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A B S T R A C T   

The true prevalence of dairy cattle herds with M. bovis infections in the Netherlands is unknown. Previous at
tempts to estimate prevalences were hampered by the absence of a diagnostic serological test that was validated 
under field conditions. This study estimated sensitivity and specificity of two commercial serum ELISAs and the 
true M. bovis herd prevalence using different Bayesian latent class models. A total of 7305 serum samples from 
415 randomly chosen dairy herds were collected in fall/winter 2019 and investigated for presence of antibodies 
against M. bovis using the BIO-K-260 ELISA from Bio-X. Serum samples from 100 of these herds were also tested 
with a second ELISA, from IDvet. A Bayesian latent class model using the paired test results estimated a sensi
tivity of 14.1% (95% Bayesian probability interval (BPI): 11.6–16.7%) for the Bio-X ELISA and a specificity of 
97.2% (95% BPI: 95.9–98.4%). Sensitivity and specificity for the IDvet ELISA were estimated at 92.5% (95% BPI: 
88.3–96.5%) and 99.3% (95% BPI: 98.7–99.8%), respectively. Also, Bio-X ELISA sensitivity was considerably 
higher with data from calves only and with data from a selection of herds with a clinical outbreak, whereas the 
IDvet ELISA sensitivity was fairly constant under these conditions. These differences in test sensitivity is expected 
to be related to an effect of time since infection. A second Bayesian model, applied on test results of all 415 herds, 
estimated a true herd prevalence of 69.9% (95% BPI: 62.7–77.6%), suggesting M. bovis in endemic amongst dairy 
cattle herds in the Netherlands. To what extent seropositive herds have experienced a clinical outbreak needs 
further investigation.   

1. Introduction 

Mycoplasma bovis (M. bovis) has become increasingly important as a 
pathogen on beef and dairy cattle farms, causing welfare and production 
losses (Maunsell et al., 2011; Dudek et al., 2020). Since the first reported 
case of mastitis in 1961 (Hale et al., 1962), M. bovis has been detected 
worldwide, in all major cattle rearing countries (Dudek et al., 2020). 
M. bovis is a primary cause of mastitis, arthritis, keratoconjunctivitis and 
otitis media as well as a part of the bovine respiratory disease complex 
(BRD) (Maunsell et al., 2011). As antimicrobial treatment of M. bovis 
mastitis and arthritis is mostly unsuccessful, it is often advised to cull 
cattle with M. bovis mastitis and/or arthritis. However, M. bovis in
fections may persist in a dairy herd, also through asymptomatic carriers 
(Punyapornwithaya et al., 2010). 

M. bovis can be identified in individual cattle milk or bulk milk samples 
by bacterial culture or PCR (Parker et al., 2018), although the bacterium 
may be missed due to variations in affected tissues between cattle, 

intermittent shedding in milk and withholding of milk from mastitis cows 
from bulk milk. Antibodies against M. bovis can be detected in serum and 
(bulk) milk using an ELISA (Parker et al., 2018). The first commercially 
available ELISA is produced by Bio-X (Bio-X Diagnostics S.A., Rochefort, 
Belgium). A second one, from IDvet (IDvet, Grabels, France), became 
available in 2018 and was shown to be more sensitive than the monowell 
K-302 ELISA from Bio-X (Andersson et al., 2019; Petersen et al., 2020; 
Bokma et al., 2022). At Royal GD, the double well K-260 ELISA of Bio-X 
with both antigen-coated wells and negative control antigen-coated 
wells was used for routine diagnostics at the time of this study. 

Based on different diagnostic methods, herd level and animal level 
prevalences have been determined in different European countries and 
estimates vary considerably. In Belgium, true dairy herd prevalence was 
31.8% as determined by a combination of PCR and ELISA in bulk milk 
(Gille et al., 2018). In Denmark, dairy herd prevalences were 1.6% 
(PCR) and 7.2% (ELISA) (Nielsen et al., 2015). In Sweden, dairy herd 
prevalence was 0% (PCR) and 4.8% (ELISA) (Hurri et al., 2022). Herd 
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prevalence amongst Irish dairy herds is estimated to be 45% as deter
mined by ELISA in bulk milk (McAloon et al., 2022). In the Netherlands, 
an increased number of M. bovis outbreaks have been observed in dairy 
cattle herds in the last decade, particularly M. bovis-induced cases of 
mastitis and arthritis. However, the true prevalence of M. bovis in
fections in the dairy cattle population is unknown. Previous attempts to 
estimate seroprevalences were hampered by the absence of a diagnostic 
test that was validated under field conditions due to lack of a gold 
standard. Bayesian latent class models are known for their ability to deal 
with this issue, in which an animal’s observed status is linked to the 
unobserved true infection status (Johnson et al., 2019). The objectives of 
this study were therefore to use Bayesian modelling 1) to estimate the 
sensitivities and specificities of two commercially available serum ELI
SAs in the absence of a gold standard and 2) to estimate the prevalence 
of M. bovis infections in Dutch dairy herds. 

2. Materials and methods 

2.1. Study design 

The study was conducted in two stages. In the first stage, a random 
selection of dairy herds was sampled to estimate the prevalence of 
M. bovis infection based on presence of antibodies against M. bovis in 
serum. In a second stage, serum samples from a subset of the herds were 
used to estimate test validity of two serum ELISA kits. 

In the first stage, a sample size of 284 herds was chosen to estimate 
herd prevalence of M. bovis, based on an expected seroprevalence of 25% 
(Gille et al., 2018), 95% confidence and 5% error. A total of 1183 dairy 
farms were invited to participate, based on an expected response rate of 
40% and, subsequently, 40% compliance with the required sampling 
strategy. Earlier work showed that with measuring antibodies in serum 
of a sample of about 12 lactating cows and a least 6 calves (1–6 months 
old) an acute M. bovis infection could be detected at herd level (Pen
terman et al., 2022). Therefore, only herds with at least 6 calves present 
were eligible for selection. The sample of 1183 farms were randomly 
chosen out of a population of 10,329 dairy herds with at least six calves 
1–6 months old in July-August 2019. Farms were invited by e-mail in 
August 2019 to participate in the survey in fall/winter 2019–2020. 
Participating farmers were requested to arrange with their private 
practitioner to collect blood samples from 12 randomly selected cattle of 
at least 2 years old and six calves of 1–6 months old at sampling. Blood 
samples were to be collected between October 1 and December 31, 
2019. Samples were investigated for presence of M. bovis-specific anti
bodies using the BIO-K-260 ELISA kit from Bio-X (‘ELISA A’) which was 
routinely used at Royal GD. Test outcomes were first expressed as a 
sample to positive percentage (S/P%). For this, a net optical density 
(OD) was calculated by subtracting the OD value in the control well 
(with negative control antigen) from the OD of the well with M. bovis 
antigen. Additionally, according to the manufacturer, test outcomes 
were categorized into one of six classes: 

S/P% ≤ 37%: 0. 
37 < S/P% ≤ 60%: + . 
60 < S/P% ≤ 83%: + +. 
83 < S/P% ≤ 106%: + ++ . 
106 < S/P% ≤ 129%: + ++ +. 
S/P% > 129%: + ++ ++ . 
In the second stage of the study, a subset of 100 herds out of the herds 

from the first stage of the study were selected for a ELISA test evaluation 
study. Herds were selected based on an alternative test result, the IDvet 
ELISA on bulk milk samples which ranged from negative to high positive 
in bulk milk (results not shown). All serum samples from the 100 herds 
were investigated for presence of M. bovis-specific antibodies using the 
ID Screen® ELISA kit from IDvet (‘ELISA B’). Test outcomes were first 
expressed as an S/P% as ((ODsample – ODnegative control)/(ODpositive control – 
ODnegative control)) × 100%. According to the manufacturer, test out
comes were categorized as follows: 

S/P% < 60%: 0. 
60 ≤ S/P% < 80%: + . 
80 ≤ S/P% < 110%: + +. 
110 ≤ S/P% < 140%: + ++ . 
S/P% ≥ 140%: + ++ +. 

2.2. Analysis 

Two Bayesian models were designed. In the first model, combined 
test results of the two ELISAs on serum samples from the subset of 100 
farms were compared to estimate sensitivity and specificity of the ELI
SAs (‘Model 1’). In a second model, the herd-level prevalence was esti
mated using test results of all herds (‘Model 2’). In both models, test 
outcomes were first dichotomized as ‘positive’ (categories > 0) or 
‘negative’ (category 0) prior to analyses. 

2.2.1. Model 1: test characteristics 
A 2 × 2 table with the frequencies of the observed combinations of 

test results (A+B+, A+B-, A-B+, A-B-) made the data frame for the model. 
A latent class model was used for two tests in multiple populations, 
introduced by Hui and Walter (1980). Considering the hierarchy in the 
subset of 100 herds, with a fixed number of 18 paired test results per 
herd, we developed a model for 100 subpopulations. In the model, each 
herd was considered a distinct population under the assumption of equal 
misclassification rates across populations, yet with different prevalences 
in terms of seropositivity. These assumptions are fundamental in the 
Hui-Walter model to achieve model identifiability (Toft et al., 2005; 
Johnson et al., 2009). The Hui-Walter model also assumes conditional 
independence of test results given the disease status. In our study 
however, conditional dependence of ELISA A and ELISA B test outcomes 
was expected because both tests detect serum antibodies (Gardner et al., 
2000; Georgiadis et al., 2003). The model therefore needed to be 
extended taking into account dependence of test results, to prevent poor 
inferences (Toft et al., 2005; Johnson et al., 2009). Consequently, the 2 
× 2 combination of test results are stratified by the (latent) disease status 
D of the subjects in each subpopulation, leading to the 
cross-classification summarized in Table 1 (Dendukuri, 1998). Note that 
from the frequencies in Table 1, only the 2 × 2 subtotals NAB are 
observed. As the latent status in this model is an immune response, 
‘seropositive’ might be a more appropriate terminology than ‘diseased’. 
Yet for simplicity, seropositive animals and herds are termed ‘diseased’ 
and ‘infected’ throughout this paper. 

The conditional dependence between the two tests was estimated 
using the covariance between the two tests among the diseased (p) and 
non-diseased (n) subjects, in accordance with the model described by 
Dendukuri and Joseph (2001):  

covp = cov(A, B | D+) = p(A+B+ | D+) – (SeA×SeB)                          (1)  

covn = cov(A, B | D-) = p(A- B- | D-) – (SpA×SpB)                             (2) 

According to the model, the eight multinomial cell probabilities of 
the cross-tabulated data were estimated as follows: 

2.2.2. Infected animals 
p(A+B+ | D+) = π × (SeA × SeB + covp). 
p(A+B- | D+) = π × (SeA × (1-SeB) - covp). 
p(A-B- | D+) = π × ((1-SeA) × (1-SeB) + covp). 
p(A-B+ | D+) = π × ((1-SeA) × SeB - covp). 

2.2.3. Non-infected animals 
p(A-B- | D-) = (1- π) × (SpA × SpB + covn). 
p(A-B+ | D-) = (1- π) × (SpA × (1-SpB) - covn). 
p(A+B- | D-) = (1- π) ((1-SpA) × SpB - covn).  

p(A+B+ | D-) = (1- π) × ((1-SpA) × (1-SpB) + covn)                          (3) 
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Where π being the animal-level true prevalence of M. bovis, SeA, SeB 
and SpA, SpB are the sensitivities and specificities of ELISA A and ELISA 
B respectively, covp the covariance between the tests in diseased subjects 
and covn the covariance between the tests in non-diseased subjects 
(Dendukuri and Joseph, 2001). 

The model was applied in four scenarios. First, the model ran on all 
sera from the 100 herds (Scenario 1; default). The model code for Sce
nario 1 can be found in supplementary file S1. Then, the model was run 
on test results from cows only (Scenario 2) and calves only (Scenario 3). 
Finally, a completely distinct selection of 128 cow sera from 5 herds 
with an acute clinical outbreak of M. bovis were used in a model with a 
Two Tests Five Populations design (Scenario 4). This scenario was 
applied to investigate the hypothesis that test sensitivity might decrease 
with prolonged time since infection, or increase when applied in high 
prevalence populations (Johnson et al., 2009). The five herds were 
known to have an acute clinical outbreak of M. bovis and were as such 
part of an observational study to gain insight in the within-herd dy
namics of M. bovis (Penterman et al., 2022). 

Informative prior distributions for sensitivity and specificity of ELISA 
A and ELISA B were obtained from literature (Table 2). These priors 
were chosen as they involve the same tests, are based on data that are 
independent of the current data, but somehow similar to it (although 
based on serum samples from calves only). The covariance parameters 
were constrained as such that the combined sensitivities and specificities 
of the two tests cannot exceed the individual values of the test charac
teristics. Non-informative priors were used for the animal-level sero
prevalence in each population (herd). The ‘PriorGen’ package in R 4.2.1 
(Kostoulas, 2018) was used to obtain shape parameters for the 

informative prior (beta) distributions. To assess sensitivity of the model 
to priors, the analysis of the default model (Scenario 1) was rerun with 
uninformative and weakly informative priors for SeA, SeB, SpA, and 
SpB. Uninformative priors were set at beta(1,1). The original informa
tive priors were made weakly informative by giving them a wider 
distributional spread, suggesting a lack of knowledge (Johnson et al., 
2019; Depaoli et al., 2020) (Table 2). As the original priors for the 
specificities were centred around 99%, the median of the weakly 
informative priors were lowered to 82% to enable a more diffuse 
distribution. 

From the cell probabilities in (Eq. 3) the multinomial likelihood was 
constructed, combined with priors, and Bayes’ theorem was applied to 
obtain posterior distributions of the parameters. Posterior inferences 
were obtained with the package ‘runjags’ in R 4.2.1 (Denwood et al., 
2016; Plummer et al., 2019; R Core Team, 2018) using Markov chains, 
with 10,000 iterations after a burn-in period of 5000 iterations. 
Convergence of the Markov chains was assessed by visual assessment of 
Markov chains and trace plots and by running multiple (n = 2) chains 
from distinct starting values (e.g., 0.05 and 0.95 for variables bounded 
between 0 and 1). The Brooks-Gelman-Rubin diagnostic was used to 
assure that the two chains had converged (Brooks and Gelman, 1998), 
inspecting the potential scale reduction factor being very close to 1. 
Effective sample sizes were monitored (>1000) to ensure that autocor
relation was not problematic. 

Throughout this manuscript, Model 1 is described according to the 
Standards for the Reporting of Diagnostic accuracy studies that use 
Bayesian Latent Class Models (STARD-BLCM) (Kostoulas et al., 2017). A 
completed checklist can be found in supplementary file S2. 

2.2.4. Model 2: herd prevalence 
A Bayesian latent-class model was developed to estimate herd 

prevalence of M. bovis amongst dairy herds in the Netherlands, esti
mating the number of animals testing positive in each herd is a function 
of the within-herd animal-level true prevalence, and the test charac
teristics of the test used. The number of serum samples per herd, the 
apparent number of positive test results per herd and the ELISA kit 
(ELISA A or ELISA B), made the data frame for the model. Note that all 
herds were tested with ELISA A and a subset of 100 herds also with 
ELISA B. For the latter group, only the results of B were retained for the 
analysis. The dataset also contained the four regions of the Netherlands 
in which the herds were located (north, east, south and west), the 
farming system (open or closed), and their herd size based on the 
number of lactating cows. The model was inspired by a study by McA
loon et al. (2016). In their study, serological test results from a national 
control program were used in a Bayesian latent-class model to estimate 
herd-level true prevalence of paratuberculosis in Ireland, taking the test 
characteristics of various ELISA kits used into account. The model was 
constructed as:   

NT+
k | p(T+)k, nk ~ bino

mial(p(T+)k, nk)                 
= number of animals in herd k that tested positive, with nk 
being the number of cows tested per herd                      (4)  

p(T+)k = Sei × πk + (1- 
Spi)(1-πk)                         

= probability of a positive test result for an animal in herd k, 
based on π and the sensitivity and specificity of ELISA i  (5)  

πk = HTPk × CWHPk        = animal-level true prevalence (p(D+)) for an animal in herd k 
(6)  

HTPk ~ bernoulli(µ)           = herd-level infection status with µ being the probability of a 
herd being infected                                                    (7)  

CWHPk ~ beta(aCWHP, 
bCWHP)                            

= within-herd prevalence in herd k, with shape parameters a 
and b                                                                       (8)  

µ ~ uniform(0,1)                = probability of a randomly chosen herd containing on or 
more truly infected animals                                         (9) 

(continued on next page) 

Table 2 
Prior information for parameters to estimate test sensitivity and specificity of 
ELISA A and ELISA B, with median prior probabilities and 95% Bayesian 
probability interval (BPI), reference and distribution.  

Parameter Prior median (95% 
BPI) 

Distribution Reference (where 
relevant) 

SeA 28% (15.3–43.7%) beta(13, 32) Schibrowski et al. 
(2018) 

SeB 94% (90.0–97.0%) beta(161.11, 
10.28) 

Andersson et al. (2019) 

SpA 98.6% (92.9–100%) beta(50, 1) Schibrowski et al. 
(2018) 

SpB 99% (98.0–99.7%) beta(529.9, 5.35) Andersson et al. (2019) 
covp - uniform(lbp, 

ubp)a 
Dendukuri and Joseph 
(2001) 

covn - uniform(lbn, 
ubn)a 

Dendukuri and Joseph 
(2001) 

π - beta(1, 1) - 
Sensitivity analysis: Uninformative   
SeA - beta(1,1) - 
SeB - beta(1,1) - 
SpA - beta(1,1) - 
SpB - beta(1,1) - 
Sensitivity analysis: Weakly 

informative   
SeA 28% (10.0–53.1%) beta(4.45, 10.92) - 
SeB 94% (60.0–100%) beta(5.83, 0.65) - 
SpA 82% (50.0–97.7%) beta(7.13, 1.78) - 
SpB 82% (50.0–97.7%) beta(7.13, 1.78) -  

a lbp is the lower bound of covp: (SeA-1)× (1-SeB); lbp is the upper bound of 
covp: min(SeA, SeB)- SeA×SeB; lbn is the lower bound of covn: (SpA-1)× (1-SpB); 
lbn is the upper bound of covn: min(SpA, SpB)-SpA×SpB 

Table 1 
Conceptual cross-classification of observed (N) and latent (Y) data from two 
diagnostic tests in animals that are truly diseased (D+) or non-diseased (D-).   

D+ D-  

ELISA A = + ELISA A = - ELISA A = + ELISA A = - 

ELISA B = + Y++ Y-+ N++ - Y++ N-+ - Y-+

ELISA B = - Y+- Y– N+- - Y+- N– - Y–  
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(continued )  

Sei ~ beta(aSe, bSe)             = sensitivity of ELISA i                                           (10)  

Spi ~ beta(aSp, bSp)            = specificity of ELISA i                                           (11)   

where NT+
k equals the number of animals testing positive in herd k. 

The probability of a randomly chosen animal from a herd testing posi
tive (p(T+)k) was a function of the animal-level true prevalence π within 
herd k, and the diagnostic test characteristics; Se and Sp, which varied 
according to ELISA kit used (i). Shape parameters for the informative 
prior (beta) distributions of Sei and Spi were as described in Table 2. The 
animal-level true prevalence π for a given herd was modelled as the 
product of the herd-level true prevalence (HTP) and the within-herd 
prevalence conditional on the herd being infected (CWHP). HTP was 
modelled as a Bernoulli distribution with two possible outcomes; a herd 
was considered to be infected with probability µ and uninfected with a 
probability 1-µ. Then, conditional on the herd being infected, the con
ditional within-herd prevalence (CWHP) was modelled as beta 
distribution. 

Prior distributions for HTP (µ) and CWHP were constructed as fol
lows. In accordance to McAloon et al. (2016), a flat distribution from 
0 to 1 was chosen as a prior for µ as there was no prior knowledge to 
inform a herd prevalence estimate. CWHP was based on an observa
tional study on within-herd dynamics of M. bovis in five Dutch dairy 
herds with a clinical outbreak of M. bovis (Penterman et al., 2022). 
During the first three months after the onset of the outbreak in these 
herds, M. bovis DNA was found in conjunctival fluid in 34.3% of 
randomly selected healthy cattle and 65.9% of clinically suspect cattle, 
on average. The percentage of clinically suspected dairy cows per 
outbreak farm varied from 1% to more than 10%. Therefore, for our 
study a weighted within-herd prevalence was used, based on a 90% 
weight of the randomly selected cattle prevalence and a 10% weight of 
the clinically suspect cattle prevalence. The resulting 37.5% mean was 
used to fit a beta distribution using the ‘PriorGen’ package in R 4.2.1 
(Kostoulas, 2018). Differences in HTP between the herd-level factors 
herd size, open/closed farming system and regions were tested. 
Numbers were assumed to be significantly different of each other when 
the 95% BPI of their difference did not include zero. 

Sensitivity analysis of the selected priors for µ (HTP) and CWHP was 
conducted by analysing a number of alternatives. Next to the flat uni
form distribution as prior for µ to estimate HTP, three alternative priors 
were used representing various levels of HTP. In a low HTP scenario, a 
beta prior with a mode of 0.25 was used as beta(3.88, 9.63). In a medium 
HTP scenario, a beta prior with a mode of 0.50 was used (beta(4.94, 
4.94)). In a high HTP scenario a beta prior with a mode of 0.75 was used 
(beta(9.63, 3.88)). Finally, alternative priors for CWHP were specified as 
uninformative (beta(1,1)) and weakly informative by giving it a wider 
distributional spread (beta(9.35,15.58)). 

The model was coded using OpenBUGS and was compiled with three 
sets of initial values. A burn-in period of 5,000 iterations was applied; 
conclusions were based on the next 15,000 iterations. Visual inspection 
of the time series trace plots and the Brooks-Gelman-Rubin diagnostic 
was used to assure that the chains had converged. Autocorrelation plots 
were examined visually to ensure there was no strong autocorrelation 
between the Monte Carlo samples. The model code for Model 2 can be 
found in supplementary file S3. 

3. Results 

3.1. Serology 

A total of 7828 cattle from 451 dairy farms were sampled between 3 
October and 31 December 2019. Five hundred and twenty-three samples 

were excluded from analysis due to violation of the sampling criteria 
(related to the age of the animals), resulting in the analysis of 7305 
samples from 415 herds. From these herds, 100 herds had insufficient 
test results from calves (3 ≤n < 6) and/or insufficient test results from 
cows (6 ≤n < 12), yet these were kept in the data set. An overview of the 
test results for ELISA A is provided in Table 3. The majority of the cattle 
tested seronegative (95.4%). From the subset of 100 herds, 1799 sam
ples were also tested for M. bovis specific antibodies using ELISA B, of 
which 1200 from cows and 599 from calves. The joint test results are 
shown in Table 4. 

3.2. Test characteristics (Model 1) 

Table 5 provides an overview of the posterior summary statistics for 
each Scenario. Animal-level prevalences of the populations are omitted 
as they are not in the scope of this model. In Scenario 1, posterior median 
Se and Sp estimates for ELISA A were 14.1% (BPI: 11.6–16.7) and 97.2% 
(BPI: 95.9–98.4), respectively (Table 5) (Fig. 1). For ELISA B, Se and Sp 
estimates were 92.5% (BPI: 88.3–96.5) and 99.3% (BPI: 98.7–99.8), 
respectively. 

SeA was estimated to be 12.6% (BPI: 10.2–15.2) in Scenario 2 (with 
sera from cows only) but significantly higher in Scenario 3 (with sera 
from calves only: 36.3% (BPI: 27.5–44.9)). For ELISA B, SeB shifted 
slightly towards a median of 96.3% (BPI: 93.9–98.2) in Scenario 2 and to 
90.8% (BPI: 85.6–95.3) in Scenario 3. SpA was estimated to be 96.6% 
(BPI: 94.7–98.3) in Scenario 2% and 99.3% (BPI: 98.0–100) in Scenario 
3. SpB in Scenario 2 and Scenario 3 remained fairly the same as in 
Scenario 1 (Table 5 and Fig. 1). 

In the subset of herds with a clinical outbreak (Scenario 4), SeA 
increased considerably to a median of 70.7% (BPI: 63.8–77.6) and SeB 
shifted to 94.3% (BPI: 91.0–97.2). SpA and SpB remained fairly the same 
as in Scenario 1 (Fig. 1). 

Covariances between the tests were estimated at 0.004 (BPI: − 0.01 
to 0.013) in diseased subjects and 0.001 (BPI: − 0.000 to 0.005) in non- 
diseased subjects in Scenario 1. These estimates did not shift substan
tially in the other scenarios. The potential scale reduction factor was 
between 0.99 and 1.00 for all parameters in each scenario and trace 
plots were stable (results not shown), indicating proper convergence. 
Effective sample sizes did not reveal problematic autocorrelation. 

The alternative priors selected for Scenario 1 yielded adequate model 
convergence and effective sample size values. Inspection of the posterior 
distributions showed that the posterior of SeA and SeB shifted to lower 
values under uninformative and weakly informative priors, suggesting 
the original prior specification had an impact on the results (Fig. 2). 
Posterior distributions of SpA and SpB were very similar across the 
selected prior distributions, implying robustness across different prior 
settings. 

3.3. Estimated prevalence (Model 2) 

The regional location of herds in the study population was repre
sentative for the distribution of dairy herds in the Netherlands, i.e. most 
herds located in the northern and eastern region (Table 6). The mean 
herd size was 124 cows. Over 55% of the herds had a closed farming 
system, which is higher than the national average in dairy farms in 2019 
(48.2%; Government of the Netherlands, 2020). Herds from the north
ern region where largest and had most often a closed farming system. 

Posterior median cow-level true prevalence (π) was 26.3% (BPI: 
23.5–29.1) (Table 7). The posterior median herd-level true prevalence 
(HTP) was 69.9% (BPI: 62.7–77.6). It was observed that the model was 
very insensitive to the prior for µ (HTP), therefore only results of the 
default model with a flat distribution from 0 to 1 as the prior for µ are 
shown. Changing the CWHP prior to an uninformative or weakly 
informative distribution lead to moderate shifts in posterior median HTP 
toward 81.4% (BPI: 73.3–89.2) and 72.5% (65.1–80.2), respectively. 

HTP was not statistically different between regions. Herds with an 
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open farming system had a probability of infection of 74.3% (BPI: 
66.4–82.6) and herds with a closed farming system had a probability of 
infection of 67.0% (BPI: 58.7–75.7) (Table 7). The difference between 
these types of farming systems was significantly different from zero 
(median: +7.2% (BPI: 0.2–14.2)). Herds belonging to the group of 25% 
largest herds had a higher probability of infection (77.7% (BPI: 
70.5–85.6)) than herds belonging to the group of 25% larger herds 
(64.2% (BPI: 55.3–74.8)), with a median difference of + 13.3% (BPI: 
5.0–21.8). Herds belonging to the group of 25% largest herds also had a 
higher probability of infection than herds belonging to the group of 25% 
smaller herds (65.6% (BPI: 55.2–77.1)), with a median difference of 
+ 12% (BPI: 2.5–21.4). The posterior distribution of the animal-level TP 
and herd-level TP is shown in Fig. 3. 

The variation in Se estimates between ELISA A and ELISA B is re
flected in the probability of a herd being infected despite having no 
positive test results. From the 315 herds investigated with ELISA A, 194 
had no positive test results. In these herds, the estimated probability of 
the herd being infected ranged from 37% to 52% (Fig. 4). From the 100 
herds investigated with ELISA B, 15 had no positive test results and the 
probability of these herds being infected did not exceed 1% (Fig. 4). 

4. Discussion 

In this study, test characteristics of two antibody ELISAs were vali
dated under field conditions. As no gold standard was available for 
M. bovis infections on a herd level, Bayesian modelling was used to es
timate test sensitivities and specificities and to estimate the prevalence 
of M. bovis infected Dutch dairy herds. 

A latent class model was used for two tests in 100 populations, 

assuming conditional dependence of the test results. This assumption 
appeared appropriate as the model estimated some (yet limited) level of 
covariance between diseased subjects. By considering the 100 herds as 
subpopulations, the assumption of differences in the prevalence of 
infection among sampled populations, when applying a latent class 
model to data from two tests (Hui and Walter, 1980), was met. Also, by 
doing so, test accuracies were estimated under realistic (field) condi
tions, reflecting test error rates for cattle randomly selected from the 
target population as a whole (Hanson et al., 2003). However, there is 
also a downside of differing prevalences amongst subpopulations. The 
assumption of constant accuracy of tests across populations may have 
been violated, as test sensitivity might be biased toward the value in the 
population(s) with the largest prevalence (Toft et al., 2005). We assume 
that giving the large number of randomly selected herds, this bias has 
been limited. 

Test results of the two ELISAs were dichotomized prior to analysis, 
based on the cut-off S/P ratio as defined by the manufacturer. By doing 
so, all positive test results were considered equal, which may have led to 
some loss of information (Kostoulas et al., 2017). A latent class model 
based on continuous responses of the two ELISA tests under evaluation 
may have been able to quantify antibody level-dependent sensitivities 
more accurately (for example related to the stage of disease). 

Assessing how robust (or not) model results are to different prior 
settings is an important part of Bayesian statistics (Kostoulas et al., 2017; 
Depaoli et al., 2020). Therefore, Model 1 was rerun with two alternative 
specifications for the priors for sensitivity and specificity. This revealed 
that the original prior specification for the sensitivities of the two ELISA 
tests had a considerable impact on the results. An explanation for this 
dependency could lie in the source of the informative priors selected, 
which were based on calf serum samples, whereas our data predomi
nantly comprised results of serum samples from cows. Cattle with a 
higher age may have been infected for a longer duration of time, which 
may have led to waning antibody levels. Contrary, seropositivity in 
young calves is probably the result of recent infection, although 
maternal antibodies cannot be excluded. If the ELISAs we evaluated 
suffer from antibody level-dependent sensitivity, or a very short dura
tion of antibody detection as suggested by Petersen et al. (2020), then 
the informative priors for sensitivities we selected based on studies in 
calves may have been too high for our data. Nevertheless, the substan
tive interpretation of model results did not change under different prior 
specifications. 

Table 4 
Cross-classification of M. bovis results from two correlated ELISA tests in serum samples from calves and cows (N = 1799).   

ELISA B 

ELISA A 0 + + + + ++ + ++ + Total 
0 1025 91 130 110 310 1666 (92.4%) 
+ 19 5 16 12 35 87 (5.0%) 
+ + 11 3 2 4 11 31 (1.7%) 
+ ++ 1 1 0 0 9 11 (0.7%) 
+ ++ + 0 0 0 0 2 2 (0.1%) 
+ ++ ++ 0 1 0 0 1 2 (0.1%) 
Total 1.056 (58.8%) 101 (5.8%) 148 (8.2%) 126 (7.0%) 368 (18.3%) 1799  

Table 5 
Posterior medians and 95% posterior probability intervals of the animal-level prevalence π and test characteristics using Model 1 on all joint test results from 100 herds 
(Scenario 1), data from cows only (Scenario 2), data from calves only (Scenario 3) and joint test results of 5 herds with a high prevalence (Scenario 4).   

Scenario 1: Total Scenario 2: Cows only Scenario 3: Calves only Scenario 4: High prevalence 

Parameter Median 95% BPI Median 95% BPI Median 95% BPI Median 95% BPI 

SeA 0.141 0.116; 0.167 0.126 0.102; 0.152 0.363 0.275; 0.449 0.707 0.638; 0.776 
SeB 0.925 0.883; 0.965 0.963 0.939; 0.982 0.908 0.856; 0.953 0.943 0.910; 0.972 
SpA 0.972 0.959; 0.984 0.966 0.947; 0.983 0.993 0.980; 1.000 0.965 0.872; 1.000 
SpB 0.993 0.987; 0.998 0.993 0.985; 0.998 0.995 0.989; 0.998 0.991 0.981; 0.997 
covp 0.004 -0.008; 0.013 -0.002 -0.014; 0.006 -0.021 -0.055; 0.018 0.009 -0.015; 0.036 
covn 0.001 -0.000; 0.005 0.002 -0.000; 0.007 0.002 -0.000; 0.006 0.003 -0.001; 0.011  

Table 3 
M. bovis-specific ELISA (A) results of 2346 calves and 4959 cows from 415 dairy 
herds in the Netherlands in 2019.  

Test result Calves Cows Total 

0 2272 (97%) 4699 (95%) 95.4% 
+ 34 (1%) 197 (4%) 3.2% 
++ 26 (1%) 45 (1%) 1.0% 
+++ 10 (0.4%) 15 (0.3%) 0.3% 
++++ 1 (<0.1%) 2 (<0.1%) < 0.1% 
+++++ 3 (0.1%) 1 (<0.1%) < 0.1% 
Total 2346 4959 7305  
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Results showed that the sensitivity of commercially available ELISA 
kits to identify antibodies against M. bovis vary largely. The low sensi
tivity of the Bio-X K-260 ELISA has also been shown by others (Ander
sson et al., 2019; Petersen et al., 2020), although they used the 
monowell K-302 ELISA in their studies instead of the double well K-260 
ELISA from Bio-X, with both antigen-coated wells and negative control 
antigen-coated wells. The K-260 ELISA was used for routine diagnostics 
at Royal GD at the time of this study. Wawegama et al. (2016) estimated 
the sensitivity of the Bio-X K-260 ELISA to be 13% (95% CI: 5–30), 
which is in line with our findings in the default scenario (i.e. cows and 
calves from randomly chosen herds). The low sensitivity of the Bio-X 
ELISA needs to be taken into account when used in the field. Sug
gested implications for the poor sensitivity of the corresponding Bio-X 
K-302 ELISA are a very short duration of antibody detection and its 
ability to primarily detect clinically ill animals (Petersen et al., 2020). 
The latter seems to be true for the Bio-X K-260 ELISA as well, as it’s 
sensitivity improved considerably to 70.7% (BPI: 63.8–77.6) when 
samples from herds with a recent clinical M. bovis outbreak were 
analysed. 

The aforementioned hypothesis of reduced sensitivity when antibody 
levels decrease is supported by our finding that Bio-X test sensitivity was 
twice as high in samples from calves as compared to samples from cows. 
The sensitivity of the IDvet ELISA was estimated to be 92.5%, with no 
notable differences between samples from calves, cows or herds with a 
clinical outbreak. This suggests high sensitivity to detect both recent and 
past infections. Nevertheless, this raises questions to the interpretation 
of IDvet ELISA results when used in practice in relation to the purpose of 

testing. It is hypothesized that the IDvet ELISA in serum will measure 
(past) exposure to M. bovis rather than current colonization in the 
infected animal only (Petersen et al., 2020), which has to be taken into 
account when used for diagnostic purposes without parallel pathogen 
detection. More importantly, the duration of serum antibody response 
after natural infection is key in this matter, which is not exactly known. 
Vähänikkilä et al. (2019) measured serum antibodies for at least one and 
a half years in cattle from farms with and without apparent presence of 
M. bovis. On the contrary, Petersen et al. (2018) showed that serum 
antibody responses are highly dynamic and show a high level of varia
tion between individual cows. 

In our attempt to estimate the true prevalence of dairy herds with an 
infection of M. bovis, test results of the two aforementioned ELISA tests 
were considered simultaneously in one model, using either test results 
from the Bio-X ELISA (n = 315 herds) or from the IDvet ELISA (n = 100 
herds). A latent class model in which the available cross-classified test 
results were used did not converge as 315 out of 415 herds lacked IDvet 
ELISA results. It would be worthwhile to investigate other models or 
software packages than the one we used to solve this matter. Also, ELISA 
test characteristics were not taken into account in the sample size 
calculation for the prevalence estimation, which has most likely led to 
an underestimation of the required sample size considering the subop
timal test sensitivities of both ELISAs. 

Herd-level true prevalence was estimated to be high, suggesting that 
a large proportion of the dairy herds in the Netherlands have been 
exposed to M. bovis. However the Bayesian latent-class model that we 
used tends to overestimate true herd prevalence (McAloon et al., 2019). 

Fig. 1. Posterior distributions of Se and Sp of ELISA A and ELISA B from four latent class models: all serum samples (Scenario 1), cows only (Scenario 2), calves only 
(Scenario 3) and high-prevalent herds (Scenario 4). 
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More specifically, it was concluded that the model is quite sensitive to 
the herd true prevalence (HTP) prior used. We therefore varied the prior 
for HTP from an uninformative uniform distribution from 0 to 1 to 
informative beta distributions representing a low, medium or high HTP. 
The resulting posterior HTP estimates changed only marginally with 
varying HTP priors, suggesting that our model was robust to the selec
tion of the prior for HTP. 

For the within-herd prevalence (CWHP), a beta prior distribution 
was chosen based on observational study results in dairy cattle herds 
with an M. bovis outbreak (Penterman et al., 2022). This type of prior 
was chosen as it resulted in the most accurate model results and there
fore appeared to be most appropriate according to McAloon et al. 
(2019). Moreover, McAloon et al. (2019) concluded that a Bayesian 
latent-class model can be reasonably accurate when used to estimate 

Fig. 2. Posterior distributions of Se and Sp of ELISA A and ELISA B under informative (dark grey), weakly informative (medium grey) and uninformative (dashed) 
prior settings in the default latent class model with two tests and 100 populations. 

Table 6 
Descriptive statistics of the investigated herds (N = 415).  

Region Number of 
herds 

Mean herd 
sizea (SD) 

Closed farming 
systemb (%) 

Test positive herds 
(≥1 T+ animal, %) 

North 121 138 (79)  61.2  42.3 
East 138 115 (52)  53.2  50.0 
West 73 107 (47)  49.3  42.2 
South 83 131 (62)  56.6  50.8 
Total 415 124 (63)  55.5  44.0  

a Number of lactating cows in third quarter of 2019 
b No introduction of new animals in the herd in the past year in the third 

quarter of 2019 

Table 7 
Posterior medians and 95% posterior probability intervals of the M. bovis 
prevalence parameters of Model 2. Parameters sharing an alphabetical super
script have a difference being significantly different from zero.  

Parameter Median 95% BPI 

Cow-level true prevalence 0.263 0.235; 0.291 
Herd-level TP 0.699 0.627; 0.776 
Herd-level TP in North 0.653 0.562; 0.752 
Herd-level TP in East 0.732 0.652; 0.819 
Herd-level TP in West 0.671 0.562; 0.781 
Herd-level TP in South 0.735 0.639; 0.831 
Herd-level TP in closed farming systems# 0.670a 0.587; 0.757 
Herd-level TP in semi-open farming systems 0.689 0.533; 0.833 
Herd-level TP in open farming systems 0.743a 0.664; 0.826 
Herd-level TP in 25% smallest herds$ 0.684 0.561; 0.789 
Herd-level TP in 25% smaller herds 0.656b 0.552; 0.771 
Herd-level TP in 25% larger herds 0.642 0.553; 0.748 
Herd-level TP in 25% largest herds 0.777b 0.705; 0.856 

#Closed: 0 cattle introduced in the herd in the past year. Semi-open: 1–2 cattle 
introduced in the herd in the past year. Open: > 2 cattle introduced in the herd 
in the past year. Both measured in the third quarter of 2019. 
$25% smallest: < 68 lactating cattle; 25% smaller: 68–96 cattle; 25% larger: 
97–131 cattle; 25% largest: > 131 cattle. 

Fig. 3. Posterior distributions of animal-level true prevalence (grey) and herd- 
level true prevalence (white). 
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prevalence for infections or diseases with poor Se or low CWHP (but not 
both). Indeed, poor Se may be an issue when estimating M. bovis prev
alence, as shown with Model 1 in this study, depending on the ELISA kit 
used. Yet it is expected that M. bovis within-herd prevalence in infected 
herds is fairly high, as M. bovis DNA was found in conjunctival fluid in 
34.3% of healthy cattle in herds with an acute outbreak (Penterman 
et al., 2022). Changing the CWHP prior to an uninformative or weakly 
informative distribution led to an increase in posterior M. bovis herd 
prevalence estimated by our model. Even though the posterior BPIs of 
these alternatives overlapped with the BPI under the original prior, it 
does suggest that the CWHP we used (based on Penterman et al., 2022) 
may be an underestimation of the true within-herd prevalence in 
infected herds. 

No statistically significant differences were found in true prevalences 
between regions. Large dairy herds and herds that introduced cattle 
from other herds had a higher probability of being infected than smaller 
dairy farms or closed farms. This is in agreement with previous studies, 
in which herd size has been identified as a risk factor for the detection of 
M. bovis in bulk milk (Fox et al., 2003; Pinho et al., 2013; Vähänikkilä 
et al., 2019; McAloon et al., 2022; Hurri et al., 2022), although it has 
also been described to be not associated with the bulk milk antibody test 
result (Petersen et al., 2016). Purchase of a carrier animal has also been 
described as an important risk factor (Maunsell et al., 2011; McAloon 
et al., 2022). 

It is unknown which proportion of our sample of dairy herds have 
experienced clinical signs of M. bovis-associated disease. Moreover, the 
clinical relevance of seropositive test results in herds without clinical 
signs requires further clarification, as it has been suggested that M. bovis 
ELISAs may cross-react with commensal Mycoplasmas (Wawegama 
et al., 2014; Petersen et al., 2020). In the light of the difference in 
sensitivity of the ELISAs used in our study, and the aforementioned ef
fect of recent versus past infections, it is expected that true herd prev
alence of 69.9% represents farms with recent exposure to M. bovis as well 
as farms with past exposure to M. bovis. These results suggest that 
M. bovis infection is endemic in the Dutch dairy sector. Further research 
is needed to identify the number of active infections in the dairy sector. 
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