
1. Introduction
Ocean Western Boundary Currents, such as the Gulf Stream in the North Atlantic and the Kuroshio 
Current in the North Pacific, display variability on many time scales. Of particular interest are variations on 
interannual-to-multidecadal time scales as these affect changes in sea surface temperature (SST) anomalies which 
influence the atmospheric midlatitude circulation and storm-track activities (Taguchi et al., 2009). A particularly 
clear example is the path variations (Taft,  1972) of the Kuroshio Current, which switches between a typical 
Large Meander and a Non-Large Meander state (Kawabe,  1995) on a few years time scale. There is also a 
coupling (Sugimoto & Hanawa, 2011) to changes in the Kuroshio Extension, which displays transitions between 
a so-called elongated and a contracted state (Qiu, 2002).

Much work has been done to understand such transition behavior using a hierarchy of models. Studies using 
double-gyre quasi-geostrophic (Dijkstra & Katsman, 1997) and shallow-water (Pierini, 2006; Pierini et al., 2009; 
Schmeits & Dijkstra, 2001; Speich et al., 1995) models have indicated that low-frequency path variability can 
occur under a stationary wind forcing through successive instabilities. When the lateral friction is decreased in 
these models, regimes of multi-stable flows appear of which the solutions become successively unstable through 
oscillatory instabilities and eventually global bifurcations (Simonnet et al., 2005). In models which also capture 
baroclinic instabilities, a collective interaction of the mesoscale eddies eventually leads to a so-called turbulent 
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oscillator (Berloff et al., 2007). When these models include a stochastic representation of the wind-stress forcing, 
transitions between states with different paths can be found when the amplitude of the noise is large enough 
(Pierini, 2014; Schmeits & Dijkstra, 2001). In this paper, we focus on a new method to compute transition prob-
abilities in multi-stable stochastic dynamical systems governed by stochastic partial differential equations, with 
the barotropic double-gyre quasi-geostrophic wind-driven model as application.

A standard, but naive, method to determine transition probabilities between different equilibrium states is a 
Monte Carlo approach. One obtains sufficient independent realizations of the system and simply counts the 
number of transitions within a given time. Such a Monte Carlo approach is not well-suited for high-dimensional 
systems or when transitions are rare. For example, for a transition probability of p = 10 −3, already 1,000 realiza-
tions would be needed to likely simulate one event. Hence, several specialized methods have been suggested to 
compute transition rates more efficiently, such as Adaptive Multilevel Splitting (Rolland & Simonnet, 2015) and 
Genealogical Particle Analysis (Wouters & Bouchet, 2016). A promising variant for computing the probability 
of a transition within a certain time interval is the Trajectory Adaptive Multilevel Sampling (TAMS) method, 
where an ensemble of trajectories is steered from one equilibrium state to another, and by keeping track of the 
different trajectories, an estimate of the transition probability can be made (Lestang et  al.,  2018; Rolland & 
Simonnet, 2015).

To apply TAMS to high-dimensional systems, a projected time-stepping method was suggested in Baars 
et al. (2021), for which in every time step, only a small projected linear system has to be solved, and for which 
only the projected trajectories have to be stored, which are much smaller dimensional than the original trajecto-
ries. The projected time-stepping method is related to the Karhunen–Loève transform in the context of stochastic 
processes (Loeve, 1955) or the proper orthogonal decomposition in the context of fluid dynamics (Cazemier 
et  al.,  1998; Lumley,  1967). Such model order reduction techniques have been applied in many other fields 
when studying transitions (Hartmann et al., 2016; Hartmann & Schütte, 2005; Hernández et al., 2018; Mohamad 
et al., 2016; Mukhin et al., 2015; Yvinec et al., 2012).

Here, we explore the direct computation of transition probabilities using a combination of a model order reduc-
tion technique, the Dynamical Orthogonal (DO) field method (Sapsis & Lermusiaux, 2009) and classical Monte 
Carlo simulation. The stochastic partial differential equations are efficiently solved using a Karhunen–Loève 
expansion of the state vector and an orthogonal projection onto a small-dimensional subspace of DO modes. 
Until now, the implementation of DO has been limited as for each model the governing DO equations had to 
be derived analytically (Sapsis & Dijkstra,  2013). In this paper we present a general matrix-DO framework 
which is more versatile for applications and use it to study transition probabilities in the barotropic double-gyre 
quasi-geostrophic model of the wind-driven ocean circulation. In Section 2 we discuss the matrix-DO framework 
together with a set-up of the wind-driven ocean circulation model. The results on transition probabilities and 
transition paths for this model are the main focus of this study and are presented in Section 3. The results are 
summarized and discussed in Section 4.

2. Model and Methods
2.1. The Wind-Driven Ocean Circulation Model

We consider the midlatitude wind-driven ocean circulation in a square L  ×  L, constant depth D basin on a 
β − plane (f =  f0 + β0y), with f0 the Coriolis acceleration at a certain (mid)latitude. The density of the ocean 
water ρ is constant and we assume the lateral momentum mixing to be represented with help of a constant 
eddy-viscosity AH. The flow is forced by a zonal wind-stress τx(x, y) = τ0τ(x, y) having a deterministic and a 
stochastic component. When the equations are scaled with a horizontal velocity U, a length L and time L/U, the 
non-dimensional stochastic partial differential equations of this model (Sapsis & Dijkstra,  2013) become the 
following in streamfunction-vorticity formulation.

𝜕𝜕𝜕𝜕 =

[

−𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑣𝑣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

1

𝑅𝑅𝑅𝑅
Δ𝜕𝜕 − 𝛽𝛽

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝛼𝛼

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

]

𝜕𝜕𝜕𝜕 + 𝑏𝑏 𝜕𝜕𝑏𝑏 𝑏 (1a)

0 = 𝜔𝜔 − Δ𝜓𝜓𝜓 (1b)

where ω is the vertical component of the vorticity vector and ψ is the associated streamfunction. Furthermore,
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𝑢𝑢 = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, 𝑣𝑣 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (2a)

𝜏𝜏𝑥𝑥(𝑦𝑦) =
1

2𝜋𝜋
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(
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2

))

 (2b)

𝑏𝑏(𝑥𝑥𝑥 𝑥𝑥) = 𝜎𝜎exp

(

−32

[

(
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1

2

)2

+

(

𝑥𝑥 −
1

2

)2
])

[

1

2
− 𝑥𝑥𝑥 𝑥𝑥 −

1

2

]

. (2c)

where τx is the deterministic part of the wind-stress forcing and the term b ∂W is the stochastic wind-stress curl; 
W indicates a Wiener process. The boundary conditions are given by slip conditions at the north-south boundaries 
(y = 0, 1) and no-slip conditions on the east-west boundaries (x = 0, 1).

Equation 1 contain three parameters, α = τ0L/(ρDU 2), β = β0L 2/U, Re = UL/AH and the noise strength σ. We use 
the values for the parameters (α = β = 10 3) as provided in Sapsis and Dijkstra (2013) because the deterministic 
bifurcation diagram for this case is known, and focus on varying the parameters σ and Re. For the deterministic 
case (σ = 0), it is known that for relatively low values of Re (<30) a single symmetric state exists. Near Re = 30, 
there is a pitchfork bifurcation resulting in two (asymmetric) steady states, the so-called jet-up or jet-down states, 
and for even higher Re (>52) there is a Hopf bifurcation (Sapsis & Dijkstra, 2013). So the multi-stable steady 
state regime, focused on in this paper, is bounded by 30 < Re < 52.

2.2. The Matrix-DO Method

When Equation 1 are discretized in space on an equidistant nx × ny grid using central differences, the resulting set 
of equations can be written as

���(�) = � (�(�), �)�� + �(�(�), �)�� (�) (3)

with X(0) = X0. Here, 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ ℝ
𝑛𝑛 is the stochastic state vector, W(t) is a nW − dimensional Wiener process (nW = 1), 

M is a symmetric positive semi-definite n × n matrix, f a smooth mapping 𝐴𝐴 ℝ
𝑛𝑛 ×ℝ → ℝ

𝑛𝑛 and g a smooth mapping 
𝐴𝐴 ℝ

𝑛𝑛 ×ℝ → ℝ
𝑛𝑛 ×ℝ

𝑛𝑛𝑊𝑊  . The governing Equation 1 can be written in the form Equation 3, where for example, g 
contains the discretized stochastic wind-stress curl. In this case, M is singular and we have a system of stochastic 
algebraic differential equations. We assume that there is no stochastic forcing on the algebraic part of the equa-
tions and that X0 satisfies the algebraic part of the equations.

In the matrix-DO formulation, we aim to solve Equation 3 and split the state vector X(t) into a deterministic and 
an additive stochastic part

𝑋𝑋(𝑡𝑡) = �̄�𝑋(𝑡𝑡) +𝑍𝑍(𝑡𝑡), (4)

where 𝐴𝐴 �̄�𝑋(𝑡𝑡) is the ensemble mean in the DO method, satisfying 𝐴𝐴 𝐴𝐴[𝑋𝑋(𝑡𝑡)] = �̄�𝑋(𝑡𝑡) , and the remaining part Z(t) is 
stochastic, with E[Z(t)] = 0.

Substituting Equation 4 into 3, and taking the expectation results in the equation for 𝐴𝐴 �̄�𝑋(𝑡𝑡) , that is,

𝑀𝑀𝑀𝑀�̄�𝑋(𝑡𝑡) = 𝐸𝐸
[

𝑓𝑓
(

�̄�𝑋(𝑡𝑡) +𝑍𝑍(𝑡𝑡), 𝑡𝑡
)]

𝑀𝑀𝑡𝑡 + 𝐸𝐸
[

𝑔𝑔
(

�̄�𝑋(𝑡𝑡) +𝑍𝑍(𝑡𝑡), 𝑡𝑡
)

𝑀𝑀𝑑𝑑 (𝑡𝑡)
]

. (5)

Subtracting Equation 5 from 3, we obtain the equation for Z(t)

𝑀𝑀𝑀𝑀𝑀𝑀(t) = 𝐹𝐹
(

�̄�𝑋(𝑡𝑡), 𝑀𝑀(𝑡𝑡), 𝑀𝑀𝑑𝑑 (𝑡𝑡), 𝑡𝑡, 𝑀𝑀𝑡𝑡
)

 (6)

where

�
(

�̄(�), �(�), �� (�), �, ��
)

=
(

�
(

�̄(�) +�(�), �
)

− �
[

�
(

�̄(�) +�(�), �
)])

��+

�
(

�̄(�) +�(�), �
)

�� (�) − �
[

�
(

�̄(�) +�(�), �
)

�� (�)
]

.
 (7)

Next we use a Karhunen–Loève expansion of the form

𝑍𝑍(𝑡𝑡) = 𝑉𝑉 (𝑡𝑡) 𝑌𝑌 (𝑡𝑡) ; 𝑉𝑉 (𝑡𝑡)
𝑇𝑇
𝑀𝑀𝑉𝑉 (𝑡𝑡) = 𝐼𝐼 (8)
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where V(t) (n × nV) contains an M-orthogonal basis of the so-called DO modes and Y(t) is a stochastic vector 
(nV × 1), containing the amplitudes of these modes. Here nV is the number of DO modes retained in the Karhunen–
Loève expansion. Of course, the approximation is exact if the dimension nV tends to infinity, but we want to keep 
the dimension as low as possible, to reduce the needed computational effort. The statistical properties of the 
desired stochastic variables are determined by using nY realizations. The larger the number of realizations, the 
closer the statistics of the stochastic variable is approximated.

Since V depends on t, the expansion Equation  8 is not unique, because for any orthogonal matrix U(t), 
𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝑉𝑉 (𝑡𝑡)𝑌𝑌 (𝑡𝑡) = 𝑉𝑉 (𝑡𝑡)𝑈𝑈 (𝑡𝑡)𝑈𝑈𝑇𝑇 (𝑡𝑡)𝑌𝑌 (𝑡𝑡) ≡ 𝑉𝑉 (𝑡𝑡)𝑌𝑌 (𝑡𝑡) . To remove this redundancy, the DO-condition is used which 

states that the change in V is orthogonal to the space V, that is,

𝑉𝑉 𝑇𝑇𝑀𝑀
𝑑𝑑𝑉𝑉

𝑑𝑑𝑑𝑑
= 0. (9)

Next we substitute the Karhunen–Loève expansion Equation 8 into 6, leading to

𝑀𝑀𝑀𝑀 (𝑡𝑡)𝑑𝑑𝑑𝑑 (𝑡𝑡) +𝑀𝑀𝑑𝑑𝑀𝑀 (𝑡𝑡)𝑑𝑑 (𝑡𝑡) = 𝐹𝐹
(

�̄�𝑋(𝑡𝑡), 𝑀𝑀 (𝑡𝑡)𝑑𝑑 (𝑡𝑡), 𝑑𝑑𝑑𝑑 (𝑡𝑡), 𝑡𝑡, 𝑑𝑑𝑡𝑡
)

. (10)

For readability, we drop the time argument in the equations from now on. Pre-multiplying Equation 10 by V T, 
using Equations 9 and 8, the following evolution equation for Y(t) is obtained:

𝑑𝑑𝑑𝑑 = 𝑉𝑉 𝑇𝑇𝐹𝐹
(

�̄�𝑋𝑋 𝑉𝑉 𝑑𝑑 𝑋 𝑑𝑑𝑋𝑋 𝑋 𝑋𝑋𝑋 𝑑𝑑𝑋𝑋
)

. (11)

Pre-multiplication of Equation 11 with MV and subtracting it from Equation 10 gives

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀 =
(

𝐼𝐼 −𝑀𝑀𝑀𝑀 𝑀𝑀 𝑇𝑇
)

𝐹𝐹
(

�̄�𝑋𝑋 𝑀𝑀 𝑀𝑀 𝑋 𝑀𝑀𝑋𝑋 𝑋 𝑋𝑋𝑋 𝑀𝑀𝑋𝑋
)

 (12)

To determine an equation for each DO mode we post-multiply Equation 12 by Y T and take the expectation, lead-
ing to

𝑀𝑀𝑀𝑀𝑀𝑀 =
(

𝐼𝐼 −𝑀𝑀𝑀𝑀 𝑀𝑀 𝑇𝑇
)

𝐸𝐸
[

𝐹𝐹
(

�̄�𝑋𝑋 𝑀𝑀 𝑋𝑋 𝑋 𝑀𝑀𝑋𝑋 𝑋 𝑋𝑋𝑋 𝑀𝑀𝑋𝑋
)

𝑋𝑋 𝑇𝑇
]

𝐸𝐸
[

𝑋𝑋 𝑋𝑋 𝑇𝑇
]−1

. (13)

Note that the DO-condition Equation  9, which leads to d(V TMV)/dt  =  0, assures that when starting with 
V(0) TMV(0) = I then V TMV = I for all t.

From these equations we can now create a matrix based method by writing f(x, t) as a combination of a vector, a 
linear form and a bilinear form. Similarly g(x, t) is written as a combination of a matrix and a matrix that depends 
linearly on x. In the Supporting Information S1, the matrix DO equations are given for general quadratic f(x, t) 
and linear g(x, t). In this case, the user only has to provide only M, f(x, t), the Jacobian matrix of f, and the bilin-
ear form f(x, t) contains. Moreover, the user should provide matrices defining the quantity g(x, t). Note that the 
version used here is limited to equations with most quadratic nonlinearities and additive stochastic forcing, but 
this still allows tackling a large class of problems. Details on how to numerically solve Equations 5, 11 and 13 
are also presented in Supporting Information S1. Results of testing the code using the stochastic Burgers equation 
are presented in Figure S1 in Supporting Information S1 and a publicly available Python code is provided online.

3. Results
Within the multi-stable regime of the model 30 < Re < 52, we will explore the transitions between the two deter-
ministically stable states. In the results below, we use a nx = ny = 64 equidistant grid and the standard (dimen-
sionless) time step is Δt = 1 × 10 −3. We first focus on the standard case (Section 3.1) for Re = 40 and σ = 1 and 
then in the following sections focus on the noise amplitude (Section 3.2), number of DO modes (Section 3.3) and 
the value of Re (Section 3.4).

3.1. The Standard Case

In the standard case, we take nV = 4 (number of DO modes) and nY = 1, 000 (number of stochastic realizations). 
Based on adaptive criteria, Sapsis and Lermusiaux (2012) demonstrated that nV = 4 is the lowest number of DO 
modes which sufficiently capture the dynamics and statistics of the solutions of the wind-driven ocean circulation 
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model for the range of Reynolds investigated here. The model is initialized from rest and integrated up to t = 15 
where a statistical equilibrium state is approached. We will indicate the mean state by 𝐴𝐴 𝑣𝑣 and the DO modes by 
vi, i = 1, …, nV. For the standard case (Re = 40, nV = 4, σ = 1, nx = ny = 64, Figure 1a), 𝐴𝐴 𝑣𝑣 quickly attains its 

Figure 1. (a) Kinetic energy of 𝐴𝐴 𝑣𝑣 and variances of the vi for the standard case with Re = 40, σ = 1, nV = 4 and a spatial resolution of nx = ny = 64. (b–f) Same as (a) but 
for different model parameters, with (b) σ = 10 −3, (c) nV = 10, (d) nx = ny = 128, (e) Re = 20 and (f) nx = ny = 32. All simulations are initialized from rest. The insets 
show the spatial patterns of v1 at t = 15 (with the same color scheme as in Figure 2b).
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equilibrium value. The different DO modes all grow in time between t = 3 and t = 5, but only v1 attains a large 
amplitude; the amplitudes of the other DO modes decrease to substantially smaller values. The spatial pattern 
of v1 (see inset in Figure 1a) is the well-known symmetry-breaking P–mode (Simonnet & Dijkstra, 2002). A 
weaker noise amplitude (Figure 1b), more DO modes (Figure 1c) and a higher spatial resolution (Figure 1d) do 
not change this result. As expected, the variances for v2, v3 and v4 in Figure 1b are considerably lower (compared 

Figure 2. Results for the standard case with Re = 40 and σ = 1 (see Figure 1a). (a, d, g, j): The time-evolution of the PDFs of the coefficients Yi, i = 1, …, 4. (b, e, 
h, k): The spatial patterns of vorticity (shading and colorbar) and streamfunction (gray curve is 0, solid positive and dashed negative, spacing is 10 −4) for the vi, i = 1, 
…, 4 at t = 15. (c) The spatial patterns of vorticity (shading and colorbar) and streamfunction (gray curve is 0, solid positive and dashed negative, spaced by 0.5) for 𝐴𝐴 𝑣𝑣 
at t = 15. (f) The mean value of the 𝐴𝐴 𝐴𝐴 +

1
 (solid, 𝐴𝐴 𝑌𝑌 +

1
 ) and 𝐴𝐴 𝐴𝐴 −

1
 (dashed, 𝐴𝐴 𝑌𝑌 −

1
 ) realizations and the mean values of the related realizations. (i) Similar as (c), but now the v + 

(jet-down) state, with 𝐴𝐴 𝐴𝐴+ = 𝐴𝐴 +
∑𝑛𝑛𝑉𝑉

𝑖𝑖=1
𝑌𝑌𝑖𝑖

(

𝑌𝑌 +

1

)

𝐴𝐴𝑖𝑖 . (l) Similar as (i), but now the v − (jet-up) state, with 𝐴𝐴 𝐴𝐴− = 𝐴𝐴 +
∑𝑛𝑛𝑉𝑉

𝑖𝑖=1
𝑌𝑌𝑖𝑖

(

𝑌𝑌 −

1

)

𝐴𝐴𝑖𝑖 .
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to the standard case) as a result of the lower noise level. For Re = 20 (Figure 1e), the DO modes do not grow, 
which is consistent with the fact that this value of Re is outside the multi-stable regime of the model. A low spatial 
resolution effectively increases the value of Re at the pitchfork bifurcation to values beyond Re = 40 and hence 
no growth of DO modes is found (Figure 1f).

The probability distribution function (PDF) of the stochastic coefficients (Yi), together with streamfunction and 
vorticity patterns of 𝐴𝐴 𝑣𝑣 and the vi at t = 15 are shown in Figure 2 for the standard case. Because two stable steady 
states exist for Re = 40 in the deterministic case, v1 has a bimodal PDF (Figure 2a) while the PDFs of the other 
DO modes are Gaussian (Figures 2d, 2g and 2j). As already mentioned above, v1 (Figure 2b) breaks the symmetry 
of 𝐴𝐴 𝑣𝑣 (Figure 2c). The spatial pattern of v2 (Figure 2e) shares much resemblance with the gyre intensifying L–mode 
(Simonnet & Dijkstra, 2002). It modulates the gyre strength as this DO mode has a similar (opposite) sign for 
the gyres compared to 𝐴𝐴 𝑣𝑣 for positive (negative) values of Y2. The v3 and v4 DO modes (Figures 2h and 2k) show 
spatial patterns with a more complicated spatial structure, but we will not discuss those because their variances 
are relatively small.

In the following, the amplitudes of the realizations with Y1 > 0 are indicated by 𝐴𝐴 𝐴𝐴𝑖𝑖

(

𝐴𝐴 +

1

)

 , i = 1, 2, …, nV and the 

(ensemble) mean of these coefficients is indicated by 𝐴𝐴 𝑌𝑌𝑖𝑖

(

𝑌𝑌 +

1

)

 . We use a similar notation for 𝐴𝐴 𝐴𝐴𝑖𝑖

(

𝐴𝐴 −

1

)

 and 𝐴𝐴 𝑌𝑌𝑖𝑖

(

𝑌𝑌 −

1

)

 
when Y1 < 0. The mean values of the Yi coefficients are plotted in Figure 2f and show that the Y1 coefficients 

strongly dominate in the model response. We reconstruct the total state using 𝐴𝐴 𝑌𝑌𝑖𝑖

(

𝑌𝑌 +

1

)

 𝐴𝐴

(

𝑌𝑌𝑖𝑖

(

𝑌𝑌 −

1

)

)

 to find the 

jet-down (jet-up) state indicated by v + (v −) (Figures 2i and 2l). Note that we actually plotted the 𝐴𝐴 𝑣𝑣+ and 𝐴𝐴 𝑣𝑣− , but 
we drop the bars for the equilibria states from now on. We also reduce the general notation to 𝐴𝐴 𝐴𝐴1

(

𝐴𝐴 +

1

)

= 𝐴𝐴 +

1
 for 

i = 1 and to 𝐴𝐴 𝐴𝐴𝑖𝑖

(

𝐴𝐴 +

1

)

= 𝐴𝐴 +
𝑖𝑖

 for i > 1, and similarly for the realizations with Y1 < 0 (𝐴𝐴 𝐴𝐴 −

1
 and 𝐴𝐴 𝐴𝐴 −

𝑖𝑖
 ). We will next use 

the standard case to study transition behavior when the noise level is increased.

3.2. Transitions: Different Noise Levels

From the solution of the standard case (Figure 1a), we branch off simulations with different noise levels (σ). We 
increase the number of realizations to nY = 10, 000 by copying 10 times the Yi at t = 15, while the 𝐴𝐴 𝑣𝑣 and vi, i = 1, 
…, 4 (at t = 15) remain unaltered. We use a finer time step of Δt = 5 × 10 −4 in the time integration, both based 
in stability and accuracy reasons in the case of higher noise levels. After branching the simulations, we integrate 
the model up to t = 5 (t = 0 is now the end of the standard case simulation).

To identify transitions by analyzing individual realizations and checking whether the Y1 value approaches the 
𝐴𝐴 𝐴𝐴 +

1
 (jet-down) or 𝐴𝐴 𝐴𝐴 −

1
 (jet-up) branches, we define the 𝐴𝐴 𝐴𝐴 +

1
 𝐴𝐴
(

𝑌𝑌 −

1

)

 branch as the 95%-confidence level of all positive 
(negative) Y1 values for each time step. Note that the related 𝐴𝐴 𝐴𝐴 +

𝑖𝑖
 or 𝐴𝐴 𝐴𝐴 −

𝑖𝑖
 coefficients are not strictly positive or 

negative as this is only the case for the 𝐴𝐴 𝐴𝐴 +

1
 and 𝐴𝐴 𝐴𝐴 −

1
 coefficients. We also distinguish the realizations based on their 

initial Y1 sign at t = 0, as this is relevant when a realization undergoes a transition and switches (Y1) sign. The tran-
sition probability is then the probability that a transition between the steady states (i.e., 𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 and 𝐴𝐴 𝐴𝐴 −

1
→ 𝐴𝐴 +

1
 ) 

happens within the given simulation time (t = 5). One relatively easy way to check whether realizations started 
near one equilibrium state reach the other equilibrium state is by taking the minimum (maximum) value of all the 
Y1 realizations with an initial positive (negative) sign, which we refer to as 𝐴𝐴 𝐴𝐴 +

1,min
 (𝐴𝐴 𝐴𝐴 −

1,max
 ). Figure 3 shows an illus-

trative example on how realizations are distinguished based on the initial Y1 sign and the related Y2 coefficients. 
For the related 𝐴𝐴 𝐴𝐴 +

𝑖𝑖
 coefficients (with initial positive Y1) we determined either the maximum 𝐴𝐴

(

𝑌𝑌 +
𝑖𝑖𝑖max

)

 or minimum 

𝐴𝐴

(

𝑌𝑌 +

𝑖𝑖𝑖min

)

 value (and similarly 𝐴𝐴 𝐴𝐴 −

𝑖𝑖𝑖max
 and 𝐴𝐴 𝐴𝐴 −

𝑖𝑖𝑖min
 for the initial negative Y1 realizations).

The variances of the DO modes are shown in the insets of Figures 4a, 4d, 4g and 4j for different noise ampli-
tudes σ, while the branch specific properties of the Yi coefficients and the vi are plotted in Figure 5. For the 
standard case (σ = 1), we find no transitions for the chosen simulation time as the 𝐴𝐴 𝐴𝐴 +

1,min
 and 𝐴𝐴 𝐴𝐴 −

1,max
 stay close to 

the corresponding branch (Figure 5a). This suggests that the transition probabilities are (very) low. The 𝐴𝐴 𝐴𝐴 +

1,min
 

deviates more from the 𝐴𝐴 𝐴𝐴 +

1
 branch than the 𝐴𝐴 𝐴𝐴 −

1,max
 from the 𝐴𝐴 𝐴𝐴 −

1
 branch. Note that all nY realizations have different Yi 

coefficients, but all nY realizations share the same time-varying patterns vi. This suggests that the larger deviations 
in 𝐴𝐴 𝐴𝐴 +

1,min
 compared to 𝐴𝐴 𝐴𝐴 −

1,max
 are related to the spatial patterns of the DO modes. For example, a realization in the 

𝐴𝐴 𝐴𝐴 +

1
 branch may experience a (small) decrease in Y1 and increase in Y2. However, such excursions do not affect the 

jet-down circulation pattern much as the v2 streamfunction pattern is strongly correlated with the jet-down state 
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(rψ = 0.63, Figure 6a). The spatial correlations for the v2 vorticity with the jet-down state are smaller (rω = 0.23) 
because this pattern is spatially more varying than the streamfunction pattern. On the other hand, the degree of 
variations for a realization in the 𝐴𝐴 𝐴𝐴 −

1
 branch is smaller because the spatial correlations of v2 with the jet-up state 

are smaller (rψ = 0.48 and rω = 0.23). This explains the higher variances in 𝐴𝐴 𝐴𝐴 +

1
 and 𝐴𝐴 𝐴𝐴 +

2
 compared to 𝐴𝐴 𝐴𝐴 −

1
 and 𝐴𝐴 𝐴𝐴 −

2
 

(Figures 5a and 5b), respectively. Using the same reasoning, the variance in 𝐴𝐴 𝐴𝐴 −

3
 is larger than 𝐴𝐴 𝐴𝐴 +

3
 (Figure 5c) as v3 

is stronger correlated with the jet-up state than with the jet-down state (Figure 6a). The variance of v3 is, however, 
smaller compared to that of v2 (Figure 4a) and hence the 𝐴𝐴 𝐴𝐴 +

1
 realizations have a larger variance compared to the 

𝐴𝐴 𝐴𝐴 −

1
 realizations. We do not consider v4 as this mode has an even smaller variance. This explains that particular 

variations in some Yi coefficients are larger than in others (e.g., 𝐴𝐴 𝐴𝐴 +

1
 vs. 𝐴𝐴 𝐴𝐴 −

1
 ) because of the resemblance of the DO 

spatial patterns with the equilibrium states (jet-down or jet-up state).

For σ = 5, the variances of the Yi strongly increase after branching this simulation from the standard case (inset 
Figure 4d). 𝐴𝐴 𝐴𝐴 +

1,min
 and 𝐴𝐴 𝐴𝐴 −

1,max
 deviate more from the corresponding branch (Figure 5d) compared to the standard 

case, but the noise level of σ = 5 is still insufficient to induce transitions. The variances in 𝐴𝐴 𝐴𝐴 +

1
 and 𝐴𝐴 𝐴𝐴 +

2
 are again 

larger than those of 𝐴𝐴 𝐴𝐴 −

1
 and 𝐴𝐴 𝐴𝐴 −

2
 , respectively (Figures 5c, 5d and 6b). At t ≈ 4.7 the v3 DO pattern substan-

tially changes (Figure 6b). When two DO modes have the same variance the spatial patterns of these modes are 
inter-exchangeable; this is the case for v3 and v4 at t ≈ 4.7. However, these changes show no sign changes in the 
Y1 coefficients.

Further increasing the noise level to σ = 10 shows substantial oscillatory deviations in 𝐴𝐴 𝐴𝐴 −

1,max
 from the 𝐴𝐴 𝐴𝐴 −

1
 branch. 

Note that 𝐴𝐴 𝐴𝐴 +

1,min
 also oscillates but the amplitude is much smaller. The variances of 𝐴𝐴 𝐴𝐴 −

1
 and 𝐴𝐴 𝐴𝐴 −

2
 are now larger than 

those of 𝐴𝐴 𝐴𝐴 +

1
 and 𝐴𝐴 𝐴𝐴 +

2
 (Figures 5g and 5h), respectively, as v2 is now better correlated with the jet-up state than with 

the jet-down state (Figure 6c). The higher noise level causes a substantial perturbation in v2 for t < 0.5 leading to 
a change in sign and flipped image (under mid-axis reflection) of this mode compared to the lower noise cases 
(compare insets in Figures 5b, 5e and 5h). Under the higher noise amplitude, v2 slightly oscillates for t > 0.5, 
where its symmetry (w.r.t. y = 0.5) slightly varies over time (black curve in Figure 6c). A higher level of symmetry 
in v2 coincides with relatively large deviations in 𝐴𝐴 𝐴𝐴 −

1,max
 from the 𝐴𝐴 𝐴𝐴 −

1
 branch. Again v3 and v4 are inter-exchangeable 

as these modes have the same variance multiple times during the simulation (Figures 4g and 6c). The timing in 
swapping these DO modes is also linked to the symmetry of v2. Although a few realizations switch sign in Y1 at 
the end of the simulation, the noise level of σ = 10 is still too low to induce transitions before t = 5.

Finally, for σ = 15 we find transitions between the two states (Figure 5i). From the initial 5,210 realizations, 61 
realizations (giving a transition probability p = 1.2 × 10 −2) undergo the transition from the 𝐴𝐴 𝐴𝐴 +

1
 to the 𝐴𝐴 𝐴𝐴 −

1
 branch 

(i.e. reaching the 95%-Cl). Eventually, 8 out of these 61 realizations return to the initial branch (Figure 7a). We 
find only 3 realizations (p = 6 × 10 −4) out of the initial 4,790 realization which make the transition from 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 

and these 3 realizations remain on the 𝐴𝐴 𝐴𝐴 +

1
 branch (Figure 7b). For robustness we performed 9 additional simula-

tions, each having a different noise realization (σ is still 15 in these simulations), and the average number of tran-
sitions over all 10 noise realizations are 61.7 (min: 53, max: 82, 𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 ) and 6.3 (min: 0, max: 17, 𝐴𝐴 𝐴𝐴 −

1
→ 𝐴𝐴 +

1
 ).

Figure 3. Schematic representation of the quantities used to determine transitions in the wind-driven ocean model. (a) Surrogate Y1 realizations with different initial Y1 
values (3 positive and 3 negative). The 𝐴𝐴 𝑌𝑌 +

1
 𝐴𝐴

(

𝑌𝑌 −

1

)

 and 95%-Cl are constant in time in this illustrative example, but in the results below, these quantities are determined for 
each time step (see text). Inset: The 𝐴𝐴 𝐴𝐴 +

1,min
 and 𝐴𝐴 𝐴𝐴 −

1,max
 based on the 3 realizations from each branch. (b) Same as (a), but now for the related Y2 coefficients (same colors as 

in panel a)).
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The transitions do not randomly occur over time, only during specific time windows when v2 is highly symmet-
ric (Figure 6d) and when the amplitude of this mode strongly increases (Figure 5k). This coincides with kinetic 
energy transfer from 𝐴𝐴 𝑣𝑣 to v2, kinetic energy transfer from v2 to the other DO modes (mostly to v1 and v3) and 
kinetic energy dissipation by v2 (Figure 4). A symmetric v2 together with the symmetric 𝐴𝐴 𝑣𝑣 results in a strongly 
symmetric total circulation pattern when |Y2| > |Y1|. There is also an increase in the magnitude of Y3 coefficients 
before undergoing the transition (Figure 5l), but the magnitude of Y3 is smaller than that of Y2. The magnitude 
increase in Y2 (and Y3) makes the contribution of the DO mode v1 less relevant and hence realizations with 

Figure 4. Energy transfer rates (see Sapsis and Dijkstra (2013) for the procedure) to each DO mode for different noise levels, where positive (negative) rates indicate 
energy gain (loss). Left column: Energy transfer rate from 𝐴𝐴 𝑣𝑣 to the vi. Middle column: Energy transfer rate from all DO modes to a specific DO mode. Right column: 
Dissipation of energy by vi. The insets in the left column show the variances of the Yi for different noise levels, similar as in Figure 1.
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relatively large Y2 coefficients and symmetric v2 are susceptible of undergoing a transition in Y1; these define the 
so-called transition paths. This is also demonstrated in Figure 7c (𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 ), where all trajectories start on the 

𝐴𝐴 𝐴𝐴 +

1
 branch with Y2 ≈ Y3 ≈ 0 and transitions in Y1 occur when the Y2 and Y3 coefficients increase. For 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 

(Figure 7d) we also find transitions for increasing Y2 values, but it is hard to identify transition paths as there are 
only 3 transitions.

The transition probabilities between the two branches (𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 vs. 𝐴𝐴 𝐴𝐴 −

1
→ 𝐴𝐴 +

1
 ) are strongly different over this 

time interval. One could argue that the 8 realizations which return to the original 𝐴𝐴 𝐴𝐴 +

1
 branch (Figure 7a) are 

also transitions from 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 . Indeed, these 8 realizations also switch sign in Y1 around t  =  2.5, which is 

Figure 5. (Left column): The Y1 coefficients for different noise levels. The red (blue) shading indicates the 95%-Cl of the 𝐴𝐴 𝐴𝐴 +

1
 𝐴𝐴
(

𝑌𝑌 −

1

)

 branch, including the mean 𝐴𝐴 𝑌𝑌 +

1
 

𝐴𝐴

(

𝑌𝑌 −

1

)

 . The 𝐴𝐴 𝐴𝐴 +

1,min
 and 𝐴𝐴 𝐴𝐴 −

1,max
 are the largest deviations from the initial branch. (Middle column): Same as the left column, but now for the Y2 coefficients. The insets 

show the spatial patterns of v2 at t = 1, 2.5 and 4 (same color scheme as in Figure 2e). (Right column): Same as the middle column, but now for the Y3 coefficients and 
v3. In addition in panel (i) four realizations (thin lines) are shown which reach a different branch, the related Y2 and Y3 coefficients are also shown in panels (k and l), 
respectively. The additional insets in panels (a–f) are zoomed-in versions of the Yi deviations.
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comparable  to the three initial 𝐴𝐴 𝐴𝐴 −

1
 realizations (Figure 7b). Nonetheless, accounting for these 8 realizations still 

results in a factor 5 difference between the two transition probabilities. It is however not very surprising that 
one finds differences in the transition probabilities. All realizations share the same DO patterns and a particular 
DO pattern at a given time may favor a specific state, as was demonstrated for the v2 and v3 w.r.t. the jet-up and 
jet-down states (Figure 6). This also explains why the transition paths are not identical (Figures 7c and 7d).

The DO modes v2, v3 and v4 oscillate in the higher noise level simulations and this may eventually favor transitions 
from 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 . Hence, we continued the σ = 15 simulation to t = 10. Realizations which made the transition to the 

other branch for t = 0–5 are not part of their initial branch at t = 5. Therefore we distinguish the realizations at t = 5 
based on their Y1(t = 5) sign and followed the same procedure as before. There are 47 transitions (out of 4,840 reali-
zations) from 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 for t = 5–10 (Figure 7b), for 𝐴𝐴 𝐴𝐴 +

1
 to 𝐴𝐴 𝐴𝐴 −

1
 there are only 10 transitions (out of 5,160 realizations, 

Figure 7a). These transitions occur at t ≈ 6 when v2 is highly symmetric (insets Figures S2h and S3a in Supporting 
Information S1). The mode v2 has a similar pattern at t = 6 compared to t = 2.5, so this does not explain why the 𝐴𝐴 𝐴𝐴 −

1
 to 

𝐴𝐴 𝐴𝐴 +

1
 transitions are favored over the 𝐴𝐴 𝐴𝐴 +

1
 to 𝐴𝐴 𝐴𝐴 −

1
 transitions for t = 5–10. However, v3 switches sign at t = 6 (insets Figure 

S2i in Supporting Information S1) compared to t = 2.5 (insets Figures S2c and S2i in Supporting Information S1) 
and the spatial correlations between v3 and the states v − and v + also switch sign over time (Figure S3a in Supporting 
Information S1). The 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 transitions are favored (suppressed) over the 𝐴𝐴 𝐴𝐴 +

1
 to 𝐴𝐴 𝐴𝐴 −

1
 transitions at t ≈ 6 (t ≈ 2.5), 

as the spatial correlation of v3 with v − (v +) is stronger than the spatial correla tion of v3 with v + (v −) before the tran-
sitions (Figure S3a in Supporting Information S1). The transition paths are switched in sign for Y3 in Figure 7f but 

Figure 6. (a–d) The spatial correlation coefficients rψ of the streamfunction patterns of the jet-down state (v +(t)) and jet-up state (v −(t)) with v2(t) and v3(t) for different 
noise levels. The black curve shows the symmetry of v2 by correlating the southern part 𝐴𝐴

(

𝑣𝑣𝑆𝑆
2
(𝑡𝑡), 𝑦𝑦 𝑦 0.5

)

 with the northern part 𝐴𝐴
(

𝑣𝑣𝑁𝑁
2
(𝑡𝑡), 𝑦𝑦 𝑦 0.5

)

 . The v +(t) and v −(t) are 
determined in the same way as in Figure 2.
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share similar transition paths as in Figure 7c which is related to the sign difference for v3. We also find comparable 
results between Figures 7e and 7d. This again underlines our earlier point that transitions are dependent on the spatial 
patterns of the different DO modes and the time-varying DO modes favor particular Y1 transitions over time.

Another factor which may influence the transition probabilities is the difference in the initial number of reali-
zations starting from the 𝐴𝐴 𝐴𝐴 +

1
 (5,210) and 𝐴𝐴 𝐴𝐴 −

1
 (4,790) branch at t = 0. This difference results in slightly different 

Figure 7. (a) Realizations which initially start in the 𝐴𝐴 𝐴𝐴 +

1
 branch (red shading) and reach the 𝐴𝐴 𝐴𝐴 −

1
 branch (blue shading) for t = 0–5 and t = 5–10. Some realizations (cyan 

colored) return to the 𝐴𝐴 𝐴𝐴 +

1
 branch after making the transition. (c and e): Phase space diagram for the realizations initially starting in 𝐴𝐴 𝐴𝐴 +

1
 and ending up in the 𝐴𝐴 𝐴𝐴 −

1
 branch 

(black curves in a)) for (c) t = 0–5 and e) t = 5–10. (b, d, f): Same as (a, c and e) but now for the realizations which start from the 𝐴𝐴 𝐴𝐴 −

1
 branch.
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values of 𝐴𝐴 𝑌𝑌 +

1
 and 𝐴𝐴 𝑌𝑌 −

1
 (Figure 2f) and a small asymmetry in the DO mean and other DO modes (Figure 2c). To 

investigate whether this has an effect on the transitions, we branched off a simulation from the end of the standard 
case simulation at t = 10 where we fitted the 𝐴𝐴 𝐴𝐴 +

1
(𝑡𝑡 = 10) distribution and we drew 500 positive and 500 negative 

(by multiplying with a factor −1) from the original 𝐴𝐴 𝐴𝐴 +

1
(𝑡𝑡 = 10) distribution. The other Yi coefficients, DO modes 

and noise level (σ = 1) remained unaltered at t = 10. We continued the simulation up to t = 15 (Figure S4 in 
Supporting Information S1) and then branched off a simulation with higher noise level (σ = 15) and nY = 10, 000 
(copying 10 times the Yi PDFs). Hence, we now have an equal number (5,000) of realizations starting in both Y1 
branches.

The values of 𝐴𝐴 𝑌𝑌 +

1
 and 𝐴𝐴 𝑌𝑌 −

1
 are the same and the 𝐴𝐴 𝑣𝑣 is completely symmetric. Note that some of the DO modes are 

flipped (w.r.t. y = 0.5) and/or switched in sign (compare Figure 2 and Figure S4 in Supporting Information S1). 
We mainly find transitions from 𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 between t = 0–10 (Figure S5 in Supporting Information S1). In this 

simulation, v3 does not switch sign (see v3(t = 2.5) Figure S2f and v3(t = 6) Figure S2l in Supporting Informa-
tion S1) and not favoring the other transition from 𝐴𝐴 𝐴𝐴 +

1
 to 𝐴𝐴 𝐴𝐴 −

1
 . This is also reflected in the spatial correlations 

(Figure S3b in Supporting Information S1), where v3 is stronger correlated with v − than with v + before both tran-
sitions at t ≈ 2.5 and t ≈ 6. Stochastic variability is a plausible explanation why v3 did not switch sign after t > 5, 
but it is likely that this mode will eventually switch sign for longer integration times and then favoring transitions 
from 𝐴𝐴 𝐴𝐴 +

1
 to 𝐴𝐴 𝐴𝐴 −

1
 . Despite that we mainly find one type of transition (𝐴𝐴 𝐴𝐴 −

1
 to 𝐴𝐴 𝐴𝐴 +

1
 ), the transition probabilities and paths 

(Figure S5 in Supporting Information S1) are comparable to the results above (Figure 7).

We did not show the evolution of v1 (tripolar mode) for the different noise levels as the pattern of this mode 
remains fairly constant, even for the higher noise level simulations (Figure S6 in Supporting Information S1).

3.3. Transitions: Different Number of DO Modes

In this section, we deviate from the standard case by increasing the number of DO modes (nV) while the Reynolds 
number is not altered (Re = 40). Increasing nV results in a better approximation of the exact solution, but comes 
at the cost of longer computational time. Each additional DO mode effectively adds more variance to the entire 
system, note that the variances of higher DO modes are relatively small compared to the first four DO modes. 
The tri-polar mode (v1) is the dominant DO mode and the spatial pattern is robust for higher nV (see Figures 1a 
and 1c). The spatial structures of the higher DO modes are different than the standard case and become more 
complicated for higher nV. For example, the gyre mode (v2) from the standard case (nV = 4, Figure 2e) is some-
what similar to the sum of v2 and v3 for nV = 5 and nV = 10 (Figures 8c and 8f).

The simulations with more DO modes can either be initiated from rest (Figures 8a and 8d) or branched off from 
the standard case at t = 10 (Figures 8b and 8e). The variances and spatial patterns of the DO modes are similar 
between the methods, although there are some sign differences in the spatial patterns. We have chosen to branch 
off the simulations from the standard case, which has two advantages. First, the number of 𝐴𝐴 𝐴𝐴 +

1
 (521) and 𝐴𝐴 𝐴𝐴 −

1
 (479) 

realizations at the end of the standard case is identical as in the standard case and therefore easy for comparison. 
Second, the computational time is at least a factor three shorter than a full simulation for each nV.

The variances of v1 and v2 are similar among the simulations for varying nV while those of v3 and v4 strongly 
increase for higher nV (Figure 8g). Variability in the Y1 and Y2 coefficients is comparable to the standard case 
(Figures 8h and 8i). The Y1 and Y2 deviations remain small and we observe no transitions with a noise level of 
σ = 1 within the chosen simulation time. In the previous subsection we demonstrated that a symmetric gyre mode 
is key for transitions, but note that the symmetry in v2 (Figure 8i) is the result of splitting the standard gyre mode 
pattern into two different modes (i.e. composite of v2 and v3) for higher nV. Otherwise, we would expect the largest 
Y2 deviations for nV = 5, but this is not the case. Similar as was done for nV = 4, we branched off simulations with 
nY = 10, 000, Δt = 5 × 10 −4, t = 5 for nV > 4 and different noise amplitudes. There are no transitions for σ = 5 
and σ = 10 before t = 5; a similar result was found for the standard case.

There are Y1 transitions for σ = 15 for varying nV (Figures 9a and 9b). However, note the higher temporal variability 
in Y1 for simulations with more DO modes compared to the standard case (nV = 4). More DO modes increases the 
variance of the entire system, which results in more temporal variability in Y1 (as well as for the other Yi coefficients). 
The relatively high temporal variability in the Yi coefficients results in very noisy transition paths, hence we do not 
show these results for nV > 4, but there are common factors when Y1 undergoes a transition. When Y1 switches sign, 
the magnitude of Y2 is relatively strong and the second mode transfers some of its energy to the other modes, this is 
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comparable to the standard case (Figures 9c and 9d). The spread in the number of transitions is about constant for 
nV ≥ 6 (see insets Figures 9c and 9d) and together with the variances of the DO modes (Figure 9e) shows the conver-
gence of the solution with nV. The system state is remarkably constant for nV = 5, as there are hardly variations in the 
Yi coefficients, spatial patterns and energy transfer rates (Figure S7 in Supporting Information S1). As was demon-
strated for the standard case, variations in the spatial patterns influence various DO quantities. Spatial variations can 
be induced through stochastic noise or when the spatial patterns of two DO modes are inter-exchanged because their 
variances are very similar. The variances are differently separated when adding one more DO mode to the standard 
case and adding two or more DO modes result in a similar separation again (Figures 9e and 9f). The variances of 
the different modes are well separated for nV = 5, which likely explains why there are no Y1 transitions for nV = 5. 
Although more DO modes approximates the exact solution better, we find comparable results as in the standard case 
(except for nV = 5), in that during Y1 transitions the magnitude of the gyre mode (i.e., Y2) plays an important role.

3.4. Transitions: Other Reynolds Numbers

Close to Re = 30, the asymmetric branches which appear from the pitchfork bifurcation in the deterministic case, 
will come closer together. Close to Re = 52, oscillatory modes which destabilize the mean state at a first Hopf 

Figure 8. (a and b) Kinetic energy of 𝐴𝐴 𝑣𝑣 and variances of vi, i = 1, …, 4 for nV = 5 in case of (a): full simulation and (b) branched off from the standard case at t = 10. 
The insets show the spatial patterns of v2, v3 and the last (v5) DO modes at t = 15 (with the same color scheme as in Figure 2). (c) The sum of the spatial patterns of 
v2(t = 15) and v3(t = 15) for nV = 5 from the branched simulation (panel b). (d–f) Same as (a–c), but now for nV = 10. (g) Variances of the v2, v3 and v4 for varying nV. 
The mean and 95%-Cl are determined over the time interval 13−15. (h) Maximum deviations from the Y1 mean branches (see also Figure 5) for varying nV. The mean 
and 95%-Cl of the largest deviations from the Y1 branches are determined over the time interval 13−15. (i) The symmetry of the v2 (similar to Figure 6) and the largest 
deviations from 𝐴𝐴 𝑌𝑌2 for varying nV. The mean and 95%-Cl of the correlation coefficient and deviations are determined over the time interval 13−15. The noise level is 
σ = 1 for all simulations.
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bifurcation will become more important in the behavior of the flow. Hence, we varied Re between 35 and 50 
and used a DO simulation from rest using otherwise standard case parameters (i.e., σ = 1). Although the results 
slightly vary when adding more DO modes to the system, we set the number of DO modes to nV = 4 for easy 
comparison with the standard case. For Re ≤ 35 the circulation takes a longer time to equilibrate (compared to the 

Figure 9. (a and b) A random Y1 trajectory for different nV and for (a) 𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 and (b) 𝐴𝐴 𝐴𝐴 −

1
→ 𝐴𝐴 +

1
 transitions. The red dots indicate the (first) time when Y1 switches 

sign. (c and d) The magnitude of Y2 and energy transfer rate (DO → v2) when Y1 switches sign (red dots in panels a and b) for different nV and for (c) 𝐴𝐴 𝐴𝐴 +

1
→ 𝐴𝐴 −

1
 and 

(d) 𝐴𝐴 𝐴𝐴 −

1
→ 𝐴𝐴 +

1
 transitions. The 95%-Cl ellipses are determined over all transitions (only realizations which end up in the other branch, e.g. black curves in Figures 7a 

and 7b) of the 10 noise realizations, the markers indicate the means. Insets: The average, minimum and maximum number of transitions over the 10 noise realizations. 
(e) Variances of the v2, v3 and v4 for varying nV. The mean and 95%-Cl are determined over t = 1 to t = 5 for one particular noise realization. (f) Variance difference 
between the third and fourth DO modes. The mean, minimum, maximum and 95%-Cl are determined over t = 1 to t = 5. The noise level is σ = 15 for all simulations.
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standard case), so we simulated up to t = 20 using Δt = 10 −3. For Re ≥ 45, the circulation is more variable and 
therefore we used a finer time step of Δt = 5 × 10 −4 and integrated the model up to t = 15.

Figure 10 shows the jet-down state (v +), the DO modes v1 and v2 for Re = 35, 45 and 50 (for full simulation results 
see Figures S8, S9, S10 in Supporting Information S1). Higher values of Re result in a stronger jet-down state 
(Figure 10j), which is also reflected in a stronger tri-polar mode (i.e., larger |Y1| coefficients, Figure 10k). On the 
other hand, for lower values of Re, v1 is weaker and the distance between the two Y1 branches becomes smaller 

Figure 10. (a–c) Spatial patterns of the (a) jet-down state, (b) v1 and (c) v2 for Re = 35 (with the same color scheme as in Figure 2). (d–i) Same as (a–c), but now 
for Re = 45 and Re = 50. (j) Maximum streamfunction strength of the southern gyre for the jet-down state and DO mean at the end of the simulation for varying Re. 
The mean and 95%-Cl are determined over all the jet-down realizations (blue curve). (k): The mean of |Y1| and maximum deviations from the Y1 mean branches (see 
also Figure 5) for varying Re. The mean and 95%-Cl of the largest deviations from the Y1 branches are determined over t − 2 to t. (l) The symmetry of v2 (similar to 
Figure 6) and the largest deviations from 𝐴𝐴 𝑌𝑌2 for varying Re. The mean and 95%-Cl of the correlation coefficient and deviations are determined over t − 2 to t. The noise 
level is σ = 1 for all simulations.
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(|Y1|, Figure 10k) and eventually becomes zero when reaching the pitchfork bifurcation at Re ≈ 30. As was shown 
for the standard case, a relatively weak v1 (relatively low |Y1|) in combination with a (stronger) symmetric v2 is 
key to causing transitions. We find a more symmetric v2 for lower Re, which results in larger deviations in the Y1 
and Y2 realizations (Figures 10k and 10l). The relatively large deviations in Y2 for Re = 46 and Re = 47 are the 
results of a strongly time-varying gyre mode in these simulations. Overall, the symmetry of v2 is dependent on 
Re and is not related to a different composite of the gyre mode as this is the case for simulations with nV > 4 (see 
Figure 8i). This suggests that transition probabilities are dependent on Re, where lower values of Re have higher 
transition probabilities; however, we find no transitions with the current noise level of σ = 1.

Similar as was done before, we branched off simulations with σ = 10, nY = 10, 000 and Δt = 5 × 10 −4 for Re = 35, 45 
and 50. There are now transitions in Y1 (Figure 11a) for Re = 35 as the DO mode v2 is highly symmetric for lower Re 
(Figure 10l). There are no transitions for higher Re (40, 45 and 50) with the same noise level (Figures 5 and 11). Note 
that v2 has switched sign for Re = 35 (Figure 11b) and therefore we show the lowest Y2 coefficients. The results show 
again that a strong (i.e., more negative Y2 for Re = 35) symmetric DO mode v2 is crucial for having transitions in Y1.

4. Summary and Discussion
Determining transition paths and probabilities of transitions between different states in a multi-stable model described 
by stochastic partial differential equations is a substantial computational challenge. Traditional Monte-Carlo meth-
ods are in most cases too computationally heavy because of the large number of simulations required and the 
different equilibria (i.e., initial distribution of the ensemble) are not known a priori. Often a long single trajectory 
is analyzed in a reduced space, such as a two-dimensional data based space of Empirical Orthogonal Functions 

Figure 11. Similar as Figure 5, but now for Re = 35, 45 and 50 for σ = 10. Note that in panel (b) the 𝐴𝐴 𝐴𝐴 +

2,min
 and 𝐴𝐴 𝐴𝐴 −

2,min
 are shown.

 19422466, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003456 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [07/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

VAN WESTEN ET AL.

10.1029/2022MS003456

18 of 20

(Crommelin, 2003; Tantet et al., 2015). Another approach is through Adaptive Multilevel Splitting techniques, 
which require adequate score functions to be successful (Baars et al., 2021; Lestang et al., 2018).

In this study we proposed a novel method using the Dynamical Orthogonal (DO) field approach as model reduction 
technique. First, a matrix formulation of DO was provided which is much more versatile than the original method, 
as the DO equations do not have to be derived analytically (Sapsis & Lermusiaux, 2009). The version used here is 
limited  to at most quadratic nonlinearities in the equations and additive stochastic forcing. The DO equations are 
generated numerically once the user provides the right hand side of the discretized stochastic partial differential 
equations. The dimension of the problem is substantially reduced by the DO method and the lowest number of 
DO modes which sufficiently captures the dynamics of the solutions can be found by adaptive methods (Sapsis & 
Lermusiaux, 2012). The matrix-DO formulation is implemented in an openly available Python software package 
and can be used for various (geophysical) problems. The idea behind the method is that transitions will mainly occur 
in a subspace where the probabilities of the trajectories is high. Once this subspace is dynamically computed, as in 
DO, the transition probabilities and paths are determined by just counting trajectories, as in traditional Monte Carlo 
methods.

As an interesting application of the method, we considered the transitions between a jet-up and jet-down state 
in a barotropic quasi-geostrophic model of the wind-driven ocean circulation of which the evolution operator is 
not self-adjoint. Such transitions are thought to be relevant for path changes in ocean western boundary currents, 
in particular in the Kuroshio Current near Japan. As the DO approach solves the stochastic partial differential 
equations numerically, the results on the transition probabilities and transition paths are considered as accurate 
as this numerical approximation of the solution. When configured into a multi-stable deterministic regime, no 
transitions occur in this model for low noise levels within the chosen simulation time, which suggests that for this 
case the transition probabilities are (extremely) low.

For sufficiently large noise levels there are transitions and these follow specific transition paths which are determined 
by the amplitude and asymmetry (with respect to the mid-basin axis) of v2. When the noise level is too low, v2 remains 
asymmetric and hinders transitions. The transition probabilities are also dependent on the eddy viscosity of the flow 
(represented through Re), where for higher viscosities, but still in the multi-stable regime, the system is more suscep-
tible of undergoing (then small) transitions because the v2 DO mode is more symmetric. This seems at first counter 
intuitive, as the degree of instability is smaller but it can be understood in the framework of Freidlin-Wentzell theory 
and its extensions (Lucarini & Bódai, 2019, 2020). In the weak-noise limit, the logarithm of the expected escape time 
is proportional to the quasi-potential height difference, which is lower in the small Reynolds number case.

The matrix-DO formulation is a special case of a dynamical low rank and tensor approximation (Feppon & 
Lermusiaux, 2018; Hesthaven et al., 2022) and such more general approaches may be useful when extending the 
method under more general nonlinearities. An alternative approach to capture directions of transient instabilities 
is through the computation of Optimal Time Dependent (OTD) modes (Babaee & Sapsis, 2016). While these 
instabilities have a finite lifetime, they can be crucially important in altering the system dynamics through the 
activation of other instabilities or by creating sudden nonlinear energy transfers. For example, the time-dependent 
basis of OTD modes can capture strongly transient non-normal energy growth. The OTD modes also converge 
exponentially fast to the eigendirections of the Cauchy-Green tensor associated with the most intense finite-time 
instabilities (Babaee et al., 2017).

All of these model reduction techniques increase the computational viability of rare event algorithms such as 
TAMS (Lestang et al., 2018) to study transitions with low transition probabilities in stochastic partial differential 
equations. Just like in the projected time-stepping method (Baars et al., 2021), where the basis consists of eigen-
vectors of the covariance matrix at steady state, a “frozen” DO (or OTD) basis can be used instead. This will 
reduce the TAMS computations enormously as the algorithm only has to deal with a small dimensional subspace 
when computing trajectories. First tests for the wind-driven ocean circulation model as used in this paper show 
promising results, but future work is needed to establish the potential of this combined approach.

Data Availability Statement
The matrix-DO Python software is openly available at https://doi.org/10.5281/zenodo.7180807 together with 
model set-up of the Burgers' equation and the wind-driven ocean circulation model as used in this paper. The data 
for generating the main result are also provided at https://doi.org/10.5281/zenodo.7180807, the full (raw) data is 
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available upon request from the authors due to storage limitations. Alternatively, one can reproduce the data and 
results using the documented values from this study.
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