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Abstract

Bayesian networks are interpretable probabilistic mod-
els that can be constructed from both data and domain
knowledge. They are applied in various domains and
for different tasks, including that of anomaly detection,
for which an easy to compute measure of data conflict
exists. In this paper we consider the use of Bayesian
networks to monitor input-output pairs of a black-box
AI system, to establish whether the output is acceptable
in the current context in which the AI system operates.
A Bayesian network-based prescriptive, or normative,
model is assumed that includes context variables rele-
vant for deciding what is or is not acceptable. We anal-
yse and adjust the conflict measure to make it applicable
to our new type of monitoring setting.

Introduction
Ever since humans have engaged with technology, we have
monitored operations to ensure that the technology is safe
and reliable. The demand for inspecting and controlling om-
nipresent black-box AI systems as they take over decision-
making and operation in increasingly more critical situations
is therefore not surprising. Even when such an AI system is
developed with matters as safety and reliability in mind, it
can still be a black-box when deployed. As a result, it is diffi-
cult to guarantee that the system’s behaviour is as it ought to
be, given the specific context in which it is operating. When
the AI system is developed any general constraints can be
taken into account through system requirements; however,
context-specific constraints only become clear when the sys-
tem is in use in that context. Take for example a medical
decision-support system, designed to be used in multiple
hospitals. Even if the system is considered generally accu-
rate, when used in a specific hospital for a specific patient,
the additional context provided by e.g. local hospital proto-
cols or patient-specific information, may call for a different
decision than suggested by the system. To detect this, we in
essence need a glass-box that can constrain the behaviour of
the black-box in a transparent way (Aler Tubella et al. 2019).

We will offer a first step towards a technical implemen-
tation of a glass-box for the purpose of monitoring black-
box AI systems. We propose to use Bayesian networks

Copyright © 2023 by the authors. All rights reserved.

(BNs) as a prescriptive, or normative, model of the context-
specific acceptable behaviour. BNs are probabilistic models
that can both handle uncertainty and are known for their in-
terpretability and transparency. Additionally, to detect devi-
ations from acceptable behaviour, we take inspiration from
the field of anomaly detection. The field of anomaly detec-
tion (AD) studies how to detect when the behaviour of a sys-
tem, or a real-life process, deviates from what is considered
normal, typically through modelling the normal behaviour.
This setting differs from our current setting in two important
ways. First, a model of normal behaviour as used in AD is
a descriptive model rather than a prescriptive one. Secondly,
our setting adds an additional layer of uncertainty and com-
plexity by including the AI system that in itself is a model of
real-world processes. As a result, existing techniques from
AD cannot be directly employed for the purpose of monitor-
ing AI systems.

This paper contributes the following. We introduce the
novel setting of monitoring under uncertainty of black-box
AI systems using normative models of context-specific be-
haviour; demonstrate that existing AD techniques need ad-
justment to be used in this setting; and illustrate the afore-
mentioned for an existing Bayesian network conflict mea-
sure. After reviewing existing work on AD and BNs, we in-
troduce and formalise our new normative monitoring setting.
We then analyse the conflict measure for AD using BNs and
adjust it to fit the new setting.

Preliminaries
In this section we briefly review AD methods, the BNs in
AD, and introduce our notations.

Anomaly Detection
The aim of AD is to identify data patterns, known as anoma-
lies, that deviate from normal behaviour (Chandola, Baner-
jee, and Kumar 2009). Anomaly detection can be used for
fraud, intrusion or fault detection. AD approaches generally
consist of two steps. The first is to construct or train a model
of normal behaviour and the second is to use this model to
detect anomalies at run-time. Figure 1a presents a schematic
overview of the general AD setting. The real world process
or system that is being monitored for anomalies is the target
system, from which we can typically observe only partial,
indirect, and hence uncertain information. The target system
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Figure 1: Overview of (a) Anomaly Detection with step 1 modelling normal behaviour and step 2 detecting anomalies and of (b)
normative monitoring setting with step 1 constructing the normative model, step 2 running the AI system and step 3 monitoring
an input-output pair.

is therefore taken to generate data from some partially ob-
servable distribution PrT .

Human experts can observe the target system and estab-
lish (uncertain) knowledge about how the real world pro-
cess normally behaves. For the purpose of AD, knowledge
and data are used to construct a descriptive model of nor-
mal behaviour. An AD system is now tasked with detecting
whether a newly observed data pattern from the target sys-
tem is an anomaly and should be flagged. To this end it is
compared against the model of normal behaviour using a
suitable measure.

Bayesian Networks in Anomaly Detection
Among the available methods used for representing nor-
mal behaviour in the context of AD are Bayesian networks
(BNs) (Nielsen and Jensen 2009). A Bayesian network B =
(G,Pr) is a representation of a joint probability distribution
Pr over a set of discrete random variables V that exploits
the independencies among the variables as portrayed in the
acyclic directed graph G. We use capital letters to denote
variables, bold-faced in case of sets. Each variable V ∈ V
can be assigned a value v ∈ Ω(V ); a joint value assign-
ment (or configuration) v1 ∧ . . . ∧ vn to a set of variables
V = {V1, . . . , Vn} is denoted by v. Such a joint assignment
can for example describe an instance, or data pattern in AD.

The joint distribution Pr(V) factorises over local distribu-
tions specified for each variable, conditional on its parents in
the graph. This allows for efficient computation of any prior
or posterior probabilities of interest.

Figure 2 shows the graph of a small BN, with V =
{I1, I2, A,O}. In a strongly simplified manner, it represents
the diagnosis (O) for a patient, two possible symptoms (I1
and I2) and some additional contextual information (A).

BNs are used in AD to model normal behaviour and the
associated uncertainty. Further, a method is required to es-
tablish whether an instance deviates from normal behaviour.
Nielsen and Jensen (2007) demonstrate the use of a conflict
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Figure 2: Graph of a small diagnostic BN.

measure introduced by Jensen et al. (1990), to detect abnor-
mal behaviour in production plants using instances consist-
ing of sensor readings. In case of normal behaviour, captured
by a BN, the sensor readings should be positively correlated.
An instance is flagged as anomalous when this is not the
case.

Normative Monitoring
Compared to the AD setting sketched in Figure 1a, where
the target system is directly monitored, in the normative
setting (Figure 1b) an AI system is monitored in order to
decide whether the input-output pairs from the AI system
are (un)acceptable according to some context-specific con-
straints. These constraints capture the norms specified by hu-
man experts. We need normative models to represent these
norms prescribed to the AI system in a particular context.

Normative Models
In regular AD the model used for detection approximates
normal behaviour of (part of) the target system and therefore
is a descriptive model, as it describes normal behaviour. De-
scriptive models are often created using data, which is gener-
ated by the target system specifically under normal circum-
stances. For normative monitoring we require a prescriptive
model, as it prescribes what behaviour is expected of the
AI system. We emphasize that the prescriptive model is not
aimed at monitoring the performance of the AI system, but
rather its adherence to norms. Moreover, when this prescrip-



tive normative model is transparent, it can operate as a glass-
box for monitoring a black-box AI system.

Norms that can be captured in the normative model are
rules and principles that can enact a value (Aler Tubella et al.
2019) and that must be accepted in the context that the mon-
itoring system is designed for, and are therefore accepted
in a specific context, i.e. by a particular community (stake-
holders) at a particular time (Brennan et al. 2013). Note that
we do not hold norms to be statistical patterns that describe
what the norm is in a context, we hold norms to be prescrip-
tive, as they prescribe expected and accepted behaviour. In
some cases the two notions coincide: when everyone starts
to follow a rule, it also becomes a statistical norm. In our
medical decision-making example, the normative model can
capture norms that are specified by medical experts and laid
down in treatment protocols of a specific hospital, and con-
sider additional information about the patient relevant to
such protocols.

Using norms in monitoring is not new, nor is modelling
uncertainty for anomaly detection. Various monitoring ap-
proaches overlook uncertainty by using rule-based systems
to model norms (Dastani, Torroni, and Yorke-Smith 2018).
In this paper we focus on uncertainty in the normative model
and therefore opt for a BN-based normative model. As dis-
cussed, in the standard AD setting, BNs have been used as
models of normal behaviour, often learned from data. As
such they capture stochastic uncertainty of the real world
in addition to uncertainty introduced by the modelling itself.
Rather than modelling descriptive norms based on data, in
the normative setting the BN is used to capture prescriptive
norms, based on human (expert) knowledge. BNs are gen-
erally known for being interpretable and can be handcrafted
using knowledge elicited from stakeholders (Kjaerulff and
Madsen 2013). BNs have for example been used in the med-
ical domain to model protocols as prescriptive norms elicited
from expert knowledge (Zheng, Kang, and Kim 2006). Fur-
ther discussion on how to construct normative BNs, or nor-
mative models in general, is beyond the scope of this paper.

Model Formalisation
Our normative monitoring setting builds on an AI system
and a normative model, where we assume that both represent
a probability distribution. Here we will formally define these
models and their relation.

Definition 1 We define the following models:

• A normative model represents a joint distribution
PrN (VN ) over a set of variables VN .

• An AI system represents a joint distribution PrS(VS)
over a set of variables VS = IS ∪ {OS}, where IS is
a non-empty set of n input variables and {OS} represents
a single output variable.

We assume that the two models partly share the same vari-
ables (with the same values) or that there is a straightforward
mapping between them. More specifically, in this paper we
assume that VN = IS ∪ {OS} ∪ A, which means that the
normative model includes the AI system’s input and output
variables, as well as a non-empty set of additional variables

A. The variables in A are used for representing context-
specific norms; through a value-assignment a′ to A′ ⊆ A
the normative model can be adapted to a specific context a′.

In this paper we assume that the normative model is a
BN; as a result we have complete information about the dis-
tribution PrN (VN ) it represents. For the AI system we have
available input-output pairs (i, o), but we lack exact knowl-
edge of PrS .

Example To provide insight into how the abstract idea of
normative monitoring can be used in practice, we recon-
sider the example in medical decision-making. The AI sys-
tem designed to assist is a black-box system trained using
patient data from e.g. many different, inconsistent sources;
it is able to fulfill its general task at a high level of accuracy.
When the system is used to support treatment decisions for
an individual patient in a specific hospital, this is the spe-
cific context in which the AI system operates and in which
we want to monitor it. The monitoring system compares a
patient-specific input-output pair from the AI system to a
normative model that captures the context-specific informa-
tion. We adopt a strongly simplified interpretation of this
example to demonstrate our findings. Reconsider the small
diagnostic BN whose graph is shown in Figure 2. In the nor-
mative monitoring setting the BN captures the norms, it rep-
resents the distribution PrN (V), with V = {I1, I2, A,O}
of which we have complete knowledge. We have input vari-
ables I = {I1, I2}, the additional variable A = {A} and the
output variable O. It is used to monitor the AI system, repre-
senting the distribution PrS(I1, I2, O), the details of which
are unknown to us. In order for the monitoring system to de-
termine which (i1∧i2, o) to flag, we need to be able to detect
whether or not the pair is acceptable in context a = a.

Detecting Unacceptable Input-Output Pairs
The normative model can be used in different ways to de-
tect unacceptable input-output pairs, just like models of nor-
mal behaviour are used in different ways to detect anoma-
lies in standard AD. When using a BN as a model of nor-
mal behaviour, detecting anomalies can be done by using
probability-based measures (Johansson and Falkman 2007;
Mascaro, Nicholson, and Korb 2014; Nielsen and Jensen
2007; Kirk, Legg, and El-Mahassni 2014). In this section we
will analyse the suitability of using Jensen’s conflict mea-
sure in the setting of monitoring AI systems with a BN-
based normative model.

Conflict as a Measure for Detection
Jensen’s measure to detect conflict within an instance e =
e1 ∧ . . . ∧ et that combines t ≥ 2 pieces of evidence, is
defined as

confl(e1, . . . , et) = log
Pr(e1) · . . . · Pr(et)

Pr(e)
(1)

Note that in case all pieces of evidence are mutually inde-
pendent, the numerator is equal to the denominator and the
measure becomes log(1) = 0. When the joint probability



is larger than the product of the marginal probabilities, it
means that the observations in the instance are more likely
to occur together than separately, while the reverse indicates
conflict. Therefore, a positive value for the conflict measure
indicates conflict and a negative value indicates no conflict.

In our setting, we are interested in calculating the con-
flict using the normative model, so Pr is PrN . From the
perspective of the normative model, the input-output pairs
from the AI system form the observable instances e = o ∧ i
over which we calculate the conflict measure. That is, we
compute confl(o, i1, . . . , in), where i1 ∧ . . . ∧ in = i. The
normative model includes additional variables A that may
also have observations. Thus, we want to determine whether
or not there is an input-output conflict in a context a′ for
A′ ⊆ A. This means that PrN (·) is in fact a conditional
distribution PrN (· | a′), which we denote by PrNa′(·).
Adjusting the conflict measure The conflict measure as
defined above is not directly suitable for normative monitor-
ing of AI systems. By indirectly modelling the target system
through the AI system (see Figure 1b), there is additional
uncertainty in the overall setting, both in how the AI system
models the target system, as well as in the predictions of the
AI system itself. With the increase in complexity in the nor-
mative setting, we have to carefully consider what is exactly
being measured by the conflict measure.

Our aim is to monitor the AI system’s behaviour, regard-
less of the target system’s stochasticity that feeds into the
monitoring system via the input i. In monitoring the AI sys-
tem we only want to consider the dependency between the
input and output of that system, rather than considering all
conflict, including that between the inputs i1, . . . , in. We do
not want to monitor the process that generated the input data,
as would be the case in regular anomaly detection. The con-
flict within the input is noise in determining whether there
is conflict in what the AI system is outputting according to
the normative model. Intuitively we can therefore remove
the conflict that is in the input from the conflict of input and
output together. We therefore define the IOconfl measure for
an input-output instance o ∧ i with i = i1 ∧ . . . ∧ in as:

IOconfl(o, i) = confl(o, i1, . . . , in)− confl(i1, . . . , in)

= log
Pr(o) · Pr(i)
Pr(o ∧ i)

(2)

From the above we have that IOconfl() is in essence a
special case of confl() with exactly 2 arguments. As such,
it inherits the properties of the original measure: it is easy
to calculate, independent of the order of the arguments, and
has a natural interpretation in terms of capturing a degree of
(in)coherence among its arguments (Jensen et al. 1990).

Flagging The threshold for the original measure is an in-
trinsic threshold of 0, capturing the state of the model in
which the t individual pieces of evidence under considera-
tion are independent. We consider what it means to use this
same threshold for IOconfl(). An IOconfl()-value of 0 indi-
cates that i and o are independent according to the norma-
tive model and the given context (Pr = PrNa′ ). If it exceeds
this default threshold, then (Pr(o) · Pr(i))/(Pr(o ∧ i)) =

Pr(o)/Pr(o | i) > 0 indicates nothing more than that the
probability of output o has decreased as a result of input i in
the given context. This might be an intuitive interpretation
for a conflict measure, but whether or not this is sufficient
reason to flag may depend on the domain of application.

Conclusion
In this paper we introduced the novel setting of normative
monitoring of black-box AI systems using prescriptive mod-
els of context-specific behaviour. By building on transparent
normative models, the setting provides for a first step to-
wards an implementation of a glass-box concept.

Bayesian networks are interpretable probabilistic models
that can be constructed from both data and expert knowl-
edge. As such they are applied in various domains and for
different tasks, including that of standard anomaly detection.
For the latter purpose, an easy to compute measure of data
conflict exists. Inspired by the use of BNs in combination
with conflict measures in the standard anomaly detection
context, we studied how to transfer these techniques to our
novel setting. More specifically, we proposed the use of BNs
for representing prescriptive normative models and adjusted
a conflict measure to allow for measuring the conflict, ac-
cording to the normative model, within an input-output pair
produced by the AI system.

Further analysis into the behaviour of the measure under
various circumstances is needed to determine whether the
threshold of the original measure satisfies.

To further demonstrate the strengths of the proposed mea-
sure and suitability of the threshold, a proper evaluation in
practice is necessary. This, however, requires the availabil-
ity of a researched and evaluated normative model, which
is far beyond the scope of this paper to accurately achieve.
For illustration purposes, we used the problem of monitor-
ing a medical decision-support system that should adhere to
local hospital protocols, captured in the normative model.
Important properties such as safety and reliability of an AI
system can in some regard be considered as emergent (Leve-
son 2012). As a result, only when monitoring an AI system
in the context where it is deployed can we monitor for these
properties. This leads us to conclude that by using transpar-
ent normative models, such as those based on BNs, we can
effectively create a glass-box by utilising existing research
on knowledge-driven techniques and uncertainty to enhance
data-driven techniques, leading us to overall more reliable,
safe, responsible and usable AI systems.
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