
IMPRESS: Improving Engagement
in Software Engineering Courses Through

Gamification

Tanja E. J. Vos1, I. S. W. B. Prasetya2(B) , Gordon Fraser3,
Ivan Martinez-Ortiz4, Ivan Perez-Colado4, Rui Prada5, José Rocha5,

and António Rito Silva5

1 Open Univeriteit Nederland, Heerlen, Netherlands
2 Utrecht University, Utrecht, Netherlands

s.w.b.prasetya@uu.nl
3 Universität Passau, Passau, Germany

4 Universidad Complutense de Madrid, Madrid, Spain
5 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa,

Lisbon, Portugal

Abstract. Software Engineering courses play an important role for
preparing students with the right knowledge and attitude for software
development in practice. The implication is far reaching, as the quality of
the software that we use ultimately depends on the quality of the people
that make them. Educating Software Engineering, however, is quite chal-
lenging, as the subject is not considered as most exciting by students,
while teachers often have to deal with exploding number of students. The
EU project IMPRESS seeks to explore the use of gamification in edu-
cating software engineering at the university level to improve students’
engagement and hence their appreciation for the taught subjects. This
paper presents the project, its objectives, and its current progress.

Keywords: Software engineering education · Gamification in
education · Gamification in software engineering education

1 Introduction

While our society increasingly depends on software for various aspects of civic,
commercial and social life, software engineers struggle to ensure that software
achieves the necessary high quality. The increasing complexity of modern soft-
ware systems and the ever reducing time-to-marked further exacerbate the prob-
lem. Although the discipline of Software Engineering offers different techniques

The IMPRESS project https://impress-project.eu/ is funded by EU Erasmus+ Pro-
gramme, grant nr. 2017-1-NL01-KA203-035259. Duration: 2017–2020. Partners: Open
Univ. (NL), Utrecht Univ. (NL), Univ. Complutense Madrid (SP), Univ. Passau (DE),
INESC-ID Lisbon (PT). The project is also partially funded by the Fundacão para a
Ciência e a Tecnologia (FCT) fund UID/CEC/50021/2019.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 613–619, 2019.
https://doi.org/10.1007/978-3-030-35333-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_47&domain=pdf
http://orcid.org/0000-0002-3421-4635
http://orcid.org/0000-0001-9840-457X
https://impress-project.eu/
https://doi.org/10.1007/978-3-030-35333-9_47


614 T. E. J. Vos et al.

to ensure quality, programmers in practice are reluctant to engage with them,
with detrimental effects on software quality. The root of this situation lies in
how software developers are educated. The focus tends to lie on the creative
aspects of design and coding, whereas the more laborious and less entertaining
necessities to assure the software’s quality are neglected. This disengagement
carries over to practice. This has to change: tomorrow software engineers need
to be raised with appreciation of software quality, and quality assurance tech-
niques need to become a natural aspect of software development, rather than
a niche topic. Implementing the change, however, is not easy, as teachers have
to motivate students through materials already branded as uninteresting. To
help teachers, the IMPRESS project seeks to explore the use of gamification,
i.e., the application of game-design elements and game principles in non-gaming
contexts, which has seen successful applications in other domains. This paper
will present the project objective, the results so far, and a conclusion.

2 IMPRESS Expected Outcomes

Although gamification is known to improve users’ engagement and appreciation
[4], its application to Software Engineering is still limited. IMPRESS seeks to
deliver innovations that would help improving students’ engagement and enthu-
siasm on topics traditionally considered boring. It will focus on the following:

(1) Improving in-class engagement through gamified quizzes. Quizzes are an
effective tool to set a course’s pace. A cleverly setup quiz can trigger an
engaging discussion, while gamification can stimulate wider engagement
through competitive elements. A set of quizzes from selected topics will be
developed within the project, along with tools to let others to develop more.

(2) Improving out-class engagement through educational games that can be
played at home or in unguided lab sessions. We will focus on the subject of
quality assurance —a key subject, as pointed out earlier—, in particular in
two key competences: formalizing specifications and unit testing.

(3) Enhancing gamification with story telling AI for better emotional engage-
ment and advanced analytics to provide insight on students’ learning
progress.

3 IMPRESS Innovations

This section presents the project progress so far.

Keeping Students on the Move with Quizzes. Quizzes have great potential
as teaching tools. They can enrich the presentation of a course’s content, and
foster participation in the class subject. Tools like Kahoot prospered because of
this. Quizzes can be used in a class to raise attention to particular issues, e.g. by
showing to the students what they do not know, hence, supporting self-awareness

https://kahoot.com/


IMPRESS: Improving Engagement in Software Engineering Courses 615

of knowledge and make students more receptive to new information. Quizzes can
also be used to support revision of knowledge, for example, as a summary in the
end of the class, and to evaluate students. Outside the class, quizzes can be a
good self assessing tool for students and enhancing their learning process by
supporting self-regulation of learning and providing quick feedback about their
current state of readiness on their subjects.

We have developed a web-based tool to reduce teachers’ effort in prepar-
ing quizzes. The tool, available in a GitHub repository: https://github.com/
socialsoftware/as-tutor, allows users to search through a repository of questions
and quizzes, and create new quizzes by re-using and re-purposing the materials
they find. The tool also supports automatic generation of quizzes on students’ (or
teachers’) requests, e.g. classified according to a set of topics. Produced quizzes
can then be exported to gamified quiz tools, e.g. ARSnova, https://arsnova.eu/.
The repository currently contains over 600 questions and 80 quizzes, mostly on
the subject of Software Architecture. A pilot in some of our courses is planned,
after which the tool will be deployed open for the community. We plan to extend
the tool with automatic classification of questions (for more accurate automatic
quizz generation) and generation of post-quizz feedback for both students and
teachers on the students’ learning progress.

Training Formalization Skill with a Game. Writing formal specifications
is a skill that would greatly benefit students. Software with formal specifications
can be verified, or at least tested, automatically, hence greatly improving its
correctness assurance. Unfortunately, this skill is often left underdeveloped. The
skill is not easy to master: it is easy to make mistakes, and training it can
quickly become boring. In IMPRESS we experiment with a new game called
FormalZ [13] to train the basic of writing formal specifications in the form of
pre- and post-conditions. Unlike existing Software Engineering themed education
games like Pex [15] and Train-Director-B [6], FormalZ takes a deeper gamification
approach [1], where ‘playing’ is given a more central role. After all, what makes
games so engaging is not merely the awarded scores and badges, but primarily
the experience of playing them. Figure 1 shows a screenshot of FormalZ.

FormalZ also takes a Constructionism approach [10]: just typing in formu-
las, which would be faster, is forbidden. Instead, the user constructs formu-
las by dragging and connecting blocks of electronic hardware components. The
Constructionism theory believes that humans learn by constructing knowledge,
rather than by simply copying it from the teacher. Framing the knowledge in
terms of familiar physical objects, such as electronic components, plays a key role
in this process, because the learner already has knowledge on how they work [5],
which the learner then uses to construct the new knowledge in his mind. The
theory was originally proposed by Papert and Harel [10] and was e.g. used in
the programming language LOGO for teaching programming to children.

The initial reaction from our students have been encouraging [13], but more
studies are needed to investigate the actual impact on the game’s learning goal.

https://github.com/socialsoftware/as-tutor
https://github.com/socialsoftware/as-tutor
https://arsnova.eu/


616 T. E. J. Vos et al.

Fig. 1. A screenshot of FormalZ. The game is to defend the CPU in the middle of the
circuit board. The small red and blue blobs represent data coming to or leaving the
CPU. Some of them might be corrupted. The user builds pre- and post conditions, and
defense towers, trying to eliminate corrupted blobs. See also [13]. (Color figure online)

Teaching Software Testing Through a Competitive Game. A further
challenging activity in software engineering practice as well as education is test-
ing a program for errors. In IMPRESS we explore improving the education of
testing using Code Defenders, a game intended to engage students in the con-
text of a Java object-oriented class under test and its test suite. In the game,
attackers aim to introduce artificial bugs (“mutants”) into the class under test
that reveal weaknesses in the test suite, while defenders aim to improve the test
suite by adding new tests. If a mutant program produces a different output for
a test than the original program, then that mutant is detected by the test, and
the defender who wrote the test scores points. If a mutant is not detected by any
tests, then the attacker scores points. The number of points a mutant is worth
depends on the number of tests it “survives”, which further encourages players
to create as subtle as possible mutants, and as strong as possible tests.

Code Defenders is implemented as a web-based game and is played by teams
of students. The players are shown the source code of the Java class under
test, with color highlighting to indicate the coverage of the defenders’ test suite,
and with bug-icons labelling the locations and status of the attackers’ mutants.
Attackers create mutants by editing the source code of the Java class, and defend-
ers write JUnit tests using a code editor. A scoreboard breaks down the game’s
current score for each team and player.

We have studied player behavior in detail [14] and shown that players enjoy
writing tests in the game more than as a regular developer activity. We have also
applied Code Defenders in class and designed a software testing undergrad course
around it [3]. Initial evaluation results suggest that Code Defenders supports
students in achieving their learning objectives.



IMPRESS: Improving Engagement in Software Engineering Courses 617

3.1 Advanced Analytics

We have extended the analytics platform from the H2020 RAGE project1 to
adequate its functionalities to IMPRESS’ needs, in particular to support different
types of analytics generating educational activities [7]. These new developments
allowed two approaches for analytics integration: light and deep integration.

Often, educational tools (like Kahoot!) provide a report that summarizes stu-
dents interaction to some extent. In light integration the underlying educational
tool it is not modified at all (e.g. because modification is not possible). RAGE
Analytics is simply used on available analytics provided by the educational tool,
e.g. to provide better or uniform visualisation across multiple tools.

In deep integration, the developers of the education tool need to integrate a
“tracker” [11] into the tool, used to send out the user interaction information. As
such, this approach can provide more fine grained analytics and to provide it live
and is therefore the recommended integration approach. This was the approach
selected for integration of the FormalZ game with RAGE Analytics, allowing
us to collect all students interactions and to show them graphically to teachers,
near real-time, in a single dashboard (Fig. 2). The analytics can also show how
the students evolve their solutions, to give insight on their mental process in
constructing the solutions.

Having all analytics in one place allowed us to provide an additional capa-
bility for teachers that want to have analytics of multiple heterogeneous activity
(e.g. to track student progress during a longer period). This is facilitated through
configurator to perform simple operations and weight of activities, so they can
build new variables that can be included in class level dashboards [12].

Fig. 2. FormalZ analytics main dashboard.

1 GitHub repository: https://github.com/e-ucm/rage-analytics.

https://github.com/e-ucm/rage-analytics


618 T. E. J. Vos et al.

3.2 AI in IMPRESS

One of the use of AI for teaching is the generation and adaptation of learning
content [2]. We are currently working on an AI module to create personalization
features of the previously mentioned quiz tool we developed. It will work with
the data that will be stored by the students performance on the quizzes to define
student profiles and choose the best quizzes to enrich their learning experience.

AI can also improve the learning experience by adding a storytelling layer
to the content. Stories are common in games and support meaning making and
emotional engagement that foster learners motivation and learning [9]. We are
developing storytelling components for the Code Defenders and FormalZ games
by using the FAtiMA toolkit2 [8]. Our approach is to put the challenges presented
by the games into a narrative, by including a character in the game that will
talk to the players contextualizing the challenge that is given to the player(s)
and presenting feedback on the performance. The toolkit facilitates the creation
of such characters including mechanisms for the generation of personality and
emotional responses, an authoring tool for character’s behaviour, and integration
through a REST API.

4 Conclusion

While the importance of Software Engineering courses is well acknowledged,
creating engaging Software Engineering courses is very challenging. Much
can be improved through innovative use of modern technology. Along this
line, IMPRESS has contributed innovations in gamification, and more can be
expected before the project ends in 2020. Ultimately though, energizing Software
Engineering education is not a challenge that a single project like IMPRESS can
solve on its own. Community, and Industry, should also own the problem and
commit to solving it.

References

1. Boyce, A.K.: Deep gamification: combining game-based and play-based methods.
Ph.D. thesis, North Carolina State University (2014)

2. Brisson, A., et al.: Artificial intelligence and personalization opportunities for seri-
ous games. In: Proceedings of the 8th Artificial Intelligence and Interactive Digital
Entertainment Conference (2012)

3. Fraser, G., Gambi, A., Kreis, M., Rojas, J.M.: Gamifying a software testing course
with code defenders. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pp. 571–577. ACM (2019)

4. Hamari, J., Koivisto, J., Sarsa, H., et al.: Does gamification work? -a literature
review of empirical studies on gamification. In: 47th Hawaii International Confer-
ence on System Sciences (2014)

5. Kafai, Y.B.: Constructionism. In: The Cambridge Handbook of the Learning Sci-
ences. Cambridge University Press, Cambridge (2005)

2 https://fatima-toolkit.eu/.

https://fatima-toolkit.eu/


IMPRESS: Improving Engagement in Software Engineering Courses 619

6. Korečko, Š., Sorád, J.: Using simulation games in teaching formal methods for soft-
ware development. In: Innovative Teaching Strategies and New Learning Paradigms
in Computer Programming, pp. 106–130. IGI Global (2015)

7. Mart́ınez-Ortiz, I., Pérez-Colado, I., Rotaru, D.C., Freire, M., Fernández-Manjón,
B.: From heterogeneous activities to unified analytics dashboards. In: IEEE Global
Engineering Education Conference (EDUCON) (2019)

8. Mascarenhas, S., et al.: A virtual agent toolkit for serious games developers. In:
Proceedings of Conference on Computational Intelligence and Games (CIG). IEEE
(2018)

9. Ohler, J.B.: Digital Storytelling in the Classroom: New Media Pathways to Liter-
acy, Learning, and Creativity. Corwin Press, Thousand Oaks (2013)

10. Papert, S., Harel, I.: Constructionism. Ablex Publishing, Norwood (1991)
11. Perez-Colado, I., Alonso-Fernandez, C., Freire, M., Martinez-Ortiz, I., Fernandez-

Manjon, B.: Game learning analytics is not informagic! In: 2018 IEEE Global
Engineering Education Conference (EDUCON) (2018)

12. Perez-Colado, I.J., Rotaru, D.C., Freire-Moran, M., Martinez-Ortiz, I., Fernandez-
Manjon, B.: Multi-level game learning analytics for serious games. In: 10th Inter-
national Conference on Virtual Worlds and Games for Serious Applications (VS-
Games) (2018)

13. Prasetya, I.S.W.B., et al.: Having fun in learning formal specifications. In: Pro-
ceedings of 41st International Conference on Software Engineering (ICSE). IEEE
(2019)

14. Rojas, J.M., White, T.D., Clegg, B.S., Fraser, G.: Code defenders: crowdsourcing
effective tests and subtle mutants with a mutation testing game. In: Proceedings
of 39th International Conference on Software Engineering. IEEE Press (2017)

15. Tillmann, N., de Halleux, J., Xie, T.: Pex for fun: engineering an automated testing
tool for serious games in computer science. Technical report, MSR-TR-2011-41
(2011)


	IMPRESS: Improving Engagement in Software Engineering Courses Through Gamification
	1 Introduction
	2 IMPRESS Expected Outcomes
	3 IMPRESS Innovations
	3.1 Advanced Analytics
	3.2 AI in IMPRESS

	4 Conclusion
	References




