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Abstract. In model-based testing (MBT) we may have to deal with a
non-deterministic model, e.g. because abstraction was applied, or because
the software under test itself is non-deterministic. The same test case may
then trigger multiple possible execution paths, depending on some inter-
nal decisions made by the software. Consequently, performing precise test
analyses, e.g. to calculate the test coverage, are not possible. This can be
mitigated if developers can annotate the model with estimated probabil-
ities for taking each transition. A probabilistic model checking algorithm
can subsequently be used to do simple probabilistic coverage analysis.
However, in practice developers often want to know what the achieved
aggregate coverage is, which unfortunately cannot be re-expressed as a
standard model checking problem. This paper presents an extension to
allow efficient calculation of probabilistic aggregate coverage, and more-
over also in combination with k-wise coverage.
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1 Introduction

Model based testing (MBT) is considered as one of the leading technologies for
systematic testing of software [5,6,17]. It has been used to test different kinds
of software, e.g. communication protocols, web applications, and automotive
control systems. In this approach, a model describing the intended behavior of
the system under test (SUT) is first constructed [27], and then used to guide
the tester, or a testing algorithm, to systematically explore and test the SUT’s
states. Various automated MBT tools are available, e.g. JTorX [4,26], Phact
[11], OSMO [14], APSL [24], and RT-Tester [17].

There are situations where we end up with a non-deterministic model [13,17,
23], for example when the non-determinism within the system under test, e.g.
due to internal concurrency, interactions with an uncontrollable environment
(e.g. as in cyber physical systems), or use of AI, leads to observable effects at
the model level. Non-determinism can also be introduced as byproduct when
we apply abstraction on an otherwise too large model [20]. Models mined from
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executions logs [7,21,28] can also be non-deterministic, because log files only
provide very limited information about a system’s states.

MBT with a non-deterministic model is more challenging. The tester can-
not fully control how the SUT would traverse the model, and cannot thus pre-
cisely determine the current state of the SUT. Obviously, this makes the task
of deciding which trigger to send next to the SUT harder. Additionally, cover-
age, e.g. in terms of which states in the model have been visited by a series of
tests, cannot be determined with 100% certainty either. This paper will focus on
addressing the latter problem—readers interested in test cases generation from
non-deterministic models are referred to e.g. [13,16,25]. Rather than just saying
that a test sequence may cover some given state, we propose to calculate the
probability of covering a given coverage goal, given modelers’ estimation on the
local probability of each non-deterministic choice in a model.

Given a probabilistic model of the SUT, e.g. in the form of a Markov Decision
Process (MDP) [3,22], and a test σ in the form of a sequence of interactions on
the SUT, the most elementary type of coverage goal in MBT is for σ to cover
some given state s of interest in the model. Calculating the probability that this
actually happens is an instance of the probabilistic reachability problem which
can be answered using e.g. a probabilistic model checker [3,10,15]. However,
in practice coverage goals are typically formulated in an ‘aggregate’ form, e.g.
to cover at least 80% of the states, without being selective on which states to
include. Additionally, we may want to know the aggregate coverage over pairs
of states (the transitions in the LTS), or vectors of states, as in k-wise coverage
[1], as different research showed that k-wise greatly increases the fault finding
potential of a test suite [9,18]. Aggregate goals cannot be expressed in LTL or
CTL, which are the typical formalisms in model checking. Furthermore, both
types of goals (aggregate and k-wise) may lead to combinatorial explosion.

This paper contributes: (1) a concept and definition of probabilistic test
coverage; as far as we know this has not been covered in the literature before, and
(2) an algorithm to calculate probabilistic coverage, in particular of aggregate
k-wise coverage goals.

Paper Structure. Section 2 introduces relevant basic concepts. Section 3 intro-
duces the kind of coverage goals we want to be able to express and how their
probabilistic coverage can be calculated. Section 4 presents our algorithm for
efficient coverage calculation. Section 5 shows the results of our benchmarking.
Related work is discussed in Sect. 6. Section 7 concludes.

2 Preliminary: Probabilistic Models and Simple Coverage

As a running example, consider the labelled transition system (LTS) [2] in Fig. 1
as a model of some SUT. The transitions are labelled with actions, e.g. a and b.
A non-τ action represents an interaction between the SUT and its environment.
In our set up such an action is assumed to occur synchronously a la CSP [12] (for
an action a to take place, both the SUT and the environment first need to agree
on doing a; then they will do a together). The action τ represents an internal
action by the SUT, that is not visible to the environment.
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Fig. 1. An example of a probabilistic model of some SUT called EX1.

To test the SUT, the tester controls the SUT by insisting on which action it
wants to synchronize; e.g. if on the state t the SUT is supposed to be able to
either do a or b, the tester can insist on doing a. If the SUT fails to go along
with this, it is an error. The tester can also test if in this state the SUT can be
coerced to do an action that it is not supposed to synchronize; if so, the SUT is
incorrect. We will assume a black box setup. That is, the tester cannot actually
see the SUT’s state, though tester can try to infer this based on information
visible to him, e.g. the trace of the external actions done so far. For example
after doing a from the state 0 on the SUT EX1 above, the tester cannot tell
whether it then goes to the state 1 or 2. However, if the tester manages to do
abc he would on the hind sight know that the state after a must have been 1.

When a state s has multiple outgoing transitions with the same label, e.g.
a, this implies non-determinism, since the environment cannot control which a
the SUT will take (the environment can only control whether or not it wants to
do a). We assume the modeler is able estimate the probability of taking each of
these a-transitions and annotate this on each of them. E.g. in Fig. 1 we see that
in state 1, two a-transitions are possible, leading to different states, each with
the probability of 0.5. Similarly, in state 3 there are two τ -transitions leading to
states 4 and 5, with the probability of 0.9 and 0.1 respectively. A probabilistic
model such as in Fig. 1 is also called a Markov Decision Process (MDP) [3].

Let M be an MDP model, with finite number of transitions, and a single
initial state. Let s, t be states, and a an action. We write s∈M to mean that
s is a state in M . The notation s

a−→t denotes a transition that goes from the
state s to t and is labelled with a. We write s

a−→t ∈ M to mean that s
a−→t

is a transition in M . PM (s a−→t) denotes the probability that M will take this
particular transition when it synchronizes over a on the state s.

To simplify calculation over non-deterministic actions, we will assume that M
is τ -normalized in the following sense. First, a state cannot have a mix of τ and
non-τ outgoing transitions. E.g. a state s with two transitions {s

τ−→t, s
a−→u}

should first be re-modelled as {s
τ−→t, s

τ−→s′, s′ a−→u} by introducing an inter-
mediate state s′, and the modeler should provide estimation on the probability
of taking each of the two τ transitions. Second, M should have no state whose all
incoming and outgoing transitions are τ transitions. Such a state is considered
not interesting for our analyses. Third, M should not contain a cycle that con-
sists of only τ transitions. In a τ -normalized model, non-determinism can only
be introduced if there is a state s with multiple outgoing transitions labelled by
the same action (which can be τ).

We define an execution of the SUT as a finite path ρ through the model
starting from its initial state. A trace is a finite sequence of external actions.
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The trace of ρ, tr(ρ), is the sequence external actions induced by ρ. A legal
trace is a trace that can be produced by some execution of the SUT. A test-case
is abstractly modeled by a trace. We will restrict to test-cases that form legal
traces, e.g. ab, aba, and ababc are test cases for Ex1 in Fig. 1. Negative tests can
be expressed as legal traces by adding transitions to an error state. A set of test
cases is also called a test suite.

Since the model can be non-deterministic, the same test case may trigger
multiple possible executions which are indistinguishable from their trace. If σ
is a trace, exec(σ) denotes the set of all executions ρ such that tr(ρ) = σ, and
moreover is τ -maximal: it cannot be extended without breaking the property
tr(ρ) = σ. Assuming τ -maximality avoids having to reason about the probability
that ρ, after being observed as σ, is delayed in completing its final τ transitions.

2.1 Representing a Test Case: Execution Model

The probability that a test case σ covers some goal φ (e.g. a particular state
s) can in principle be calculated by quantifying over exec(σ). However, if M is
highly non-deterministic, the size of exec(σ) can be exponential with respect to
the length of σ. To facilitate more efficient coverage calculation we will represent
σ with the subgraph of M that σ induces, called the execution model of σ,
denoted by E(σ). E(σ) forms a Markov chain; each branch in E(σ) is annotated
with the probability of taking the branch, under the premise that σ has been
observed. Since a test case is always of finite length and M is assumed to have no
τ -cycle, E(σ) is always acyclic. Typically the size of E(σ) (its number of nodes) is
much less than the size of exec(σ). For example, the execution model of the test
case aba on EX1 is shown in Fig. 2. An artificial state denoted with � is added so
that E(σ) has a single exit node, which is convenient for later.
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u1(1)

u2(2) u4(0)

u3(3)

u7(2)

u5(4) u6(1)

u8(�)
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Fig. 2. The execution model of the test case aba on EX1.

To identify the states in E(σ) we assign IDs to them (u0...u8 in Fig. 2). We
write u.st to denote u’s state label, which is the ID of a state in M that u
represents (so, u.st ∈ M); in Fig. 2 this is denoted by the number between
brackets in every node.

Importantly, notice that the probability of the transitions in E(σ) may be
different than the original probability in M . For example, the transition u3

τ−→u5

in the above execution model has probability 1.0, whereas in the original model
EX1 this corresponds to the transition 3 τ−→4 whose probability is 0.9. This is
because the alternative 3 τ−→5 could not have taken place, as it leads to an
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execution whose trace does not correspond to the test case aba (which is assumed
to have happened).

More precisely, when an execution in the model E(σ) reaches a node u, the
probability of extending this execution with the transition u

α−→v can be cal-
culated by taking the conditional probability of the corresponding transition
in the model M , given that only the outgoing transitions specified by E(σ)
could happen. So, PE(σ)(u

α−→v) is PM (u.st
α−→v.st) divided by the the sum of

PM (u.st
α−→w.st) of all w such that u

α−→w ∈ E(σ).
Let E = E(σ). Since E is thus acyclic, the probability that SUT traverses a

path/execution ρ in E(σ) when it is given σ can be obtained by multiplying the
probability of all the transitions in the path:

PE(ρ) =
∏

s
α−→t∈ρ

PE(s α−→t) (1)

Simple Coverage Analyses. As an example of a simple analysis, let’s calculate
the probability that a test case σ produces an execution that passes through a
given state s, denoted by P (〈s〉 | σ). This would then just be the sum of the
probability of all full executions in E(σ) that contain s. So:

P (〈s〉 | σ) =
∑

ρ s.t. ρ∈E(σ)∧s∈ρ

PE(σ)(ρ) (2)

For example, on the execution model EX1, P (〈1〉 | aba) = 0.525, P (〈2〉 | aba)
= 0.475, P (〈4〉 | aba) = 0.05, whereas P (〈5〉 | aba) = 0.

3 Coverage Under Uncertainty

Coverage goals posed in practice are however more complex than goals exem-
plified above. Let us first introduce a language for expressing ’goals’; we will
keep it simple, but expressive enough to express what is later called ’aggregate
k-wise’ goals. A goal of the form 〈0, 2, 0〉 is called a word, expressing an intent to
cover the subpath 〈0, 2, 0〉 in the MDP model. We will also allow disjunctions of
words and sequences of words (called sentences) to appear as goals. For example:
(〈0, 2〉 ∨ 〈1, 0〉) ; 〈1〉 formulates a goal to first cover the edge 0→2 or 1→0, and
then (not necessarily immediately) the node 1.

The typical goal people have in practice is to cover at least p% of the states.
This is called an aggregate goal. We write this a bit differently: a goal of the form
1 ≥N expresses an intent to cover at least N different states. Covering at least
p% can be expressed as 1 ≥ �p ∗ K/100
 where K is the number of states in the
model. To calculate probabilistic coverage in k-wise testing [1], the goal k ≥N
expresses an intent to cover at least N different words of length k. Formally:
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Definition 1. A coverage goal is a formula φ with this syntax:

φ ::= S | A (goal)
S ::= C | C;S (sentence)
A ::= k≥N (aggregate goal), with k≥1
C ::= W | W∨C (clause)
W ::= 〈s0, ..., sk−1〉 (word), with k≥1

A sentence is a sequence C0;C1; .... Each Ci is called a clause, which in turn
consists of one or more words. A word is denoted by 〈s0, s1, ...〉 and specifies one
or more connected states in an MDP.

Let ρ be an execution. If φ is a goal, we write ρ � φ to mean that ρ covers
φ. Checking this is decidable. For a word W , ρ � W if W is a segment of ρ. For
a clause C = W0 ∨ W2 ∨ ..., ρ � C if ρ � Wk for some k. Roughly, a sentence
C0;C1; ... is covered by ρ if all clauses Ci are covered by ρ, and furthermore they
are covered in the order as specified by the sentence. We will however define it
more loosely to allow consecutive clauses to overlap, as follows:

Definition 2 (Sentence Coverage). Let S be a sentence. (1) An empty ρ
does not cover S. (2) If S is a just a single clause C, then ρ � S iff ρ � C. (3)
If S = C;S′ and a prefix of ρ matches one of the words in C, then ρ � S iff
ρ � S′. If ρ has no such a prefix, then ρ � S iff tail(ρ) � S.

An aggregate goal of the form k≥N is covered by ρ if ρ covers at least
N different words of size k. While sentences are expressible in temporal logic,
aggregate goals are not. This has an important consequence discussed later.

Let φ be a coverage goal and σ a test case. Let’s write P (φ | σ) to denote
the probability that φ is covered by σ, which can be calculated analogous to (2)
as follows:

Definition 3. P (φ | σ) is equal to P (φ | E) where E = E(σ), P (φ | E) =∑
ρ s.t. ρ∈exec(E) ∧ ρ�φ PE(ρ), and where PE(ρ) is calculated as in (1).

For example, consider the test case aba on the SUT EX1. Figure 2 shows the
execution model of aba. P (〈2, 0〉 | aba) is the probability that aba’s execution
passes through the transition 2→0; this probability is 0.5. P ((〈2〉∨〈3〉); 〈1〉 | aba)
is the probability that aba first visits the state 2 or 3, and sometime later 1; this
probability is 0.75. P (1≥4 | aba) is the probability that the execution of aba
visits at least four different states; this is unfortunately only 0.05.

Due to non-determinism, the size of exec(σ) could be exponential with respect
to the length of σ. Simply using the formula in Definition 3 would then be expen-
sive. Below we present a much better algorithm to do the calculation.

4 Efficient Coverage Calculation

Coverage goals in the form of sentences are actually expressible in Computation
Tree Logic (CTL) [3]. E.g. 〈s, t〉; 〈u〉 corresponds to EF(s∧t∧EFu). It follows that
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the probability of covering a sentence can be calculated through probabilistic
CTL model checking [3,10]. Unfortunately, aggregate goals are not expressible
in CTL. Later we will discuss a modification of probabilistic model checking to
allow the calculation of aggregate goals. We first start with the calculation of
simple sentences whose words are all of length one.

Let S be a simple sentence, σ a test case, and E = E(σ). In standard prob-
abilistic model checking, P (S|σ) would be calculated through a series of mul-
tiplications over a probability matrix [3]. We will instead do it by performing
labelling on the nodes of E, resembling more to non-probabilistic CTL model
checking. This approach is more generalizable to later handle aggregate goals.

Notice that any node u in E induces a unique subgraph, denoted by E@u,
rooted in u. It represents the remaining execution of σ, starting at u. When
we label E with some coverage goal ψ, the labelling will proceed in such a way
that when it terminates every node u in E is extended with labels of the form
u.lab(ψ) containing the value of P (ψ | E@u). The labelling algorithm is shown
in Fig. 3, namely the procedure label(..)—we will explain it below. In any case,
after calling label(E,S), the value of P (S | σ) can thus be obtained simply by
inspecting the lab(S) of E’s root node. This is done by the procedure calcSimple.

1: procedure calcSimple(E, S)
2: label(E, S)
3: return root(E).lab(S)
4: end procedure

5: procedure label(E, S)
6: u0 ← root(E)
7: case S of
8: C → label1(u0, C)
9: C;S′ → label(E, S′) ; label1(u0, S)
10: end procedure

11: procedure checkClause(u, C)
12: � the clause C is assumed to be of

this form, with k ≥ 1 :
13: let 〈s0〉 ∨ ... ∨ 〈sk−1〉 = C
14: isCovered ← u.st ∈ {s0, ..., sk−1}
15: return isCovered
16: end procedure

17: procedure label1(u, S)
18: � recurse to u’s successors :
19: forall v ∈ u.next → label1(v, S)
20: � pre-calculate u’s successors’ to-

tal probability to cover S :
21: q′ ← ∑

v∈u.next u.pr(v) ∗ v.lab(S)
22: � calc. u’s probability to cover S :
23: case S of
24: C → if checkClause(u, C)

then q ← 1
else q ← q′

25: C;S′ → if checkClause(u, C)
then q ← u.lab(S′)
else q ← q′

26: end case
27: � add the calculated probability as

a new label to u :
28: u.lab(S) ← q
29: end procedure

Fig. 3. The labeling algorithm to calculate the probability of simple sentences.

Since S is a sentence, it is a sequence of clauses. The procedure label(E,S)
first recursively labels E with the tail S′ of S (line 9), then we proceed with
the labelling of S itself, which is done by the procedure label1. In label1, the
following notations are used. Let u be a node in E. Recall that u.st denotes the
ID of the state in M that u represents. We write u.next to denote the set of
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u’s successors in E (and not in M !). For such a successor v, u.pr(v) denotes the
probability annotation that E puts on the arrow u→v. A label is a pair (ψ, p)
where ψ is a coverage goal and p is a probability in [0..1]. The notation u.lab
denotes the labels put so far to the node u. The assignment u.lab(ψ) ← p adds
the label (ψ, p) to u, and the expression u.lab(ψ) returns now the value of p.

The procedure label1(ψ) will perform the labelling node by node recursively
in the bottom-up direction over the structure of E (line 19). Since E is acyclic,
only a single pass of this recursion is needed. For every node u ∈ E, label1(u, S)
has to add a new label (S, q) to the node u where q is the probability that the
goal S is covered by the part of executions of σ that starts in u (in other words,
the value of P (S | E@u)). The goal S will be in one of these two forms:

1. S is just a single clause C (line 24). Because S is a simple sentence, C is a
disjunction of singleton words 〈s0〉 ∨ ... ∨ 〈sk−1〉, where each si is an ID of
a state in M . If u represents one of these states, the probability that E@u
covers C would be 1. Else, it is the sum of the probability to cover C through
u’s successors (line 20). As an example, Fig. 4 (left) shows how the labeling
of a simple sentence 〈1〉 on the execution model in Fig. 2 proceeds.

2. S is a sentence with more than one clause; so it is of the form C;S′ (line 25)
where C is a clause and S′ is the rest of the sentence, we calculate the coverage
probability of E@u by basically following the third case in Definition 2. As
an example, Fig. 4 (right) shows how the labeling of S = 〈0〉;〈1〉 proceeds. At
every node u we first check if u covers the first word, namely 〈0〉. If this is the
case, the probability that E@u covers S would be the same as the probability
that it covers the rest of S, namely 〈1〉. The probability of the later is by
now known, calculated by label in its previous recursive call. The result can
be inspected in u.lab(〈1〉).

If u does not cover S, the probability that E(u) covers S would be the sum
of the probability to cover S through u’s successors (calculated in line 21).

Assuming that checking if a node locally covers a clause (the procedure
checkClause in Fig. 3) takes a time unit, the time complexity of label1 is O(|E|),
where |E| is the size of E in terms of its number of edges. The complexity of label
is thus O(|E| ∗ |S|), where |S| is the size of the goal S in terms of the number
of clauses it has. The size of E is typically just linear to the length of the test
case: O(Nsucs ∗ |σ|), where Nsucs is the average number of successors that each
state in M has. This is a significant improvement compared to the exponential
run time that we would get if we simply use Definition 3.

4.1 Non-simple Sentences

Coverage goals in k-wise testing would require sentences with words of length
k > 1 to be expressed. These are thus non-simple sentences. We will show that
the algorithm in Fig. 3 can be used to handle these sentences as well.

Consider as an example the sentence 〈0, 2, 0〉; 〈4, 1, �〉. The words are of length
three, so the sentence is non-simple. Suppose we can treat these words as if they
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Fig. 4. The left graph shows the result of label(〈1〉) on the execution model of aba
in Fig. 2. For simplicity, the action labels on the arrows are removed. The probabil-
ity annotation is kept. In turn, label() calls label1, which then performs the labelling
recursively from right to left. The nodes u6 and u7 (yellow) are base cases. The prob-
abilities of 〈1〉 on them are respectively 1 and 0. This information is then added as
the labels of these nodes. Next, label1 proceeds with the labelling of u4 and u5. E.g.
on u4 (orange), because u4.st is not 1, for u4 to cover 〈1〉 we need an execution that
goes through u6, with the probability of 0.5. So the probability of 〈1〉 on u4 is 0.5. The
right graph shows the result of label(〈0〉; 〈1〉) on the same execution model. This will
first call label(〈1〉), thus producing the labels as shown in the left graph, then proceeds
with label1(〈0〉; 〈1〉). Again, label1 performs the labelling recursively from right to left.
The base cases u6 and u7 do not cover 〈0〉; 〈1〉, so the corresponding probability there
is 0. Again, this information is added as labels of the corresponding nodes. Node u4

(orange) has u4.st = 0. So, any execution that starts from there and covers 〈1〉 would
also cover 〈0〉; 〈1〉. The probability that u4 covers 〈1〉 is already calculated in the left
graph, namely 0.5. So this is also the probability that it covers 〈0〉; 〈1〉. (Color figure
online)

are singletons. E.g. in 〈0, 2, 0〉 the sequence 0, 2, 0 is treated as a single symbol,
and hence the word is a singleton. From this perspective, any non-aggregate
goal is thus a simple sentence, and therefore the algorithm in Fig. 3 can be used
to calculate its coverage probability. We do however need to pre-process the
execution model to align it with this idea.

The only part of the algorithm in Fig. 3 where the size of the words matters is
in the procedure checkClause. Given a node u in the given execution model E and
a clause C, checkClause(u,C) checks if the clause C is covered by E’s executions
that start at u. If the words in C are all of length one, C can be immediately
checked by knowing which state in M u represents. This information is available
in the attribute u.st. Clauses with longer words can be checked in a similar way.
For simplicity, assume that the words are all of length k (note: shorter words can
be padded to k with wildcards * that match any symbol). We first restructure
E such that the st attribute of every node u in the new E contains a word
of length k that would be covered if the execution of E arrives at u. We call
this restructuring step k-word expansion. Given a base execution model E, the
produced new execution model will be denoted by Ek. As an example, the figure
below shows the word expansion with k = 3 of the execution model in Fig. 2
(for every node v we only show its v.st label, which is an execution segment of
length 3). Artificial initial and terminal states are added to the new execution
model, labelled with �. When a word of length k cannot be formed, because the
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corresponding segment has reached the terminal state � in E, we pad the word
with �’s on its the end until its length is k.

�

[0,1,3] [1,3,4] [3,4,1]

[0,1,0]

[1,0,1] [0, 1, �]

[1,0,2] [0, 2, �]

[0,2,0]

[2,0,1] [0, 1, �]

[2,0,2] [0, 2, �]

[4, 1, �]

[1, �, �]

[2, �, �]

�

0.05

0.45

0.5

0.5

0.5

0.5

0.5

4.2 Coverage of Aggregate Goals

We will only discuss the calculation of aggregate goals of the form k ≥ N where
k = 1. If k > 1 we can first apply a k-word expansion (Sect. 4.1) on the given
execution model E, then we calculate 1 ≥ N on the expanded execution model.

Efficiently calculating 1 ≥ N is more challenging. The algorithm below pro-
ceeds along the same idea as how we handled simple sentences, namely by recurs-
ing over E. We first need to extend every node u in E with a new label u.A.
This label is a set containing pairs of the form V �→ p where V is a set of M ’s
states and p is the probability that E@u would cover all the states mentioned in
V . Only V ’s whose probability is non-zero need to be included in this mapping.
After all nodes in E are labelled like this, the probability 1 ≥ N can be calculated
from the A of the root node u0:

P (1≥N | σ) =
∑

V �→p ∈ u0.A

if |V | ≥ N then p else 0 (3)

The labelling is done recursively over E as follows:

1. The base case is the terminal node #. The A label of # is just ∅.
2. For every node u ∈ E, we first recurse to all its successors. Then, we calculate

a preliminary mapping for u in the following multi-set A′:

A′ = { V ∪{u.st} �→ p∗PE(u→v) | v ∈ u.next, V �→p ∈ v.A }

As a multi-set note that A′ may contain duplicates, e.g. two instances of
V �→ p0. Additionally, it may contain different maps that belong to the same
V , e.g. V �→ p1 and V �→ p2. All these instances of V need to be merged
by summing up their p’s, e.g. the above instances is to be merged to V �→
p0 + p0 + p1 + p2 The function merge will do this. The label u.A is then just:
u.A = merge(A′) = {V �→ ∑

V �→p∈A′ p | V ∈ domain(A′)}, where domain(A′)
is the set of all unique V ’s that appear as V �→. in A′.

The recursion terminates because E is acyclic.
The above algorithm can however perform worse than a direct calculation

via Definition 3. The reason is that merge is an expensive operation if we do it
literally at every node. If we do not merge at all, and make the A’s multi-sets
instead of sets, we will end up with u0.A that contains as many elements as the
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number of paths in E, so we are not better of either. Effort to merge is well
spent if it delivers large reduction in the size of the resulting set, otherwise the
effort is wasted. Unfortunately it is hard to predict the amount of reduction we
would get for each particular merge. We use the following merge policy. We only
merge on nodes at the B − 1-th position of ‘bridges’ where B is the length of
the bridge at hand. A bridge is a sequence of nodes v0, ..., vB−1 such that: (1)
every vi except the last one has only one outgoing edge, leading to vi+1, and (2)
the last node vB−1 should have more than one successor. A bridge forms thus
a deterministic section of E, that leads to a non-deterministic section. Merging
on a bridge is more likely to be cost effective. Furthermore, only one merge is
needed for an entire bridge. Merging on a non-deterministic node (a node with
multiple successors) is risky. This policy takes a conservative approach by not
merging at all on such nodes. The next section will discuss the performance of
our algorithm.

5 Experimental Results

In the following experiment we benchmark the algorithm from Sect. 4 against the
’brute force’ way to calculate coverage using Definition 3. We will use a family
of models Mm in Fig. 5. Despite its simplicity, Mm is highly non-deterministic
and is designed to generate a large number of executions and words.

We generate a family of execution models E(i,m) by applying a test case tci

on the model Mm where m ∈ {0, 2, 8}. The test case is:

tci = aciabiacia

The table in Fig. 6 (left) shows the statistics of all execution models used
in this experiment. Additionally we also construct E(i,m)3 (applying 3-word
expansion). The last column in the table shows the number of nodes in the
corresponding E(i,m)3 (the number of executions stays the same, of course).

0Mm : 1

2

3 4

t0

...
tm−1

5a

(0.3)c

(0.7)c

a

(0.7)c

(0.3)c

b

a

(q)c

(p)c

(p)c

a

c

c

Fig. 5. The model Mm used for the benchmarking. If m = 0 then there is no states ti
and q = 1. If m > 0 then we have states t0...tm−1; p = 0.3/m and q = 0.7.
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The number of possible executions in the execution models correspond to
their degree of non-determinism. The test case tci has been designed as such that
increasing i exponentially increases the non-determinism of the corresponding
execution model (we can see this in Fig. 6 by comparing #paths with the i index
of the corresponding E(i,m)).

All the models used (M0, M2, and M8) are non-deterministic: M0 is the least
non-deterministic one whereas M8 is very non-deterministic. This is reflected in
the number of possible executions in their corresponding execution models, with
E(i, 8) having far more possible executions than E(i, 0).

The following four coverage goals are used:

goal type word expansion
f1 : 〈2〉; 〈t0〉 simple sentence no
f2 : 〈1, 1, 1〉; 〈4, 4, 4〉 non-simple sentence 3-word

f3 : 1≥8 aggregate no

f4 : 3≥8 aggregate 3-word

We let our algorithm calculate the coverage of each of the above goals on
the execution models E(5, 0)...E(9, 8) and measure the time it takes to finish
the calculation. For the merging policy, n is set to 1 when the goal does not
need word expansion, and else it is set to be equal to the expansion parameter.
The experiment is run on a Macbook Pro with 2,7 GHz Intel i5 and 8 GB
RAM. Figure 6 (right) shows the results. For example, we can see that f1 can be
calculated in just a few milli seconds, even on E(12,m) and E(i, 8). In contrast,
brute force calculation using Definition 3 on e.g. E(11, 2), E(12, 2), E(8, 8), and

|tc| #nodes #paths #nodes3

E(5, 0) 20 26 16 103(4)
E(6, 0) 23 30 32 144(5)
E(7, 0) 26 34 64 223(7)
E(8, 0) 29 38 128 381(10)
E(9, 0) 32 42 256 422(10)
E(10, 0) 35 46 512 501(11)
E(11, 0) 38 50 1024 659(13)
E(12, 0) 41 54 2048 700(13)
E(5, 2) 20 34 336 185(5)
E(6, 2) 23 40 1376 306(8)
E(7, 2) 26 46 5440 435(9)
E(8, 2) 29 52 21888 695(13)
E(9, 2) 32 58 87296 944(16)
E(10, 2) 35 64 349696 1073(17)
E(11, 2) 38 70 1397760 1333(19)
E(12, 2) 41 76 5593088 1582(21)
E(5, 8) 20 58 3600 863(15)
E(6, 8) 23 70 29984 2760(39)
E(7, 8) 26 82 175168 4287(52)
E(8, 8) 29 94 1309824 8261(88)
E(9, 8) 32 106 8225024 23726(224)

f1 f2 f3 f4
E(5,0) 0.001 0.002 0.001 0.002
E(6,0) 0.001 0.002 0.001 0.002
E(7,0) 0.001 0.003 0.001 0.003
E(8,0) 0.001 0.004 0.001 0.005
E(9,0) 0.001 0.005 0.002 0.006
E(10,0) 0.001 0.006 0.003 0.008
E(11,0) 0.001 0.008 0.004 0.012
E(12,0) 0.001 0.008 0.009 0.024
E(5,2) 0.001 0.002 0.002 0.004
E(6,2) 0.001 0.004 0.002 0.01
E(7,2) 0.001 0.005 0.003 0.039
E(8,2) 0.001 0.01 0.005 0.138
E(9,2) 0.001 0.014 0.01 0.44
E(10,2) 0.001 0.012 0.019 1.09
E(11,2) 0.001 0.018 0.041 3.13
E(12,2) 0.001 0.023 0.091 10.68
E(5,8) 0.001 0.011 0.006 0.032
E(6,8) 0.001 0.04 0.034 0.279
E(7,8) 0.001 0.076 0.073 1.38
E(8,8) 0.002 0.154 0.266 12.04
E(9,8) 0.002 0.46 0.539 219

Fig. 6. Left: the execution models used in the benchmark. #nodes and #paths are
the number of nodes and full paths (executions) in the corresponding execution model;
#nodes3 is the number of nodes in the resulting 3-word expansion model. The number
between brackets is #nodes3/#nodes. Right: the run time (seconds) of our coverage
calculation algorithm on different execution models and coverage goals.
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Fig. 7. The graphs show our algorithm’s speedup with respect to the brute force cal-
culation on four different goals: f1 (top left), f2 (top right), f3 (bottom left), and f4
(bottom right). f1 and f2 are non-aggregate, whereas f3 and f4 are aggregate goals.
Calculating f1 and f3 does not use word expansion, whereas f2 and f4 require 3-word
expansion. Each graph shows the speedup with respect to three families of execu-
tion models: E(i, 0), E(i, 2), and E(i, 8). These models have increasing degree of non-
determinism, with models from E(i, 8) being the most non-deterministic ones compared
to the models from other families (with the same i). The horizontal axes represent the
i parameter, which linearly influences the length of the used test case. The vertical
axes show the speedup in the logarithmic scale. (Color figure online)

E(9, 8) would be very expensive, because it has to quantify over more than a
million paths in each of these models.

Figure 7 shows the speedup of our algorithm with respect to the brute force
calculation—note that the graphs are set in logarithmic scale. We can see that
in almost all cases the speedup grows exponentially with respect to the length of
the test case, although the growth rate is different in different situations. We can
notice that the speed up on E(i, 0) is much lower (though we still have speedup,
except for f4 which we will discuss below). This is because E(i, 0)’s are not too
non-deterministic. They all induce less than 2100 possible executions. The brute
force approach can easily handle such volume. Despite the low speedup, on all
E(i, 0)’s our algorithm can do the task in just few milli seconds (1–24 ms).

The calculation of f1 is very fast (less than 2 ms). This is expected, because
f1 is a simple sentence. The calculation of f2, on the other hand, which is a
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non-simple sentence, must be executed on the corresponding 3-word expanded
execution model, which can be much larger than the original execution model.
E.g. E(9, 8)3 is over 200 times larger (in the number of nodes) than E(9, 8).
Despite this we see the algorithm performs pretty well on f2.

f3 and f4 are both aggregate goals. The calculation of f3 is not problematical,
however we see that f4 becomes expensive on the models E(12, 2), E(8, 8), and
E(9, 8) (see Fig. 6 right). In fact, on E(9, 8) the calculation of f4 is even worse
than brute force (the dip in the red line in Fig. 7). Recall that f4 = 3 ≥ 8; so,
calculating its coverage requires us to sum over different sets of words of size
3 that the different executions can generate. E(12, 2), E(8, 8), and E(9, 8) are
large (over 70 states) and highly non-deterministic. Inevitably, they generate a
lot of words of size 3, and therefore the number of possible sets of these words
explodes. E.g. on E(8, 8) and E(9, 8) our algorithm ends up with about 1.2M
an 6.7M sets of words to sum over. In contrast, the number of full paths in
these models are about respectively 1.3M and 8.2M. At this ratio, there is not
much to gain with respect to the brute force approach that simply sums over
all full paths, whereas our algorithm also has to deal with the overhead of book
keeping and merging. Hypothetically, if we always merge, the number of final
sets of words can be reduced to respectively about 500K and 2M, so summing
over them would be faster. We should not do this though, because merging is
expensive, but the numbers do suggest that there is room for improvement if
one can figure out how to merge more smartly.

6 Related Work

To the best of our knowledge the concept of probabilistic coverage has not been
well addressed in the literature on non-deterministic MBT, or even in the litera-
ture on probabilistic automata. A paper by Zu, Hall, and May [30] that provides a
comprehensive discussion on various coverage criteria does not mention the con-
cept either. This is a bit surprising since coverage is a concept that is quite central
in software testing. We do find its mentioning in literature on statistical testing,
e.g. [8,29]. In [29] Whittaker and Thomason discussed the use of Markov chains
to encode probabilistic behavioral models. The probabilities are used to model
the usage pattern of the SUT. This allows us to generate test sequences whose
distribution follows the usage pattern (so-called ‘statistical testing’). Techniques
from Markov chain are then used to predict properties of the test sequences if
we are to generate them in this way, e.g. the probability to obtain a certain level
of node or edge coverage, or conversely the expected number of test runs needed
to get that level of coverage. In contrast, in our work probabilities are used to
model SUT’s non-determinism, rather than its usage pattern. We do not concern
ourselves with how the tester generates the test sequences, and focuses purely
on the calculation of coverage under the SUT’s non-determinism. Our coverage
goal expressions are more general than [29] by allowing words of arbitrary length
(rather than just words of length one or two, which would represent state and
respectively edge coverage), clauses, and sentences to be specified as coverage
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goals. Coverage calculation in both [8,29] basically comes down to the brute
force calculation in Definition 3.

Our algorithm to calculate the coverage of simple sentences has some simi-
larity with the probabilistic model checking algorithm for Probabilistic Compu-
tation Tree Logic (PCTL) [10,15]. Although given a formula f a model checking
algorithm tries to decide whether or not f is valid on the given behavior model,
the underlying probabilistic algorithm also labels for every state in the model
with the probability that any execution that starts from that state would satisfy
f . Since we only need to calculate over execution models, which are acyclic, there
is no need to do a fixed point iteration as in [15]. From this perspective, our algo-
rithm can be seen as an instance of [15]. However we also add k-word expansion.
In addition to simplifying the algorithm when dealing with non-simple sentences,
the expansion also serves as a form of memoisation (we do not have to keep cal-
culating the probability for a state u to lead to a word w). In particular the
calculation of aggregate coverage goals benefits from this memoisation. Though,
the biggest difference between our approach with a model checking algorithm is
that the latter does not deal with aggregate properties (there is no concept of
aggregate formulas in PCTL). Our contribution can also be seen as opening a
way to extend a probabilistic model checking algorithm to calculate such prop-
erties. We believe it is also possible to generalize over the aggregation so that the
same algorithm can be used to aggregate arbitrary state attributes that admit
some aggregation operator (e.g. the cost of staying in various states, which can
be aggregated with the ‘+’ operator).

In this paper we have focused on coverage analyses. There are other analyses
that are useful to mention. In this paper we abstract away from the data that
may have been exchanged during the interactions with the SUT. In practice
many systems do exchange data. In this situation we may also want to do data-
related analyses as well. E.g. the work by Prasetya [19] discussed the use of an
extended LTL to query temporal relations between the data exchanged through
the test sequences in a test suite. This is useful e.g. to find test sequences of a
specific property, or to check if a certain temporal scenario has been covered.
The setup is non-probabilistic though (a query can only tell whether a temporal
property holds or not), so an extension would be needed if we are interested in
probabilistic judgement. Another example of analyses is risk analyses as in the
work by Stoelinga and Timmer [23]. When testing a non-deterministic system,
we need to keep in mind that although executing a test suite may report no
error, there might still be lurking errors that were not triggered due to internal
non-determinism. Stoelinga and Timmer propose to annotate each transition in a
model with the estimated probability that it is incorrectly implemented and the
entailed cost if the incorrect behavior emerges1. This then allows us to calculate

1 We gloss over the complication that the transition might be in a cycle. A test
case may thus exercise it multiple times. Each time, exercising it successfully would
arguably decrease the probability that it still hides some hidden erroneous behavior.
This requires a more elaborate treatment, see [23] for more details.
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the probability that a successful execution of a test suite still hides errors, and
the expected cost (risk) of these hidden errors.

7 Conclusion

We have presented a concept of probabilistic coverage that is useful to express
the coverage of a test suite in model-based testing when the used model is non-
deterministic, but has been annotated with estimation on the probability of each
non-deterministic choice. Both aggregate and non-aggregate coverage goals can
be expressed, and we have presented an algorithm to efficiently calculate the
probabilistic coverage of such goals. Quite sophisticated coverage goals can be
expressed, e.g. sequence (words) coverage and sequence of sequences (sentences)
coverage. We have shown that in most cases the algorithm is very efficient. A
challenge still lies on calculating aggregate k-wise test goals on test cases that
repeatedly trigger highly non-deterministic parts of the model. Such a situation
is bound to generate combinatoric explosion on the possible combinations of
words that need to be taken into account. Beyond a certain point, the explosion
becomes too much for the merging policy used in our algorithm to handle. Anal-
yses on the data obtained from our benchmarking suggests that in theory there
is indeed room for improvement, though it is not yet clear what the best course
to proceed. This is left for future work.
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