across space and over price segments.We developed a spatial
autoregressive geographically weighted quantile regression (GWQR-SAR) to address these
shortcomings. Using data on the determinants of residential rental prices in Warsaw (Poland) and
Amsterdam (The Netherlands) as case studies, we applied GWQR-SAR and rigorously compared
its performance with alternative mean and quantile hedonic regressions. The results revealed that
GWQR-SAR outperforms other models in terms of fitting accuracy. Compared with mean re-
gressions, GWQR-SAR performs better, especially at the tails of the dependent variable distri-
bution, where non-quantile models overestimate low rent values and underestimate high ones.
Policy recommendations for the development of private residential rental markets are provided
based on our results, which incorporate spatial effects and price segment requirements.
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Introduction

The residential market is central to society and the economy. The housing market often accounts for
more than 30% of a country’s economy (Fotheringham and Park, 2018) and affects vital mac-
roeconomic indicators (Leung, 2004; Brzezicka et al., 2022). Therefore, housing price determinants
play a crucial role for private and public stakeholders (Selim, 2009). The identification of housing
rental or sales price determinants is typically performed using a hedonic model (Rosen, 1974).
Hedonic price theory values an object based on its utility-bearing characteristics and decomposes
the price into its individual value-adding quantitative (Leishman, 2001) and qualitative components
(Meese and Wallace, 1991). Multiple linear regression is widely used to estimate the hedonic price
function (Goodman, 1998).

In practice, however, three challenges arise in hedonic models. First, hedonic models do not
account for spatial autocorrelation of housing prices in their standard forms. Spatial autocorrelation
refers to a situation where the price of a given apartment is spatially correlated with the prices of real
estate in a neighborhood resulting from the fact that properties in similar locations share various
amenities (Dubin, 1998). Also, during the selling or renting process, people generally tend to set the
listing price based on the sales prices of nearby properties.

Second, the standard hedonic model does not address spatial heterogeneity, which means that the
hedonic price function varies across space (Sunding and Swoboda, 2010; Helbich et al., 2014). It
stems from submarkets and variations in household preferences in the residential market (Watkins,
2001). Both spatial dependence and spatial heterogeneity may coexist in the housing market (Yao
and Fotheringham, 2016). The omission of spatial effects in hedonic modeling leads to biased and
inconsistent parameter estimates and spurious inferences, possibly rendering incorrect marginal
prices for housing attributes (Anselin and Lozano-Gracia, 2009; LeSage and Pace, 2009).

Third, the standard hedonic model also ignores that housing characteristics might be valued
differently across the housing price distribution due to variations in the residential preferences of
buyers in the high-end and low-end property segments (Zietz et al., 2008). Further, it has been
reported that the housing preferences of poor and rich households differ (Leung and Tsang, 2012)
and are sometimes even opposed (Tomal, 2019). Therefore, it is possible for the marginal prices of
dwelling attributes to possess opposite signs at different points of the conditional distribution of the
dependent variable. Consequently, the estimated coefficients using the standard hedonic model are
not an entirely reliable source of information about the relationship between the price of a housing
unit and its characteristics (Liao and Wang, 2012).

Despite the importance of the above aspects for the validity of hedonic house price models, we
are not aware of any model capable of simultaneously including spatial autocorrelation of prices and
heterogeneity of housing preferences across space and price segments. We propose a new hedonic
model called spatial autoregressive geographically weighted quantile regression (GWQR-SAR) to
address this research gap. To illustrate the value of GWQR-SAR, we conducted two case studies,
one in Amsterdam (The Netherlands) and one in Warsaw (Poland), as had been done previously
(McMillen, 2015; Yao and Fotheringham, 2016; Fotheringham and Park, 2018; Tomal, 2022).

Previous works on modeling housing price determinants

Hedonic models considering both spatial effects (i.e., spatial autocorrelation and spatial hetero-
geneity) have been established in the literature. For example, Yao and Fotheringham (2016) as well
as Fotheringham and Park (2018) included a spatiotemporal lag variable as an additional predictor in
a geographically weighted hedonic regression (GWR) when analyzing housing prices in Scotland
and South Korea, respectively. Similarly, Geniaux and Martinetti (2018) and Li et al. (2019)
examined the USA housing market. The simultaneous consideration of both spatial effects in house
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price modeling was also addressed by Basile et al. (2014), who applied geoadditive models, further
relaxing the linearity assumption. In turn, Tomal (2022) investigated the determinants of average
house prices in Polish counties using spatial autoregressive multiscale GWR, which allowed re-
lationships between predictors and the dependent variable to operate at different spatial scales. A
different approach was proposed by Helbich and Griffith (2016). They used eigenvector spatial
filtering to obtain spatially varying regression coefficients and, at the same time, estimates without
spatial dependency.

Research on different valuations of housing attributes across housing price segments (Tomal,
2019; Waltl, 2019) was mainly based on quantile regression (QR) (Koenker and Bassett, 1978).
Mathur (2019) addressed spatial dependence and heterogeneity across the price distribution when
assessing how urban growth boundaries affect housing prices. McMillen (2015) used a condi-
tionally parametric QR approach to model land values, which allowed regression coefficients to
change over the distribution of the response variable and spatially. Similarly, Chen et al. (2012)
proposed geographically weighted quantile regression (GWQR) to extend the traditional GWR
model with quantile regression. In this case, however, the GWQR model was not applied in the
context of housing. Expanding on Chen et al. (2012), Wang et al. (2018) proposed the GWQlasso
model to simultaneously identify spatially varying coefficients, non-zero constant (global) coef-
ficients, and zero (insignificant) coefficients. We are not aware of any hedonic house price model
that has incorporated spatial dependence, spatial heterogeneity, and heterogeneity across price
segments within a unified framework.

Methods

Spatial hedonic models

A spatial autoregressive model (SAR) is typically used in housing studies to account for spatial
dependence in the data. The model can be formalized as follows (Ord, 1975)

yi ¼ αþ ρ
X

j
wijyj þ

X
k
βkxik þ εi (1)

where yi is the dependent variable, α denotes the intercept, βk is a vector of parameters, xik refers to
regressors, εi denotes the error term, wij is the element of a spatial weight matrix W and ρ is the
spatial autoregressive parameter. If W is row-standardized, then for each i,

P
jwij ¼ 1, and the

spatial autoregressive term,Wy, captures a weighted average of the neighbors. For such settings, the
total covariate effect on the response variable is equal to βk=ð1� ρÞ. BecauseWy is correlated with
the error term and causes an endogeneity bias, the calibration of equation (1) is based on two-stage
least squares (2SLS). This procedure starts with estimating an ordinary least squares (OLS) re-
gression, whereas the spatial autoregressive term acts as a dependent variable and the regressors are
the set of variables X andWX (Anselin, 2003). Then, the fitted values from the first step are used to
estimate the SAR model.

Conventional SAR assumes a unitary housing market across space that can be modeled using a
single price function representing the entire study area (Wilhelmsson, 2002). To relax the as-
sumption of a unitary housing market, geographically weighted regression has been introduced to
model spatially varying associations between covariates and a response variable (Brunsdon et al.,
1996). Specifically, GWR can be expressed as follows

yi ¼ αðui, viÞ þ
X

k
βkðui, viÞxik þ εi (2)
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where ðui, viÞ represents geographic coordinates of the location i, αðui, viÞ denotes the intercept at
location i, βkðui, viÞ is the vector of parameters at location i. The estimation of the GWR model
parameters is via weighted least squares

bβ ui, við Þ ¼ XTM ui, við ÞX� ��1
X TM ui, við ÞY (3)

where M ui, við Þ ¼ diag αi1,…, αinð Þ and n denotes the number of observations. The model esti-
mation depends on the proximity of point i to the other data points in space, whereas an observation i
closer in space receives a higher weight. Fotheringham et al. (2002) recommend using the bi-square
kernel function to model the spatial distance decay, as it produces a continuous weighting function
up to a certain distance and zero weights for the remaining observations. Considering the Euclidean
spatial distance and the bi-square kernel, αij is represented as

αij ¼
�
1�

�
dij
ho

�2�2
if dij < ho and 0 otherwise (4)

where dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðui � ujÞ2 þ ðvi � vjÞ2

q
and ho is the bandwidth either predefined (fixed bandwidth) or

determined through a nearest neighbor approach (adaptive bandwidth). The latter is frequently used
as the density of observations often varies across the study area (Fotheringham et al., 2002). An
optimal ho can be determined using cross-validation (CV), minimizing the sum of the squared error

CV ðhrÞ ¼
X

i

	
yi � byð�iÞðhrÞ


2
(5)

where hr denotes the rth bandwidth and byð�iÞ refers to the fitted value from GWR with the ith
location being omitted during model calibration. Finally, hr for which the CV score is the lowest
serves as a ho.

GWR can be supplemented with a spatially lagged dependent variable to also capture spatial
autocorrelation (Brunsdon et al., 1998). Spatial autoregressive geographically weighted regression
(GWR-SAR) is expressed as

yi ¼ αðui, viÞ þρðui, viÞ
X

j
wijyj þ

X
k
βkðui, viÞxik þ εi (6)

where symbols are defined as previously. The spatial autoregressive parameter ρ serves as a local
measure of spatial autocorrelation that also captures the influence of other covariates in the model
(Fotheringham and Park, 2018). To deal with the endogeneity of Wy, 2SLS is applied for GWR-
SAR estimation as is done for SAR: first, the endogenous variable is modeled, and, second the fitted
values are used to calibrate the GWR-SARmodel (Cho et al., 2008, 2009; Shoff et al., 2014; Ingram
and Marchesini da Costa, 2017).

Spatial quantile hedonic models

Mean regressions like SAR, GWR, and GWR-SAR only allow examination of relationships for the
conditional mean of the response. Quantile regression (QR) (Koenker and Bassett, 1978) eases this
restrictive assumption by modeling associations at any point of the conditional distribution of the
dependent variable. QR takes the following form

yi ¼ ατ þ
X

k
βτkxik þ ετi (7)
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where τ denotes the quantile level for which the estimation is performed. The estimation of the
model (7) for an assumed level τ minimizes the following equationX

i : yi≥byiτ���yi � α�
X

k
βkxik

���þX
i : yi <byið1� τÞ

���yi � α�
X

k
βkxik

��� (8)

where symbols are defined as previously. Spatial autocorrelation can also be incorporated into QR.
The QR-SAR model can be written as

yi ¼ ατ þ ρτ
X

j
wijyj þ

X
k
βτkxik þ ετi (9)

where symbols are defined as previously. QR-SAR is also estimated in a two-stage procedure to
consider the endogeneity of Wy, whereas quantile regression is employed in the first stage rather
than OLS (Kim and Muller, 2004).

Geographically weighted quantile regression (GWQR) (Chen et al., 2012) integrates GWR and
QR. Through GWQR, one can obtain spatially varying parameters for different points of the
dependent variable conditional distribution. GWQR can be expressed as follows

yi ¼ ατðui, viÞ þ
X

k
βτkðui, viÞxik þ ετi (10)

where symbols are defined as previously. Equation (10) can be calibrated using a local constant or
local linear estimator (Chen et al., 2012). The former leads to results only at the regression points;
the latter can also predict the value of the dependent variable in the neighborhood of the obser-
vations (Hallin and Šiman, 2017) while being computationally more demanding (Yu and Jones,
1997). However, as evidenced by Yu and Jones (1997), the performance of both methods is
comparable for observed locations. The local constant estimator of the model (10) involves the
minimization of the following problem

X
i

υτ yi � ατ ui, við Þ �
X
k

βτk ui, við Þxik
 !

M (11)

where υτðzÞ ¼ z τ � I z< 0ð Þð Þ denotes the check loss function.
Local constant and local linear GWQR can also be estimated using a bootstrap approach instead

of an asymptotic approximation (Chen et al., 2020). The bootstrap approach provides reliable
estimates of model parameters and standard errors based on the bootstrap distribution of bβðui, viÞ.
Specifically, the bootstrapped mean value and the standard deviation are calculated, which serve as
the estimated parameter and its standard error, respectively.

In contrast to GWR-based models, GWQR selects the optimal bandwidth via a V-shaped check
function to determine the CV scores (Chen et al., 2012). The CV value for a given bandwidth hr is
given as

CV hrð Þ ¼
X
i

υτ yi � byτ, �ið Þ
	 


(12)

where byτ, ð�iÞ is the fitted value from GWQR, with the ith location being omitted during model
calibration and the optimal bandwidth ho has the lowest CV score.

Spatial autoregressive geographically weighted quantile regression

GWQR-SAR now extends GWQR with a spatial autoregressive term as covariate. The model
generates parameters that vary across space and over the response variable distribution while

Tomal and Helbich 583



accounting for spatial autocorrelation in the data. The GWQR-SAR model has the following
notation

yi ¼ ατðui, viÞ þ ρτðui, viÞ
X

j
wijyj þ

X
k
βτkðui, viÞxik þ ετi (13)

where symbols are defined as previously. To fit the model, we propose a two-stage procedure to
account for the endogeneity of Wy. First, quantile regression obtains cWy using X and WX as
instruments. Second, the estimation procedure follows the assumptions presented for GWQR.
Importantly, GWQR-SAR estimates the spatial autoregressive parameter for each location for a
particular percentile of the dependent variable allowing the coefficient to be treated as a local spatial
quantile dependence index considering other covariates.

The R package GWQR

The estimation of GWQR can be done using the rq function (Wang et al., 2018) from the R package
quantreg (Koenker et al., 2018). For a given observation i and a given quantile level τ, the estimation
of the local constant GWQR is as follows: rq(Y∼X,tau = τ,weights = M) where M is a vector of
weights calculated depending on the kernel function adopted and the way the distance is measured.
In turn, local linear GWQR requires changing X to Xt ¼ ½X ,UðtÞX ,V ðtÞX � where
UðtÞ ¼ diag½u1 � ui,…, un � ui� and V ðtÞ ¼ diag½v1 � vi,…, vn � vi�. For local linear GWQR,

three parameters are generated for each location i, that is, bβðui, viÞ, bβðuÞðui, viÞ, and bβðvÞðui, viÞ.
In line with Wang et al.’s (2018) guidelines, we developed the R package GWQR to fit either the

local constant or the local linear estimator. For the former, the function
gwqr_lc(formula=,data=,q=,ind=,b=,bb=) can be applied; for the latter gwqr_ll() can be used with
the same parameters. The GWQR package also allows the selection of the optimal bandwidth for
local constant GWQR using the function gwqr_lc_bw(formula=,data=,q=,ind=,tol=). The function
requires the following parameters: formula: model formula, for example, Dependent∼X1+X2, data:
data used, q: the quantile level, ind: number of independent variables including a constant (note: do
not create a vector of ones in the data), b: bandwidth, bb: number of bootstrap replications, tol:
convergence parameter. The bootstrap approach has been implemented with the bi-square kernel
function based on the Euclidean norm, and an adaptive bandwidth optimized employing cross-
validation (CV) to obtain both local constant and local linear GWQR. An example of the use of the
GWQR package to estimate the local constant GWQR for quantile 0.5 is as follows:

1. gwqr_lc_bw(formula = Dependent ∼ X1 + X2,data = house_prices,q=0.5,ind = 3,tol =
0.00001) # selecting the optimal bandwidth

2. gwqr_lc(formula = Dependent∼X1+X2,data=house_prices,q = 0.5,ind = 3,b = b*,bb = 500)
# local constant GWQR estimation for quantile 0.5 using 500 bootstrap replication, b*
denotes the bandwidth indicated in step 1

A detailed description of the functions and data preparation is provided in the R package GWQR
available from https://figshare.com/s/ae6e81c08772593ce627.

Study area and data

We selected housing rental markets in Warsaw (Poland) and Amsterdam (The Netherlands) for
an empirical case study. These real estate markets are of interest in our analyses for two reasons.
First, while there are numerous publications on drivers of housing sales prices to date
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(Wilkinson and Archer, 1973; Peek and Wilcox, 1991; Égert and Mihaljek, 2007; Helbich,
2015; Kopczewska and Ćwiakowski, 2021), little attention has been paid to identifying rent
determinants, mainly due to lack of data. This dearth of data relates, in turn, to the paucity of
studies on European residential rental markets. Examples of the few extant studies include
Efthymiou and Antoniou (2013), Crespo and Grêt-Regamey (2013), McCord et al. (2014),
Egner and Grabietz (2018), Tomal (2020), and Tomal and Helbich (2022). Apart from Trojanek
et al. (2021) and Trojanek and Gluszak (2022), to the best of our knowledge, no other studies
have addressed the determinants of rents either in Warsaw or Amsterdam. Second, the markets
in Amsterdam and Warsaw are characterized by different development levels. According to
Eurostat (2022), only 3.3% of the Polish population met their housing needs by renting in 2020,
compared to 30.1% in the Netherlands.1 From a macroeconomic perspective, rental housing
markets are central because they mitigate fluctuations in the residential sector, contribute to
economic stability, and increase housing affordability (Rubaszek and Rubio, 2020). These
reasons render Warsaw and Amsterdam ideal case studies to demonstrate the value of GWQR-
SAR across different housing markets.

We obtained rental listings from www.otodom.pl for Warsaw and www.funda.nl for Amsterdam
using web scraping techniques on January 15, 2021, and April 2, 2021. Next, we removed outliers
and repetitive observations (Table S1). We included 583 observations for Amsterdam and 967 for
Warsaw (Figure S1). All rental listings were described by asking price per square meter and by 19
additional variables characterizing the property’s physical characteristics, surrounding area, and
location. Table S2 provides descriptive statistics for Warsaw and Amsterdam.

Results and discussion

Model comparison

We first estimated OLS, SAR, GWR, and GWR-SAR models for comparative purposes. We log-
transformed the quantitative variables to stabilize the variance and to be able to interpret obtained
parameters as elasticities. Moreover, our log-log model specification reduced the problem of non-
linear associations between the dependent variable and the predictors. For SAR and GWR-SAR, we
used a row-standardized binary k-nearest-neighbor matrix to calculate the spatial autoregressive
term. The exact number of neighbors was determined by minimizing the residual sum of squares.
For Amsterdam, k ¼ 18, and for Warsaw, k ¼ 8 were selected (Table S3). SAR and GWR-SAR
were estimated using the 2SLS method, which ensured no correlation between the spatial au-
toregressive term and the residuals (Table S4).2 For GWR and GWR-SAR, we applied an adaptive
bandwidth along with the bi-square kernel function for model calibration.

Estimates of the coefficient of determination (R2) and the residual sum of squares (RSS) indicated
that the best model was GWR-SAR for both case studies (Table 1). Furthermore, GWR and GWR-
SAR eliminated the problem of residual spatial autocorrelation to the greatest extent possible. The
combined results of the preceding models highlight the importance of accounting for both spatial
autocorrelation and heterogeneity when modeling housing markets. Our results are consistent with
previous studies comparing OLS, SAR, GWR, and GWR-SAR (Fotheringham and Park, 2018;
Tomal, 2022).

We found that our covariates better explained rental prices in Amsterdam than in Warsaw. Three
possible explanations might contribute to this discrepancy. First, it might be due to the quality of the
data available for each city. Unlike Amsterdam, in Warsaw, properties are not street numbered and
only identified by the name of the street. While advertisers may optionally indicate the geographic
coordinates of an apartment, if they fail to do so the property listing system defaults to coordinates
for the middle of the street on which an apartment is located. Second, the residential rental market is
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underdeveloped in Poland, creating the possibility that prices may be affected by random fluc-
tuations. Third, it is possible that specific price determinants could exist that are not accounted for by
our model of the Warsaw residential market.

We then calibrated QR, QR-SAR, GWQR, and GWQR-SAR for the dependent variable’s fifth,
25th, 50th, 75th, and 95th percentiles. For GWQR and GWQR-SAR, a local constant estimator was
used with an adaptive bandwidth and the bi-square kernel to ensure comparability to the GWR and
GWR-SAR settings. Moreover, a two-stage estimation of QR-SAR and GWQR-SAR successfully
eliminated the endogeneity of Wy (Table S4). Local parameters for GWQR and GWQR-SAR were
generated based on 500 bootstrapped replications. Using a computer with an Intel Core i5 1135G7
processor and 16 GB DDR4 memory, the estimation for a particular quantile took about 12 h. Table
2 shows the RSS values for the calibrated quantile models. Consistently across the study areas and
for all percentiles tested, GWQR-SAR resulted in the lowest RSS.

Mean and quantile regressions cannot be directly compared in terms of traditional goodness-of-
fit measures because the latter has a local character for particular quantiles, while mean regression
refers to the entire conditional distribution of the response variable (Koenker and Machado, 1999).
Therefore, following Khattak et al. (2016), to compare the performance of GWQR-SAR with other
mean models, we selected observations from the sample that were the fifth, 25th, 50th, 75th, and
95th percentiles of the dependent variable and 10 observations below and above these percentiles
(105 observations in total). We determined the fitted values based on sets of parameter estimates
across the percentiles. Table 3 presents the in-sample fitting accuracy for GWQR-SAR against
regressions without quantile effects. GWQR-SAR outperformed the other competitive models,
particularly in the case of the residential rental market in Warsaw, with an RMSE decrease of >0.10.
In both cities, the correlation between the observed and the GWQR-SAR fitted values exceeded
0.95. Figure 1 shows that GWR-SAR resulted in pronounced inaccuracies in estimating the cheapest
and the most expensive rents (i.e., GWR-SAR overestimated low rent values and underestimated
high ones). As a robustness test, we checked the fitting accuracy of GWR-SAR and GWQR-SAR
for the whole sample. Again, GWQR-SAR achieved better performance (Figure S2). Notably, the
performance of GWQR-SAR can be significantly improved by generating model parameters for
more percentiles of the dependent variable. Finally, we examined uncertainty of local parameters of
GWQR-SAR and GWR-SAR using 95% confidence intervals (Table 4). With the exception of the
75th percentile case for Warsaw, GWR-SAR estimates had higher levels of uncertainty than
GWQR-SAR estimates.

Spatial variations and quantile effects in local parameters

Table 5 presents the median of local parameters of GWQR-SAR for Warsaw and Amsterdam across
studied percentiles (minimum and maximum values in Tables S5 and S6). The optimal bandwidths
are highest when examining the fifth and 95th percentiles of the rental price distribution, consistent

Table 1. Comparison of OLS, SAR, GWR, and GWR-SAR performance.

Model

Amsterdam Warsaw

RSS R2 Moran’s I (residuals) RSS R2 Moran’s I (residuals)

OLS 20.48 0.52 0.08 (p< 0:01) 49.68 0.34 0.11 (p< 0:01)
SAR 20.16 0.53 0.07 (p< 0:01) 48.99 0.35 0.09 (p< 0:01)
GWR 9.74 0.77 �0.04 (p< 0:01) 38.37 0.49 0.01 (p ¼ 0:24)
GWR-SAR 9.43 0.78 �0.04 (p< 0:01) 35.63 0.53 0.00 (p ¼ 0:44)
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with Chen et al. (2020). When analyzing the local parameters obtained for the structural variables,
the apartment area variable, in line with other studies (Helbich et al., 2014), is significant in nearly
all locations in both markets. The relationship between this variable and rental price changes in both
cities depended on the examined response variable percentile confirming Fitzenberger and Fuchs
(2017). For example, Figure 2 illustrates the spatial and quantile variation in the relationship
between the apartment living area variable and rental prices in Amsterdam. Exploring the 95th
percentile of the dependent variable found that the weakest impact of the studied covariate was
observed in the southeast, which is spatially disconnected from the rest of Amsterdam. This finding
aligns with other analyses suggesting that this area has a unique residential character (Kauko, 2005).
Conversely, the relationship is most marked in the north of Amsterdam. Of note, the estimation
results for the two cities are divergent in terms of the other structural variables. As opposed to

Table 2. RSS values for quantile models.

Model

Amsterdam Warsaw

P5 P25 P50 P75 P95 P5 P25 P50 P75 P95

QR 74.55 30.82 23.09 26.84 73.68 195.45 70.04 50.33 70.75 189.89
QR-SAR 72.73 31.36 22.64 26.91 73.59 188.21 70.66 49.80 69.41 192.49
GWQR 47.91 17.51 12.82 15.82 74.15 179.21 56.59 44.37 54.75 187.57
GWQR-SAR 46.52 16.99 12.70 15.50 73.29 178.89 55.97 44.27 52.70 181.19

Notes: P represents percentile

Table 3. Comparison of GWQR-SAR and non-quantile models.

Panel A: Amsterdam

Correlation analysis

RMSE

Fitted values

Observed valuesModel OLS SAR GWR GWR-SAR GWQR-SAR

OLS 1 0.994 0.881 0.882 0.851 0.732 0.212
SAR 0.994 1 0.890 0.891 0.856 0.740 0.209
GWR 0.881 0.890 1 0.997 0.954 0.909 0.135
GWR-SAR 0.882 0.891 0.997 1 0.960 0.914 0.131
GWQR-SAR 0.851 0.856 0.954 0.960 1 0.952 0.107

Panel B: Warsaw

Correlation analysis

RMSE

Fitted values

Observed valuesModel OLS SAR GWR GWR-SAR GWQR-SAR

OLS 1 0.987 0.894 0.871 0.800 0.658 0.282
SAR 0.987 1 0.903 0.881 0.802 0.658 0.281
GWR 0.894 0.903 1 0.993 0.875 0.758 0.249
GWR-SAR 0.871 0.881 0.993 1 0.892 0.788 0.237
GWQR-SAR 0.800 0.802 0.875 0.892 1 0.951 0.118
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Warsaw, the number of rooms in an apartment is a vital rent determinant in Amsterdam, following
Daams et al. (2019) and confirming Tomal (2020). Contrary to the preferences of Amsterdam
residents, results suggested that the housing preferences of Varsovians are dependent on building
age. Renters in Warsaw are mainly looking for new apartments, for which they are willing to pay a
premium. These differences may be because the older housing stock in Warsaw is built with
prefabricated technology (Tofiluk et al., 2019), and the buildings themselves are characterized by
unattractive appearances, with units lacking modern appliances and few available building ame-
nities. Finally, in both markets, while what story an apartment is on does not significantly impact the
rental price, the presence of elevators in buildings does affect the price, with rental prices in
buildings possessing elevators being significantly higher.

The distance of an apartment to a public transport stop should be examined first in terms of the
locational variables. In Amsterdam, this variable was insignificant in each examined percentile, as a
significant share of the trips people took were by bicycle (Rietveld and Daniel, 2004). In the case of
Warsaw, the impact was variable over space and the percentiles. Quantile effects related to the
distance to the city center were primarily observed in Warsaw. In Warsaw, the locational char-
acteristic most strongly affected the rental prices of the most luxurious apartments. Similar results
for both cities were found for apartments’ distances to main roads. We found a positive relationship

Figure 1. Accuracy in fitting of GWR-SAR and GWQR-SAR. Notes: Values ranked in ascending order based
on observed rents.

588 EPB: Urban Analytics and City Science 50(3)



Table 4. Average lengths of 95% confidence intervals.

Variable

Amsterdam Warsaw

GWR-
SAR

GWQR-SAR
GWR-
SAR

GWQR-SAR

P5 P25 P50 P75 P95 P5 P25 P50 P75 P95

Intercept 7.543 4.202 5.171 4.365 6.942 5.316 5.157 3.226 3.692 3.107 6.193 4.349
Floor area [S1] 0.239 0.175 0.196 0.170 0.220 0.220 0.233 0.188 0.184 0.153 0.248 0.205
Number of rooms

[S2]
0.317 0.250 0.257 0.223 0.288 0.292 0.256 0.215 0.204 0.167 0.271 0.240

Floor level [S3] 0.117 0.088 0.095 0.087 0.105 0.115 0.110 0.089 0.086 0.070 0.110 0.106
Age of the building

in years [S4]
0.074 0.058 0.066 0.057 0.073 0.070 0.061 0.047 0.045 0.041 0.065 0.049

Availability of
elevator in the
building [S5]

0.188 0.153 0.158 0.143 0.181 0.184 0.139 0.117 0.106 0.092 0.146 0.129

Distance to
nearest bus,
tram or train
stop [L1]

0.100 0.071 0.081 0.071 0.091 0.091 0.080 0.075 0.064 0.053 0.084 0.072

Distance to city
center [L2]

0.416 0.200 0.300 0.232 0.368 0.211 0.179 0.131 0.114 0.099 0.233 0.127

Distance to
nearest primary
or secondary
road [L3]

0.078 0.060 0.064 0.057 0.072 0.076 0.046 0.041 0.038 0.030 0.052 0.041

Distance to
nearest local
government
building [N1]

0.153 0.095 0.125 0.108 0.145 0.135 0.081 0.074 0.061 0.049 0.091 0.069

Distance to
nearest work
center [N2]

0.123 0.092 0.101 0.090 0.116 0.102 0.066 0.052 0.049 0.041 0.073 0.055

Distance to
nearest
kindergarten
[N3]

0.113 0.079 0.094 0.080 0.107 0.100 0.087 0.068 0.064 0.058 0.093 0.076

Distance to
nearest school
[N4]

0.104 0.082 0.083 0.075 0.098 0.099 0.077 0.064 0.060 0.048 0.084 0.068

Distance to
nearest
university [N5]

0.204 0.102 0.156 0.130 0.195 0.123 0.082 0.068 0.059 0.055 0.093 0.069

Distance to
nearest
pharmacy [N6]

0.117 0.085 0.098 0.085 0.110 0.104 0.077 0.066 0.059 0.049 0.084 0.066

Distance to
nearest
shopping mall
[N7]

0.166 0.117 0.147 0.114 0.163 0.129 0.100 0.080 0.079 0.064 0.113 0.079

(continued)
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between this covariate and rents for each percentile, which may have resulted from increasing
proximity to the main road being correlated to increasing exposure to road noise (Kim et al., 2015).

For neighborhood variables, the most noteworthy differences between the two cities were
observed for the effect of distances to work centers and kindergartens. In the case of the Warsaw
rental market, these factors did not determine rental prices, except in the case of the most expensive
apartments. This may have resulted from the fact that in Warsaw, the rental market only acted as a
supplement to the housing sales market, and for a significant percentage of tenants, renting was only
a temporary solution (Głuszak, 2015). However, in Amsterdam, these neighborhood variables
significantly influenced rental prices in, on average, 40% of the observations. In both cities, distance
to a university was another factor that impacted residential rental markets, mainly due to the housing
demand generated by students (Sirmans and John, 1991).

Finally, in Amsterdam, except for the model of the 95th percentile, the spatial autoregressive
term was significant in about 20%–30% of cases, primarily positive, and characterized by a
significant spatial variation. In the 75th percentile analysis, negative spatial autocorrelation could be
observed, implying that observations close to one another possessed significantly different values
(Fotheringham, 2009). Such a situation does not often occur in the housing market, but it can be
supported under certain circumstances, for example, when cheaper properties surround more
expensive rental apartments. In the case of Warsaw, the significant and global impact of the spatial
autoregressive term is observed only for the least expensive properties. Furthermore, in Warsaw,
while the value of the spatial autoregressive parameter was high at the tails of the dependent variable
distribution, it was low for the 25th, 50th, and 75th percentiles. Liao and Wang (2012) also found
this U-shaped pattern.

Implications for rental housing market development

We formulated recommendations in Table 6 for rental market development based on the GWQR-
SAR estimation results (Wu et al., 2019). In Amsterdam, local renter preferences should be
considered when creating housing stock for the private rental market. The exception is the fifth

Table 4. (continued)

Variable

Amsterdam Warsaw

GWR-
SAR

GWQR-SAR
GWR-
SAR

GWQR-SAR

P5 P25 P50 P75 P95 P5 P25 P50 P75 P95

Distance to
nearest
supermarket
[N8]

0.106 0.082 0.087 0.076 0.100 0.100 0.084 0.071 0.066 0.059 0.093 0.072

Distance to
nearest forest
[N9]

0.112 0.086 0.090 0.078 0.100 0.108 0.091 0.071 0.065 0.058 0.103 0.080

Distance to
nearest park
[N10]

0.114 0.077 0.090 0.080 0.105 0.095 0.071 0.055 0.054 0.044 0.074 0.060

Distance to
nearest river or
reservoir [N11]

0.092 0.065 0.072 0.065 0.082 0.083 0.095 0.078 0.072 0.062 0.111 0.082

Wy 1.541 0.936 1.052 0.874 1.412 1.096 0.950 0.638 0.711 0.578 1.063 0.717

590 EPB: Urban Analytics and City Science 50(3)
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percentile representing the least costly price segment primarily influenced by global factors across
all neighborhoods. The new housing stock in this price segment should provide apartments having
as many rooms as feasible within an adequate space and in conjunction with locations distant from
main roads that maximize tranquility. Furthermore, it is recommended to locate new housing close
to universities for the below-mid-priced, mid-priced, and above-mid–priced segments. Apartments
in the most expensive price segment should possess expansive floor areas, be served by elevators,
and be close to kindergartens and natural amenities. Finally, such apartments should be located as far
as possible from main roads and close to city and business centers. The least costly, below-average,
and average segments in Warsaw should offer new apartments to the market with adequate space,
located close to the city center and away from main roads. Local conditions regarding the vicinity of
transportation stops and proximity to universities should also be considered for these housing

Figure 2. Parameter values for the floor area variable across space and the rental price distribution in
Amsterdam. Notes: We used the inverse distance weighting (IDW) method to provide parameter surface
maps.
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submarkets. Furthermore, particular attention should be paid to location and neighborhood quality
for apartments in the most expensive price segment.

Limitations

This study also has limitations that should be addressed in future research. First, GWQR-SAR does
not consider the possibility of spatial autocorrelation in the error term. Therefore, future analyses
should focus on incorporating the spatial error model into GWQR-SAR. Second, GWQR-SAR uses
only a single bandwidth for each predictor and can be developed by accounting for the impact of
determinants at different spatial scales, as pointed out by Fotheringham et al. (2017). Third, the
results indicated that some of the estimated local parameters do not change significantly across
space. Therefore, GWQR-SAR should be extended toward incorporating global and local rela-
tionships along the lines of mixed GWR (Yao and Fotheringham, 2016). Fourth, GWQR-SAR
neglects temporal dependencies and may not be effective when exploring determinants of sales or
rental prices across time. To capture these effects, GWQR-SAR should account for both temporal
and spatial information when locally weighting observations similar to geographically and tem-
porally weighted regression (Huang et al., 2010). Research limitations are also related to the data
used. We analyzed listing data that represented only the supply side of the housing market, which
could potentially affect the quality of the results obtained (Kolbe et al., 2021). Finally, the presented
policy implications might potentially be misleading due to new buildings, generally being con-
structed on the outskirts of the two cities due to inner-city land scarcity.

Conclusion

This paper explored residential rent determinants in Warsaw and Amsterdam using a novel GWQR-
SAR hedonic model, which simultaneously considers spatial autocorrelation of prices and het-
erogeneity of housing preferences across space and price segments. Our findings showed that the
proposed model outperforms other widely applied hedonic regression models. Compared to mean
regressions, the better performance of GWQR-SAR is mainly due to better goodness-of-fit at the
tails of the distribution of the dependent variable. GWQR-SAR also performs significantly better
than global quantile regressions that ignore spatial heterogeneity in housing preferences. The
empirical analyses indicated that housing rents in both cities are determined by structural, locational,
and neighborhood characteristics and rental prices in the local area. The determinants ultimately
varied across space and over the price distribution. The present study’s results support recom-
mendations for optimizing rental housing liveability for new housing developments in private
residential markets. Rental market development policies in Warsaw should be primarily global for
each price segment, whereas Amsterdam should account for local conditions except in the case of
the least expensive apartments.
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Notes

1. Rent at market rate.
2. GeoDa (https://geodacenter.github.io/) and MGWR (https://sgsup.asu.edu/sparc/multiscale-gwr) software

were used to estimate SAR and GWR-SAR models.
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