
Validation:
A Window into Economic Practice

A Study into the Practice of Macroeconomic Modeling

Validatie: Een venster op de economische praktijk

Een onderzoek naar de praktijk van het macro-economisch modelleren
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de

rector magnificus, prof.dr. H.R.B.M. Kummeling,
ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen op

vrijdag 29 september 2023 des middags te 12.15 uur

door

Sebastiaan Benjamin Tieleman

geboren op 5 april 1993
te Leeuwarden



Promotoren:
Prof. dr. M.J. Boumans
Prof. dr. J.G.M. van Marrewijk

Beoordelingscommissie:
Prof. dr. K. Frenken
Prof. dr. W.H.J. Hassink
Prof. dr. T.T. Knuuttila
Prof. dr. ir. C.W. Oosterlee
Prof. dr. B.M.J. Rijkers



Acknowledgments

First and foremost, I would like to express my gratitude to my PhD Supervisor,
Marcel Boumans, for his support and guidance throughout my research journey. As
I completed my Master’s degree at Utrecht University, my primary focus was on
macroeconomics, and I thoroughly enjoyed delving into models, programming, and
data analysis. However, I soon found myself contemplating methodological questions
on a deeper level, which led me to approach Marcel about writing a PhD proposal.
Our shared interest in macroeconomic methodology solidified my belief that this was
the right path to pursue.

Embarking on my PhD, I encountered a significant transition from applied economics
to methodology and the philosophy of science, which proved more challenging than I
had initially anticipated. I often found myself uncertain about my ideas, but Marcel
served as an exceptional mentor during this formative stage, helping me navigate
this new field of study. Rather than simply confirming or dictating my thoughts,
Marcel encouraged me to develop and explore my own ideas. When I reflect on my
years as a PhD student, I recognize them as profoundly transformative, significantly
shaping my understanding of economics and science as a whole. For this, I am very
grateful to Marcel.

Secondly, I extend my gratitude to my colleagues at the Utrecht School of Eco-
nomics and the Center for Complex Systems Studies. Being part of such a dynamic
and vibrant research community has been an enriching experience, and I have greatly
valued the stimulating intellectual exchanges and collaborative atmosphere.

Thirdly, I would like to express my appreciation to my family, whose support has
been instrumental throughout my entire educational journey. I am grateful to my
brother, who I have looked up to from my earliest years. My mother for her belief
in my potential and her ceaseless encouragement to strive for excellence. Lastly, to
my father, whose example as a professor serves as a guiding light for my own aspi-
rations. Their collective influence and support have been invaluable in my academic
endeavors.

Lastly, but certainly not least, I want to express my deepest gratitude to my fiancée,
Natasja, who has been by my side throughout the entire duration of my PhD. I am
truly grateful for your unwavering support during the long and sometimes challeng-
ing process. Furthermore, I value you as an intellectual partner, as our discussions
have enriched my research and provided me with invaluable insights.

1



Contents

1 Introduction 5
1.1 The Central Problem of Macroeconomic Science . . . . . . . . . . . . 5
1.2 What are Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Models as Mediators . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The Representational Elements of Models . . . . . . . . . . . 8
1.2.3 The Artifactual Elements of Models . . . . . . . . . . . . . . . 10
1.2.4 Integration through Mathematical Molding . . . . . . . . . . . 12
1.2.5 Models as Autonomous Objects . . . . . . . . . . . . . . . . . 12

1.3 A Lack of Consensus in Macroeconomics? . . . . . . . . . . . . . . . 14
1.4 Aims and Research Questions . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Philosophy of Economic Science-in-Practice . . . . . . . . . . 17
1.5.2 Model Validation as an Interpretive Framework of Science in

Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.3 About the Structure of this Dissertation . . . . . . . . . . . . 22

2 Towards a Validation Methodology of Macroeconomic Agent-Based
Models 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Discussion of Relevant Literature . . . . . . . . . . . . . . . . 25
2.2 Complex Systems with Emergent Properties . . . . . . . . . . . . . . 28
2.3 Validation at Multiple Levels . . . . . . . . . . . . . . . . . . . . . . 32
2.4 A Framework of Model Validation . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Model Purpose and Types of Questions . . . . . . . . . . . . . 37
2.4.2 Phenomenological Validation Criteria . . . . . . . . . . . . . 38
2.4.3 Black, White, and Grey-Box Models . . . . . . . . . . . . . . 40
2.4.4 Validation as Reduction of Underdetermination . . . . . . . . 43

2.5 Structure and Target Validation in MABMs . . . . . . . . . . . . . . 45

2



CONTENTS

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 DSGE Models and the Hybrid Model Critique 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Validation Criteria, Invariance, and Model Scope . . . . . . . . . . . 53

3.2.1 Validation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Model Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 How DSGE Models Evolved into the Hybrid Structure . . . . . . . . 57
3.3.1 The Calibration Approach . . . . . . . . . . . . . . . . . . . . 59
3.3.2 The Estimation Approach . . . . . . . . . . . . . . . . . . . . 63

3.4 Analyzing the Hybrid Model Critique . . . . . . . . . . . . . . . . . . 69
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Model Transfer and Universal Patterns: Lessons from the Yule Pro-
cess 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Validation Criteria and Model Transfer . . . . . . . . . . . . . . . . . 82
4.3 Universal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 The Yule Process: A Case Study . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Yule Process: Evolutionary Origins . . . . . . . . . . . . . . . 89
4.4.2 The Yule Process as a Model for Firm Growth . . . . . . . . . 93
4.4.3 Overlapping Validation Criteria . . . . . . . . . . . . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Framework: Model Construction and Validation 98
5.1 Model Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Secondary Purposes . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1 Theoretical Criteria . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Phenomenological Criteria . . . . . . . . . . . . . . . . . . . . 103
5.2.3 Technical Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.4 Interdependence of Criteria . . . . . . . . . . . . . . . . . . . 108

5.3 Model Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1 Model Scope and Validation Criteria . . . . . . . . . . . . . . 111

5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Relationship with Models as Mediators . . . . . . . . . . . . . . . . . 115

3



CONTENTS

6 Concluding Remarks 117
6.1 Modeling as an Exercise of Integration . . . . . . . . . . . . . . . . . 117
6.2 One Size Does not Fit All . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Models as Correlational Artifacts . . . . . . . . . . . . . . . . . . . . 122
6.4 Empirical Validation, Realism and Instrumentalism . . . . . . . . . . 127

7 Summary 132

8 Nederlandse Samenvatting 134

References 136

4



Chapter 1

Introduction

This dissertation aims to provide insights into the methodology of macroeconomic
modeling as observed in practice. This first chapter introduces this aim, clarifies why
it deserves investigation, and discusses the general approach of the studies in this
dissertation.

Section 1.1, offers an explanation as to why models are the main tool of investigation
in macroeconomics. Section 1.2 provides an epistemological description of scientific
models in the context of macroeconomics. Section 1.3 presents a brief discussion of
methodological controversies within macroeconomic modeling practice. Section 1.4
puts forward the various research questions that this dissertation seeks to answer.
Finally, Section 1.5 presents the methodology for answering these research questions.

1.1 The Central Problem of Macroeconomic Sci-

ence

Like most scientific disciplines, the main aim of macroeconomics is to gain an un-
derstanding of a particular domain. In most cases, this domain is a system that
is thought to operate in our observable world – in other words, a real-world sys-
tem. The real-world system that is the target of an investigation can be called
the target system. For macroeconomics, this is the macroeconomic system, which
is constituted by macroeconomic entities. These entities can be divided into two
kinds: macroeconomic variables and macroeconomic relationships. Macroeconomic
variables are constructed by aggregating the economic characteristics of groups of
individual agents. Typical examples of such variables are inflation, interest rates,
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CHAPTER 1. INTRODUCTION

unemployment, and gross domestic product (GDP). Macroeconomic relationships
broadly concern the associations between macroeconomic variables. An example of
this is the Philips curve , which describes how higher inflation is associated with
unemployment (Phelps, 1967). Such relationships are also of primary interest from
a policy perspective. For instance, a policymaker could ask: Will an increase in
inflation rate in the economy through lowering interest rates result in a reduction in
unemployment? Together, the variables and relationships outlined above make up
the system structure.

Having defined the system of interest, the next question is how to study it. Answering
questions like the one posed above requires knowledge of the essential variables and
relationships within the system. In most scientific disciplines, and especially in natu-
ral sciences, the dominant view among practitioners is that true understanding comes
in the form of knowledge of the causal relationships within the system. Causal rela-
tionships can be formulated as a necessary conjunction between variables (Hoover,
2001), such that if we intervene and change one variable, a necessary change occurs
in another. As a result, the fundamental system that is to be understood within
such a view is that of a causal structure.

If the structure in question is approached as a causal structure, the preferred method
for gaining an understanding thereof is to examine the system within an experimen-
tal arrangement that allows for both induced perturbation and control. The most
obvious arrangement that fulfills these criteria would be a laboratory setting.

To consider the criteria of perturbation and control in more detail, let us say that we
are interested in studying the effect of a change in factor X on factor Y . First, note
that to establish whether such an effect exists, there must be variation in the level
of X. If X does not vary, there is no way to establish whether X affects Y . In this
way, an experimental arrangement allows for the perturbation of X; the research can
induce variation in X and then observe what happens to Y .

Second, there may be a third factor, Z, in the causal structure of interest. If we
assume that Z has a causal effect on Y , this poses a potential problem. If we change
X but at the same time a change in Z also occurs, we may mistakenly attribute the
effect on Y to X. This problem is exacerbated if Z also has a causal relationship
with X. In this case, each time we induce a change in X, a change in Z will also
occur, causing a change in Y . For this reason, in experimental arrangements such
as laboratories, emphasis is placed on keeping other factors that may affect Y as
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CHAPTER 1. INTRODUCTION

constant as possible while studying the effect of X on Y .

Generally speaking, the macroeconomic system cannot be studied within an ex-
perimental arrangement such as a laboratory because the scale of the system is large
(i.e., economies of entire countries) and the relevant time horizons are long (typi-
cally months up to decades). The external validity of laboratory or field experiments
in macroeconomics would therefore be too low to provide us with adequate under-
standing. For most questions relevant to macroeconomics, we cannot recreate the
macroeconomic system in an experimental setting in such a way that it still yields
understanding about the real economy. We also cannot induce variation in macroe-
conomic variables in a way that would avoid huge potential costs. Accordingly,
inducing variation in variables of interest just for the sake of research is not an op-
tion.

It should be noted that valuable research involving experiments does exist in macroe-
conomics. The most well-known is the work on expectation formation (Hommes,
2011). However, this is most often used to present so-called boundary cases; if agents
are unable to form rational expectations in a simple laboratory setup on short time
horizons, we cannot expect them to do so in the real economy.

Given this context, the central problem of macroeconomic science is how best to
study the structure of a system that cannot be controlled and that can only be pas-
sively observed. It is a question that macroeconomists have explicitly struggled with
for over a century, and to which they have provided us with several different answers.
Since the early 1930s, however, with the work of Michal Kalecki, Jan Tinbergen, and
Ragnar Frish, among others, the answer to the question has most often been the use
of mathematical models (Boumans, 2005).

1.2 What are Models?

What are mathematical models, and how could they potentially serve to analyze the
target system? Multiple accounts of models exist in the philosophy of science. What
most of these accounts have in common is that, in order for a model to enhance
our grasp of a target system, the model must, in some form and to some degree,
be a representation of the real-world structure of interest. The general idea is that
rather than studying a real-world structure that we cannot control, we construct
representations thereof that we can. By studying the representation, we enhance our
understanding of the target system’s structure.
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CHAPTER 1. INTRODUCTION

1.2.1 Models as Mediators

The account on models that stands as the starting point for the analysis in this dis-
sertation is presented in “Models as Mediators” (Morgan & Morrison, 1999). This
account has become a central building-block in my research because I have found
it to be a close match to the way in which models are constructed and used in practice.

The “Models as Mediators” account centers around the idea that models integrate
three distinct elements: representations of theory, representations of what is empir-
ically observed, and non-representational elements (called artifacts). The structure
of a model is thus shaped by the existing theory about how the target system is
structured, by the data generated by the target system, and by artifacts.

1.2.2 The Representational Elements of Models

Let us first discuss the representational elements of these models. What should we
understand by representation? It is useful to introduce the mathematical concept
of mapping as a starting point. A mapping refers to an operation that takes an
element in one domain (A) and transforms it to an element in a different domain
(B). It is thus about defining relationships between elements in distinct domains.
In this sense, a representation can be understood as a mapping between elements in
the domain of a specific part of the model structure and elements in the domain of
a particular theory or data characteristic.

Mathematically speaking, mapping can be injective or noninjective. Injective here
refers to a one-to-one relationship. This means that each element in B corresponds
to a transformation of at most one element in A. In non-injective mapping, at least
one element in B corresponds to multiple elements in A.

In the context of representation in modeling, injective and noninjective should be
understood as extremes presenting a continuum. Some representational relationships
may be characterized as being more injective, meaning that a more or less one-to-one
relationship is evident between the individual parts of the model structure and the
individual elements of theory or data. This implies that the loss of information is
limited. The information within the theory or data characteristic overlaps with the
information in the model structure to a large degree (mathematically speaking, such
a mapping would be invertible). We can, for example, think of the theory of supply
and demand, which is represented by a model of supply and demand equations, or
the value of the consumer saving propensity parameter in a model quantified by us-
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CHAPTER 1. INTRODUCTION

ing microeconomic survey data on consumer behavior.

Representational relationships can also be characterized as leaning more toward
non-injective. This means that multiple conceivable structural model elements cor-
respond with a particular element of a theoretical concept or data characteristic. In
turn, this implies that the theory or data is consistent with but underdetermined by
the structural model element. Such non-injective representational relationships are
prevalent when the theory or data characteristic only applies to the model structure
as a whole. For instance, Calvo pricing is consistent with Keynsian theory, as its
function in the model as a whole is to introduce nominal rigidities. However, it is not
an injective representation, as many conceivable structures exist that could introduce
nominal rigidities. Nominal rigidities can also be understood as something different
from Calvo pricing. The same is true for the output data generated by the model.
Structural elements of the model that ensure that the model output is consistent with
the empirical data can, in most cases, be understood as non-injective representations.

Importantly, as I will return to later, non-injective representations cannot be un-
derstood as purely representational mappings. Because the relationship between the
model’s structural elements and the object to be represented is, by definition, under-
determined, choices must be made that are not primarily informed by that object.
Structural elements that are non-injective representations of theory, for example, can
also be non-injective representations of data; or, as we will see is often the case, they
may be artifactual.

The term “injective” is normally used within a strict mathematical context. It is
my view, however, that the term is instructive here because of its analogous mean-
ing. Additionally, etymologically speaking, injective comes from “inject,” meaning
to force or drive something into something else. This corresponds to the stricter and
less flexible way in which theoretical notions or data characteristics are incorporated
into model structures in the case of injective representations.

Additionally, note that for both injective and non-injective representations, the re-
lationship generally has a partial nature. Given the complexity of the system of
interest, models always involve omissions. This implies that a selection has to be
made relative to the specific purpose of a model. In the case of macroeconomics,
we may not be interested in studying all the macroeconomic relationships at once;
rather, we are specifically interested in the relationship between inflation and unem-
ployment, for example. The model construction process therefore requires a selection
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CHAPTER 1. INTRODUCTION

of theoretical and empirical elements to be integrated into the model that are relevant
for this specific relationship. This omission can come in the form of simplification,
which involves the omission of details of a representation or that of the theory or
data from the model altogether.

1.2.3 The Artifactual Elements of Models

Let us now discuss the third element from which models are constructed: artifacts.
Artifacts are elements of the model that are representative of neither the theory
nor the data. They are most often incorporated into the model simply to make
it work relative to some intended purpose. The term “work” here could refer to
the mathematical properties of a model. We can think, for example, about the infi-
nite time-horizon optimization problems that agents in most modern macroeconomic
models are assumed to solve. Neither theory nor data dictate that agents solve an
optimization problem that involves an infinite time horizon. Concepts such as infin-
ity (the same is true for zero) often have desirable mathematical properties. They
allow the model to be solved analytically, for example.

It may also be that the model’s purpose is to show different possible structures
without claiming that they are directly representative of the real-world structure.
Knuuttila (2021) provides us with the example of the ultra-Keynesian model con-
structed by Tobin (Tobin, 1970). The purpose of this model was to counter Fried-
man’s conclusion that the level of money supply was the only source of inflation.
Friedman based this conclusion on a particular empirically observed conjunction of
the variation in the time-series data of money supply and inflation. Tobin’s model
was able to show that a model in which money played no causal role was also able
to reproduce the time-series data pattern. Tobin did not seek to claim that the
structure of his model was an injective representation of the real world but rather to
show that the time-series data alone were not sufficient evidence to show that money
supply was the only driving force behind inflation. Since the output of the model
as a whole was consistent with observed time-series data, Tobin’s model structure
was a non-injective representation of that dataset. There would have been many
possible structures consistent with the observed phenomenon, which was precisely
what Tobin aimed to demonstrate. Given that the structure of Tobin’s model cannot
be inferred from data alone, it can be characterized as artifactual to a large degree.

We have discussed the three main elements from which models may be constructed:
representations of data, representations of theory, and artifactual elements. An im-
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portant complication is that, in many cases, it may not be so clear whether a partic-
ular element is representational or artifactual. Indeed, the elements themselves may
often be an integration of both representational and artifactual aspects. As discussed
in the case of Tobin’s model, this is particularly the case when representations are
non-injective.

Alternatively, artifactual elements that turn out to be crucial to make the model
work may be justified by practitioners on theoretical grounds. An example is Calvo
pricing (Calvo, 1983), which is a crucial element in most new Keynsian dynamic
stochastic general equilibrium (DSGE) models to induce nominal rigidities. Calvo
pricing entails that a firm has a constant probability of being able to reset its price
independent of when it was last able to do so. While it has been shown that this
structural element is empirically false (Álvarez & Burriel, 2010), attempts have been
made to show that Calvo pricing is consistent with microeconomic theory following
its popularization in new Keynsian DSGE models (Woodford, 2009).

This discussion of artifacts fits within a larger discussion in the philosophy-of-science
literature on how best to characterize scientific models. Knuuttila (2021) forwards
a view that is close to the general view presented here and therefore also closes the
account by Morgan and Morrison (1999). It is a view that contrasts with a more
traditional view that puts all the epistemic value of the model in the representative
relationship between the model structure and the real-world structure. Knuuttila and
Loettgers (2016) does not dispute that what is labeled as external representation can
be a source of epistemic value for models; rather, given the various distinct purposes
a model may have, it is not the only way to characterize the epistemic value of models.

The view of models present throughout this dissertation is open to this broader
view of their epistemic value. In fact, as I will argue throughout, it is highly ques-
tionable whether the structure of macroeconomic models can be credibly conceived
as an injective representation of the real-world structure, nor is it clear that this is
the purpose of the model builder in most cases.

The way in which I discuss the nature of artifactual elements here is to a large
extent in line with Herbert Simon’s discussion in “The Sciences of the Artificial”
(Simon, 1969). In this work, something that is characterized as artifactual (or artifi-
cial) is constructed by human beings, imitates the appearances of natural things only
in limited domains, and is heavily characterized by its purpose. In Hoover (1995),
we find an account that relates this idea to models in macroeconomics. Crucial here
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CHAPTER 1. INTRODUCTION

is the relative independence between the inner environment of the model and the
real-world outer environment in which it operates. An artifactual model is correct
if its inner environment is appropriate from its outer environment. An insightful
example here is that of a clock (which can be read here as analogous to an economic
model), the function of which is to tell the time. While two clocks may indicate
the time in the same way, it is conceivable that they may be constructed differently.
In other words, whereas their inner structure is different, for the purpose at hand
(to tell the time in the outer environment), they are both functional. A degree of
independence thus exists between the inner and outer environments. Note that this
is in line with our description of non-injective representations. We will return to this
discussion in Chapter 6.

1.2.4 Integration through Mathematical Molding

Let us now look more closely at the integration process itself. How are data, theory,
and artifactual elements integrated into a uniform model object? Let us first estab-
lish that models are constructed from materials of various types. Human anatomy
models, for instance, are often made from plastic and paint. Models can be graphical,
in which case they are constructed from lines and curves. In the case of macroeco-
nomic models, this material is often a particular type of mathematics. A DSGE
model, for instance, is a system of difference equations. The material is what allows
the integration of the various model elements in a process that has been labeled as
mathematical molding (Boumans, 1999). Importantly, the type of material and the
process of mathematical molding present constraints for the model builder within
which the model is to be constructed. In particular, the incorporation of some arti-
factual elements can be indirectly necessitated by the type of material chosen.

1.2.5 Models as Autonomous Objects

Now that we have established the elements of which models generally consist, we can
ask why they are useful. Within this account, the utility of models comes from the
fact that they are mediators between theory, data, and artifactual elements. That is,
through a process of mathematical molding, models are able to integrate represen-
tations derived both from theory and from data together with artifactual elements
into a single object. This object can then be studied and experimented on.

It is essential to note here that models are not merely an extension of theory and/or
data, which are traditionally considered the primary devices of knowledge production.
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Theory Data Artifacts
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Figure 1.1: Models as Mediators

The process of model construction that we have described above is one of integra-
tion through mediation, the outcome of which is a model that may be dependent on
theory and/or data, but also to some degree independent from them. Modeling re-
quires making particular structural choices that are not given by theory and data. As
concluded in Morgan and Morrison (1999), models are therefore autonomous objects.

The fact that models are autonomous objects implies that they are a worthy sub-
ject within philosophy-of-science research. Hence, an investigation into how models
are constructed, validated, and applied has the potential to answer methodological
and epistemological questions. This potential is especially significant for scientific
domains that rely on the use of models to a large degree, such as macroeconomics.

In Figure 1.1, we can see a schematic summary of the model account discussed.
To begin, models are constructed from three types of elements: representations of
the theory we have about how the real-world system operates, representations of data
generated by the real-world system, and artifacts that have no relationship with the
real-world system. These elements are integrated into a process of mathematical
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molding. Integration requires the choice of a particular building material, such as
a type of mathematics. The outcome of this process is a model. By studying the
model’s structure and by observing how it functions, we acquire an understanding of
it, which can then be translated into knowledge of the real-world system. As a result,
the model serves as an instrument to acquire knowledge of the real-world system. It
does so by mediating between various pieces of information on which we can draw
about the real-world system.

1.3 A Lack of Consensus in Macroeconomics?

Thus far, we have discussed how, due to the impossibility of studying the macroe-
conomic system in an experimental environment, the primary tools used in macroe-
conomics are mathematical models. We have discussed in general terms how models
are an integration of different types of representational elements and artifacts.

However, this general description of a model does not in itself tell us which combina-
tion of elements produces a model that is the right tool given a particular question
about the macroeconomic system. Historically, various schools of thought have been
forwarded regarding which type of macroeconomic model is to be preferred (Hendry,
2020). Different schools of thought have had different preferences regarding which
theoretical and empirical representational elements should be incorporated into the
model and which mathematical form is desirable.

Duarte (2012) portrays a picture of a macroeconomic science that is characterized
by periods of both controversy and consensus. In recent decades, a consensus has
been formed around various versions of DSGE models. However, many practitioners
also perceive macroeconomics to contain a sharp division between mainstream and
heterodox approaches (Lee, 2012). While the correctness and usefulness of this as-
sertion warrants an investigation on its own, it is true that distinct methodological
approaches exist when it comes to macroeconomics modeling, and that practitioners
specializing in one modeling approach often criticize the methods of others.

An example of such distinction between approaches are agent-based modeling practi-
tioners, who often formulate fundamental methodological criticism of DSGE models.
On the other hand, economists specializing in DSGE approaches are reluctant to
change their methods in response to such criticisms (Hoover, 2021). While most
criticisms of DSGE models have been around for some time, most of them gained
traction after the 2008 financial crisis (see Stiglitz (2011) for an overview of sev-
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eral criticisms). One source of criticism arises from a heterodox approach known
as agent-based macroeconomics Farmer and Foley (2009). Agent-based macroeco-
nomics emphasizes the role of interactions between many distinct agents in generating
certain macroeconomic patterns. It posits that because DSGE models did not take
such interactions into account, they were unable to reproduce prolonged periods of
economic decline, such as those observed after the 2008 crisis. I will elaborate on
this criticism in Chapter 2.

What is important for the discussion here is that macroeconomic agent-based mod-
els (MABMs) are constructed from different representational elements than DSGE
models. This is true in terms of both theoretical elements (complexity theory and be-
havioral economic theory versus general equilibrium theory) and empirical elements
(the reproduction of prolonged downturns versus return to equilibrium). Since the
representational elements are different in both approaches, the process of mathemat-
ical molding is also different. Basic DSGE models can be solved analytically and
rewritten into three difference equations (Woodford, 2003). Analytically, solvability
is generally not a requirement for MABMs, which are instead studied by using Monte
Carlo simulations.

DSGE models and MABMs are thus constructed from contrasting methodological
perspectives. Interestingly, however, both approaches are used to answer similar
questions. Methodological disagreements of this kind are common in macroeco-
nomics; as such, they point to the fact that most methodological discussions within
macroeconomics are by no means settled.

We have established that models occupy an autonomous space within science and
that fundamental disagreements are apparent among practitioners over how best to
construct models in macroeconomics. The study of macroeconomic models is, there-
fore, not only interesting intrinsically from a philosophical perspective but also highly
relevant for practitioners of macroeconomics. Methodological reflections, including
those presented in this dissertation, can help practitioners to better understand the
foundations of their own tools and potentially guide the direction of future research.

1.4 Aims and Research Questions

The subject of this dissertation is the model construction process in macroeconomics
as observed in scientific practice. The central aim is to provide a more systematic
understanding of the model construction process. As will be discussed in greater
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depth in the following section, the methodology of this dissertation is primarily in-
ductive. This implies that the starting point of this investigation is the observed
scientific practice in the form of various cases of model construction and their use.
In turn, the insights derived from these cases will provide input into a more general
framework of model construction.

Three distinct cases will be the subject of this investigation. These three cases
also represent the main chapters of this dissertation: the introduction of macroeco-
nomics agent-based models (Chapter 2), the hybrid model critique of DSGE models
(Chapter 3), and inter-domain model transfers (Chapter 4).

Macroeconomic Agent-based Models1

The use of MABMs is a relatively new approach in macroeconomics. Their use gained
popularity and recognition after the 2008 financial crisis. However, open questions
remain among macroeconomists about the epistemic role of such models and how
they are validated.

The Hybrid Model Critique on Dynamic Stochastic General Equilibrium
models

DSGE models generally consist of a structural core and a stochastic periphery. This
has received criticism because it is unclear how such a model structure relates to
empirical data. A fundamental analysis of the criticism is still lacking in the current
literature.

Inter-Domain Model Transfer2

Inter-domain model transfer refers to the transfer of models between different scien-
tific domains. Models originally developed in biology, for example, are in some cases
re-used in economics. However, open questions and unexplained observations remain
regarding particular cases of model transfer.

1This chapter is a reworking of the paper that I published in the journal Computational Economics
(Tieleman, 2021). The core of the analysis in this chapter and the paper are the same. The order
of sections, formulations and other details may have been altered.

2This chapter is a reworking of the paper that I published in the journal Synthese (?, ?). The core
of the analysis in this chapter and the paper are the same. The order of sections, formulations
and other details may have been altered.
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Model Construction Framework and Concluding Remarks

The various insights from these cases can be distilled into a framework of model
construction, which will discussed in Chapter 5. The concluding remarks in Chapter
6 will provide a summary of the dissertation along with a general discussion of
modeling practices in macroeconomics.

1.5 Methodology

How should we go about answering the research questions formulated in the previous
section? I will now clarify the methodological approach taken in this dissertation and
argue why it is well suited to the purpose at hand.

1.5.1 Philosophy of Economic Science-in-Practice

Generally speaking, to gain a more fundamental understanding of science means to
step into the domain of the philosophy of science. However, multiple routes can
be taken therein in the pursuit of understanding. Boumans and Leonelli (2013)
distinguish between two such routes. The first is labeled as philosophy-of-science in
practice – a more traditional route in which one starts from certain formal philosoph-
ical accounts, such as that of scientific explanation, before seeking to fit a scientific
method as observed in practice to this formal account. In this way, the formal account
serves as a benchmark for assessing whether a scientific method yields a correct form
of knowledge production. As it turns out, a perfect match is never achieved between
the practice as it is observed and how science should be according to philosophers of
science.

The value of this type of investigation lies in the fact that it is able to drag a sci-
entific practice outside of its internal confines and judge it through external criteria
– that is, in the sense that they are to some extent formulated independently from
what is observed within scientific practice. Whether these external formal criteria
actually provide a deeper understanding of the scientific method is dependent on
one’s epistemological and ontological views.

The limitation of this approach, as is also argued by Woody (2014), is that for-
mal accounts are not just a benchmark but also serve as a filter. Establishing how
a particular scientific practice functions relies on empirically observing it. With any
empirical observation also comes selection; some information is considered relevant,
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while other information is left out. The formal philosophical accounts guide this
selection process. When looking at scientific practice through the lens of formal ex-
planation, for example, little room is generally available for an investigation of the
historical context within which scientists came to their conclusions. The same is true
for an investigation into the scientific paradigms within which scientists operate and
their interactions with peers. Such information is generally irrelevant from the per-
spective of the formal philosophy of science accounts. A potential problem with this
is that one misses information that is crucial to providing an empirically accurate
account of scientific practice.

Woody (2014) provides a case study of the discovery of the periodic table. It shows
that knowledge about the interactions between scientists in particular is crucial to
understanding how the period table was actually developed. Analysis of the peri-
odic table based on formal philosophical accounts has generally not taken this into
account.

The second route, as discussed by Boumans and Leonelli (2013), is labeled the phi-
losophy of science-in-practice. Here, one does not start with a particular formal
philosophical framework in mind; instead, one tries, as neutrally as possible, to start
from the data. That is, to observe scientific practice along a broad range of facets,
including those elements generally absent from formal philosophical accounts. The
focus is on understanding the internal structure of a scientific practice without nec-
essarily seeking to judge the practice from the perspective of a formal philosophical
account. The advantage of this approach is that it stays close to scientific practice
in terms of how it is actually observed. In this way, it is open to facets that may be
highly relevant to understanding how scientists work.

A criticism of this approach is that it may appear circular to some – understanding
science by understanding science. However, such criticism presumes that under-
standing science-in-practice is a trivial matter. This is not the case. The choices
that practitioners make, and why certain methods gain traction while others do not,
are often not discussed explicitly and publicly by the practitioners themselves. In
some cases, the practitioners are unaware of why they make certain choices or why
they appreciate certain research studies more than others. They take part in sci-
entific paradigms that bring with them certain intuitions and implicit judgments.
The added value of the philosophy of science-in-practice is to open this black box
of intuitions and make the implicit more explicit. In turn, this allows scientists to
reflect on their own methodologies and guide future research.
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The approach adopted in this dissertation is that of the philosophy of science-in-
practice. My goal is to understand how macroeconomic models are constructed in
practice and to open up the black box that is the model construction process.

The next question is how we should go about doing this. Philosophy of science-
in-practice is an inductive form of research. That is, it seeks to make more general
statements by observing and analyzing multiple individual cases. However, analyz-
ing scientific practice based on observation is not trivial.

To begin, a relevant question is how to observe science in practice. Given that
the goal of philosophy of science-in-practice is to make methodological considera-
tions explicit that are often implicit or intuitive, I have found three main sources
for making observations as useful as possible. The first is to conduct interviews
with practitioners, asking them why they made certain choices; much can be often
learned from such activity. The second is to trace back a certain method to its origi-
nal formulation. The third is to study the methodological reflections of practitioners
themselves if they are available.

Any form of scientific observation, however, must rely on a useful interpretive frame-
work that gives meaning to the observations. In the next subsection, I argue that
model validation provides a basis for such an interpretive framework.

1.5.2 Model Validation as an Interpretive Framework of Sci-
ence in Practice

To give our observations meaning, one cannot escape the use of some interpretive
structure, which can come in the form of a framework. A framework filters and
transforms observations into a coupling of observations and interpretation. It is this
coupling that is useful and, when brought together with couplings from other cases,
it can be used to induce more general statements about science-in-practice.

The question then becomes: What is a useful framework for analyzing science in
practice and, in particular, the construction and use of economic models? First, it
must be stressed that a pluralist attitude to such a question is, in my view, most
useful. Each framework highlights certain elements and discounts others, and no
framework is all-encompassing. Many of the frameworks that have been developed
in the philosophy-of-science of economic models provide valuable and unique insights;
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in this research, I often build on such contributions. To acquire balanced insights
into scientific practices, studying them through several interpretive frameworks is
essential. If we envision economic scientific practice as a complex system that hap-
pens inside a closed-off house, each useful interpretive framework is a window into
its interior workings.

In the chapters of this dissertation, I will demonstrate that using model validation
as the center point of such an interpretive framework yields useful and novel insights
into various modeling practices. In other words, it represents a large window with
clear views into the house of economic scientific practice.

Before demonstrating this, however, let us first discuss why model validation is such
a useful concept for studying scientific practice. Model validation is the assessment
of a model’s ability to fulfill its intended purpose. It is a crucial element in the
model construction process that scientific practitioners address both implicitly and
explicitly. At this point, several elements require unpacking to clarify why and how I
make use of the concept of validation to understand scientific practice in the context
of modeling.

First, the definition presumes that models are constructed to fulfill some intended
epistemic purpose. That is to say, models are constructed for specific reasons. In
some instances, such reasons are explicitly stated. In other instances, the reasons
why models are constructed are to be inferred from a particular research context
or paradigm. Often, models are intended as tools to answer a particular research
question. I have found that different questions can be related to particular forms
of validation. This implies that by studying how models are validated in a broad
sense, the purpose of a model often becomes clear. Is the purpose to provide a sci-
entific explanation of a phenomenon, or is it the precise measurement of some fact
or other? In addition, we can think of other types of purposes, such as positioning
one’s model within a particular scientific paradigm. Such purposes may also become
clear through studying how a model is validated.

Second, model validation not only requires revealing the model’s purpose but also
sheds light on how such a purpose is best fulfilled by the model from a more method-
ological perspective. Model validation involves the formulation of what I label vali-
dation criteria. Validation criteria are points of reference by which the performance
of a model can be assessed relative to its purpose. These points of reference are op-
erationalized to be of direct use in the model construction context; the criteria entail
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what the model should and should not be able to do. This step thus reformulates
the epistemic model purpose as methodological criteria. By investigating which val-
idation criteria apply, the relationship between the epistemic purpose of the model
and the method of fulfillment can be better understood.

Validation is thus a useful element in an interpretive framework because it brings
both the epistemological and methodological convictions of the model builder into
the foreground. In this sense, it has the potential to provide an integral understand-
ing of the model construction process from the more fundamental aspects to the
specific technical choices made. In itself, however, this does not ensure that valida-
tion as a basis for an interpretive framework enables us to make observations that
lead to this type of understanding. In most cases, only a few of the epistemolog-
ical and methodological convictions will be explicitly stated by the model builder.
I will argue that validation has an additional characteristic that helps to mitigate
this obstacle; validation involves a type of judgment. That is, the validation process
assesses how the model performs in the fulfillment of a wide range of criteria. This
judgment is immanent, meaning that the criteria by which the model is assessed are
internalized within the model construction process because they are given by the
model purpose.

To explain this further, let us recall that model validation is defined as the as-
sessment of the model’s ability to fulfill its intended purpose to a sufficient degree.
The result of a finalized validation process is thus a judgment: the model either
fulfills its purpose, in which case it is successful and the results can be published, or
it does not and the model is to be discarded or adjusted. This judgment extends to
the elements of the model itself, implying that the combination of model elements
is seen as optimal for the purpose at hand given the constraints to which the model
builder is subjected. A different way to describe this conditional optimality is that
the model is epistemically or methodologically preferred to other hypothetical model
configurations given the same constraints. This presents us with what can be la-
beled as a normative ranking: given the same constraints and purpose, Model A is
preferred to Model B, for example. Based on such observations, epistemological and
methodological convictions can be indirectly inferred.

This ranking provides us with useful and clearly defined pieces of information. For
example, in Chapter 6, I will argue that agent-based models are constructed from a
more realist perspective on modeling compared to DSGE models, which rely more
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on an instrumentalist view. I reach this conclusion by studying how both types of
models are validated in different ways.

1.5.3 About the Structure of this Dissertation

In the chapters that follow, I will analyze various cases in macroeconomic modeling
practice. The starting point of the analysis will be to observe which considerations
are at play in the validation process of various macroeconomics models. To investi-
gate the cases through an interpretive framework of validation, it is often necessary
to introduce concepts associated with model validation. The cases differ in their
emphasis on which associated concepts are useful. For example, the discussion of
agent-based models in Chapter 2 places particular emphasis on empirical validation
– that is, assessing whether the output of the model is in line with the empirical data.

Accordingly, each chapter that treats a particular case will start with a discussion of
the concepts necessary to understand the rest of the analysis in that chapter. Some
concepts introduced in the chapter will be particular to the individual case study.
Concepts are also introduced in one chapter that will be built upon in a subsequent
chapter on a different case. Empirical validation, as introduced in Chapter 2, for
instance, will play a role in the analysis of the cases in Chapters 3 and 4. Wherever
this is the case, I will explicitly refer to the place within this dissertation where the
concept was first introduced.

The fact that concepts are introduced before the analysis of the cases serves to
provide logical structure and is not necessarily a reflection of the order of the sci-
entific process. For all the concepts introduced, it holds true that they are arrived
at through an integration of conceptual notions present in the existing literature
and my own observations of scientific practice. The observation of scientific practice
has been mainly through the analysis of literature in which models are constructed
and discussed, as well as seminars and a series of interviews with practitioners of
macroeconomics. In many cases, the concepts introduced in this dissertation are
thus the result of an inductive process of analysis of the cases themselves rather than
a predetermined means of analyzing them.

As mentioned above, the concepts introduced in each case will be integrated into
a model construction framework in Chapter 5. It is this framework work that can
be thought of as the main generalized contribution of this dissertation. It provides
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a novel view of the model construction process, with the notion of validation at its
center.
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Chapter 2

Towards a Validation Methodology
of Macroeconomic Agent-Based
Models

2.1 Introduction

Macroeconomic agent-based models (MABMs) are a promising new tool in the anal-
ysis of macroeconomic phenomena (Farmer & Foley, 2009). These models do not
rely on ex ante equilibrium assumptions, which makes them particularly suitable
for the analysis of economic crises. However, while MABMs have presented several
methodological innovations compared to DSGE models, these same innovations have
also been the source of criticism over their use. Most of this criticism has focused on
how MABMs are empirically validated (Fagiolo, Moneta, & Windrum, 2007). Such
criticism is partially due to the relative novelty of MABMs. A deeper understand-
ing of the relationship between empirical validation practices and the structure of
MABMs is therefore required to gauge the correctness of these practices .

In this chapter, a methodology for the empirical validation of macroeconomic agent-
based models will be presented. Empirical validation here refers to the assessment
of a model’s ability to answer a question by comparing relevant characteristics of the
model with empirical data. The reproduction of relevant empirical characteristics is
what we refer to in this dissertation as the fulfillment of phenomenological validation
criteria. In this context, the term “phenomenological” underlines that the validation
criteria refer to the phenomenon under study.
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The main question that will be answered in this chapter is: How do phenomeno-
logical validation criteria in MABM work to enhance model validity, in the way that
it is observed in practice? In addition, the analyses of MABMs in terms of their
validation allows us to shed light on some more fundamental issues regarding our
characterization of MABMs.

This chapter is structured as follows. First, I will introduce MABMs as complex
systems with emergent properties. Second, I will connect the notion of MABMs as
models of complex systems to how MABMs are validated in practice. By way of
illustration, the model and the validation approach in Lengnick (2013) will be used
as a case study. Third, I will explore the concept of model validation in greater depth
by introducing a framework of model validation. Central to this framework will be
classifying the model into certain types based on how they are validated. Fourth, I
will apply the framework of model validation to the case in Lengnick (2013).

The analysis introduces a validation methodology for MABMs that reveals funda-
mental insights into the models. It allows us to pinpoint the constituent structure of
MABMs. The structural elements at a lower level are distinct from, but inputs to,
the higher-level structural elements. Since structural elements at different levels are
validated in different ways, I come to a specific characterization of MABMs within
the classification of Barlas (1996) and Boumans (2009), that is, in some ways distinct
from other types of macroeconomic models.

In addition, in Section 6.4 of the conclusion of this dissertation, I will provide a
more in-depth discussion of realist and instrumentalist views on modeling when ap-
plied to MABMs.

2.1.1 Discussion of Relevant Literature

This chapter builds on and contributes to several strands of the existing literature.
First, some of the literature seeks to explicate the general issues that modelers en-
counter in the validation of MABMs, as well as discussing the upsides and downsides
of the different validation methods used in practice. The first publications in this
series were Fagiolo et al. (2005), Fagiolo et al. (2007), and Windrum et al. (2007).
Later important updates followed to discuss new developments, namely Fagiolo and
Roventini (2017), Gatti et al. (2018). In this series of papers, the most commonly
used validation approaches are forwarded.
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In Fagiolo et al. (2005), the main validation approaches discussed are qualitative sim-
ulation modeling, replication of stylized facts, empirical calibration, and the history-
friendly approach. In qualitative simulation modeling, the relationship between the
output of the model and the empirical data is only required in a qualitative dimen-
sion. That is, as long as the model output is roughly in line with some qualitative,
empirically observed features, the model is considered valid. Such models are most
applicable for exploratory and experimental purposes.

Replication of stylized facts is the approach in which the model is considered valid
if it is able to reproduce a set of relevant (given the model’s purpose) stylized facts.
Importantly, all the model parameters are calibrated indirectly, meaning that they
are quantified such that the model is able to reproduce the set of stylized facts. This
approach is labeled as indirect as the parameter values are not taken directly from
data; rather, they are selected so that the model as a whole fits certain stylized facts.

The empirical calibration approach is similar to the replication of stylized facts ap-
proach in the sense that stylized facts are used to calibrate the model parameters.
In addition, however, some of the parameters are calibrated directly. As a result, the
empirical data used for the calibration concerns the individual relationship in which
the parameter occurs, instead of comparing the output of the model as a whole. In
the case of agent-based models, most of the parametrization occurs at the micro
level, implying that, in direct calibration, empirical data at the micro level are used.
This type of validation is considered a stricter type of validation.

Finally, in the history-friendly approach, the validation criterion is to reproduce
a precise data history, at least in qualitative terms. Often, this comes in the form
of reproducing specific time-series data. In this approach, additional importance is
given to matching the initial conditions of the model to those observed in the time
series to be reproduced.

Most recently, Fagiolo et al. (2019) outline the latest developments regarding val-
idation techniques of MABMs. This includes the use of machine learning techniques
to select regions of the model parameter space that exhibit interesting behavior.
Such computational techniques have become increasingly important as agent-based
models have become more elaborate, and the criterion of sensitivity analysis has
become increasingly important. Sensitivity analysis is an assessment of how robust
certain model behavior is against changes in the parameter space, or to changes in
assumptions.
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An additional interesting development discussed in Fagiolo et al. (2019) is the val-
idation approach described by Guerini and Moneta (2017). In this approach, a
VAR-estimation is performed on the aggregated (macro) variables of the simulated
data (generated by the agent-based model). The coefficients of this simulated VAR-
estimation are then compared to those of the same VAR-estimation performed on
empirical data. If the coefficients match in terms of their sign and, to some extent,
their size, the model passes the validation test. This is an interesting approach be-
cause it addresses what is known as the conditional object critique originally put
forward by Brock (1999). The core of this critique is that stylized facts may be too
general, to the point that multiple distinct models may be able to reproduce them.
The approach in Guerini and Moneta (2017) provides a more selective validation
measure within this context.

The publications discussed above have been critical in providing overviews of vali-
dation approaches in MABMs in order to build a more standardized approach and
are thus important in clarifying the directions in which new research should develop.
However, this strand of literature has not sought to provide in-depth methodologi-
cal foundations for the methods they present. Although it provides an overview of
some methodological and epistemological issues in model validation, such as realism
versus instrumentalism and underdetermination (see, for example, Windrum et al.
(2007)), it does not go one step further to look at how these issues specifically apply
to MABMs.

An alternative angle by which we can consider the validation of MABMs is to con-
struct a benchmark model, the performance of which serves as a minimum criterion
for model validation. In Caiani et al. (2016) and Lengnick (2013), for example,
the aim is to present a benchmark or baseline model, but the difficulty with such
a common benchmark may be that the actual validation criteria may differ given
the various different questions that the models are built to answer. In this way,
benchmark models seek to incorporate only features that are seen as essential for
most models. Looking at Lengnick (2013), for example, we see that the incorporated
features include households, firms, and banks that behave and interact according to
simple rules.

The literature discussed above highlights the variety of existing approaches to the
model validation of MABMs. Some approaches may be more suitable for particu-
lar types of models than others. For the purpose of this chapter, I will focus on the
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stylized fact (or indirect calibration) approach, because this is the approach most fre-
quently used in practice (Fagiolo et al., 2019), and because more recent approaches
(such as Guerini and Moneta (2017)) are ultimately extensions of this approach.

As we will see, the notion of complex systems and complexity economics plays an
important role in the analysis of this study. My own understanding of the economy
as a complex system has been strongly influenced by works such as Arthur (2013).
Furthermore, the concepts of reductionism and emergence in the context of macroe-
conomic modeling will be relevant. Hoover (2015) and, to some extent, Gatti et
al. (2011) are important contributions in this regard. This study will contribute to
the extant literature by connecting the concepts of complexity and emergence with
model validation.

Finally, this contribution somewhat stands within a strand of the literature that
considers the methodological aspects of agent-based modeling in a general sense.
The most well-known studies in this regard are Epstein (1999) and Epstein (2006),
in which the idea of agent-based models as tools to generate explanation is brought
forward. This is also linked to validation, since a necessary condition within this
concept is that agent-based models are valid only if they are able to generate an
explanation starting from interacting agents. Furthermore, contributions such as
Elsenbroich (2012) and Grüne-Yanoff (2009) have helped me to gain a deeper un-
derstanding of agent-based methodology in relation to explanation. However, an
analysis of validation in light of the fundamental methodology of agent-based mod-
els is not present in the current literature, which is where I hope to contribute.

2.2 Complex Systems with Emergent Properties

The first element necessary to arrive at a validation methodology of MABMs is the
notion that the structure of MABMs presents a complex system with emergent prop-
erties. This notion entails that, generally speaking, MABMs are tools to model the
economy as a complex system. But how should we understand this?

A plethora of definitions exist for what constitutes a complex system. One that
is useful for our analysis comes from Ladyman et al. (2013): a system in which ele-
ments react to the patterns that they together create through interactions. Hence,
according to this definition, a complex system is one comprised of a multitude of
interacting elements. Through these interactions, patterns are created to which the
elements react. This implies that the created patterns are not always consistent with
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individual behaviors; in turn, it follows that the natural state of the system is not,
at least ex ante, equilibrium (Arthur, 2013). This discrepancy between patterns at
different levels is known as emergence.

Emergence is generally a key feature of complex systems, but it can be defined more
exactly in numerous ways (O’Connor & Wong, 2015). To analyze the role of emer-
gent properties in models of complex systems more fully, I start from the framework
introduced in Baas and Emmeche (1997). In their framework, a system is defined
in terms of entities En, interactions between these entities Intn, and an observation
mechanism Obsn. Together, En and Intn make up the structure of the system. Obsn

measures the properties P n of the entities En. Obsn can be seen as observation
mechanisms used by an observer external to the system, while n represents the level
of interactions under consideration. Entities at a certain level are constituted by
the lower-level entities and their interactions. Formally, levels are connected in the
following way:

En+1 = M(En, Intn, Obsn), (2.1)

where M can be considered as some process of mathematical induction. Each of
these levels of entities can have properties; emergence can be defined through the
subsequent definition of these properties. A property P is emergent if P ∈ Obsn+1

while P /∈ Obsn. This means that a property of a certain entity is emergent if it is
not observed as a property of a lower-level entity.

Let us now see how this framework is reflected in models of complex systems, such as
MABMs. Such a model always starts from a base level: n = 1. This level consists of
the elementary entities of the model and their interactions. All model assumptions
are at this level. We can generate the next level in such a model by taking into ac-
count the consequences of interactions between these entities E1 through a process
of mathematical induction.

Considering the interactions between entities in this model implies that we use some
methods of mathematical induction, such as iteration, to generate the entities at the
next level. These entities will, in turn, interact to generate the next-level entities,
and so on. If an agent at a level higher than n = 1 has properties that can only be
observed by considering the implications of interactions of lower-level entities, we can
say that an entity has emergent properties. For micro-founded modeling macroeco-
nomics, in which the micro level can be seen as n = 1, this implies that – contrary
to the “strong reductionist” (Gatti et al., 2011) approach of representative agents
– macro properties do not reduce to properties of individual households or firms
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in isolation. Rather, we require the interactions between agents from which macro
properties emerge, which are qualitatively different from the properties of the agents.

Most MABMs can best be described as three-level systems: the micro level (n = 1),
the meso level (n = 2), and the macro level (n = 3). Interactions at the micro level
give rise to the second-order entities, which consist of networks of agents. These
networks, in turn, can interact, resulting in the macro level (i.e., third-level entities).
Levels are defined based on whether interactions exist between entities at the same
level. However, it is important to consider that in reality, the boundaries between
the meso and macro levels are much more blurred than the framework of Baas and
Emmeche (1997) would consider them to be. Rather, interactions and feedbacks are
evident between the different levels, which can make a level in between the agent
and the aggregate model output difficult to set apart.

Let us now discuss how this framework relates to the notion of model structure.
Broadly speaking, the structure of a model is defined as the model mechanisms that
in some way generate the model target. They are the sum of all En and Intn at
all levels n. The model target is the phenomenon that the model is constructed to
reproduce. If the purpose is to provide an explanation of business cycle dynamics, for
example, the model target is the business cycle, and the model structure comprises
the mechanisms by which the model is able to reproduce the business cycle.

In the case of MABMs, the model structure arises from the properties of the en-
tities and their interactions. Given that MABMs are structured as multiple levels,
their structural elements operate at multiple levels as well. To understand this, let
us look again at the framework of Baas and Emmeche (1997) and further clarify the
role of the observation mechanism Obs. Obs states at which level we are observing E
and Int. The difference between a lower and higher level of Obs is given by whether
we take the structural consequences of the interactions into account. But what does
this mean, exactly? Let us consider a two-level example, starting from the micro
level n = 1:

E2 = M(E1, Int1, Obs1) (2.2)

Now, if we put on the Obs1 glasses, we observe the behavioral rules of agents as
properties of E1. Embedded in these rules is the structure that generates the out-
put at the level of the individual agent. Importantly, however, these rules can, and
will in practice, also include rules that are a function of variables of other agents.
It could be, for example, that a firm sets its price as a mark-down on the average
price of a subset of other firms. These types of behavioral rules can still be observed
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through Obs1 and can be understood as Int1. Together, they embed the structure
at the first level. Observing the interaction rules by themselves is not the same as
taking into account the structural consequences of those interactions. This requires
close consideration of the implications of the behavioral rules of agents for each other.

In the price-setting example, accounting for the structural consequences of interac-
tions would require consideration of the price-setting behavioral rules of other firms
as well. At the level of the agent in isolation observed through Obs1, the influences
of other agents are exogenous. However, if we take into account the consequences
of interactions, we observe through Obs2 a system of connected agent entities; the
exogenous variables at the micro level are now endogenous in relation to the second-
order entities. This system, as observed through Obs2, will thus be constituted as a
structure that accounts for the effects of agents’ behavior on each other.

We must note at this point that the difference between observed levels is thus merely
one of steps in a mathematical induction. Indeed, this is also implied by the fact
that the E2 is generated through an inductive process M . The reason for this is that
the interactions Int1 do not constitute any new inputs into the model; rather, they
are an inductive consequence of the behavioral rules that are part of E1.

Finally, it is important to see how the notion of emergence fits into this distinc-
tion between levels. We have defined emergence as P ∈ Obsn+1 while P /∈ Obsn; this
implies that the properties of E2 cannot be observed without taking into account
the implication of each agent’s behavior on one another. In the case of the model
structure, this means that by accounting for the consequences of interaction, a new
entity will emerge that is constituted by, but different from, the behavior of agents
observed through Obs1. If a property were non-emergent, it would mean that it could
be generated from the structure observed at Obs1.

Given the number of heterogeneous agents in MABMs (for instance, 1,000 house-
holds and 100 firms in Lengnick (2013), all with some heterogeneity), the inductive
steps that allow us to observe a new level can, in the case of emergent phenomena,
only be taken through simulation. However, it is essential to understand that the dif-
ferent levels of structure in MABMs are all inducible from the same input. This also
means that the structure observed at any level is not independent of the structure
observed through Obs1. Dawid and Gatti (2018) also comes to this conclusion by
showing that any macro property can be derived through mathematical induction.
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2.3 Validation at Multiple Levels

In what follows, I relate the concept of emergent properties to validation in practice.
I will do so by looking at how the properties at the micro, meso, and macro levels
are validated. As examples of validation in practice, I refer to Lengnick (2013) since
this study is, to some extent, representative of the general validation practices in the
MAMB literature.

In particular, I will assess how validation as observed in Lengnick (2013) relates
to the micro, meso, and macro levels. As stated previously, the distinction between
the meso and macro levels is often not so easy to make in practice. I still think it
is useful, however, to consider the meso level to better distinguish between different
types of stylized facts. Importantly, the core of the analysis would remain unchanged
if one were to consider an MABM as a two-level system.

Central to my discussion of the empirical validation conducted in Lengnick (2013)
is the distinction between phenomenological input and output validation criteria. A
validation criterion is a requirement that has to be met in order to consider the model
valid. Phenomenological criteria are requirements derived from empirically observed
phenomena. The distinction between input and output here refers to whether the
implications of model assumptions are taken into account.

The Micro Level

Agents represent the entities at the n = 1 level, the micro level. They are the lowest
level entities of an MABM, implying that they are the model input. They have prop-
erties that directly result from the assumptions made by the modeler. The validation
of these properties can be labeled as input validation. In Figure 2.1, we can see a
schematic representation of validation at the micro level. In this representation, the
blue nodes can be seen as the agents E1

i , and the edges as their interactions Int1ij.
We are looking at the system through the Obs1 lens; this means that we observe both
the agents and their interactions. However, we do not consider the further structural
implications of these interactions when addressing the system through Obs1. P 1 are
the properties observed through Obs1, that represent properties of the individual
agents. Input validation assesses whether these properties are in line with what is
empirically observed.

What are some general characteristics of input validation in MABMs? The assump-
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Figure 2.1: Validation at the micro level

tions at the micro level are considered to be of particular importance to MABM
practitioners. MABM studies often start with the critique that DSGE models are
not based on realistic assumptions. In turn, MABM modelers pride themselves on
modeling from more realistic assumptions. But what does it mean, in the case of
MABMs, to have more realistic assumptions? MABM practitioners state that one
of the crucial differences between DSGE models and MABMs is in the realism of
the assumptions that determine agent behavior. The following quote is one of the
essential differences between neoclassical economics (in which DSGE are one of the
main tools) and agent-based computational economics (ACE):

ACE can be seen as a substitute to standard neoclassical approaches to economics
that tries to build more reasonable models based on reality to better address its be-
havior, a new approach that rejects the idea that models can be built using false
assumptions and trying instead to explore models based on assumptions more in line
with what we know about how real-world agents behave and interact. (Gatti et al.,
2018)

Hence, MABMs are an attempt to move from the homo oeconomicus toward a more
empirically validated agent. In most MABM studies, therefore, specific attention
will be paid to validation at the micro level, in which the assumptions regarding
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the behavior of agents are compared to outcomes of economics experiments or other
insights from the psychology or strategy literature. Most often, these rules will imply
that agents have a certain form of limited knowledge regarding the economic system
when compared to the rational expectations approach of DSGE. This is in line with
the concepts of procedural rationality (Simon, 1976) and heuristics (Gigerenzer &
Todd, 1999). In the schematic overview, properties P 1 at the micro level reflect such
behavioral rules.

Turning to how agent validation takes place in Lengnick (2013), we can observe
a similar means of agent validation. For example, to describe the consumption be-
havior of a household h, the following equation is used:

ch =
(mh

Ph

α)
, (2.3)

Where ch is the individual household consumption, mh are the monetary holdings of
the household, and Ph is the average price of the producers from which the house-
holds buys. Here, 0 < α < 1 (parameter) such that the relative share of income
consumed decreases when the household’s monetary holdings increase. Importantly,
the functional form of this equation is defended not on the basis of homo oeconomicus
theory, but rather by citing an empirical study, namely Souleles (1999). For other
domains of household and firm behavior, similar sources are cited that are either
empirical studies or theories that are directly supported by micro data. It is useful
to note that in DSGE models, such phenomenological input criteria are generally
not present or addressed explicitly. Rather, the criteria at the agent level are theo-
retical. For example, consumers are assumed to optimize their utility based on their
level of consumption and leisure. Such assumptions are not based on micro-economic
evidence but stem from what is usually referred to as neoclassical theory.

The Meso Level

Let us now consider how properties at levels higher than the micro level relate to vali-
dation as we observe it in practice. In addition to validation at the micro level n = 1,
we observe the validation of cross-sectional properties. The use of cross-sectional
properties can best be characterized as validation at the meso level or n = 2, we can
label these properties as P 2 of an entity E2

i . E2
i arises from considering the struc-

tural implications of the first-order interactions between, for example, firm agents
and their consumers. The network of firms and their consumers can be seen through
the Obs2 lens as a new entity. As P 2 requires us to consider the implications of
assumptions, we can label them as phenomenological output criteria. An example
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of a property of these entities is the distribution of firm size, as these entities will
vary in terms of how many links they have with consumers. These distributions can
then be compared to empirical data to fulfill the phenomenological validation criteria.

Figure 2.2, presents a schematic overview of this. The second-level entities are given
by the units represented as the large circles drawn around the network of squares
and circles. These could represent a network of two groups of consumers and a firm.
In Lengnick (2013), we observe such a use of cross-sectional properties in validation.
For example, model data on the distribution of firm size are used. The model data
follow a right-skewed distribution – more specifically, a power law. Practically, this
means that the model data contain a large group of small firms and a small group of
very large firms. In Lengnick (2013), these model data characteristics are compared
to the empirical data on firm size, and it is concluded that both are distributed in
a similar way. In some cases, this size distribution conforms to a Yule distribution,
which is a key subject in Chapter 4. In addition, Lengnick (2013) uses model data
regarding the distribution of the price changes for validation.

Validation of these distributions can be seen as validation of the meso level. This is
because, especially in the case of firm size, these distributions are the product of in-
teractions between agents rather than the product of interactions between networks
of agents. Firm size is determined by its consumer network, and the distribution of
these consumer networks can thus be seen as a property of E2 as observed through
Obs2.

The Macro Level

Finally, we can look at the properties at the macro level E3, with properties P 3.
These properties can also be labeled as phenomenological output criteria because
they require us to take into account the implication of the model input. These
usually consist of patterns of aggregate variables over time or relationships between
macroeconomic variables. In Figure 2.2, we can see a schematic overview of vali-
dation at the micro, meso, and macro levels. The rectangle around the groups of
networks represents the model as a whole. Properties at the macro level are different
from those at the meso level, because for the macro level, we account for the struc-
tural consequences of the interactions Int2 between E2, which yields a new entity
E3. If we consider how validation in practice is conducted at this level in Lengnick
(2013), we observe the use of empirical regularities in the form of relationships be-
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Figure 2.2: Validation at different levels

tween macro variables. Examples include the relationship between price level and
employment, better known as a Philips curve, and the relationship between vacancies
and unemployment, a Beveridge curve. For these relationships, the model data are
compared to empirical data to fulfill the phenomenological criteria. In addition to
examining the relationships between macro variables, we can also consider the char-
acteristics of macro variables over time. An example of this is the unemployment
level over time. In Lengnick (2013), the model unemployment data alternate be-
tween low unemployment and deep downturns. This is in line with what we observe
empirically regarding the business cycle.

Again, whether a distinction exists between the meso and macro levels depends
on whether the properties of the entities at the meso level can be obtained without
considering the interactions between these meso entities, and whether the proper-
ties at the macro level require interaction between the meso entities in order for the
model to generate them. A well-known example of this would be a skewed distribu-
tion of firm size that arises out of the interactions between firms and consumers and
a business cycle that arises through the default of one large firm that affects other
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smaller firms due to decreases in the wage income of the defaulted firm’s employees
(Gabaix, 2011).

2.4 A Framework of Model Validation

To better understand the workings of the validation process of MABMs as observed in
Lengnick (2013), we should first introduce some general concepts of model validation,
such as model purpose and target and structural validation. In addition, I will
introduce the classification of models presented in Boumans (2009), which is based
on which validation tests are applicable .

2.4.1 Model Purpose and Types of Questions

Let us start with a brief discussion of model purpose, which will be further elaborated
upon in Chapter 3. As we have discussed, models are constructed for a certain pur-
pose. Often, this purpose is to answer a question. We can distinguish multiple types
of questions that are typically associated with particular validation requirements.
Here, I follow the question types formulated in Boumans (2009): why questions,
how-much questions, and how’s-that questions.

For why questions, the answer is an explanation. That is, it is an account of mecha-
nisms that are to be interpreted as the mechanisms operating in the real world. An
example of this type of research question is: Why did we observe stagflation during
the Oil Crisis of the 1970’s (Barsky & Kilian, 2000)?

For how-much questions, the answer is a measurement-a quantitative value. For
this question type the answer does not need to contain an account of the mechanics
by which the measurement was generated. An example in this case is: When will
the next financial crisis occur (Aydin & Cavdar, 2015)?

The answer to how’s-that questions does contain an account of the mechanisms;
in contrast to why questions, this account does not have to be an explanation. This
means that the account of mechanisms does not need to be interpreted as mech-
anisms operating in the real world. Rather, it is sufficient when the mechanisms
behave as if they were in the real world in relevant domains. An example of this
is: How do certain very ordinary economic principles lead maximizing individuals to
choose consumption-production plans that display many of the characteristics com-
monly associated with business cycles (Long Jr & Plosser, 1983)?

37



CHAPTER 2. TOWARDS A VALIDATION METHODOLOGY OF
MACROECONOMIC AGENT-BASED MODELS

2.4.2 Phenomenological Validation Criteria

In this section, we will discuss how the aforementioned question types determine
which validation tests are relevant. To do so, requires a closer investigation of phe-
nomenological validation criteria.

As we have discussed, phenomenological criteria come in the form of what is more
generally known as empirical validation. This involves assessing whether certain
characteristics of the model are in line with what is observed empirically. I will first
discuss the various types of phenomenological validation criteria, as well as which
tests are associated with these types. Thereafter, I will lay out a categorization of
model types based on the types of phenomenological criteria that apply. These model
types, in turn, are associated with particular types of questions that models are built
to answer, as discussed in the previous section.

First, as introduced in Section 2.3, we can distinguish between phenomenological
input criteria and phenomenological output criteria (see Gatti et al. (2018) for a
similar categorization). Input criteria require the empirical assessment of the model
assumptions without considering the implications of these assumptions when put
together. That is, they are the initial settings of the model, before any analytical
derivations or simulation have been performed. In the case of macroeconomic models
this often comes in the form of assumptions at the agent level. We could, for exam-
ple, seek to assess whether consumer saving behavior is in line with how subjects are
observed to form expectations in laboratory experiments.

Phenomenological output criteria, on the other hand, require the assessment of the
implications of the model assumptions when put together. This may include both
the implications of all model assumptions or subsets of assumptions. Indeed, the
implications of model assumptions can be studied in different ways. In some cases,
the model is solved analytically; relationships within the model structure can be un-
covered in this way and subsequently compared to relationships found in empirical
data. In other cases, the behavior of the model as a whole is generated through
computer simulations. This yields model output data, the characteristics of which
can be compared to potential empirical counterparts.

38



CHAPTER 2. TOWARDS A VALIDATION METHODOLOGY OF
MACROECONOMIC AGENT-BASED MODELS

The phenomenological output criteria can be distinguished further. Barlas (1996)
distinguishes between three types of validation tests that can be understood as dif-
ferent types of phenomenological output criteria within the context of the framework
presented here. The three types of tests are behavior pattern tests, direct structure
tests, and indirect structure tests.

Behavior pattern tests can be understood as phenomenological output criteria di-
rected toward the “major behavioral patterns of the real system” (Barlas, 1996).
Which patterns are considered major should be understood in relation to the pur-
pose of the model. For a model built to answer a question on how business cycles
arise, for example, the cyclical patterns of business cycles would be considered major;
they represent the most important patterns for a model to reproduce relative to its
purpose. The major patterns in relation to the purpose of the model are what I will
label as the model target. If the purpose of the model is to answer a question about
a given phenomenon, the model target should be understood as empirical patterns
closely associated with that phenomenon.

Next, let us discuss direct and indirect structure tests. Both types of tests can
be understood as phenomenological output criteria directed toward the model struc-
ture. The model structure entails the mechanisms by which the model output is
generated. Whether and the way in which the model structure is subjected to vali-
dation is dependent on the type of question that the model is constructed to answer.
For instance, if the question is of the why type, an explanation is required, and this
explanation is embedded in the model structure. This implies that, for these question
types, the model structure is subject to validation. In contrast, how-much questions
do not require an explanation. The answer to such a question is a quantitative mea-
surement that is as accurate as possible; the mechanisms through which the model
arrives at this measurement are not of interest. This implies that the model structure
is not subject to validation.

Let us now discuss the difference between direct and indirect structure tests. Di-
rect structure tests assess individual parts of the model structure, such as individual
relationships between variables. For example, it may be presumed that a negative
direct relationship exists between interest rates and the propensity to consume. A
direct structure test would assess whether this direct relationship is, in fact, present
in the model as such. Direct structure tests therefore assess whether the explanation
provided by the model is in line with the description of the real-world structure (at
least in the way that this is observed). I will also refer to this type of validation test
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as direct structure validation. To relate our discussion here to that of the elements
from which models are constructed in Section 1.2, direct structure validation assesses
whether the elements are injective representations.

Phenomenological input criteria can also be seen as a type of direct structure valida-
tion. This is because the model assumptions are input to the model structure, and
the validation of these assumptions occurs without considering their relation to the
other assumptions or their implications for the rest of the model.

The second type are structure-oriented behavioral tests. These tests assess the model
structure, but they do so by comparing a broad range of characteristics of the model
output data with empirical counterparts. The idea is that if the model behaves
in line with observed facts in a sufficient number of dimensions, it signals that the
model behaves at least as-if it were the real-world structure. If a model is built to
provide an understanding of the mechanisms that could generate the business cycle,
for instance, the fact that it is also able to reproduce the Philips curve is seen as a
sign that the model mechanisms behave akin to the real-world structure. I will refer
to this type of validation test as indirect structure validation.

Figure 2.3 presents an overview of all the different types of phenomenological valida-
tion criteria discussed thus far. The first distinction is between validation based on
model input and validation based on model output. Output validation can be split
into target and structural validation. Structural validation, in turn, comprises direct
and indirect structural validation.

2.4.3 Black, White, and Grey-Box Models

Based on which forms of empirical validation apply and the types of questions that
models are constructed to answer, several authors have put forward a characteri-
zation of model types. Barlas (1996) distinguishes between two types of models:
white-box and black-box models. Boumans (1999) extends this classification to in-
clude grey-box models; as we will see, these are of particular relevance for models in
economics.

Let us now proceed with a discussion of the model types. For each model type,
a question is typically associated with it, as well as forms of empirical validation
that apply. To begin, target validation applies to all three white-box, black-box, and
grey-box models, because the purpose of the model is most often a question about a
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Figure 2.3: Validation criteria
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phenomenon. This phenomenon is what we have defined as the model target. Irre-
spective of whether the answer to the question requires an account of the mechanisms
involved, the model should at least be able to reproduce its main target.

Target validation is thus not a factor that allows us to distinguish between the var-
ious model types and types of questions. Rather, the types of structure validation
that apply are what enables this categorization. Recall that the types of structural
validation are indirect and direct structure validation.

White-box models have a structure that is typically associated with why questions.
Both types of structure validation apply here. White-box models aim to be an injec-
tive representation of the structure of the system under investigation. If the system
is large and complex, such as the macroeconomy, the white-box model structure is
typically large and complex as well. In economics, given their complexity, white-box
models are most often constructed in terms of macroeconomic variables. This is be-
cause aggregation is typically associated with a reduction in the number of variables.
Take inflation, for example: rather than accounting for price changes of individual
products in the economy, we can look at the aggregated inflation level. A primary
example of white-box models in macroeconomics are simultaneous equation models
(SEMs), such as those produced by the Cowles Commission. Another example is the
Brookings model of the United States (Dusenberry, Fromm, Klein, & Kuh, 1965),
which consists of over 400 equations.

Black-box models are typically associated with how-much questions. Structural vali-
dation does not apply here. Black-box models do not aim to represent the real-world
structure in any way, nor is their goal to provide some form of understanding; they
are evaluated solely based on their predictive accuracy. We can roughly distinguish
between two sub-types of black-box models. The first are models whose structures
are highly complex. Think, for example, of models generated by machine learning
algorithms such as neural networks. The second sub-type is more simple but relies
heavily on stochastic and/or temporal lags, which do not have a structural inter-
pretation. In macroeconomics, black-box models are most often associated with this
second sub-type and fall under the umbrella of time-series econometrics. An example
are vector autoregressive (VAR) models, which are constructed from lagged macroe-
conomic variables and stochastic shocks.

Third, grey-box models are associated with how’s-that questions. Only structure-
oriented behavior tests or indirect structure validation apply here. The structure of
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Direct structure
validation

Indirect structure
validation

Target
validation

Question
type

White box ✓ ✓ ✓ Why
Grey box ✓ ✓ How’s that
Black box ✓ How much

Table 2.1: Model categorization based on phenomenological criteria and question
type

the model is intended to be a non-injective representation. As Boumans (2009) points
out, grey-box models typically have a “modular” structure. Following Simon (1962),
such models are built from several, in some sense, autonomous parts or sub-models.
The reason for modeling in this way is that it may be a daunting task to model all
the structural elements directly that are at work in a larger system. Instead, we can
seek to partition the system into smaller subsystems (or modules). If we put these
modules together, we have a model of the larger system. These modules may interact
in complex ways that make it difficult to validate the relationships between model
entities individually, which leaves us with indirect structure validation. Typical ex-
amples of grey-box models in macroeconomics include DSGE models, into which
modules such as Calvo pricing and intertemporal utility optimization are integrated.
As I will argue in this chapter, agent-based models can also be seen as a particular
type of grey-box model in which the modules are the agents.

Table 2.1 provides an overview of the categorization made in the previous sections.
The types of models can thus be associated with the types of questions and the types
of structure validation that apply.

2.4.4 Validation as Reduction of Underdetermination

Thus far, we have discussed several types of phenomenological criteria and how we
can categorize models based on which of these apply. Now let us move onto how
the fulfillment of these criteria enhances the perceived ability of a model to fulfill its
purpose from an epistemological point of view.

To see how phenomenological validation criteria can enhance perceived model cor-
rectness, let us first introduce the concept of the model domain. This domain is
information embedded in the model that has the potential to be empirically falsified.
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That is, it is the information within the model that can be interpreted as an empir-
ical claim.

This domain is determined through information embedded by the model’s input
and output that is empirically falsifiable. For instance, consider a model that pro-
duces a cyclical pattern of a variable labeled as output gap through model input
that includes a negative relation between a variable labeled as unemployment and
one labeled as inflation. Two distinct empirically falsifiable pieces of information are
embedded in the model input and output. The first are the cyclical patterns in the
variable labeled as output gap. If these cyclical patterns do not correspond to those
that are empirically observed, the model’s answer is empirically false in this respect.
The second is the negative relation between a variable labeled as unemployment and
one labeled as inflation, which is empirically false if it does not correspond to the
relationship between unemployment and inflation as it is observed empirically. The
domain, in this case, are the cyclical patterns in the output gap produced by the
model and the negative relationship between inflation and unemployment.

Note that not all information within the model domain is necessarily relevant for
the purpose of the model. Information that is relevant is defined as information that
enhances the validity of the model given its purpose. To clarify, some elements in
the domain are determined through information that is embedded in the model tar-
get, while others are determined through information that is embedded in the model
structure. To take the aforementioned example again, the first piece of information –
the cyclical patterns – represents the model target. The input of the negative relation
between inflation and unemployment represents the model structure. In the previous
sections, we have established that whether or not the model structure is subject to
empirical validation depends on the model purpose. For how much-questions, for in-
stance, the model structure is not subject to validation. To illustrate, let us say that
the negative relationship between unemployment and inflation is in fact not observed
empirically. If the purpose of the aforementioned model is to measure the duration
of business cycles and not to explain them, the fact that part of the information in
the model is empirically false does not negatively affect the validity of the model. To
connect the notions of domain and relevance, therefore, we can say that the notion
of relevance determines which subsets within the model domain enhance the validity
of the model.

Importantly, any set of available empirical data is always underdetermined by the
information in the model domain. That is, in principle, there will always be multiple
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ways in which a model can reproduce any set of data (Stanford, 2009). We can say
that for a given set of data that does not falsify the information embedded in model
A, we can always come up with a model B, the domain of which is also not falsified
by the same set of empirical data. As a result, the goal of phenomenological valida-
tion criteria is not to definitively establish that the model domain is empirically true
but to make it less likely that it is false. In this sense, phenomenological validation
criteria serve to reduce underdetermination.

Given this epistemic value of phenomenological validation criteria, note that the
more empirical data characteristics are involved in the validation process, the more
underdetermination can be reduced as long as these facts are within the domain of
the model’s answer. This is in line with the view of some modeling practitioners
that models that are able to reproduce a larger number of empirical facts are more
epistemically valued.

2.5 Structure and Target Validation in MABMs

In Section 2.3, we discussed how phenomenological criteria at different levels apply to
MABMs. We distinguished between phenomenological input criteria at level n = 1
and phenomenological output criteria at higher-order levels. To situate MABMs
within the white-, black-, and grey-box framework presented in the previous section,
it is important to further distinguish these phenomenological criteria in accordance
with Figure 2.3 in terms of target validation and the various types of structural val-
idation.

The properties observed at Obs1 (i.e., properties of agent behavior) are used to
fulfill phenomenological input criteria, which is a type of direct structure validation.
Agent behavior is modeled based on empirical evidence related to agents, as shown
in Section 2.3.

This agent behavior, as observed through Obs1, also constitutes the input for the
structure observed through Obs2, the system of interacting agents. This structure,
contrary to the structure observed through Obs1, is usually not observed by the mod-
eler directly. The reason for this is that MABMs can, in practice, only be analyzed
through (numerical) simulation due to the large number of heterogeneous agents
engaging in non-linear interactions. The structural elements that are not observed
directly can only be validated indirectly through, for example, assessing the repro-
duction of both the cross-sectional and the time-series levels. In the previous section,
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I have shown examples of such validation. Importantly, both the assessment of the
reproduction of properties at the meso level as well as the macro level can be seen as
indirect structure validation as long as these properties are different from the model
target. The model target in the example of the previous section are the observed
business cycle dynamics. If the property coincides with the model target, this would
be characterized as target validation and not structure validation.

Looking back at the classification by Boumans (2009) in Table 2.1, we observe that
MABMs are thus validated as grey-box models. This is because MABMs have a
modular structure in which the modules are the agents. Together, the structure that
these models create is validated indirectly. Specific to MABMs, these modules are
assessed through direct structure validation in the form of input validation, mean-
ing that we can view them as white-box sub-modules. Within this classification,
MABMs can be seen as a grey-box model built from white-box modules.

Now, how does this combination of direct structure validation and indirect struc-
ture validation enhance model validity? If the relationship between multiple levels is
merely one of inductive steps, does this mean validation at higher levels is superflu-
ous? To understand why the answer is no, it is useful to think about this in terms of
reducing underdetermination, as explained above. When modeling agent behavior,
the behavior of the agent is constrained by empirical data through direct comparison
of agent behavior with empirical evidence related to agents. However, this does not
mean that choices regarding agent behavior do not have to be made. In particular,
two sources of degrees of freedom are available.

First, modeling is always a matter of simplification and isolation. The modeler
must decide which elements of agent behavior are significant in relation to the model
target and which elements can be omitted. Second, underdetermination can only be
reduced to some degree, since there will always be degrees of freedom and several
competing models of agent behavior, even if we apply strict empirical testing. The
above facts are important to state, since they imply that indirect testing of the struc-
ture at Obs2 will still enhance the validity of the model’s structure because it further
reduces the number of possible specifications of agent behavior that are in line with
empirical reality. The modeler makes choices regarding agent behavior when mod-
eling the agent; the innovation that MABMs have brought is that these choices are
constrained by the empirical data regarding the behavior of the individual agent.

On the other hand, the choices that the modeler makes also determine the struc-
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ture at higher levels of observation. By simulating the model, the implications of
the choices made at the level observed through Obs1 for the level observed through
Obs2 can be uncovered and indirectly validated. This further constrains the choices
that the modeler can make regarding the model input. The role of emergence in
this process is thus merely one of unveiling the implications of choices at one level
for the next level. The structure at higher levels can only be uncovered through
some inductive process, which in the case of MAMBs is numerical simulation. The
simulation methodology implies that this higher-level structure, as implied by the
lower-level structure, can only be validated indirectly through output characteristics.

If no emergence relationship existed between two levels, there would be no veiled
implications for the choices of one level for the next. Validation at these levels in
such a case would therefore require the same data, which would mean that validating
at multiple levels would not help to reduce underdetermination.

2.6 Conclusion

In summary, to understand the validation practices conducted in MABMs, I have
introduced several frameworks.

First, I have looked at how models of complex systems with emergent properties
are structured. Complex systems can be seen as systems with different levels of
interacting entities. Properties observed at one level that are not observed as prop-
erties at a lower structure can be defined as emergent properties. In relation to this,
I have looked at how models of complex systems with emergent properties are struc-
tured. Complex systems can be seen as systems with different levels of interacting
entities. Properties observed at one level that are not observed as properties at a
lower structure can be defined as emergent properties. MABMs can also be under-
stood as systems with multiple levels of entities: the micro level, the meso level, and
the macro level.

Second is a classification of three types of models based on how these models are
validated and which questions they are constructed to answer. We can distinguish
between black-box models in which only target validation applies, white-box models
in which both the target and the structure are subject to validation in a direct sense,
and grey-box models in which the structure is subject to validation in an indirect
sense. This classification helps us understand how we should consider the purpose
of validation tests used in practice.
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The combined insights of these three elements allow us to formulate a validation
methodology for MABMs. First, I have shown that in practice, each of the levels
(micro, meso, and macro) of MABMs are validated using different tests. The micro
level is the input to the model. Specific to MABMs, this input is subject to valida-
tion. This means that the agent behavior should be similar to the agent behavior
observed empirically in relevant domains. The meso level is validated by comparing
model output to the distributions of aggregate variables. Finally, properties at the
macro level are validated by comparing model output to the behavior correlations
between aggregate variables over time.

Next, we examined how we should understand MABM validation in the context
of structure and target validation. Again, the starting point is the layered struc-
ture of MABMs. This implies that the structure at one level provides input to the
structure at the next level. The structures embedded in the agent behavior are val-
idated by comparing their behavior with the empirical behavior of agents directly.
These structural elements then form input for the structural elements at higher lev-
els, which cannot be observed at the micro level since they are emergent properties.
Rather, they arise out of agent interaction through an inductive process. Due to the
complexity of MABMs, this process usually comes in the form of numerical simula-
tion. This implies that the structural elements at higher levels can only be validated
indirectly. This combination of direct and indirect assessment of the model structure
means that MABMs can best be described as grey-box models built from white-boxes.

In conclusion, this chapter serves as a step toward a validation methodology and
provides a more systematic understanding of current MABM validation practices.
We have seen that a proper assessment of validation practices in MABMs requires
an understanding of both model validation and complex systems with emergent prop-
erties. The validation of MABMs cannot be compared one-to-one with DSGEs or
other types of macroeconomic models. Crucially, MABMs have unique structures,
which has led to specific forms of validation practices that are new to macroeco-
nomics.

In Section 6.4 of the conclusion of this dissertation, I will provide a more in-depth
discussion of realist and instrumentalist views on modeling as applied to MABMs,
which builds on the discussion of this chapter.
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Chapter 3

DSGE Models and the Hybrid
Model Critique

3.1 Introduction

Since the 2008 financial crisis, DSGE models have drawn criticism on several fronts.
Most of the criticism has targeted unrealistic model assumptions with respect to be-
havior at the agent level, as well as dimensions of the real economy that were missing
in the models altogether (Stiglitz, 2018; Christiano, Eichenbaum, & Trabandt, 2018).
For the former, rational expectations were a common target; it was seen as unrealis-
tic that agents would be endowed with so many cognitive capabilities. For the latter,
the omission of financial frictions was seen as a primary reason why DSGE models
were not able to be of use during the 2008 financial crisis. DSGE modelers have
responded to these criticisms by incorporating insights from behavioral economics in
expectation formation, such as heuristics and learning; in addition, they now often
incorporate financial frictions as well.

In my view, however, another type of criticism remains insufficiently discussed. It
is laid out in, for example, De Grauwe (2012) and Chari et al. (2009)and concerns
the way in which contemporary DSGE models are constructed and, subsequently,
empirically validated. First popularized in (Smets & Wouters, 2003), DSGE models
are generally empirically validated by estimating the model on time-series data and
then comparing the model output to its empirical counterparts.

Such models (Smets & Wouters, 2003) are able to reproduce the behavior of the
real economy after shocks well. However, the problem is that DSGE models can only
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reproduce this behavior after the supplementation of a large number of stochastic
terms (and lags of stochastic terms). To put it differently, the model is supplemented
with a stochastic process that is structurally different from the core model.

According to Chari et al. (2009) this stochastic supplementation to the model lacks a
representational interpretation and is thus primarily a tool to ensure that the model
can be successfully estimated and validated. The term representational here, refers
to the notion that the model is to be interpreted as representational of the economic
structure. Representational models aim to provide an account of the economic mech-
anisms, which is seen as necessary to guide economic policy. For instance, consider a
model supplemented with a normally distributed shock to labor demand. A sudden
drop in labor demand can be understood through many economic mechanisms. The
shock to labor demand by itself, however, does not make explicit reference to any
of them, it is a black box. Chari et al. (2009) states that this is problematic if the
purpose of the model is to guide economic policy because it does not identify the
mechanisms through which policy may work.

As we have discussed in Section 1.2, economic models are not to be interpreted
as purely representational; rather, they also rely on artifactual elements. Therefore,
when I refer to representational and non-representational model structures in this
chapter, I do not imply that one does not rely on artifactual elements while the other
does. A representational structure is one that explicitly describes an economic mech-
anism. A non-representational structure is most often constituted by stochastic or
lagged elements that are a stand-in for various possible economic mechanisms. Note
that a representational model structure can include both injective and non-injective
representations, as defined in Section 1.2. Given that DSGE models are primarily
validated using indirect structure validation, their structure can be characterized as
more in line with non-injective representation (see Section 2.4.2for a discussion on
validation and representation).

In a different formulation of the criticism, De Grauwe (2012) states that this stochas-
tic supplementation produces models that are in line with what is observed even if
the model structure does not map onto the real-world structure in a useful way. The
stochastic process is able to capture most departures from the core (typically new
Keynesian) equilibrium structure of the model, but it prevents new empirical insights
from being translated to alterations in the model structures. Furthermore, given the
non-representational nature of the stochastic terms, Stiglitz (2018) argues that the
approach is susceptible to the Lucas critique.
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A way to view this structure of DSGE models in this context is as a hybrid model –
with a representational core and a non-representational , stochastic periphery. This
description may remind the reader of the description of scientific research programs
in Lakatos (1976). In this description, a scientific research program consists of core
assumptions and a “protective belt” of non-core assumptions. New insights or data
that do not agree with a scientific research program are not translated into alter-
ations of the core assumptions but are usually captured by expanding the protective
belt. Indeed, De Grauwe (2012) formulation can, in my view, be seen as a translation
of this description to the context of DSGE models.

In short, De Grauwe (2012), Chari et al. (2009) and Stiglitz (2018) formulate a
critique of DSGE models that rely on non-representational stochastic processes that
are used to match the model to the data. To be used for policy, DSGE models require
a representational interpretation. This implies that the model structure is subject
to validation, which comes in the form of matching modeled data to empirical data.
The fact that the model relies on non-representational elements to accomplish this
weakens the model’s validity. From now on, I will refer to this critique as the hybrid
model critique.

The hybrid model structure is not tied to the original formulation of DSGE models,
although it was introduced to make maximum likelihood estimation feasible. Before
this estimation approach was popularized in Smets and Wouters (2003), it competed
with calibration as an approach to the parametrization of DSGE models. The cal-
ibration approach was most prominently laid out in Kydland and Prescott (1996)
and centers around the idea of parametrization by using relevant stylized facts or
microeconomic data. The approach generally incorporates a much smaller number
of stochastic terms compared to estimated DSGE models. I will elaborate on these
issues later in this chapter.

However, present DSGE models have converged toward the estimation approach.
They are taken to the data using, in essence, the same approach as Smets and
Wouters (2003) (Fernández-Villaverde & Guerrón-Quintana, 2021). Given the rel-
evance of DSGE models in current macroeconomic science and policy, an in-depth
analysis of the hybrid model critique is required.

The goal of this chapter is to gain a more in-depth understanding of the hybrid
model critique of DSGE models. This includes an analysis of how the structure of
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DSGE models was developed into hybrid form, as well as an assessment of the valid-
ity of the hybrid model critique. Central concepts in this analysis are model scope,
invariance, and validation. Model scope refers to the domain and type of overlap
between the real world and the model. Invariance is the extent to which the model
structure remains correct given changes in relevant context variables, such as time,
place, or policy regime. We have defined validation as the assessment of a model’s
ability to fulfill its purpose (see Section 1.5.2. These concepts will allow us to under-
stand how the shift from the calibration to the estimation approach implied a shift
toward a hybrid model structure, as well as providing a more systematic understand-
ing of the hybrid model critique.

This chapter builds on the idea that different types of models are relevant at different
stages in bridging the gap between theory and data. Suppes (1966) is a well-known
study in which a hierarchy of models is introduced. On top of this hierarchy are mod-
els that follow directly from a certain theory. Suppes (1966) provides an example
of linear reinforcement learning in psychology. This theory consists of an axiomatic
structure that can be translated into a mathematical model from which implica-
tions can be deduced. However, it is shown that such a theoretical mathematical
model does not apply to data generated by relevant physiological experiments in a
straightforward sense. Concepts applied in theoretical models, such as infinity and
continuity, are generally not applicable to the context of empirical data, which are
both finite and discrete.

To bridge the gap between the theoretical model and experimental data, we have
to move down in the hierarchy of models to models of data. These require supple-
mentation of the structure of the theoretical model. For instance, statistical concepts
like goodness-of-fit and an error term need to be introduced. These concepts build on
fundamental statistical notions, including the existence of a data-generating process.

The addition of a theoretical model to a data model is relevant in any scientific
practice that involves models and data. That said, Suppes (1966) describes that
some scientific practices are more strongly oriented toward theory models, whereas
others are more oriented toward data models. In the former practice, more supple-
mentation is required when a model is to be applied to data, and less so in the latter.
In such practices, the gap between the theory model and the data model is smaller.

Let me now relate the work by Suppes (1966) to our discussion of DSGE models.
DSGE models start from a well-articulated theoretical model. Yet the path from this

52



CHAPTER 3. DSGE MODELS AND THE HYBRID MODEL CRITIQUE

theoretical model to the data is not straightforward and requires the supplementa-
tion of various elements. As we will see, the calibration and estimation approaches
are different methods for navigating this path. The calibration approach does so
mainly by limiting and particularizing the data, while the estimation approach does
so mainly through the above-described hybridization of the model structure.

This chapter builds on the concepts of representation introduced in Section 1.2 and
on model purpose and phenomenological validation criteria in Section 2.4 of the pre-
vious chapters. In addition, this chapter will start by introducing the concepts of
model scope, invariance, and theoretical and technical validation criteria, which are
necessary to understand the rest of the chapter. Next, we proceed to analyze both
the calibration and the estimation approaches to DSGE models. Finally, we will
analyze the hybrid model critique itself.

3.2 Validation Criteria, Invariance, and Model Scope

3.2.1 Validation Criteria

To understand how DGSE models evolved from a calibration approach to an esti-
mation approach, we need to gain a broader understanding of the validation criteria
that are relevant in the model construction process. In addition to the phenomeno-
logical criteria discussed in Section 2.4.2, what I label as theoretical and technical
validation criteria are relevant to understanding the evolution of DSGE models.

Let us first discuss theoretical validation criteria. Theoretical criteria constitute
the assessment of whether a model is in line with established relevant theory. Let
us first establish what is meant by theory, since there have been multiple ways in
which theory has been defined in relation to economic modeling. For example, Lucas
(1980) broadly defines theory as the set of instructions to build the model economy.
This is not the definition of theory that I will use throughout this dissertation.

The way in which I use the notion of theoretical validation criteria in this dissertation
is as existing conceptualizations of the mechanisms associated with the real-world
structure. New Keynesian economic theory, for example, entails price stickiness. A
macroeconomic model that is to be in line with new Keynesian theory should be able
to generate price sticky behavior if it is to meet such a theoretical criterion.

Next come technical validation criteria. As discussed in Section 1.2, a useful metaphor
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for models is to view them as mediating instruments of investigation. Models are
tools that help us answer particular scientific questions. Because these questions
are about phenomena observed in the world, models incorporate, to some extent,
representations of the world. The purpose of the theoretical and phenomenological
criteria that we have discussed so far is to assess these representational aspects of
models. However, this is not enough to enable the model to answer the question
correctly. The ability of models to answer questions also relies on a technical dimen-
sion, one which is assessed based on technical validation criteria. In the context of
macroeconomic modeling, we can distinguish between mathematical and statistical
criteria.

In order for the model to provide answers to a question, it should work mathe-
matically. This could refer to the analytical solvability of the model, which will play
a role in the case of Chapter 4. In this case, if the model could not have been solved
analytically, it would be impossible to consider its implications. The mechanisms of
such a model could not be studied, and its output could not be compared to empirical
data. Mathematical criteria, therefore, also include the related notion of analytical
tractability. If the model purpose is to provide an explanation, it is implied that such
an explanation enhances understanding. In such cases, limits to the mathematical
complexity of the model are unavoidable.

Statistical criteria require constructing the model in such a way that a certain sta-
tistical methodology can be applied. One of the reasons why statistical methods are
employed when taking the model to data is to ensure a degree of invariance. In what
follows, I will make this concept more concrete.

The main way in which statistical methods are applied in the context of model-
ing is parametrization of the model – that is, to assign a quantitative value to the
model parameters. Parametrization is a necessary step in most modeling exercises
because it provides us with information regarding the “size” and the “sign” of the
relationships within the model structure. If we are interested in the effect of an in-
crease in interest rates on consumption propensity, we would want to know whether
the effect is positive or negative and how much the effect will be. Additionally,
parametrization is necessary before any model outcome can be compared to empiri-
cal data.

Parametrization techniques are statistical in nature, meaning that they make use
of empirical data and certain assumptions about the data-generating process of the
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Description

Theoretical criteria
Require the model to be in line with
existing theoretical concepts

Phenomenological criteria
Require various elements of the model’s
input, output, target, or structure
to be in line with what is observed empirically

Technical criteria
Require the model to have
favorable mathematical or statistical properties

Table 3.1: Summary of validation criteria

model and the real world. Importantly, the model structure has specific requirements
before specific statistical methods can be applied.

The main reason for employed statistical methods in the parametrization process
is to ensure some degree of invariance. For the model to provide answers to ques-
tions that remain stable over time, place, or policy regimes, the model parameters
must remain stable as well. One example, which we will discuss further later in this
chapter, is the calibration methodology that started with the Lucas critique (Lucas,
1976). In this methodology, models should be constructed from “taste and technol-
ogy” parameters. The idea is that such “deep” parameters do not change as a result
of policy interventions. The parameters are then usually indirectly calibrated using
stylized facts, which have been shown to be relatively invariant over time.

Statistical methods are also applied to provide an “objective” measure of model
performance. This is crucial when it is of interest to know whether a particular in-
novation in the model structure represents an improvement in terms of pre-existing
model structures. An example is the likelihood score, which requires the model to
be parametrized using maximum likelihood methods.

Table 3.1 provides an overview of the three main validation criteria discussed in this
dissertation. Together, they should be seen as the main drivers of the choices made
during the model construction process. The reason for this is that the fulfillment of
validation criteria is generally built into the model (Boumans, 1999). These valida-
tion criteria are known to the model builder during the construction process, and
model construction is often a back-and-forth process until the criteria are fulfilled.
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3.2.2 Model Scope

The model scope refers to the domain and type of overlap between the real world
and the model. The relationship between model scope and the discussed validation
criteria is that the latter require a model of a certain scope. In other words, they
require the model to overlap with the real world in certain ways to be fulfilled to a
sufficient degree.

To introduce the concept of model scope, it is useful to introduce the idea of the
real-world data-generating process (rwDGP) and the model data-generating process
(mDGP; Windrum et al. (2007)). The rwDGP is to be considered a process instanti-
ated by the real-world structure. Each variable that we observe can be thought of as
being generated by a web of structural factors that determine its value. However, we
cannot directly observe the rwDGP. Instead, we seek to gain a level of understand-
ing of how the rwDGP works through the application of various scientific methods,
including the construction of models. The mDGP generates data by running simu-
lations with the model. The idea of scope thus centers on the relationship between
the rwDGP and mDGP.

This relationship can be thought of as two-dimensional. The first dimension is
the relationship expressed in terms of the degree of overlap in the relevant data
generated by the rwDGP and the data generated by mDGP or, to put it differently,
the degree to which the mDGP captures the observed data generated by the rwDGP.

The second dimension concerns the relationship in terms of the structures by which
the rwDGP and mDGP generate data. The structure of the rwDGP can overlap
with the structure of the mDGP while holding the overlap in terms of the first di-
mension constant in three main ways . First, there may be no overlap: the model
structure and the real-world structure operate differently and have no epistemolog-
ical relationship. That is, studying the model mechanisms yields no understanding
of the rwDGP. The second case is where overlap is evident between the mechanisms
in the mDGP and the structure of the rwDGP. That is to say, the mechanisms in
the mDGP are injective representations of the actual structure of the rwDGP. In
the third case, a different kind of overlap is found between the mechanisms. In this
case, the mechanisms in the mDGP behave as if they were those in the rwDGP in
terms of the wide range of outputs that the mDGP reproduces. This means that the
mechanisms are not the same, but for the purpose at hand, they function well enough
to be treated as if they were. The model structure is a non-injective representation
of this wide range of outputs, and it can therefore be described as artifactual to a
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large degree. Let us refer hereafter to these two types of model scope as output scope
for the first dimension of model scope and structural scope for the second dimension
of model scope.

Note that the three types of structural scope that we have distinguished coincide
with the three types of questions and phenomenological validation criteria in Section
2.4. We have established that different types of questions require different types of
validation criteria to be fulfilled. This fulfillment, in turn, requires the right model
scope. Target validation requires the right output scope, direct structure valida-
tion requires overlap as an injective representation, and indirect structure validation
requires overlap as a non-injective representation. Furthermore, technical and the-
oretical validation criteria may also impose particular requirements on the model
scope. This connection is important to keep in mind as we proceed to discuss the
calibrated and estimated DSGE approaches.

Figure 3.1 presents a schematic overview of the notion of model scope. The rwDGP
produces empirical data, and the mDGP produces model output data. The output
scope concerns the overlap between these elements. The rwDGP and the mDGP
embed a real-world structure and a model structure, respectively. The overlap be-
tween these elements determines the structural scope. Note that there is generally
no complete overlap in terms of output: the mDGP will not generate all the ob-
served empirical data generated by the rwDGP, nor can all of the simulated data
be matched to the empirical data. This implies that empirical validation is always
a matter of degree: How much overlap is there between the simulated and empirical
data? In other words, it is an assessment of whether the output scope is sufficient.

3.3 How DSGE Models Evolved into the Hybrid

Structure

Let us now investigate how DSGE models developed into their current hybrid form.
As stated in the introduction, the current hybrid form of DSGE models is not nec-
essarily tied to the origins of DSGE models. Rather, an explicit transition has taken
place toward the hybrid model strategy (Fernández-Villaverde & Guerrón-Quintana,
2021). An investigation into the history of this transition is crucial, as it will provide
us with a more in-depth understanding of the validity of the hybrid model critique.
As I will argue, the change toward the hybrid model structure was necessary to en-
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Figure 3.1: Model scope
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able a shift in the parametrization approach of DSGE models – specifically from the
calibration approach to the estimation approach.

3.3.1 The Calibration Approach

During the 1970s, Robert Lucas developed the foundations for what was later to be-
come the DSGE approach. His approach centered on two main notions. The first were
rational expectations, meaning that the expectations of agents are model-consistent.
Agents are assumed to calculate the expected value of future-state variables using all
the information present in the model. The second was an insistence that the model
be constructed from invariant parameters. These are parameters that are likely to be
stable over time and, moreover, across different policy regimes. This second founda-
tion followed from the well-known Lucas critique (Lucas, 1976), in which he criticized
macroeconomic simultaneous equation models for not being invariant to changes in
policy regime.

One of the most well-known applications of the modeling strategy suggested by
Lucas comes from Kydland and Prescott (1982). Their study also introduces the
concept of calibration as a means of taking the model to the data. Kydland and
Prescott (1996) discusses this same calibration approach on a more methodological
level. Here, I label their methodology the calibration methodology. In what follows,
I will review their methodology and connect it to the concepts introduced so far.

The calibration methodology in Kydland and Prescott (1996) is divided into five
steps: pose a question, use well-tested theory, construct a model economy, calibrate
the model economy, and run the experiment. Each of these steps forms part of what
is labeled a computational experiment: answering a question by running simulations
through a calibrated model.

The first step in this computational experiment is to pose a question. Answering
this question is what is defined as the purpose of the model. In Section 2.4.1 of
the previous chapter, we discussed various types of questions that models are typ-
ically constructed to answer: why questions, how-much questions, and how’s-that
questions. Given this context, we can ask to which types of questions the calibra-
tion methodology applies. In its application of macroeconomic models, Kydland and
Prescott (1996) focuses its methodology on questions that “ask about the quantita-
tive implications of theory for some phenomena.” In other words, this is a how-much
question. That being said, the calibrated DSGE methodology extends to how’s-
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that questions, in which the model structure does provide an understanding of a
phenomenon. Long Jr and Plosser (1983), for instance, uses a calibrated DSGE to
provide an account of the mechanisms through which business cycles may arise.

Evidently, we can see that the calibration methodology starts from a purpose that
can be characterized as specific. We have a clearly defined question about a particu-
lar phenomenon. This notion of specific purpose contrasts with what can be labeled
as a broad purpose. This distinction will become important to understand the dif-
ference between the calibration and estimation approaches, as will be discussed in
the next section.

A model constructed for a specific purpose also places specific requirements on the
degree of overlap between the model and the real world (i.e., the model scope). This
is because both the output scope and the structural scope are determined by the
specific purpose.

The second step in the calibration methodology is to use well-tested theory: “a
researcher needs a theory that has been tested through use and found to provide
reliable answer to a class of questions” (Kydland & Prescott, 1996). What is inter-
esting is what is meant by theory and what is meant by reliable.

By theory, Kydland and Prescott (1996) follows Lucas by stating that a theory
is an explicit set of instructions for constructing a model. This use of the term the-
ory therefore means something broader than just incorporating representations of
theoretical notions into the model structure as discussed in Section 1.2, although it
remains a vital part of it. As a prime example of this step, Kydland and Prescott
(1996) mentions general equilibrium theory as being useful for answering business-
cycle-related questions. This step thus presents a theoretical validation criterion:
The model should be constructed in such a way that it is consistent with general
equilibrium theory. Kydland and Prescott (1996) acknowledges that deeming which
well-tested theory is appropriate is a function of the model purpose. As an example,
they state that general equilibrium theory is not an appropriate choice for addressing
the phenomenon of wealth inequalities between countries. The use of a particular
theory thus provides a structure and output scope that is appropriate for some phe-
nomena, but not for others.

In this context, reliable can be interpreted as similar to invariant. Invariance means
that the model should be able to provide answers that remain stable over time and
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place and across different policy regimes. Only when this is the case can the answer
provided be relied upon to, for example, guide policy. As briefly discussed above,
since the Lucas critique (Lucas, 1976), one way to enhance the invariance of a model
is to construct it from deep parameters. Most often, this has implied parameters at
the microeconomic level, such as “tastes and technology” (Lucas, 1976), or the idea
that such parameters are less affected by changes of policy regime. The construc-
tion from invariant parameters could be seen as a statistical validation criterion. As
discussed in the previous section, invariant parametrization is one of the primary
functions of statistical criteria.

The third step is the construction of the model economy. Crucial in this step is
balancing the amount of detail in the model with its computational feasibility. It is
stated that economists often have to work with a model that is much simpler and
more abstract than what one would ideally prefer. The reason for this is that the
complexity of the model is at odds with its intelligibility and computability. This
means that the more complex a model is, the more difficult it becomes to both sim-
ulate the model in a technical sense and to interpret the outcomes of the simulation.
It should be noted here that computational feasibility limitations have dramatically
decreased since Kydland and Prescott (1996). The limitation of intelligibility, how-
ever, is still relevant if the purpose of the model is to provide understanding.

This third “construction step” is fully in line with the notion of mathematical valida-
tion criteria discussed above. Again, emphasis is placed on the relationship between
the required model complexity and the model purpose. The question that the model
is constructed to answer determines the required level of complexity of the model.
There is an incentive to construct a model that contains the minimum level of com-
plexity as long as it is able to provide a reliable answer to the question asked. In
practice, this is often an exercise of balancing different validation criteria. More
complexity may lead to a model that is better able to reproduce certain facts about
phenomena, but this may come at the cost of analytical tractability, for example.
Note here again the relationship between the validation criteria and the output scope.
Fulfillment of mathematical validation criteria limits the degree of variation that can
be reproduced by the model. This stresses the emphasis in the calibration approach
of constructing a model for a specific question rather than the construction of more
general models that can be applied to multiple distinct questions.

The fourth step is the actual calibration of the model. Calibration is a means of
parametrizing the model, that is, to provide numerical values for the model parame-
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ters. In its approach, Kydland and Prescott (1996) draws heavily on the calibration
of measurement instruments similar to, for example, a thermometer. The general
idea is that parameter values are found either through direct calibration or indirect
calibration (Windrum et al., 2007). Direct calibration is the collection of data from
which a parameter value can be distilled in a direct sense. In the case of DSGE
models, direct calibration involves the use of microeconomic data. A parameter of a
consumer’s propensity to save, for example, could be distilled from consumer survey
data. Indirect calibration involves selecting the parameter values that enable the
model to provide answers to questions for which we already know the answers. To
put it differently, the parameter values are selected such that the model is able to
reproduce facts about phenomena. In order for indirect calibration to yield invariant
parameters, however, the facts should be stable over time and across policy regimes.
If this is not the case, the parameter values would change depending on when and
under which policy regime they were calibrated.

How does this calibration step relate to the concepts discussed so far? Note that the
issue of calibration is also discussed in Section 2.1.1 in the previous chapter. First,
successful indirect calibration is done through the reproduction of facts about phe-
nomena, which is how I have defined the fulfillment of phenomenological validation
criteria (see Section 2.4.2). Second, coupled with the technical validation criterion of
constructing the model from invariant parameters, the calibration approach provides
a technical means of quantifying those parameters. The emphasis on the stability of
the facts about the phenomena to reproduce tells us that calibration is about more
than the fulfillment of phenomenological criteria. More specifically, it is a technical
validation criterion that enhances the model’s ability to provide invariant answers to
questions.

The further question is how we should select the facts about the phenomena to
be used in the calibration exercise (in addition to the facts being invariant). Here,
Kydland and Prescott (1996) again emphasizes that the facts should be relevant with
respect to the model purpose. A model that is constructed to explain business cycles,
for example, should be able to reproduce quantitative facts about the business cycle
and the empirical reflections of the structural elements involved in the generation of
business cycles. Calibration allows the model to be parametrized by relying solely on
data characteristics that are strictly relevant to the purpose of the model. As such, a
model constructed to explain business-cycle dynamics is generally calibrated through
data characteristics associated with those dynamics. An example is the autocorrela-
tion of the output gap in time-series data, where the model is parametrized such that
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the model reproduces autocorrelation in the output gap similar to the autocorrela-
tion that is observed empirically. The output scope of the model in the calibration
approach should therefore include those data characteristics that are relevant to the
purpose of the model and used in its calibration.

The fifth step of the calibration approach is running the experiment. This concerns
simulating the model over many runs and computing the probability distribution of
key variables in the model. This allows the model to provide a measurement and
thus answer the question for which the model was constructed.

To summarize, the calibration approach starts from a specific and limited purpose:
providing a reliable (invariant) and purely quantitative answer to a “well posed ques-
tion.” When translated into validation criteria, we can see an emphasis on using
particular economic theory and reproducing observed economic behavior. For these
criteria, it holds that they are rather strictly related to the question that the model
is constructed to answer. To put it differently, particular theoretical, technical,
and phenomenological requirements are appropriate for a particular question. In
addition, various technical criteria ensure that the model parameters are invariant;
the model is constructed from representational microeconomic parameters (taste and
technology). These parameter values are quantified through the calibration approach
by matching model output to relevant and stable facts about phenomena. Given the
limited purpose of the model, the theoretical, technical, and phenomenological crite-
ria yield a model of limited scope, meaning that its domain of application is limited
in terms of both structural and output scope. In addition, establishing invariance
through deep parameters and calibration does not necessarily require an increase in
model scope. This is in contrast to the estimation approach, which we will discuss
in the next section.

3.3.2 The Estimation Approach

This subsection will discuss what I will label the estimation approach as applied to
DSGE models. As with our discussion of the calibration approach, I will refer to the
concepts of model purpose, invariance, model scope, and various types of validation
criteria. This will allow us to not only understand why we have observed the shift
from the calibration to the estimation approach, but also to offer insight into the
utility of both approaches and a better understanding of the hybrid model critique.

The estimation approach was popularized in Smets and Wouters (2003), Christiano
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et al. (2005), and Smets and Wouters (2007) (among others). Fernández-Villaverde
and Guerrón-Quintana (2021) provides a modern methodological discussion of this
approach that I will use as a basis for my analysis.

To begin, let us discuss the starting point of the model construction process for
estimated DSGE models: the model purpose. Here, I will refer to our discussion
of model types in Section 2.4. To gauge whether a general notion of model pur-
pose is present in the estimated DSGE methodology, I will review the discussion
on model purpose in the main early estimated DSGE contributions. In Smets and
Wouters (2003) and Smets and Wouters (2007), model purpose is described in the
following way. First, there is the notion that the model is “for the euro area” (Smets
& Wouters, 2003) or “for the US economy” (Smets & Wouters, 2007). Second, the
model is used to “analyze the effects of various structural shocks in the euro-area,” to
“estimate the relative contribution of various shocks to empirical dynamics,” and to
“calculate the potential output level, real interest rate and gaps” (Smets & Wouters,
2003). In other words, the model is to be used to answer a range of questions about
the macroeconomic system.

Just by looking at how these questions are formulated, one may say that they are
all how-much questions, the answer to which is a measurement. Providing measure-
ments and predictions are indeed part of the purpose of estimated DSGE models
(Fernández-Villaverde & Guerrón-Quintana, 2021). In addition, however, if we ob-
serve how the model is actually used in Smets and Wouters (2003), providing an
account of the model mechanisms that generate such measurements sits at the core
of the analysis. The purpose of such accounts is to provide understanding; the ques-
tions that the model in Smets and Wouters (2003) were constructed to answer can
therefore also be characterized as being of the how’s-that type. Compared to the
calibration approach, the purpose is not just to answer a single well-posted question
but rather to be a tool that can be applied to various macroeconomic domains.

In addition, we can identify purposes that are different from simply answering ques-
tions about phenomena. In the evaluation of DSGE models, a need emerged to for-
mulate objective standards of model performance (Fernández-Villaverde & Guerrón-
Quintana, 2021). Comparing the performance of models that seek to answer similar
questions is seen as important because different models may provide different answers
to the same question. Furthermore, one would like to know whether the alteration of
a model structure leads to improved performance to guide potential future research.
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In terms of theory, the shift toward the estimation approach is accompanied by a shift
from real business-cycle theory (RBC) toward new Keynesian theory (Fernández-
Villaverde & Guerrón-Quintana, 2021). New Keynesian theory introduces nominal
rigidities (sticky prices in the short run), but at its core it is still comparable in
many aspects to the RBC theory. It starts from consumers and firms that maximize
their inter-temporal utility. This implies that the representational core of estimated
DSGE models is still strictly microeconomic, which seeks to enhance the invariant
nature of the model. In these aspects, overlap is found in the theoretical and the
technical criteria between the estimation and calibration approaches.

Let us now turn our attention to what is, in my view, a key difference between
the calibration and estimation approaches, namely the way in which the model is
parametrized. Instead of using calibration to quantify the model’s parameters, in
the latter, maximum likelihood estimation is applied. Before delving into the re-
lationship between this method of parametrization and the validation criteria, let
us first discuss what such an estimation procedure entails. Maximum likelihood
estimation as a means to parametrize stochastic macroeconomic models was first
demonstrated in Sargent (1989). More recently, Fernández-Villaverde and Guerrón-
Quintana (2021) provides a general framework of this methodology. It is helpful to
discuss it in more detail to attain a sense of its methodological underpinnings. The
framework introduces a state-space representation of the DSGE model and the data,
the first equation of which is as follows::

St = h(St−1,Wt; Σ), (3.1)

where St is a vector of state variables at time t. In most DSGE models, such state
variables will include the level of consumption in time t and the price level at time
t. Wt is a vector of stochastic shocks, which are often distributed normally and are
independent and identically distributed. Σ is the vector of parameters that needs to
be estimated. Since Wt is stochastic, we can rewrite Equation 3.1 as a conditional
probability distribution: p(St|St−1; Σ). The second equation is:

Dt = g(St, Vt; Σ), (3.2)

where Dt is a vector of observables. Vt is a vector of shocks outside the model, such
as measurement errors on observables. This equation can be rewritten as p(Dt|St; Σ).
Equation 3.1 can be substituted into Equation 3.2, which yields:

Dt = g(h(St−1,Wt,Σ), Vt; Σ) (3.3)
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This can be represented as a probability function of observables, conditional on the
vector of state variables at t− 1: p(Dt|St−1; Σ). Note that this probability function
is the mDGP. Using this conditional probability function we can take a sequence
of observations dT = {y1, y2, ...yT} as input and estimate the probability p of that
sequence occurring for a given Σ. The combination of parameter values Σ that max-
imizes p are the resulting estimated parameters. The functions h(.) and g(.) are
generally unknown and cannot be found explicitly. Instead, numeric simulations are
used to estimate Σ.

The application of maximum likelihood estimation for the parametrization of DSGE
models is a technical validation criterion. The question is: How does this crite-
rion follow from the purpose of the model? According to Fernández-Villaverde and
Guerrón-Quintana (2021), three main channels present the three key advantages of
the estimation approach over the calibration approach.

First, recall that the purpose of estimated DSGE models is often to answer mul-
tiple distinct questions. The model purpose is thus quite broad. This requires a
model with a more complex structure compared to calibrated DGSE models, which
often have a more limited purpose. A more complex model structure implies more
model parameters to quantify – with more degrees of freedom to address. When
calibration is applied in this case, the problem of underdetermination may occur
(Fernández-Villaverde & Guerrón-Quintana, 2021); multiple combinations of param-
eters are consistent with the reproduction of the set of relevant stylized facts. The
problem with the calibration approach is the lack of data points (in the form of
stylized facts) to which the model data can be fitted. Direct calibration (importing
parameter values from microeconomic data) can only mediate this issue to an ex-
tent, since many parameters have no clear direct measurements (see Section 2.1.1
for an analogous discussion on calibration in the case of MABMs). Estimation does
not typically incorporate specific and stable data characteristics but rather all the
available data points. This allows for the identification of a unique set of optimal
parameter values.

Second, the purpose of an estimated DSGE model may be to provide quantitative
predictions of the variables of interest. This purpose requires the model to provide
accurate forecasts (under some accepted level of uncertainty) of all future varia-
tions of the variables of interest. In turn, this requires the model to be fitted to all
observed variations of the variables of interest, which is what maximum likelihood
methods are able to do. Calibration models that are constructed only to reproduce a
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set of stylized facts are generally unable to provide quantitative forecasts of this kind.

The third way in which model purpose relates to the estimation approach is the
desire to establish an objective standard for comparing the performance of different
models that have a similar primary purpose. In the estimation approach, this comes
in the form of the likelihood score. In the calibration approach, comparing model
output and empirical data is more casual, and generally no rigid measure of fit exists.

How does the technical criterion of applying the estimation approach affect the model
scope? Recall that the output scope is defined as the degree to which overlap exists
between the data generated by the rwDGP and the mDGP. The estimation and cal-
ibration approaches require models that have different output scopes. Specifically,
the calibration approach seeks out stable characteristics of the data generated by the
rwDGP. The model is partially parametrized by selecting those parameters that al-
low the model to reproduce these stable characteristics. This implies that the output
scope is limited to the selected stable characteristics. On the contrary, the type of
maximum likelihood methods used in the estimation approach typically do not select
specific and stable characteristics on the data; instead, the mDGP is described as
a conditional probability function of observables, and all data points are assigned a
particular probability value. This implies that any observed variation in a particular
variable co-determines the resulting estimated parameters. The parameters are thus
selected based on the overlap of selected variables between the data generated by the
mDGP and all variations in the data generated by the rwDGP. The estimation ap-
proach thus requires a target scope that is more encompassing than what is required
in the calibration approach.

This leads to an interesting question regarding how we can construct models that
yield an mDGP that is able to capture a large degree of the observed variation of
a particular set of variables. In my view, there are two ways of accomplishing this,
both of which revolve around specific requirements for the structural scope.

The first and more straightforward method is to construct a model that yields an
mDGP that embeds a sufficient number of structural elements while maintaining
a relatively high degree of evenness in the nature of the relationship model struc-
ture in the mDGP and the structure in the rwDGP. This means that the majority
of the model elements are to be primarily interpreted in a similar way in relation
to the structure of the rwDGP. We will label this as a uniform structural scope.
For example, if the model purpose is to provide an answer to a question that re-
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quires an explanation of a phenomenon, the model structural elements should be
interpreted as, at least to some degree, injective (one-to-one) representations of the
real-world structure (see Section 1.2 for a discussion of representation). In this case,
an expansion of the output scope thus comes down to increasing the number of repre-
sentational elements in the model structure. An important example here is the 1950s
Cowles Commission approach to macroeconomic modeling. This approach consists
of estimating simultaneous equation systems with macroeconomic variables. To es-
tablish invariant relationships between variables, the model scope was expanded by
incorporating all macroeconomic relationships that were deemed important from a
theoretical point of view. For this reason, Cowles Commission-type models could
become very large, consisting of hundreds of equations. An example is the Brook-
ings model of the United States (Dusenberry et al., 1965), which comprises over 400
equations. A downside of this approach was that the intelligibility of the model suf-
fered (Boumans, 2009).

Another example are vector autoregressive (VAR) models, which consist of a vector
of macroeconomic variables that are regressed on the lags of the same variables. Such
a model can, in the context of our framework, be regarded as non-representational
(Sims, 1980). Furthermore, the general purpose of VAR models is to provide quan-
titative predictions. VAR models are generally able to match the observed variation
well, without claiming that its representational elements are to be interpreted as
representational of the real-world structure.

Accordingly, what the VAR approach and the Cowles Commission approach have
in common is that they have a large output scope while presuming a uniform struc-
tural scope. In the case of VAR models, the majority of elements are primarily to be
interpreted as non-representational. In the case of the Cowles Commission approach,
the majority of elements are to be primarily interpreted as representational. Neither
models rely on a combination of representational and non-representational elements.

The second way to capture a large degree of the observed variation is to construct a
model that yields an mDGP that has a hybrid structural scope. This implies that
some parts of the model structure require a different type of interpretation than oth-
ers, where the model crucially relies on both types to fulfill its purpose. I argue that
the way in which the target scope is expanded in estimated DSGE models is through
a hybrid structural scope. The structure of estimated DSGE models consists of a
representational core and a non-representational periphery. As described above, the
structure of the representational core is deduced from economic agents that optimize
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utility under certain constraints. The representational core often consists of a few
equations that describe some of the macroeconomic relationships. These are gen-
erally used to describe how the economy moves back to equilibrium after a shock.
In line with our discussion of the model purpose of estimated DSGE models, the
representational core of the model is used to answer how’s-that questions.

However, the representational core lacks the output scope needed to yield satisfactory
estimation results when maximum likelihood is applied. That is, the fit is insufficient
between the model data and the empirical data. The variation in the model data
accounts only for a relatively small proportion of the empirical data. Geweke et al.
(1999) provide a discussion of how early attempts to estimate DSGE models failed for
this specific reason. The likelihood score is very low if the output scope is insufficient.
In response, the innovation introduced in Smets and Wouters (2003) is a model that
takes the representational core and supplements it with stochastic terms and lags of
those terms that are non-representational. In isolation, the non-representational pe-
riphery is not suited to provide economic understanding. Rather, using the language
of time-series econometrics, it is a moving average process. Typically, such processes
are used to provide quantitative predictions about future values of economics vari-
ables (see, for example, Holt (2004)). To connect this to the types of questions we
have distinguished above, we can see that moving average models are used to answer
how-much questions. The purpose and interpretation of the stochastic periphery
is therefore different from that of the representational core. This implies that the
model is hybrid in terms of its structural scope.

This hybrid form yields a model with a relatively parsimonious structure compared
to, for example, Cowles Commission-type models, while at the same time main-
taining a sufficient output scope such that the model can be estimated rather than
calibrated. At the same time, because of its representational core, the model’s an-
swer to questions maintains an explanatory status. In the next section, however, I
will discuss whether the correctness of such answers can be adequately assessed.

3.4 Analyzing the Hybrid Model Critique

Now that we have seen how the calibrated DSGE approach and the estimated DSGE
approach can be understood from the perspective of the model construction frame-
work, we can dive deeper to discuss the implications of these approaches and gain a
more fundamental understanding of the hybrid model critique.
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In my view, the essence of the hybrid model critique can be understood as a criticism
of a model structure that disrupts the relationship between the validation test of the
model structure and its actual validity. Recall that validation is the assessment of
a model’s ability to answer a particular question. Disruption of this process means
that it is no longer able to assess whether the answer to the question is correct. The
critique, as formulated by Chari et al. (2009) and De Grauwe (2012), also starts from
this assertion; doubt emerges over the validity of the model, despite the fact that
the model has passed empirical validation tests. The question is, therefore, why the
relationship between validation tests and the model’s validity is disrupted as a result
of the hybrid model structure.

First, it is important to emphasize that we have defined a hybrid structure as a
hybrid structural scope, meaning that the relationship between the model structure
and the real-world structure is not uniform but hybrid. As discussed before in the
previous chapter (Section 2.4.1), three types of questions require distinct validation
criteria that, in turn, impose different requirements on the structural scope. We
have established that estimated DSGE models have a representational core that is
suitable for how’s-that questions, as well as a non-representational periphery that
is suitable only for answering how-much questions. To connect these questions to
the types of models in Section 2.4.3, we can say that the representational core is a
grey-box model, and the non-representational periphery is a black-box model. As
we have discussed, these model types are associated with different types of structure
validation.

This non-representational periphery of the model is not subject to indirect structure
validation, because the relationship between the model structure is not supposed to
be in a representative relationship with the real-world structure. This implies that
only the model’s ability to reproduce its target is to be assessed through validation
(see target validation in Section 2.4.2). For example, if the purpose of the model is
to predict validation in the next month, we should test whether it is able to do so
without needing to address the structure by which the model functions. Hence, for
the non-representational periphery of estimated DSGE models, there is no need to
test the overlap between the model and real-world structures.

On the other hand, the representational core of the model structure is subject to
structural validation in addition to target validation. This is generally done by com-
paring a wide range of model outputs to empirical data. If the model is able to
provide the right answers to questions to which we know the answers, we can be con-
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fident that the model structure behaves at least as-if the real-world structure within
a relevant domain. The model structure is thus validated in terms of the output of
the model as a whole.

On the other hand, the representational core of the model structure is subject to
structure validation in addition to target validation. This is generally done by com-
paring a wide range of model outputs to empirical data. If the model is able to
provide the right answers to questions we know the answers to, we can be confident
that the model structure behaves at least as-if the real world structure within a rel-
evant domain. The model structure is thus validated in terms of the output of the
model as a whole.

The problem with the validation procedures described in the previous paragraph
is that structural validation is only applicable to the representational core of the
model but makes use of the model output generated by the model as a whole. The
structural elements of the representational core and non-representational periphery
interact and work in concert, generating model output that we then compare to the
data. The output of the model as a whole cannot therefore be interpreted as be-
ing generated from structural elements that can be interpreted as representational.
Some of the structural elements of the model that are responsible for generating the
model output lack a representational interpretation. This is equivalent to the specific
critique in Chari et al. (2009) that, given the lack of a representational interpretation
of shocks, the model is not yet suited for policy guidance.

The essence of the issue is that when a model with a hybrid structural scope passes
validation tests based on an output scope produced by a partially non-representational
structure, we cannot interpret the passing of these tests as a signal that the repre-
sentational core of the model is valid. In other words, we cannot interpret it as a
signal that the model structure behaves at least as-if the structure of the rwDGP.

Note that in the introduction of this chapter, we stated that the notion of repre-
sentational here should be thought of as different from not relying on artifactual
elements. In fact, the structure of the representational core in the case of grey-box
models relies to a large extent on what we labeled artifactual elements in Section 1.2.
Rather, representational structures explicitly describe mechanisms that have an eco-
nomic interpretation, whereas a non-representational structure is open to multiple
possible economic interpretations. Mechanisms that have an economic interpretation
may still rely on artifactual information to a large degree, in that they cannot be
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Figure 3.2: Validation of hybrid model structure

inferred from data or theory alone. The fundamental difference between represen-
tational and non-representational structures in relation to validation is whether the
structure is of interest and used to provide some sort of economic understanding.
Importantly, a structure can still provide understanding even if it relies on artifac-
tual elements to a large degree.

Figure 3.2 presents a schematic overview of what I have just described: Both the
representational core and the non-representational periphery are part of the model
structure that makes up the mDGP. This mDGP generates a uniform output. In
DSGE models, the output scope is used to validate the structural scope.

A defense of the hybrid model structure may be that the representational core and
stochastic periphery are, in fact, independent. This is often done by distinguishing
between an endogenous structure – that which is within the realm of economics –
and an exogenous structure – outside forces that affect the economy but are outside
of what can be explained economically. In the hybrid model structure, the represen-
tational core is endogenous while the non-representational periphery is exogenous.
Perhaps the exogenous structure represents (geo-)political forces, or relevant elements
of the natural world. One can then argue that if this is the case, the representational
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core is not affected structurally by the non-representational elements. If this division
between endogenous and exogenous factors is an accurate and complete description
of the structure of the economy, it would allow us to match the representational
core and stochastic periphery independently of the observed variation in the data.
To put it differently, part of the observed variation can be attributed to what we
would expect given that the representational core of the model and any remaining
variation can be attributed to the stochastic periphery. This would allow for the
uniform output scope to be separated in line with the representational scope.

Although this is a strong assumption, it becomes more plausible if the contribu-
tion of the stochastic periphery to the total model dynamics is small. In modeling
strategies like the Cowles Commission approach, the stochastic periphery is made
small by making the representational core as encompassing as possible (Boumans,
2007). We have seen that with calibrated DSGE models, the stochastic periphery
is made small by limiting the data used to parametrize the model. In estimated
DSGE models, however, the contribution of the stochastic periphery to the observed
dynamics is not small. Both Chari et al. (2009) and De Grauwe (2012) argue that
in contemporary DSGE models, the exogenous, non-representational elements of the
model are responsible to a large degree for the model dynamics. Following the en-
dogenous/exogenous dichotomy, this implies that most of the economic dynamics
we observe are outside the realm of economics. Given the importance of the non-
representational elements, it is unlikely that the representational elements are funda-
mentally independent. More likely, the non-representational elements are a stand-in
for the relevant economic dynamics that are absent from the relatively simple repre-
sentational core. Problematically, this includes elements that may be relevant from a
policy point of view. A similar point is made in Chari et al. (2009), where the effect
of non-representational elements can have multiple representational interpretations
with different policy implications.

Based on the insights of the model construction framework, the hybrid model critique
is justified. Importantly, the hybrid model critique should be understood as a weak-
ening of the validity signal derived from empirical validation tests. As we have seen,
the hybrid model structure was introduced, ultimately, due to a shift and broadening
of the model purposes: from a limited purpose of answering a well-posted question
about a particular economic phenomenon toward models that can describe a multi-
tude of phenomena and make quantitative predictions, the performance of which can
be compared to other existing models. To meet this purpose, the required method
of parametrization shifted from calibration toward estimation. In turn, this led to a
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hybridization of the structural scope to accommodate the estimation methodology.
While this has allowed for the construction of more encompassing models, as well as
better comparison of model performance, it has come at the cost of validation – that
is, a lack of ability to assess the structural correctness of the model.

3.5 Conclusion

In this section, I have introduced the notions of model scope, technical and theo-
retical validation criteria, and invariance to analyze the shift from the calibration
approach to the estimation approach in DSGE models. The calibration approach
starts from a limited model purpose. To ensure invariance, it makes use of calibra-
tion, which is a technical validation criterion. This allows calibrated DSGE models
to ensure invariance while maintaining a limited structural and output scope.

By contrast, the estimation approach to DSGE models starts from a broad pur-
pose, both in the number of questions it should be able to answer and the fact
that it should be able to answer multiple types of questions. In addition, its per-
formance is to be compared to that of similar models. The calibration approach
is not suitable for these purposes. Instead, it requires a model that is estimated
using maximum likelihood methods. Such estimation methods require a model with
a sufficiently large output scope. To achieve this, DSGE practitioners have resorted
to a hybridization of the model structure. The representational core of estimated
DSGE models is similar to the structure of calibrated DSGE models. However, the
model is supplemented with a non-representational, stochastic periphery. This has
allowed for the construction of models with a broad model purpose while maintaining
a relatively simple structure.

The hybridization of the model structure is in some ways an elegant solution to
the intended purposes of the estimation approach; yet, in line with the hybrid model
critique, it also introduces a lack of ability to assess the structural correctness of the
model.

Let me finish by asking what is to be learned from this study. It is important
to recognize that inherent tensions persist in terms of the model purposes that may
enter the model construction process. As a prime example, purposes that require
models with a close fit to the data are at odds , in some aspects, with purposes that
require models to be interpreted representationally (Blanchard, 2009). The ques-
tion that macroeconomics, as a discipline, should pose to itself is whether it should
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dedicate its resources to constructing models with a broad purpose in an effort to
overcome the methodological challenges that come with these models, or should we
instead apply a broad set of models, each with a specific and limited purpose.

My view is that there are inherent tension between models that perform well in
answering how-much questions and those that aim to answer how’s-that or why
questions. This is because validation criteria are often at odds with each other. I
will provide a more in-depth discussion of this issue in Chapter 6.
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Chapter 4

Model Transfer and Universal
Patterns: Lessons from the Yule
Process

The third and final case in this dissertation is somewhat different from the first two
cases. It does not address a specific macroeconomic modeling practice, as in the
previous two chapters. Rather, it considers a more general phenomenon in scien-
tific practice: model transfer. Nonetheless, the main interpretive framework of this
chapter still centers on validation; as such, it builds on the analysis in the previous
chapters.

4.1 Introduction

An observation on the use of models in science is that particular models are used
across multiple distinct scientific domains. The term model here refers to the struc-
ture of models, which in the case of mathematical models is a mathematical structure.
This structure should be understood as abstract, meaning that it does not have any
empirical content by itself.

The observation of a model that is imported into a new domain can be labeled
as inter-domain model transfer. For example, the growth process of firms is modeled
using the same mathematical structure as the Yule process, which is a model origi-
nally developed in evolutionary biology (Simon, 1955).

Such observations contrast with a view of science in which various scientific domains
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operate in isolation, each using a domain specific methodology. Instead, the ob-
servation that particular models are used across multiple distinct scientific domains
points to a view of science that is organized through a particular set of methods
Humphreys (2004). That is, various distinct scientific disciplines make use of over-
lapping methods. This does not answer, however, why we would observe such an
organizational structure. In fact, it is puzzling when we consider that models are,
generally speaking, constructed for a domain-specific purpose: answering a question
(Boumans, 2006). Such questions often concern phenomena. For example, how do
firms grow in size over time (Simon & Bonini, 1958)? Questions about phenomena
are inherently domain specific; they ask about a growth process of, in this example,
a specific economic entity, firms. The ability of a model to answer this question is
usually built into the model (Boumans, 1999), by shaping the model in such a way
that it fulfills relevant validation criteria. Perhaps one would expect that a model
shaped by validation criteria that are deemed relevant for a domain specific purpose
would always produce a domain specific model, but for some particular models this
is not the case.

Such observations contrast with a view of science in which various scientific domains
operate in isolation, each using a domain-specific methodology. Instead, the obser-
vation that particular models are used across multiple distinct scientific domains
points to a view of science that is organized through a particular set of methods
Humphreys (2004). That is, various distinct scientific disciplines make use of over-
lapping methods. However, this does not answer why we would observe such an
organizational structure. In fact, it is puzzling when we consider that models are,
generally speaking, constructed for a domain-specific purpose: answering a question
(Boumans, 2006).

Such questions often concern phenomena. For example, how do firms grow in size
over time (Simon & Bonini, 1958)? Questions about phenomena are inherently
domain-specific; in this example, they ask about the growth process of a specific
economic entity (firms). The ability of a model to answer this question is usually
built into the model (Boumans, 1999) by shaping the model in such a way that it
fulfills relevant validation criteria. Perhaps one would expect that a model shaped
by validation criteria deemed relevant for a domain-specific purpose would always
produce a domain-specific model, but this is not the case for some particular models.

The main question that this chapter will seek to answer is: What explains the inter-
domain transfer of some models? The observation that some models are transferred
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across multiple domains implies that these models are somehow considered useful
across the domains to which they are applied. Put differently, then, what makes a
model useful in the domain for which it was constructed, as well as the domain to
which it is transferred? To answer this question, this chapter will introduce a novel
framework to understand model transfer. The framework builds on the notion that
a model is constructed to fulfill various types of validation criteria, as discussed in
Sections 2.4.2 and 3.2. Given this framework, I will show that inter-domain model
transfer can be explained as overlap between validation criteria across domains. In
particular, special attention will be paid to the overlap between phenomenological
validation criteria.

To explain how this overlap can occur, I will introduce the notion of universal pat-
terns. Universal patterns are abstract structures that, when coupled with empirical
content, can be applied to multiple distinct domains. Empirical content refers to
the information that relates an abstract structure to objects that can be observed
empirically (Humphreys, 2019). To illustrate my analysis, I will discuss a case study
of model transfer. The study concerns the Yule process, a model first developed
in evolutionary biology (Yule, 1925) and later transferred to various other systems,
including the growth of firms (Simon, 1955).

In the existing literature, we can distinguish three main accounts that seek to ex-
plain model transfer (Knuuttila & Loettgers, 2020): analogies (Hesse, 1966), which
attribute model transfer to similarity relationships between phenomena, formal tem-
plates (Humphreys, 2019), which attribute model transfer mainly to overlap in con-
struction assumptions, and model templates (Knuuttila & Loettgers, 2016), which
attribute model transfer to overlap in conceptual features. Each of these accounts
embed a notion of inter-domain model usefulness. They point to particular aspects of
models that allow scientists to reuse these models across distinct domains. Although
valuable, however, I will argue that these accounts do not give a complete enough
description of what it is that makes a model considered useful in practice.

Examining models as analogies is discussed in Hesse (1966), among others. In this
account, models derive utility from their similarity relations with the phenomenon of
interest. Hesse (1966) distinguishes between positive, negative, and neutral analogies.
In the context of models, positive analogies represent the aspects of the phenomenon
of interest and the model’s features that overlap; negative analogies are those that
do not overlap. Neutral analogies are the aspects for which this overlap is yet to be
determined and are thus what makes the model potentially useful to learn about the
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phenomenon of interest. For a model to be useful, it must therefore be a positive
analogy of the phenomenon of interest in that particular domain to some degree.
In the case of model transfer, this implies that the features of the model provide a
positive analogy in both the original and new domains. This is likely to be the case
when a similarity relation exists between the targeted phenomena of the different
domains. If we consider a model of genera growth in biological evolution that is
also used as a model for firm growth (as in Simon and Bonini (1958)), it is likely
that certain features serve as analogies to genera growth in biological evolution as
well as firm growth. Importantly, such features cannot be domain-specific and are
thus to some extent abstract. As we will see in this chapter’s case study, one of
these features is proportional growth, which can serve as an analogy for how both
genera and firms grow. What is transferred, according to this account, is thus an
analogy that applies to multiple domains. However, this still leaves open why it is
that certain abstract features can serve as positive analogies in multiple domains.
Furthermore, as noted in Humphreys (2019), such analogies can often be made to
fit in a domain opportunistically. As a result, simply looking at model transfer in
the context of analogies may not always yield a satisfactory account of model transfer.

A different view comes from Humphreys (2004), who posits the idea of a compu-
tational template. A computational template is a computational structure that can
be adjusted for use as a model in distinct domains. The utility of using this compu-
tational template, and the explanation as to why some models become templates, are
favorable analytical-tractability properties. The template should also be flexible; it
should be open to adjustments so that it can be made to fit various distinct domains.
This view of model transfer, however, was originally forwarded to be applicable to
computational models.

More recently, (Humphreys, 2019) has provided an extension of this account. This
view characterizes what is being transferred as a formal template. In this account,
the usefulness of a model is essentially determined by the correctness of a model’s
construction assumptions. Model transfer here is therefore enabled by the correct-
ness of the construction assumptions in the original and new domains on a more
abstract formal level. If a construction assumption is a linear relationship between
two variables, this assumption should hold in both domains; what is transferred in
essence is thus not an analogy but a “correct” formal structure with favorable formal
properties. However, Knuuttila and Loettgers (2020) states that solely considering
formal properties is not a complete explanation because it does not explain why some
models are transferred between domains widely and others are not. Many models
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that are successfully used within a particular domain will have favorable formal prop-
erties, such as analytical tractability, yet only a few are transferred across domains.

Another important addition to the model transfer literature is (Knuuttila & Loettgers,
2016), in which the concept of a model template is introduced as a template with
favorable formal properties coupled with general conceptual features. These con-
ceptual features suggest how to theorize about the phenomenon described by the
model. This implies that model transfer is enabled when the conceptual features
embedded in the template are deemed useful tools for theorizing in both the original
and new domains. Examples of such conceptual features are given in Knuuttila and
Loettgers (2020), including phase transitions and local interactions. The account of
model templates points to a particular source of model usefulness that allows us to
explain some instances of model transfer. In my view, however, the account is most
applicable to the methods and conceptual notions present in complexity science and
is therefore limited in its scope of application.

The essential difference between the account of model transfer put forward in this
chapter is that it does not rely on a particular epistemological account of model
usefulness. Instead, rather than explaining what makes a model useful, I will take
a more empirical approach and explore what makes a model considered to be useful
in observed scientific practice. In my view, this approach results in an account of
model transfer that is a closer match to scientific practice and which therefore covers
a wider range of model-transfer cases. It also does not rely on a particular episte-
mological view of model usefulness. Furthermore, it highlights an enabling factor of
model transfer that is not explicitly present in the accounts of model transfer dis-
cussed above, namely universal patterns. The account presented here is also general
in the sense that it subsumes the existing accounts of model transfer to some extent.

To specify the aforementioned criteria of model usefulness, I build on the concept
of model validation and the various validation criteria discussed extensively in the
previous chapters (Sections 2.4 and 3.2). From the point of view of validation, model
transfer is enabled by satisfactory validation in the original and the new domains,
which is in turn enabled by overlapping validation criteria. In this chapter, I argue
that empirical validation may play a key role in the transfer process, meaning the
assessment of whether the model is able to reproduce relevant facts about phenom-
ena. In such cases, the model that is transferred must be able to reproduce facts
about phenomena in both the original and the new domains. Empirical validation
as a mechanism of model transfer is supported by the notion of universal patterns,
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which help us understand why certain models are transferred so widely.

An account of model transfer that also starts from scientific practice can be found
in Donhauser (2020). It contrasts two opposing viewpoints regarding the ability of
scientists within a particular domain to import knowledge from other scientific do-
mains: incommensurability and voluntarism. Incommensurability is a concept taken
from the philosopher of science Thomas Khun in his book The Structure of Scientific
Revolutions (Kuhn, 1970). It entails that knowledge is domain-specific to such a large
degree that knowledge transfer between domains is impossible. At the other end of
the spectrum, the notion of voluntarism states that scientists can choose a particu-
lar epistemological stance as long as certain general conditions are met. Donhauser
(2020) argues that incommensurability is not able to explain model transfer, while
voluntarism can. As we will see, the idea put forward in this chapter fits neither of
these epistemological viewpoints perfectly. Instead, I argue that models are likely to
be transferred in the case of overlap in the criteria used to assess model usefulness.
The criteria that scientists use do not necessarily have to be the result of volun-
tary decisions under general conditions; they may also be a function of particular
paradigms. As argued in Humphreys (2004), a paradigmatic organization of science
is not necessarily domain-specific. Rather, certain methodological strategies span
multiple distinct domains.

The reader may associate the notion of model validity with that of robustness as
forwarded in Lloyd (2015). Model robustness refers to a degree of insensitivity in a
model’s ability to reproduce facts about phenomena and to changes in various model
assumptions and/or parameter values. Inter-domain model transfer could be seen
as robustness with respect to changes in the empirical content of a model. If we
change the empirical content of a model (i.e., transfer a model to a new domain), the
model is still able to reproduce relevant facts about phenomena. Generally speaking,
however, robustness refers to a property of models that reproduce facts about phe-
nomena with the same empirical content. Therefore, to avoid confusion, I will not
engage explicitly with the notion of model robustness in relation to model transfer.
However, the assessment of model robustness, as it is generally understood, may be
subsumed into the more general empirical validation process when relevant. Often,
the assessment of model robustness may come in the form of sensitivity analysis –
altering parameter values and/or model assumptions and assessing how this affects
model output.
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4.2 Validation Criteria and Model Transfer

Central to what I have argued in the previous chapters (Sections 2.4 and 3.2) is that
satisfactory model construction requires the fulfillment of certain validation criteria,
and that the model is therefore shaped by its validation criteria. This implies that
the model can only be reused in a new domain when it can be validated within this
new domain. This is the case if and only if there is overlap in the validation criteria
in both the original and the new domains.

Models are the result of a process of construction. They are not just discovered,
and they are not a trivial extension of theory. However, the question is whether this
construction process is independent of the above-described validation process. In
a more traditional view, these processes are considered independent, which roughly
means that the validation process starts after the model is constructed. In phi-
losophy of science, this is better known as the distinction between the context of
discovery and justification (Boumans, 1999). As shown via case studies in Boumans
(1999), the problem with this traditional view is that it is not in line with actual
scientific practice. Given that the validation criteria are given by the question that
the model is constructed to answer, they are known during the construction process
and play an important role in the construction process. Models are constructed in
such a way that the model meets these criteria. When the model does not meet
these criteria, a “back and forth” process starts in which the model is tweaked and
altered until the criteria are met to a sufficient degree. The ability of the model to
meet its validation criteria is thus built into the model. The case studied in Boumans
(1999), for example, concerns how (in addition to theoretical and mathematical cri-
teria) a micro-founded business cycle model is constructed to reproduce the Phillips
curve (the negative relationship between inflation and unemployment), which is a
phenomenological criterion.

The account of model construction through the fulfillment of validation criteria ap-
plies to models that are constructed from the ground up, as well as models that reuse
existing models. Models constructed by recycling existing models are also subject to
the various types of validation criteria already discussed.

For models to be acceptable in both the original and new domains, therefore, there
must be overlap in the validation criteria. In the framework presented here, overlap
in validation criteria is what enables model transfer across distinct domains. The
three main types of validation criteria distinguished above are theoretical criteria,
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mathematical and statistical (technical) criteria (Section 3.2), and phenomenological
criteria (Section 2.4.2). For the purposes of this chapter, I will limit the analysis of
technical criteria to mathematical criteria. Recall that theoretical criteria require
that the model is in line with existing theoretical concepts, mathematical criteria re-
quire favorable mathematical properties, and phenomenological criteria require the
model to be in line with relevant facts about phenomena.

In the case of theoretical criteria, overlap may be apparent if the core idea of the the-
ory is sufficiently abstract. We can think of certain concepts from evolutionary theory
that are considered useful in biology but also in certain sub-fields of economics (Dosi
& Nelson, 1994). In the case of mathematical criteria, it is not hard to see that, for
example, analytical-tractability criteria may apply across distinct domains. Finally,
in the case of overlap in phenomenological criteria, we can think of requiring models
to reproduce the same type of empirically cyclical behavior in the original and new
domains. While the account of a model template in Knuuttila and Loettgers (2016)
can be seen as a vehicle for the fulfillment of theoretical and mathematical criteria,
it does not explicitly account for the overlap between phenomenological criteria that
enables model transfer. At this point, one may wonder how it is that certain facts
about phenomena will remain the same across distinct domains. In the next section,
I provide an explanation for the occurrence of overlap in phenomenological criteria.

We may posit that fulfilling these validation criteria shows some similarity rela-
tionship between the model and the real-world system; in the case of model transfer,
this is evidence of a similarity relation between the targeted real-world system of
the original and the new model, which is also implied by an account that examines
models as analogies, as in Hesse (1966). However, this depends on the relationship
between the fulfillment of validation criteria and the representational value of the
model. I argue that it is not useful to consider this relationship for the purpose
of this chapter. First, this relationship is complex and uncertain and depends to a
large extent on whether one holds a realist or a more instrumentalist stance toward
scientific models (Gatti et al., 2018). Second, this relationship depends on the pur-
pose of the model, as discussed in Section 2.4. For black-box models, for example,
the sole purpose of the model is to give correct predictions, which implies that the
representational value of the model mechanisms is not a relevant criterion of assess-
ment. Not directly engaging with the relationship between validation criteria and
the representational value of the model is thus more epistemologically neutral and
covers a wider range of model types.

83



CHAPTER 4. MODEL TRANSFER AND UNIVERSAL PATTERNS: LESSONS
FROM THE YULE PROCESS

4.3 Universal Patterns

I have stated that overlap in phenomenological criteria should be taken into account
to come to a more complete account of model transfer. The question that remains to
be answered is: When is this the case? Empirical validation tests generally consist
of assessing whether the model is able to reproduce relevant facts about phenomena.
Any overlap of phenomenological criteria therefore implies that there is somehow
overlap in features of these facts about phenomena. This may seem unlikely, given
that facts are by definition tied to what is empirically observed. The distribution of
firm size is about a specific domain: firms. Abstract features of such facts, however,
may very well appear across multiple distinct domains. These features are what I
will label as universal patterns. As we will see, the distribution of firm size follows
a particular power law, the Yule distribution, which is a feature of many observed
distributions in distinct domains (Simon, 1955).

Let me first elaborate on what I mean exactly by a universal pattern. A pattern
can be thought of as an abstract structure. It is abstract because, by itself, the pat-
tern does not have any empirical content, meaning that it is neither empirically true
or false (Humphreys, 2019). It is a structure because we perceive it as something
structured, as opposed to being unstructured. Typical structures would be geomet-
ric shapes, like circles, curves, cycles, and spirals, or, more generally, structures are
described as particular mathematical forms. As an example of an abstract structure,
we can think of patterns used in knitting; even though the patterns themselves do
not refer to anything empirical, we still recognize them as having a specific struc-
ture. Patterns can refer to specific facts about phenomena by tying them to specific
empirical content. Empirical content, in this sense, refers to the information that
relates the abstract structure to the empirically observable facts about phenomena.
When the Yule distribution is used as the distribution of genera size, for example,
it is coupled with information that gives particular meaning to the shape. A point
on the line that is higher than another point on the line means that it represents a
genus that is larger in terms of species. Note the four relevant concepts within this
description: the pattern, the empirical content, the facts about the phenomenon,
and the phenomenon itself.

A pattern is a universal pattern if and only if it can be made to refer to facts about
phenomena in multiple domains by changing only the empirical content to which the
pattern is coupled. In Figure 4.1, we can see a schematic overview clarifying the
relationships between concepts. A single universal pattern can be made to apply
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Figure 4.1: Universal patterns and facts about phenomena

both to facts about phenomena A and B by tying it to empirical content A and B,
respectively.

The notion of universal patterns put forward here is induced from the observation
that certain patterns are observed and used in scientific practice in varying domains.
Most straightforwardly, we can think of the Gaussian or normal distribution, which
is observed across widely varying domains, such as human height or the weight of
loaves of bread (Lyon, 2014). Another example are certain power distributions, such
as Zipf’s law (Corominas-Murtra & Solé, 2010) or the Yule distribution (Simon,
1955), which are observed in the distribution of city size and the distribution of
words in a piece of literature. Universal patterns are not limited to distributions,
however; for example, we can think of particular oscillation patterns that are ob-
served in (among many other domains) ecology and economics (Gandolfo, 2008).

Let us now relate the notion of universal patterns more explicitly to phenomeno-
logical validation criteria. In order for a model to be transferred across domains,
it must be considered useful by the practitioners in both the original and the new
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domains. This usefulness is considered by assessing whether the model is able to
meet certain validation criteria. These validation criteria are built into the model,
meaning that the model is shaped by the criteria. For a model to be useful in a
domain that is different from the one for which it was originally constructed, the
validation criteria should overlap. When phenomenological criteria have played an
important role in shaping the original model, it is these criteria that should overlap
in the new domain in order for the model to be transferred. This is the case when the
phenomenological criteria represent universal patterns. More concretely, when this
is the case, models in multiple distinct domains are able to reproduce empirically
observed patterns in these domains.

Note that the use of the term pattern here means something different than in
Humphreys (2019), where it is used to describe the abstract structure of the model
itself. Here, pattern refers to something that has the potential to be observed em-
pirically and to be reproduced by the model. Of course, this means that the pattern
is embedded in the model. By working with the model and considering the implica-
tions of its assumptions, we can uncover this pattern. In practice, this often involves
running numerical simulations of the model. This is in line with the definition of
phenomenological output criteria in Section 2.4.2.

The general view is thus that in most modeling exercises, it is desirable to latch
the model onto the empirically observable world in some way. The observations
we make, and the facts about phenomena that we distill from them, are sometimes
structured in specific ways. In such cases, models that are constructed to latch
onto phenomena are likely to have a structure that is specific to that observed phe-
nomenon. Such a fact about a phenomenon does not represent a universal pattern.
In other instances, however, the facts about phenomena that we distill from our ob-
servations are structured in general ways. That is, they embed a pattern that can
be made to refer to facts about distinct phenomena – a universal pattern. We are
thus confronted with a world in which we observe both specificity and generality.
Where we observe specific patterns, there are likely methodological borders. Where
we observe universal patterns, there are likely transfers of mathematical forms. This
view contributes to an explanation for the observation that some particular models
are transferred but not others.

The notion of universal patterns that I have presented here is related to but dif-
ferent from the existing concept of universality. The field that has discussed the
notion of universality most explicitly is that of statistical mechanics. In statisti-
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cal mechanics, universality concerns similarities in the behaviors of diverse systems
(Batterman, 2000). Another way in which this is sometimes formulated is that the
system-level behavior is independent of elements of the microscopic structure system
(Batterman, 2000) . If this is the case, it implies that systems constituted of different
objects may still show similar behavior. An example often used is when a magnet is
heated to a certain critical temperature, it will lose its magnetism (phase transition).
The path between these two states as a function of temperature (coexistence curve)
is described by a power function with a critical exponent close to 1/3 (Batterman,
2000). The same functional form and critical exponent is also observed in phase
transitions between the fluid and vapor states of matter, including that of water.
Clearly, the microscopic structures of water and magnets are different; nonetheless,
some properties at the system level are strikingly similar.

The same notion of universality has also been applied to systems outside of chemistry
and physics, such as agent-based systems (Parunak, Brueckner, & Savit, 2004) and
biological systems (Batterman & Rice, 2014). The power function with a critical
exponent close to 1/3 falls within the account of a universal pattern presented here.
State transitions in matter and transitions in magnetism are facts about phenom-
ena with distinct empirical content, but they nonetheless express a similar pattern.
The account of universal patterns that I have presented, however, does not make
any statements about the relationship between the observed pattern and the system
by which it is generated. In the notion of statistical mechanisms, universality is a
property of a system, the behavior of which comes in the form of widely observed
patterns. However, this presupposes that what is observed is strictly tied to the gen-
erating system. As I will discuss below, this limits the ways in which we can explain
why we observe universal patterns, albeit in a way that is not necessary within the
context of model transfer.

Why we observe universal patterns is a fundamental question that requires a full
investigation on its own and is thus beyond the scope of the main question of this
chapter. Generally, however, we can distinguish between two types of explanations.
One comes from the same statistical mechanics notion discussed above, as discussed
in Batterman and Rice (2014). It states that systems, although distinct in certain
ways, still share abstract fundamental features, such as locality, conservation, and
symmetry. Systems that are different in some aspects but share these fundamental
features have the same properties – in the form of universal patterns.

This explanation is related to the notion of a causal core, as discussed in (Lloyd,
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2015). The causal core consists of those features that are responsible for generating
particular output and robust against changes outside this causal core.

For physical systems, this explanation may seem credible, as stated before; however,
universal patterns are also observed in diverse social phenomena (Simon, 1955). Ac-
cording to some, such patterns are also the result of abstract fundamental features
in the systems by which they are generated. Mandelbrot and Hudson (2007), for
example, applies the theory of fractals (Mandelbrot, 1982) as an explanation for
the distribution of price changes on stock markets. Fractals are seen by some as a
fundamental self-organizing principle of nature (Kurakin, 2011). Somehow, the code
of nature is such that distinct systems (even social ones) self-organize into similarly
structured patterns.

As an alternative explanation for universal patterns, we can take a more cognitive
perspective and question the objective nature of the patterns we observe. As stated
before, patterns are abstract structures. What we consider to be structured and
unstructured may be shaped by our psychology and limited by our inability to grasp
the complexity of the world. This is in line with notions from Gestalt theory, such
as those presented in Palmer (1999). Human psychology has a tendency to structure
pieces of information into larger information structures in certain ways. The notion
of universal patterns that I forward here can be interpreted as ontologically neutral.
Here, we are simply addressing the observation that universal patterns are observed
by scientists, which therefore partially determines which models we consider useful.

4.4 The Yule Process: A Case Study

To illustrate the account described above, I would like to discuss the Yule process
and the universal pattern that can be derived from it: the Yule distribution. I
have chosen this example of model transfer because an explicit account exists of how
this model was constructed in Yule (1925) for its original context, as well as how
the model was later used as a basis for the construction of models in other domains
(Simon, 1955). More recently, the Yule process has formed the basis for many models
that concern preferential attachment (Abbasi, Hossain, & Leydesdorff, 2012), which
is a central notion in network theory (Newman, 2001).
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4.4.1 Yule Process: Evolutionary Origins

George Undy Yule (1871–1951) is known as a pioneer in the field of statistics. The
model that is the subject of this case study is called the Yule process. The distri-
bution that can be derived from this process has been labeled the Yule distribution,
which is perhaps his most well-known scientific contribution (Edwards, 2001). A
short history of the development of the model can be found in Bacaër (2011), on
which the analysis below is partially based.

Yule developed his model in response to observations made by the botanist J. C.
Willis (1868–1958) in evolutionary biology. The subject concerns the distributions
observed in taxonomy, a biological classification scheme with a hierarchical struc-
ture in which organisms are grouped together based on common characteristics. The
system is hierarchical in the sense that classifications with a higher taxonomic rank
are more general, thus embedding a classification of more specific lower taxonomic
ranks. The observations made by Willis span two such ranks: specie and the more
general rank of genus. A given genus thus contains multiple species that have certain
features in common at the genus level but differ at the species level. The suborder
of -Snakes-, for example, contains many more specific genera, such as -Boa-, which
in turn contains the specie of -Boa Constrictor-.

For several different organisms (animals and plants), Willis collected data on the
number of genera that contain a given number of species. In this context, we can
say that the size of a genus is determined by the number of species it contains. By
tabulating this data, an interesting distribution emerged; many genera contained one
specie (size one), some genera were larger, and a few genera were very large and con-
tained more than 100 species (size 100). What was also striking is that this pattern
appeared to emerge in both animals and plants.

Yule, who trained as a statistician under Karl Pearson, suggested plotting the data
on a log-log scale. This revealed that the logarithm of the fraction of genera contain-
ing k species, log(pk), decreased approximately linearly with log(k). This implies
thatα > 0 and β > 0, such that the probability density function of genera size can
be written as:

pk ∝ αk−β (4.1)

Which can be rewritten as:

log pk ∝ log(α)− β log k (4.2)
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Figure 4.2: Power Law for α = 0.5 and β = 1

Figure 4.2 plots both equations for arbitrary parameters. In addition, Willis made
observations regarding the age of a genus and its size and found that larger genera
were older on average, evolutionarily speaking.

Yule was interested in providing a mathematical model based on evolutionary theory
that was able to reproduce Equation 4.1 and, in addition, to explain the observation
made by Willis that the larger genera were also older. In Yule (1925), he provided
this model, stating its purpose as follows:

The Further question arises, what is the frequency distribution, as the statistician
terms it, of the sizes of these N genera which all started as monotonic genera from
primordial species at zero time, after any given time has elapsed? (Yule, 1925)

This purpose encapsulated the desire to generate the distribution of genera size
while linking genera size to evolutionary age. From the outset, there were thus some
clear validation criteria that are in line with the ones I have discussed previously: a
theoretical criterion, in that the model assumptions must roughly agree with evolu-
tionary theory, and a more explicitly phenomenological criterion, in that the model
must able to reproduce a distribution that is linear on a log-log scale.
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Let us now take a look at how Yule managed to construct a model that repro-
duces a frequency distribution that is in agreement with these “known facts.” The
two fundamental entities in this model are species and the genera to which they
belong. Consider how these two entities grow over time. The total number of genera
is labeled n. Each genus has a size k that is determined by the number of species
belonging to each genus at a point in time. At each time step, m species in total are
added to the existing genera. After these m species have been added, a new genus
is added to the existing genera; this new genus starts with k = 1 Subsequently, the
total number of species has increased by m + 1 (m plus the specie associated with
the new genus); m+ 1 new species appear for each new genus added, implying that
the average number of species per genus is m+1. With each time step, n is increased
by 1. This implies that the number of time steps can be represented by the total
number of genera n. pk,n is the fraction of genera with k species when the total
number of genera is n. The total number of genera with k at n is npk,n.

At this point, the probability of a species being added to an existing genus be-
comes crucial. This probability is taken to be proportional to the size of the genus,
such that if we have a genus with ki species, the probability of a specie being added
to this genus is given by the number of species belonging to genus i over the total
number of species:

ki
n(m+ 1)

. (4.3)

We now have all the ingredients of the model. In short, the model consists of two
main elements: constant genera growth and proportional specie growth. The ques-
tion to ask now is: Where do these ingredients come from?

Part of the response is a general knowledge of evolutionary theory. In the intro-
duction to his chapter, Yule discusses two opposing views regarding how evolution
occurs that were relevant at the time. The first is what Yule labels the “Darwinian
view,” which assumes that differences in species and genera arise through cumula-
tive small mutations (continuous variation) and that species necessarily die out. The
“mutational view” assumes that large mutations may occur “at once per saltum,” as
Yule phrases it, meaning with large jumps (discontinuous variation).

It may seem that the type of mutation described in the model, as well as the assump-
tion that species do not die out, is more in line with mutationalism. However, Yule
is well-known for his opposition to mutationalism, most prominently in Yule (1902).
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To ensure that his assumptions do not disagree with the Darwinian view, Yule pro-
vides an explanation of how the model’s assumptions should be interpreted. First,
mutations in his model are limited to “viable mutations,” such that the model does
not formally contradict the dying-out of species. Second, Yule notes that given a
long enough time horizon, small continuous mutations accumulate into changes that
may appear discontinuous. The time horizon in the model should thus be interpreted
as long enough for such small mutations to accumulate into something that would
be classified as a new specie or a new genus. Clearly, then, an effort was made to
position the model within the context of existing evolutionary theory. Such consid-
erations provide us with an example of how the ability to meet theoretical criteria is
built into a given model.

However, the model proposed by Yule was certainly not an injective (one-to-one)
mapping of evolutionary theory. Interestingly, behind proportional growth is the
assumption that the probability of creating a new specie is the same for each indi-
vidual species, regardless of genus and time. This implies that larger genera will grow
at a higher rate in absolute terms. Regarding this assumption, Yule writes as follows:

The assumption that the chances of specific (or generic) mutation are identical for
all forms within the group considered are constant for all time are unlikely to be in
accordance with the facts, but have to be made to simplify the work. (Yule, 1925)

Why did Yule make this non-factual assumption? Here, we enter the realm of
analytical-tractability/mathematical criteria: Introducing heterogeneity in the rates
at which hundreds of species and genera evolve would undoubtedly complicate the
model’s computational structure and may hamper the degree to which the model
would enhance understanding. In addition, it could be that such a model can only
be implemented through computer simulation, which was not a tool available to Yule.
To convince the reader of the correctness of this assumption, Yule points not to evo-
lutionary theory but to empirical facts that the model must be able to reproduce –
the phenomenological criteria:

In so far as the deductions do not agree with known facts the assumptions are prob-
ably incorrect or incomplete. In so far as we find agreement, or the more nearly we
find the agreement, the assumptions are probably correct.(Yule, 1925)

Indeed, the model proposed by Yule is able to reproduce the frequency distribu-
tion of genera:
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So for as the graphic test goes, accordingly, the theory gives very well indeed pre-
cisely the form of the distribution required.(Yule, 1925)

From the outset, before any formal derivation, we can see that the constant addition
of small genera, coupled with a proportional growth of species, would generate a
distribution with some very large genera and many smaller ones; to put it mathe-
matically, a skewed distribution. Starting with only genera with k = 1, some genera
will by chance grow slightly larger than others. These larger genera will then have a
higher probability of growing even larger (following Equation 4.3), and so on.

The above description of the construction of the Yule process shows how the model is
shaped by a balancing act between three validation criteria. Specifically, the model
had to be (to some extent) in line with notions from evolutionary theory, it had to be
solvable analytically, and it needed to reproduce the observed statistical distribution.
It was these criteria that served as Yule’s standards for model usefulness. This shows
that the Yule process is a model constructed for a specific domain and shaped by
the validation criteria within this domain.

4.4.2 The Yule Process as a Model for Firm Growth

How was the structure of the Yule process used as a basis for the construction of
models in other domains? In the above analysis, we have established that overlap in
validation criteria between domains is necessary for models to be useful in multiple
domains. Let us look, therefore, at which considerations were most important in the
selection of the Yule process as a basis for constructing models in a new domain.

The Yule process has been used to model the processes of many different subjects
(Simon, 1955). As an example, we will look at how it was first applied to model
the distribution of firm size in Simon and Bonini (1958). Let me first provide some
background on the scientific discussions regarding models of firm size in this period.
At that time, it had long been observed that the distribution of firm size was heavily
skewed (Gibrat, 1931), implying a distribution of some very large firms and many
smaller firms. The non-normality of this distribution was seen as evidence of the
non-trivial nature of the growth process. This observation brought with it a dissat-
isfaction with standard economic theory because it was unable to make predictions
regarding the distribution of firm size (Simon & Bonini, 1958). Born from this dis-
satisfaction, the goal of Simon and Bonini (1958) was to provide a model that could
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generate the observed distribution of firm size. From the start, therefore, the model
construction was aimed at a phenomenological criterion.

Simon and Bonini (1958) starts with the assertion that to generate the distribution
of the type observed in firm size, the law of proportional effect is an essential ingre-
dient for the model. The law of proportional effect was first introduced by Gibrat
(1931) and entails that growth is proportional to size. It is the same structure la-
beled by Yule as proportional growth. In the case of firms, this would mean that the
same percentage of growth rates applies to firms of different sizes. This implies that
larger firms grow faster in absolute terms. Concretely, this means that the expected
percentage return on investment is not a function of firm size. Computationally, this
is in line with growth in the original Yule process, in which larger genera will also
grow at higher absolute rates. However, this was not enough to narrow down the
appropriate model to one. Simon and Bonini (1958) states that there may be mul-
tiple distinct growth processes (models) that will generate the type of distribution
skewness observed empirically, as long as proportional growth is incorporated:

If we incorporate the law of proportionate effect in the transition matrix of a stochas-
tic process, then, for any reasonable range of assumptions, the resulting steady-state
distribution of the process will be a highly skewed distribution, much like the skewed
distribution of that have been so often observed for economic variates. In fact, by
introducing some simple variations into the assumptions of the stochastic model - but
retaining the law of proportionate effect as a central feature of it - we can generate
the log-normal distribution, the Pareto distribution, the Yule distribution, Fisher’s
log distribution and others - all bearing a family resemblance through their skewness.

Proportional growth was thus deemed essential for generating the type of distri-
bution observed for the size of firms. However, this still left open a range of skewed
distributions and processes that generate them. To narrow down the growth process
further, Simon and Bonini (1958) examined more closely the characteristics of the
observed distribution of firm size:

The log-normal function has most often been fitted to the data and generally fits
quite well. It has usually been noticed, however, that the observed frequencies exceed
the theoretical in the upper tail and that the Pareto distribution fits better than the
log-normal in that region. The observation suggests that the stochastic mechanisms
proposed in the previous section are the appropriate ones and that the data should be
fitted with the Yule Distribution. (Simon & Bonini, 1958)
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The observed pattern is thus one of a particular shape: it is log-normal except for the
upper tail, which is Pareto distributed. These two characteristics are consistent with
the pattern of the Yule distribution. To reproduce this pattern, Simon and Bonini
(1958) incorporates the second essential ingredient of the Yule process: the constant
entry of new small firms. In this way, Simon and Bonini (1958) arrives at a model
with the same structure as the original model that is able to meet the validation
criteria within the new domain.

4.4.3 Overlapping Validation Criteria

Where can we find overlap in the validation criteria between the original and new
domain? First, if we look at theoretical criteria, we do not see strong indications of
overlap. The evolutionary theory that served as a criterion in the original construc-
tion of the Yule Process did not play an explicit role when the model was applied
to firms. In Simon and Bonini (1958) we see that theoretical criteria did not seem
to play a big role altogether. Rather, Simon and Bonini (1958) is partially born
out of a dissatisfaction with the inability of microeconomic theory to explain certain
empirical patterns.

Second, both models contained an at least implicit mathematical criterion of an-
alytical tractability. The Yule process was a good candidate because the model was
shown in Yule (1925) to fulfill this criterion. In line with Knuuttila and Loettgers
(2020), this criterion is fulfilled by countless models and is not enough to narrow
things down to a particular model. By itself, then, it is not a complete explanation
of why the Yule process was transferred to the new domain.

Third is the overlap between the pattern observed in the distribution of genera size
and the pattern observed in the distribution of firm size. It was this pattern – a
certain shape – that enabled the model of the Yule process to be considered useful
in both domains.

4.5 Conclusion

What explains inter-domain model transfer in science? In this chapter, I have put
forward an account of model transfer that begins with the construction process of
models in practice. In practice, models are constructed such that they meet relevant
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validation criteria. These criteria can be theoretical, mathematical, or phenomeno-
logical in nature. The models are shaped by these criteria. In this sense, a model
can thus be seen as a containing structure that meets certain criteria.

If such criteria are domain-specific, the model will only transfer within the origi-
nal domain of construction. If, however, the validation criteria also apply to other
domains to a large enough extent, the model may also be considered a useful tool
in these domains. Inter-domain overlap in theoretical criteria applies in cases where
the core of the theory in question is sufficiently abstract, such as complexity science.
Mathematical criteria play an important role in shaping many models, and these
criteria will often overlap between domains – analytical tractability, for example. I
agree with Knuuttila and Loettgers (2020), however, that such criteria are in some
sense so general that they do not constitute a complete explanation. Likewise, they
do not explain the fact that some particular models are transferred while others are
not.

Phenomenological criteria, in the form of an ability to reproduce certain patterns,
may overlap across domains if the pattern is universal. Universal patterns are ab-
stract structures that can be fitted to facts about phenomena in multiple domains
through coupling with domain-specific empirical content. Why we observe such
patterns is an ontological question that may tell us something about how nature
self-organizes into typical structures, or about our way of responding to the episte-
mological limitations of grasping nature’s complexity.

The case of the Yule process provides us with evidence that universal patterns are
what enables model transfer in some instances. The case shows how the Yule dis-
tribution shaped the original Yule process model to a large degree. Stripped of its
ontological content, the Yule process is a device that generates a specific pattern in
an analytically tractable way. The reason why Simon and Bonini (1958) uses the
same model to construct a model of firm growth is clear: the model was able to
reproduce a specific pattern. It was this phenomenological validation criterion that
enabled the model transfer. Importantly, the pattern is the starting point for Simon
and Bonini (1958), and not the way in which the mechanisms of the model, propor-
tional growth, and constant addition of new entities could be made to apply to firms
instead of genera.

The Yule process case study presents us with an instance in which overlap in phe-
nomenological criteria was the primary reason that the particular model of the Yule
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process was transferred between domains. It is important to state, however, that
in other cases (e.g., Knuuttila and Loettgers (2020)), the primary reason for model
transfer may overlap in theoretical and/or mathematical criteria.
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Chapter 5

Framework: Model Construction
and Validation

This chapter presents a framework that integrates the various insights derived from
the cases in the previous chapters. It builds on the existing literature, including
Barlas (1996), Kydland and Prescott (1996), Boumans (2007) and Boumans (2009).
Importantly, as discussed in Chapter 1, the method through which this framework
is derived is primarily inductive. It does not start from any particular philosoph-
ical idea about what models are or should be. Rather, it seeks to provide a more
systematic understanding of practice in the way that it is actually observed. While
the framework has been derived mainly through the analysis of models in macroeco-
nomics, it may also be found to be useful in other disciplines that rely on models.

The framework is an account of model construction and is built around four in-
terrelated concepts: model purpose, invariance, model validation, and model scope. I
will review these four concepts before explaining how they are involved in the model
construction process and how they relate to each other.

The reason why model construction can be related to the concept of validation rests
on the assumption that validation criteria are built into the model (Boumans, 1999),
as discussed most extensively in Chapter 4. This is because validation criteria are
known beforehand and the model is constructed so that it fulfills these criteria. This
most often involves a back-and-forth process of trial and error until the right model is
found that yields the right balance of criteria fulfillment relative to some purpose. For
these reasons, model construction can be understood within the context of validation.
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Some parts of this framework may have already been discussed in some of the pre-
vious chapters. In general, this framework will discuss these parts in more depth
and explore the connections between them. Furthermore, where relevant, I will also
connect the framework here to the more general view of models in Section 1.2.

5.1 Model Purpose

The notion of model purpose has a role to play in all three cases discussed in this
dissertation. It is the starting point of the model construction process. Importantly,
as will be discussed here, the analysis of model purpose yields valuable information
about the epistemic aims of the practitioner, as well as the type of model to be
constructed.

Scientific models are constructed for a certain purpose (Barlas, 1996). This pur-
pose is a function of the interests and scientific problems of the model builder. In
turn, these interests and scientific problems are influenced by scientific paradigms,
policy goals, and/or personal considerations. The role of the model builder, therefore,
is to construct a model that is in line with this purpose. An example of a purpose
that covers most scientific endeavors is that the purpose of the model is to answer a
question (Boumans, 2009). Answering a question is often the primary purpose of a
model. The subject of these questions is most often a phenomenon; as the main sub-
ject of the question, it can be labeled as the model target. To take an example from
macroeconomics, the business cycle is a well-known target phenomenon for models.
Depending on the question, a model of the business cycle may serve to explain why
the cycle occurs or to predict when the next economic crisis will arise.

As discussed in Section 2.4.1, following Boumans (2009), we can distinguish be-
tween three types of questions. The first are why questions, the answer to which can
be viewed as an explanation (Barlas, 1996). That is, an explanation that relies on
making reference to the structure of the real world. The structure of models that
may be capable of answering such questions must have an injective representational
relationship (characterized as one-to-one; see Section 1.2 for a further discussion)
with the real-world system.

The second are how-much questions, the answer to which is, in essence, a numeri-
cal value – a measurement. As a result, this type of question does not require any
form of explanation. An example are complex models generated by machine learn-
ing algorithms. The purpose of such models is to provide an accurate forecast of a
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variable of interest. Often, however, the model structure generated by the algorithm
is so complex that it is unintelligible and does not provide us with an explanation
as to why a certain value is forecast. In this way, the structure of models that may
be capable of answering how-much questions does not need to have a representative
relationship with the real-world system.

The third are how’s-that questions, which require an answer that provides some
form of understanding of the real-world system structure. In contrast to why ques-
tions, however, how’s-that questions do not require an answer that makes reference
to the structural elements of the real-world system in the way that they are actually
observed. Rather, it is sufficient if the answer makes reference to structural elements
that, as a whole, behave as if the structure of the real-world system. This implies
that the model is an account of how possibly the real-world system is structured.
The structure of models that are capable of providing such answers thus correlate
with the structure of the real world in terms of a wide range of model outputs.

Note that the discussion of model purpose here is in line with the discussion in
Section 1.2 on the different types of structural elements from which models can be
built. Why questions require the structural elements to be mainly injective repre-
sentations of theory and/or data. How-much questions only require the model as a
whole to be a non-injective representation of only the variable to be measured. We
can conceive of highly artifactual structures that would be consistent with this very
limited representative requirement. The structure of such models may therefore be
artifactual to a large extent. For how’s-that questions, the model structure is to
be a non-injective representation of a wide range of real-world data characteristics.
This somewhat limits the space of possible model structures. In practice, it is often
observed that some elements of the model structure are representative of data or
theory, while others are artifactual.

5.1.1 Invariance

A further consideration when it comes to providing an answer to a question is the
notion of invariance. Invariance was introduced in economics in Haavelmo (1944) and
concerns the degree to which model results remain stable over time, place, and/or
policy regime. For example, for a model that provides us with an explanation (that
is, an answer to a why question), it is desirable for this explanation to hold over
time, such that we can apply the understanding given by the model to future ques-
tions. This may seem trivial, but it is in fact a crucial challenge in non-experimental
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science (Boumans, 2007). To sharpen my earlier statement: The primary purpose of
a model is to provide an answer to a question that is to some degree invariant – an
answer that remains useful even as background conditions change.

In Chapter 3, we discussed how invariance is an important consideration with the
development of calibration and estimation approaches to DSGE models.

5.1.2 Secondary Purposes

In addition to providing an invariant answer to a question, there may also be what I
will label as secondary purposes. For example, it may be desirable to position one’s
model within an existing methodological paradigm (in line with the work on scien-
tific programs by Lakatos (1976)). It may also be that a certain scientific paradigm
is internalized to such a degree that the model builder is not aware of it, since the
model builder is simply constructing a model based on what is believed to be in
accordance with best practices.

As an example, most modern DSGE models require the incorporation of new Keyn-
sian macroeconomic theory. It may be that the model builder incorporates this
theory purely because it is part of the paradigm, even though the builder knows
it is sub-optimal with regard to the model’s primary purposes. Alternatively, if the
paradigm is internalized to a sufficient degree, the optimal way to achieve the model’s
primary purpose – to answer a particular macroeconomic question – may be, from
the perspective of the model builder, to use new Keynesian theory.

The terms primary and secondary here should not be interpreted as indicative of
the degree of importance to the model construction process. This implies that the
framework presented here is, in principle, open to instances in which the secondary
purposes determine to a larger extent the choices made in the model construction
process compared to the primary purposes.

5.2 Model Validation

The second element of this framework is model validation, which can be understood
as the assessment of a model’s ability to fulfill its intended purpose. In a more
practical sense, this is done through assessing the model’s ability to fulfill various
validation criteria. The model validation criteria are obtained by translating the
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model’s purpose into more concrete and practical points of reference within the con-
text of model construction. This implies that validation criteria are relevant to the
model’s purpose, meaning that it can be argued that the fulfillment of the criteria
also implies that the model is moving toward its intended purpose. This implies that
the validation criteria are determined by the model purpose, and that models with
different purposes will differ in terms of which validation criteria are relevant.

Throughout this dissertation, we have seen that validation provides an interpretive
structure through which many insights can be derived about modeling practices.
Chapter 2 mainly focused on phenomenological validation criteria, which allowed us
to gain insight into various aspects of agent-based models. In Chapter 3, phenomeno-
logical criteria were also seen to play a significant role, as were technical criteria. More
specifically, the relationship between model purpose and these technical validation
criteria provided insight into the shift from a calibration to an estimation approach in
DSGE models. Finally, Chapter 4 used the notion of overlapping validation criteria
as a means of understanding model transfer.

In what follows, I will distinguish between theoretical, phenomenological, and tech-
nical validation criteria, as well as their relationship to model purpose. Figure 5.1
presents a schematic overview of the relationships between the model purpose, the
three types of validation criteria, and the model.

5.2.1 Theoretical Criteria

Theoretical criteria constitute the assessment of whether a model is in line with rel-
evant established theory. Let us first establish what is meant by theory, as it has
been defined in multiple ways in relation to economic modeling. For example, Lucas
(1980) broadly defines theory as the set of instructions for building the model econ-
omy. However, this is not the definition of theory that I have used use throughout
this dissertation.

Theory refers to the conceptualizations of the mechanisms associated with the real-
world structure. Theoretical criteria are not instructions; they are constraints derived
from existing theoretical notions. New Keynesian economic theory, for example, en-
tails price stickiness. A macroeconomic model that is to be built in line with new
Keynesian theory should therefore be able to generate price sticky behavior if it is
to meet such a theoretical criterion (Gaĺı, 2015).
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Figure 5.1: Validation Criteria

To illustrate this, in Chapter 4, we discussed the role that theoretical criteria played
in the construction of the Yule process model in its original formulation. The con-
text of the evolutionary biology theory of the time constrained some of the model
assumptions, especially the notion that genera growth occurs through mutation. In
this case, theory provided a framework within which Yule constructed his model.
Although this theoretical framework did not completely determine all the model’s
choices, efforts were made to convince the reader that most of the model assumptions
did not disagree with evolutionary biology theory.

5.2.2 Phenomenological Criteria

As we have discussed, phenomenological criteria come in the form of what is more
generally known as empirical validation, that is, assessing whether certain model
characteristics correspond to what is empirically observed. I will first discuss the
various types of phenomenological validation criteria, along with which tests are as-
sociated with them. In the next section, I will outline a categorization of model types
based on the types of phenomenological criteria that apply. These model types, in
turn, are associated with particular types of questions that models are built to an-
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swer, as discussed in the previous section.

First, we should distinguish between phenomenological input criteria and phenomeno-
logical output criteria (see Gatti et al. (2018) for a similar categorization). Input
criteria require the empirical assessment of the model assumptions without consider-
ing their implications when brought together. That is, they are the raw ingredients
of the model before any analytical derivations or simulations have been performed.
In the case of macroeconomic models, this often comes in the form of assumptions
at the agent level. We could, for example, seek to assess whether consumer saving
behavior is in line with how subjects are observed to form expectations in laboratory
experiments.

Phenomenological output criteria, on the other hand, require the assessment of the
implications of the model assumptions when put together. This may include both
the implications of all model assumptions or subsets thereof. The implications of
model assumptions can be studied in many different ways. In some cases, the model
is solved analytically; relationships within the model structure can be uncovered in
this way and subsequently compared to relationships found in empirical data. In
other cases, the behavior of the model as a whole is generated through computer
simulations. This yields model output data, the characteristics of which can be com-
pared to their potential empirical counterparts.

We can further delineate these phenomenological output criteria. Barlas (1996) dis-
tinguishes between three types of validation tests that can be understood as different
types of phenomenological output criteria within the context of the framework pre-
sented here. The three types of tests are behavior pattern tests, direct structure
tests, and indirect structure tests.

Behavior pattern tests assess whether the model is able to reproduce the major
patterns exhibited by the real system. We have labeled these major patterns as the
model target, which is determined by the purpose of the model. For instance, if
the model purpose is to understand how business cycles arise, behavioral pattern
tests would assess whether the model is able to reproduce business cycles as they are
empirically observed.

Next, let us discuss direct and indirect structure tests. Both types of tests can
be understood as phenomenological output criteria directed toward the model struc-
ture. The model structure entails the mechanisms by which the model target is
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generated. Whether and the way in which the model structure is subject to valida-
tion is dependent on the type of question that the model is constructed to answer.
For instance, for a why question, an explanation is required; this explanation is em-
bedded in the model structure. It implies that for these question types, the model
structure is subject to validation. In contrast, how-much questions do not require
an explanation. The answer to such a question is a quantitative measurement that
is as accurate as possible. The mechanisms through which the model arrives at this
measurement are not of primary interest. This implies that the model structure is
not subject to validation.

Let us now discuss the difference between direct structure tests and indirect struc-
ture tests. The subject of direct structure tests are subsets of the model structure in
isolation from the other parts of the model. They often take the form of particular
relationships between variables in the model. For example, it may be presumed that
a negative direct relationship is present between interest rates and the propensity
to consume. A direct structure test would assess whether this direct relationship is,
in fact, present in the model as such, in isolation from other relationships. Direct
structure tests therefore assess whether the model structure corresponds to the de-
scription of the real-world structure (at least in the way it is observed). I also refer
to this type of validation test as direct structure validation. To relate our discussion
here to that of the elements from which models are constructed in Section 1.2, direct
structure validation assesses whether these elements are injective representations.

Phenomenological input criteria can also be seen as a type of direct structure valida-
tion. This is because the model assumptions are inputs to the model structure, and
because the validation of these assumptions occurs without considering their relation
to the other assumptions or their implications for the rest of the model.

The second type are structure-oriented behavioral tests. These tests assess the model
structure, but they do so by comparing a broad range of characteristics of the model
output data with their empirical counterparts. The idea is that if the model behaves
in line with observed facts in a sufficient number of dimensions, this signals that the
model mechanism behaves at least as-if a real-world mechanism. If a model were
built to provide an understanding of the mechanisms that could generate the busi-
ness cycle, for instance, the fact that it is also able to reproduce the Philips curve
is seen as a sign that the model mechanisms behave as if the real-world structure. I
refer to this type of validation test as indirect structure validation.
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In Figure 2.4.2, we can see an overview of all the different types of phenomeno-
logical validation criteria discussed so far. The first distinction is between validation
based on model input and validation based on model output. Output validation
can be split into target and structural validation. Structural validation, in turn,
comprises direct and indirect structural validation.

5.2.3 Technical Criteria

As discussed in Section 1.2, a useful metaphor for models is to view them as medi-
ating instruments of investigation. Models are tools that help us answer particular
scientific questions. Because these questions are about phenomena observed in the
world, models incorporate, to some extent, representations of the world. The purpose
of the theoretical and phenomenological criteria discussed so far is to assess these
representational aspects of models. However, this is not enough to enable the model
to answer the question correctly. The ability of models to answer questions also relies
on a technical dimension, which is assessed based on technical validation criteria. In
the context of macroeconomic modeling, we can distinguish between mathematical
and statistical criteria.

In order for the model to provide answers to a question, the model should work
mathematically. This could refer to the analytical solvability of the model, as seen in
the case of Chapter 4. In this case, if the model could not have been solved analyti-
cally, it would be impossible to consider its implications, the mechanisms of such a
model could not be studied, and its output could not be compared to empirical data.
Mathematical criteria also include analytical tractability. If the model purpose is to
provide an explanation, it is implied that such an explanation enhances understand-
ing. In such cases, therefore, the mathematical complexity of the model is limited.

Statistical criteria require constructing the model in such a way that a certain sta-
tistical methodology can be applied. One of the reasons statistical methods are
employed when taking the model to data is to ensure a degree of invariance. In what
follows, I will make this more concrete.

The main way in which statistical methods are applied in the context of model-
ing is to ensure the invariant parametrization of the model – that is, to assign a
quantitative value to the model parameters. Parametrization is a necessary step in
most modeling exercises because it provides us with information regarding the “size”
and the “sign” of the relationships within the model structure. If we are interested
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in the effect of an increase in the interest rate on consumption propensity, we would
want to know whether the effect is positive or negative, and how sizable the effect
will be. Additionally, parametrization is necessary before any model outcome can be
compared to empirical data.

Parametrization techniques are statistical in nature, meaning that they make use
of empirical data and certain assumptions about the data-generating process of the
model and the real world. Importantly, they are specific requirements of the model
structure in order to apply specific statistical methods. An example is including a
number of stochastic components into the model to account for any differences be-
tween the model and the real-world structure, as discussed in Chapter 3.

The main reason that statistical methods are employed in the parametrization pro-
cess is to ensure some degree of invariance. In order for the model to provide answers
to questions that remain stable over time, place, or policy regimes, it is necessary
that the model parameters remain stable as well. One example is the statistical con-
cept of significance. In this context, significance is generally understood as a measure
of the likelihood that an estimated parameter is actually zero. The reason behind
this uncertainty is that parameters are estimated based on a limited sample of data.
Hence, it could be that by coincidence (assuming no selection bias), we have sampled
data in such a way that our estimate is nonzero, while the “true” population estimate
is actually zero. Only if the estimate is different enough from zero, or the amount
of data used is sufficient, can we say that the parameter is statistically significant.
Significance can thus be understood as a measure of invariance to changes in the
sample of data used.

Another example is the calibration methodology that started with the Lucas cri-
tique (Lucas, 1976) discussed in Chapter 3. In this methodology, models should be
constructed from “taste and technology” parameters. The idea is that such “deep”
parameters do not change as a result of policy interventions. The parameters are
then usually indirectly calibrated using stylized facts, which have been shown to be
relatively invariant over time.

Statistical methods are also applied to provide an “objective” measure of model
performance. This is crucial when it is of interest to know whether a particular in-
novation in the model structure is an improvement on pre-existing model structures.
An example is the likelihood score, which requires the model to be parametrized
using maximum likelihood methods.
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It may be argued that statistical criteria are part of the process by which we take
the model to the data, and that it should thus be seen as part of the phenomeno-
logical criteria. Conversely, I argue that it is useful to separate these criteria. Phe-
nomenological criteria concern the relationship between the model and facts about
phenomena in a direct sense. Does the model correspond with what we observe?
The application of a statistical methodology is in some cases a prerequisite for mak-
ing such an assessment, but it also retains some degree of independence. There are
multiple ways in which we can parametrize a model, for example. As discussed in
Chapter 3, the estimation and calibration approaches are two examples of distinct
statistical strategies. The ability of a model to reproduce relevant facts about phe-
nomena is therefore not fully dependent on the statistical strategy. This is because
the statistical strategy is chosen based on other considerations, such as invariance
and providing a measure of model performance, as we have discussed above.

5.2.4 Interdependence of Criteria

An additional complicating factor that may be considered is that the ability of a
model to fulfill one validation criterion is often not independent from the fulfillment
of the other validation criteria. This implies that model construction, in practice,
often comes down to a balancing act between the various relevant validation criteria.
As an example, tension may arise between the fulfillment of theoretical and math-
ematical criteria. Theoretical notions may be complex to such a degree that their
incorporation into a model structure would cause the model to become analytically
unsolvable, or the model could become so complex that it is rendered unintelligible.

In the same way, theoretical and phenomenological criteria may be at odds. The
incorporation of certain theoretical notions into a model structure may imply that
the model output is not in line with certain facts about phenomena. In some in-
stances, the modeler has to prioritize certain validation criteria. Of course, any
balancing or prioritization of validation criteria is again a function of the purpose of
the model.

A further complicating factor may be that, in practice, some validation criteria can-
not be identified as being purely theoretical, technical, or phenomenological. For
example, the theoretical notions that underlie what we could recognize as theoreti-
cal validation criteria may themselves be partially based on empirical evidence. In
addition, in models in physics in particular, theoretical notions are sometimes tied
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Criteria type Description

Theoretical criteria
Require the model to be in line with
existing theoretical concepts

Phenomenological criteria
Require various elements of the model’s
input, output, target or structure
to be in line with what is observed empirically

Technical criteria
Require the model to have
favorable mathematical or statistical properties

Table 5.1: Summary of validation criteria

to particular mathematical formulations. Being able to express a theoretical no-
tion with mathematical elegance is seen as support for that theoretical notion. For
the purposes of this paper, however, the categorization presented in this framework
is useful, and we will nevertheless be able to classify the relevant criteria as being
primarily theoretical, technical, or phenomenological. Table 5.1 presents a short
summary of the validation criteria discussed.

5.3 Model Scope

The model scope refers to the domain and type of overlap between the real world and
the model. The concept was introduced in Chapter 3 but will be discussed in greater
depth here. The position of model scope in the context of this larger framework
is that some of the validation criteria require a model of a certain scope. In other
words, they require the model to overlap with the real world in certain ways to be
fulfilled to a sufficient degree. I will now discuss the various types of overlap that we
can distinguish and relate the model scope to the validation requirements.

To clarify the concept of model scope, it is useful to introduce the idea of the
real-world data-generating process (rwDGP) and the model data-generating process
(mDGP; Windrum et al. (2007)). The rwDGP is to be thought of as a process in-
stantiated by the real-world structure. Each variable that we observe can be thought
of as being generated by a web of structural factors that determine its value. How-
ever, we cannot directly observe the rwDGP. Instead, we seek to gain a level of
understanding of how the rwDGP works through the application of various scientific
methods, including the construction of models, which yields an mDGP. The mDGP
generates data by running simulations. The idea of scope is thus centered on the
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relationship between the rwDGP and the mDGP.

The relationship between the rwDGP and the mDGP can be thought of as two-
dimensional. The first dimension is the relationship expressed in terms of the degree
of overlap between the relevant data generated by the rwDGP and the data gener-
ated by mDGP. To put it differently, it is the degree to which the mDGP captures
the observed data generated by the rwDGP.
The second dimension concerns the relationship in terms of the structures of the pro-
cesses that generate data. The structure of the rwDGP can overlap with that of the
mDGP in three main ways while holding the overlap in terms of the first dimension
constant.

First, it may be that there is no overlap; the model structure and the real-world
structure operate differently and have no epistemological relationship. That is, study-
ing the model mechanisms yields no understanding of the rwDGP. The second case
involves overlap between the mechanisms in the mDGP and the structure of the
rwDGP. That is to say, the mechanisms in the mDGP are injective representations
of the actual structure of the rwDGP.

In the third case, a different kind of overlap is evident between the mechanisms.
In this case, the mechanisms in the mDGP behave as if the mechanisms in the
rwDGP in terms of the wide range of output that the mDGP reproduces. This
means that the mechanisms are not the same, but for the purpose at hand, they
function well enough to be treated as if they were the same. The model structure is
a non-injective representation of this wide range of outputs, and it can therefore be
described as artifactual to a large degree.

I have and will refer to these two types of model scope as output scope for the
first dimension of model scope and structural scope for the second dimension of
model scope. Note that the three types of structural scope distinguished above coin-
cide with the three types of questions and phenomenological validation criteria. We
have already established that different types of questions require different types of
validation criteria to be fulfilled. This fulfillment, in turn, requires the right model
scope. Target validation requires the right output scope, direct structure valida-
tion requires overlap as an injective representation, and indirect structure validation
requires overlap as a non-injective representation. Furthermore, technical and theo-
retical validation criteria may also place particular requirements on the model scope.
This connection is important to keep in mind as we proceed to discuss the calibrated
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and estimated DSGE approaches.

Figure 5.2 presents a schematic overview of the notion of model scope. The rwDGP
produces empirical data, and the mDGP produces model output data. The output
scope concerns the overlap between these elements. The rwDGP and the mDGP are
the products of a real-world structure and a model structure, respectively. Overlap
between these elements determines the structural scope. Note that there is generally
no complete overlap in terms of output; the mDGP will not generate all the observed
empirical data generated by the rwDGP, nor can all the simulated data be matched
to empirical data. This implies that empirical validation is always a matter of degree
– how much overlap is there between the simulated and empirical data? In other
words, it is an assessment of whether the output scope is sufficient.

At this point, it is useful to distinguish model scope from the concept of model
domain discussed in Chapter 2. We have defined model domain as all model input
and output that can be interpreted as an empirical claim. As such, the domain is the
space that could be used in the empirical validation of the model because it is con-
nected to the subject matter of the model. The type of question, in turn, determines
which parts of this domain are relevant. The model scope, on the other hand, refers
to how the model actually overlaps with the real world. Ideally, the relevant model
domain coincides with the model scope, but this is something that needs testing.

5.3.1 Model Scope and Validation Criteria

Let us now discuss the ways in which several of the validation criteria may impose
certain requirements on the model scope. Validation criteria may require a scope
with sufficient overlap with the real-world output or structure. The term sufficient
here serves to emphasize that overlap is never complete. Whether through our lim-
ited understanding of the real-world structure and the accessibility of its output or
through the necessarily limited structure of models, the model and the real world
can only overlap to a limited degree. This does not mean that a certain validation
criterion would no longer be fulfilled in the case of a larger degree of overlap. Rather,
validation criteria point to the minimal scope needed to fulfill the criteria.

Let us start by discussing the relationship between phenomenological validation cri-
teria and the model scope. As discussed, phenomenological output criteria can be
directed toward the model target; the phenomenon that the model was constructed
to reproduce or explain. Not surprisingly, this phenomenon should be part of the

111



CHAPTER 5. FRAMEWORK: MODEL CONSTRUCTION AND VALIDATION

Model 
structure

mDGPrwDGP

Model 
output data

Real world 
structure

Empirical data

Figure 5.2: Model scope
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output scope. That is, the overlap between the simulated and empirical data should
include the target, such that the model is able to reproduce it. Additionally, there are
the phenomenological output criteria directed at the model structure. These criteria
may impose requirements on both the output scope and the structural scope. To
comply with direct structure tests, part of the perceived real-world structure should
be part of the model scope; to comply with structure-oriented behavior tests, the
output scope should include a wide range of empirical facts. A sufficient output
scope, in this case, is seen as evidence of at least an as-if type of structural scope.
In structure-oriented behavior tests, the structural scope is thus assessed indirectly
through the output scope.

Note here that phenomenological criteria serve as a mediator between the model
purpose and the model scope. The different requirements of the structural scope ul-
timately follow from the three types of questions we have distinguished: why, how’s-
that, and how-much questions. Why questions require that the real-world structure
is part of the model scope, how’s-that questions require a successful assessment of the
structural scope through the output scope, and how-much questions do not require
a structural scope. Of course, this does not mean that models constructed to answer
how-much questions cannot have a structural scope. A strategy for constructing a
model with the purpose of providing measurements may, in fact, be to match the
model structure to the real-world structure in some aspects. Given the purpose of
the model, the structure is simply not of interest , which is why the model is not
required to have structural scope.

What about theoretical criteria and model scope? Recall that theoretical criteria
dictate that certain existing theoretical concepts are incorporated into the model.
Often, and especially in the case of macroeconomics, these theoretical concepts con-
tain a view of the essential mechanisms in the real-world structure. Or, at least,
which mechanisms should be incorporated into the model to have a sufficient as-if
relationship with the real-world structure. In this sense, theoretical criteria can be
seen as guiding principles for constructing a model that has a sufficient structural
scope.

Let us now look at the technical criteria, here grouped into mathematical and statisti-
cal criteria. Mathematical criteria require that the model has favorable mathematical
properties to ensure analytical tractability, for instance. This relates to the fact that
the scope of a model is necessarily limited; that is to say, the mDGP never preserves
work by intentionally abstracting, idealizing, and omitting. Models filter out just

113



CHAPTER 5. FRAMEWORK: MODEL CONSTRUCTION AND VALIDATION

Relation to
output scope

Relation to
structural scope

Theoretical
criteria

May require
theorized system behavior
to be in output scope

Guiding principles to ensure
sufficient structural scope

Phenomenological
criteria

Target and
indirect structural validation
requires sufficient output scope

Direct structure validation
requires sufficient
structural scope

Technical
criteria

Certain statistical techniques
require sufficient
output scope

Mathematical criteria limit
the structural scope

Table 5.2: Summary of validation criteria

what is needed to fulfill their validation criteria. From the perspective of mathemat-
ical criteria, a pressure thus persists to construct a model with a scope that is no
larger than what is needed to sufficiently fulfill the other criteria.

Statistical criteria mainly apply to ensure that the model parameter values are suf-
ficiently invariant. The criteria to ensure the invariance of parameters often require
the model to have a certain scope. As an example, in the Cowles Commission’s ap-
proach to macroeconomic modeling, the statistical strategy included incorporating
all essential macroeconomic relations as a means to invariance (Fair, 1992). These
relations were not essential for the fulfillment of the phenomenological criteria; in-
stead, they served to fulfill the statistical criterion. To put it differently, invariance
required sufficient overlap between the real-world structure and the model structure –
a sufficient structural scope. Table 5.2 presents a schematic overview of the pathways
between validation criteria and model scope.

5.4 Overview

In this chapter, I have discussed four related concepts that are, in my view, crucial to
understanding the model construction process, that is, how a model builder makes
choices and manages to construct models. The four concepts are the model purpose,
model validation, model scope, and invariance. They are related in the following way:
The model construction process starts from a certain purpose. The primary purpose
is to provide an invariant answer to a question about a phenomenon; secondary pur-
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poses may include positioning one’s model within a certain scientific paradigm.

The next step is to translate this purpose into model validation criteria. These
validation criteria should be directly applicable to the model construction context.
I have highlighted three types of validation criteria: theoretical, phenomenological,
and technical criteria. Importantly, validation criteria should be aligned with the
model purpose, meaning that the fulfillment of the validation criteria enhances the
fulfillment of the model’s purpose.

Fulfillment of the validation criteria requires a model of a certain scope, the struc-
ture and output of which can be matched to the real world to a sufficient degree. An
important note to add is that the validation criteria fully determine the model scope
but not the other way around. The reason for this is that the determination of the
model structure includes many more choices than the scope of the model alone; there
will always be multiple model structures with a similar model scope. The validation
criteria determine the full set of structural choices.

Regarding the relationships between these concepts, we can say that the valida-
tion criteria are determined by the model purpose. The successful outcome of the
model construction process is a model that fulfills the validation criteria. To achieve
this, a model of a certain scope is required. The model scope can thus be seen as a
requirement that follows from a subset of the validation criteria. Transitively, we can
say that the relationship between the required model scope and the model purpose
is mediated by the validation criteria.

5.5 Relationship with Models as Mediators

In the introduction of this dissertation, I discussed the account of “Models as Me-
diators” (Morgan & Morrison, 1999) in Section 1.2. Let us look at the relationship
between this account and the model construction framework presented here. Recall
that I have distinguished three elements from which models are constructed in the
models as mediators account: representations of economic theory, representations of
data, and artifactual elements. This characterization is based on the information
source. Elements are either informed by theory or data or, in the case of artifac-
tual elements, based on what the practitioner deems necessary for the model to work.

Within the model validation framework presented here, structural elements – or
collections of structural elements – are characterized based on the validation criteria
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that they help to fulfill. Rather than information source, elements are thus charac-
terized based on their function, ultimately in relation to the model purpose.

In this sense, an important question to ask is: What is the relationship between
the validation criteria discussed in this chapter and the three information sources
of structural elements? For example, do theoretical validation criteria require struc-
tural elements to be theoretical representations?

The function of elements within the model is, of course, not independent from its
information source. That is to say, in most cases, a strong relationship will exist
between the information source of an element and its function. Elements that help
to fulfill theoretical validation criteria are, by definition, at least a non-injective rep-
resentation of that same theory. That is to say, to fulfill the theoretical criteria, the
structural choices made must be consistent with the contents of those criteria. This
requires at least a relationship of non-injective representation. In the same vein,
elements that help the model reproduce certain data are often informed by them.
Often, non-injective representations of data are the result of a back-and-forth process
between the model structure and its output until the elements are found that ensure
the model is able to reproduce the empirically observed output

Since artifactual aspects of structural elements have no representative relationship
with either theory or data, their role is often to make the model “work,” and as
such they have a strong relationship with the technical criteria. If the material from
which the model is constructed are mathematical equations, the term “work” can
best be understood mathematically and/or statistically. Is the model solvable, or
does it yield stable results? These are all what can be understood as favorable math-
ematical properties.

The model construction framework presented in this chapter can therefore be seen
as a reformulation and specification of the models as mediators framework. Instead
of information sources, elements are characterized by their functions. This has the
advantage of emphasizing why certain representations of theory, data, and artifacts
are incorporated into the model structure while others are not. This emphasizes that
the model is a product of its purpose and thus helps us understand the choices of
model practitioners with this purpose in mind.
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Chapter 6

Concluding Remarks

In what follows, I will discuss several more general topics that are relevant to macroe-
conomic methodology. The aim is not to provide an exhaustive investigation of all
these topics. Rather, the discussion offers an overview of the more general picture of
macroeconomic modeling that arises from the cases discussed in this study. To some
extent, it stretches what can be directly concluded from the cases in this dissertation.
It should therefore be interpreted by the reader as an interesting starting point for
further methodological discussions.

6.1 Modeling as an Exercise of Integration

To begin, the practice of macroeconomic modeling is an exercise of integration. That
is, practitioners actively seek to bring together various distinct elements and trans-
form them into a new entity that functions as one whole. To assemble these various
elements, practitioners make use of a particular type of construction material, such
as mathematics.

To fit various distinct elements together, they must be adjusted through processes
such as idealization. In most instances, this integration requires the inclusion of new
artificial elements that have no obvious relationship to data or theory.

Of course, this general view of modeling is not new. As discussed in the introduc-
tion, a version thereof is present in Morgan and Morrison (1999) Knuuttila (2021)
and Boumans (1999) most notably. Rather, the innovation of this dissertation is
a specific view of the elements to be integrated – elements that have a particular
role in terms of the fulfillment of validation criteria. Relating model construction as
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integration to the concept of validation has allowed us to stay particularly close to
the modeling practice and has yielded a rich framework that also ties in concepts
such as model purpose and model scope.

Within this view of modeling as the integration of validation criteria, several more
general statements can be made about macroeconomic modeling practice. First, a
direct relationship exists between the primary and secondary purposes of the model
and which criteria are to be integrated. In Chapter 2, we have seen that in agent-
based models, the model purpose shifts more toward providing a structural account
of out-of-equilibrium macroeconomic phenomena. This requires a different set of
theoretical and phenomenological criteria at the level of the agent. In the same vein,
in Chapter 4, we have seen that the desire to explain a particular observed fact is
what primarily determines the validation criteria to be fulfilled.

Second, as we have seen in all the discussed cases, the criteria to integrate are of-
ten at odds with each other. In Chapter 3, for instance, I described how the desire
to parametrize the model through estimation complicates the structure validation
process. Similarly, in Chapter 4, we find an explicit discussion of the necessity to in-
corporate assumptions that are empirically false but which have to be made in order
to solve the model analytically. In Chapter 2, we discussed how, as a consequence of
heterogeneity at the agent level, MABMs cannot be solved analytically and thus have
to be simulated, which has consequences for the degree to which we can understand
the internal structure of the model.

The integration process therefore involves balancing and weighting the validation
criteria. In practice, this involves a process of trial and error to gauge how the fulfill-
ment of one criterion affects the fulfillment of another. In this way, the practitioner
needs to find the right balance; which balance is correct is again a function of the
model purpose.

6.2 One Size Does not Fit All

The second insight follows from the first: no model can do it all in macroeconomics,
nor I am confident that we could work toward such a model in the future.

The absence of an all-encompassing model in macroeconomics means that there
are limits to the breadth of the model purpose that can be translated into a set of
fulfillable validation criteria. That is to say, we can formulate model purposes that
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are so broad that they lead to a set of validation criteria that cannot be fulfilled
within a singular mathematical object: the model.

We can distinguish two ways in which a model’s purpose can be broadened. Note
that we have characterized the model purpose, in most cases, as answering a ques-
tion about a phenomenon. First, we see a broadening in terms of the number of
phenomena that are relevant to the question. In addition to seeking to explain the
dynamics of the business cycle, we could, for example, also seek to explain the dy-
namics of long-term economic growth. Such a model can found in Dosi et al. (2010),
for instance.

Second, we see a broadening in terms of the types of questions to be answered
by the model. We have distinguished between why, how-much, and how’s-that ques-
tions. Typically, the model purpose can be characterized as being primarily one of
those three. In some instances, however, multiple types of questions can represent
the purpose of a particular model. In Chapter 3, for instance, we have seen that the
introduction of the estimation approach in DSGE models was partially motivated
by a desire to make quantitative predictions (how much questions) in addition to
answering how’s-that questions.

The reason that both types of broadening are limited in their feasibility is that,
as discussed before, validation criteria are often at odds with each other. Each type
of broadening brings with it a particular type of tension between validation criteria.

First, when it comes to broadening the model purpose in terms of the number of
phenomena that are relevant, this usually involves increasing the number of eco-
nomic relations to be taken into account within the model structure. In the case of
mathematical models, this generally implies an increase in the mathematical com-
plexity of the model. If this increase in complexity is significant, it weakens the
model’s ability to fulfill mathematical criteria, such as analytical tractability. As
discussed in Chapter 3, this has been a criticism of the models put forward by the
Cowles Commission, since their models became so large that they were no longer
intelligible (Boumans, 2009).

Second, in the case of broadening the model purpose in terms of the type of question
to be answered, a tension is found generally between phenomenological criteria. Re-
call that models constructed for how-much type questions (black-box models) place
a heavy weight on the empirical validation of the model target. Validation of the
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structure by which the model is able to reproduce the model target is not required.
This implies that the model structure can serve purely to optimize the reproduction
of the model target. Often, such models are employed when prediction is the primary
purpose of the model. In most cases, in fact, this results in models that are not able
to provide explanations; they are not able to answer why questions. Their structure
is not suitable for this purpose either because it is so complex that it is unintelligible
(models generated by machine learning algorithms, for example), or because it in-
corporates structural elements that do not have an economic interpretation (lagged
and stochastic terms).

A model that both seeks to provide answers to how-much and how’s-that questions
is thus faced with a tension in which either the accuracy of the prediction suffers
(target validation) or the ability of the model to provide an empirically valid ac-
count of mechanisms (structural validation) does so. This reflects a tension between
various phenomenological criteria in that target validation and structural validation
are, in some cases, at odds with each other. A primary example of this is discussed in
Chapter 3, in which the structure of estimated DSGE models is described as hybrid
in this sense.

Nonetheless, the fact that the breadth of models is inherently limited does not mean
that progress in this direction cannot be made. When it comes to the mathematical
complexity of models, for instance, we have seen the development of new methods for
analyzing model results (Guerini & Moneta, 2017), thereby enhancing the analytical
tractability of complex models. In a similar vein, a host of methods now exist that
aim to open up the black-box of deep neural networks (Montavon, Samek, & Müller,
2018). However, this does not take away from the fact that since our cognitive lim-
itations are ultimately bounded, so too is the extent to which we can increase the
complexity of models while still acquiring understanding from them.

What are the implications of this for scientific practice? Above all, it is a call
to embrace methodological pluralism when it comes to models in macroeconomics.
Particular types of models are best suited for particular types of questions, and
limiting the number of phenomena to be explained within one model enhances its
intelligibility.

In this dissertation, I have discussed several types of macroeconomic models: agent-
based models, calibrated DSGE models, estimated DSGE models, and simultaneous
equation models. In addition, in the account of model transfer in Chapter 4, we have
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discussed more general models of growth processes. Often, as we have seen, these
models are presented as if in competition with each other – striving to become the
workhorse model of macroeconomics. What can we learn about such disagreements,
given the investigations in this dissertation?

Since the aim of this dissertation is to gain a more systematic understanding of
existing scientific practice, it is beyond the aim of this dissertation to judge the
epistemic value of the various scientific aims and purposes of competing modeling
practices. What we do have, however, is a framework that allows us to understand
and pinpoint why certain choices are made in the construction of models. This also
allows us to explain differences between models of competing paradigms. The added
value of the framework presented in this dissertation, therefore, lies in its clarification
of the sources of possible disagreements between modeling practices.

Different types of models are best suited to fulfilling a particular set of weighted
validation criteria. Given that these validation criteria are a function of the model
purpose, this points to differences in the purposes for which models are constructed,
or alternatively, in how the model purpose is best translated to the validation crite-
ria. Sources of disagreement over how best to construct models are hence the result
of a different view on what the model purpose should be, or a different view on the
relationship between the model purpose and the validation criteria.

When it comes to the primary purpose of a model, epistemic disagreements may
arise over which phenomena are worth investigating and on which types of ques-
tions macroeconomic practice should focus. When it comes to differences between
modeling practices that arise from differences in the primary purpose of the model,
one could also take a pluralistic view. In such a view, differences in modeling prac-
tices can be viewed as something positive: a rich scientific landscape equipped to
answer a variety of different types of questions about a large number of economic
phenomena. The “one size does not fit all” notion that arises from the investigations
in this paper is, in fact, one that is in line with a more pluralistic attitude toward
economic methodologies in those cases where the differences in methodologies arise
from differences in primary model purposes.

The secondary purposes of models may also be subjected to critique and disagree-
ment. As we have discussed, secondary purposes include, for instance, seeking to fit
one’s model within a certain existing paradigm. Often, a version of this critique is
laid at the feet of DSGE models (Stiglitz, 2011). Rather than seeking to understand
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the real world, DSGE modelers have focused on the world they created within their
modeling structures. This may have led DSGE modelers not to incorporate struc-
tural elements in their representative models of, most notably, the financial sector,
which turned out to play a crucial role in causing the 2008 financial crisis.

A model may also draw criticism when there is an apparent mismatch between the
model purpose and the validation criteria. A critique formulated by agent-based
modelers, for example, is that the phenomenological input criteria are non-existent
in DSGE models, while their purpose is to provide us with explanations (Farmer &
Foley, 2009), meaning that the assumptions about agent behavior in DSGE models
– such as the rational expectations of consumers and producers – are not assessed
in terms of their empirical accuracy. The behavioral assumptions in agent-based
models, as discussed in Chapter 2, are validated using evidence from experimental
data. It should be noted, however, that such a critique may also be caused by a
misunderstanding or an overstatement of the purpose of DSGE models. As we have
discussed in Chapter 5, if the purpose of DSGE models is to answer how’s-that or
how-much questions, direct structure validation in the form of input criteria is not
required.

6.3 Models as Correlational Artifacts

Models are tools for answering questions. They often do so by integrating elements
that are representative of relevant theories or empirical data. As I have shown
throughout this dissertation, however, this description of models is incomplete. The
construction of models necessitates the incorporation of elements that are, at least
to some degree, artifactual. Choices must be made that are not entirely based on
information that we have about the real-world system. They are choices that have to
be made to make the model work – that is, to enable the model to fulfill its purpose.
The degree to which a model is constructed based on representational information
may differ depending on this purpose. However, the fact is that in all cases, macroe-
conomic models rely on artifactual elements to a significant degree.

What, then, are models in relation to the real world? How do we learn about
the real world from such artifactual structures? One way to understand this is to
think of the model as an artifact that has, to some extent, stable correlation with the
real world. Correlation here means that, for whatever reason, certain behaviors or
patterns tend to co-appear in both the model and the real world. These correlations
can be limited to one variable, as is the case in models constructed to answer how
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much-questions, expanded to a wide range of patterns, as is the case in how’s-that
questions, or they can be examined in terms of the individual structural elements,
as is the case for why questions.

This notion of models as artifacts that correlate with the real world is in line with
the account presented in Simon (1969). The well-known example is that of a clock
(Hoover, 1995) that tells time. The clock has an internal environment, which is
its mechanical structure. This internal environment should be appropriate for its
external environment: the mechanism’s structure should be such that the clock ac-
curately tells the time. This means that there should be a particular correlation
between the internal and external environments. Importantly, the internal environ-
ment does not need to be an injective representation of the structure of the external
environment to fulfill its purpose. In fact, clocks can work through different internal
environments while being able to correlate with the external environment in the same
way. Of course, given a different purpose, we may require artifacts to correlate with
the external environment along many dimensions. The essence is that the internal
environment of artifacts retains some independence from their external environment.

In the case of models in macroeconomics, practitioners seek to establish this sta-
ble correlative relationship between the internal (model structure) and external (real
world) environments through the fulfillment of various types of validation criteria.
The fulfillment of theoretical criteria often requires the model to incorporate certain
mechanisms that may help establish a correlation with the real world. We can think,
for example, about the commitment to some theoretical notions from evolutionary
biology in the Yule process from Chapter 4. Here, evolutionary theory guided the
construction of the Yule process model.

Phenomenological criteria seek to establish whether the model output data corre-
late with the real-world data within relevant domains. If empirical validation tests
establish that these correlations exist within the sufficient number of domains, the
practitioner may be confident that such correlations also exist for untested domains.
This is necessary to analyze, for example, the possible effects of economic policies.
In Chapter 2, for instance, we have seen that a large number of empirical facts are
compared to the output of agent-based models to establish whether correlation exists
in a sufficient number of domains. From this, it is then assumed to be plausible that
agent-based models can be used to assess the effects of economic policy.

Technical criteria seek to establish whether these sample correlations are stable across
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time, policy, or geographical location. This is to prevent the correlation no longer
holding true when such contextual factors change. We have seen an example of this
in Chapter 3, where the calibration approach of DSGE models requires the model to
be constructed from “deep” parameters that are invariant against economic policy
interventions.

However, correlation does not necessitate a relationship between the ontological
structure of the world and the structure of the model. That is to say, that the model
structure isolates the essential economic mechanisms that exist in reality (Mäki,
1992). If this were the case, we can ask which characteristics models should have
in relation to the real world that would make such a view of models plausible. In
my view, two such characteristics exist: accuracy and high degrees of invariance.
Invariance here should be understood in a broad sense, meaning that a correlation is
stable over time, across different locations, and under different policy regimes. If we
look at the performance of models in physics (at least within experimental setups),
both of these characteristics seem to hold true. Models in physics predict well within
experiments, and they can be performed many times across different locations and
at different times. Moreover, models in physics can be used to predict the effects of
various interventions within the experimental setup.

For macroeconomic models, these characteristics do not seem to hold true. First, in
terms of accuracy, we know that for macroeconomic models, forecasting comes with
high degrees of uncertainty (Aikman et al., 2011). We can think of the inability of
macroeconomics to accurately project inflation, which has recently been a focus of
discussion (Chahad et al., 2022).

The second characteristic of invariance also does not seem to hold true in the case
of macroeconomics, at least not to the degree that we associate with, for instance,
models in physics. For one, it has been observed that models may perform well dur-
ing some periods of time but poorly during others, which implies that the stability
of economic models is limited. This forms part of the critique of DSGE models dis-
cussed in Chapter 2. DSGE models performed well during the 1990s and early 2000s,
during a time known as ”the great moderation“ (Stock & Watson, 2002). This was
a period in which the observed variation in most relevant macroeconomic indicators
was small. Given that DSGE models rely strongly on equilibrium assumptions, it
makes sense that their correlation is strong and stable during times of only small
deviations from what were perceived to be equilibrium values. In general, however,
DSGE models were unable to capture the large deviations from equilibrium observed
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in the 2008 financial crisis. For such periods of time, agent-based models (or strongly
adjusted DSGE models) were better able to correlate with the observed dynamics.

The same is true for invariance to policy regimes, which, according to an inter-
ventionist account, is the definition of causation (Woodward, 2005). To illustrate, in
addition to not being able to predict or reproduce the dynamics of the financial crisis,
DSGE models were also unable to predict the effects of economic policies during this
period (Stiglitz, 2011). Whether DSGE models can be used for policy analysis is an
active source of debate among macroeconomists. We have seen that one of the main
points of Chari et al. (2009), as discussed in Chapter 3, was that if a model relies on
stochastic terms to a large degree, it cannot be used for policy because such terms
are not invariant against policy.

In terms of their accuracy and invariance, macroeconomic models should not be
characterized as isolations of the essential economic mechanisms. Rather, models
are systems that can be constructed so that they behave as if the real-world system
within the context of some limited window of time, particular geographical locations,
or policy regimes, and with significant degrees of uncertainty. The question of how
well macroeconomic models can be used to predict over time or the effects of policy
depends, therefore, on how limited the accuracy and stability of models are seen to be.

The notion of limits to the accuracy and stability of the correlational relationship
between macroeconomic models and the world is not, in my view, a reason to state
that macroeconomics is somehow underdeveloped as a science. It is important to re-
alize that the scientific cases in which correlations appear very strong and stable are
within the context of laboratory experiments (Cartwright, 1999). As argued in Chap-
ter 1, however, macroeconomics is not a laboratory science. Economies are complex
systems consisting of many moving and interacting parts. In this respect, they are
similar to models in climate science. In contrast to these models, however, the fun-
damental units in macroeconomics are human individuals, groups, and institutions,
each of which represents a complex system in their own right. The macroeconomy
is thus a complex system, the parts of which are also complex systems.

One may argue, of course, that macroeconomics will become more accurate and
invariant over time because the amount of data we have about the macroeconomy
also increases over time. Data are generated by the macroeconomic system within a
variable context. Data collected at different points in time, in different geographical
locations, or under different policy regimes are thus generated given varying contexts.
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The more data are collected, therefore, the better we are able to construct models
that correlate with the real-world system in a larger variety of contexts, thereby
enhancing invariance and accuracy. That said, this is contingent on the degree to
which the real-world structure that generated observations in the past is comparable
to the structure in the future. To some degree, we can learn from economic events in
the past to guide our actions in the future. The economic structure of the past will
generally be comparable to that of the future in some aspects. However, given the
complexity of the economic system, coupled with rapid and novel developments in
factors that are likely to be of relevance to the real-world economic structure (such
as technological innovation, economic policy, geopolitics, demographics, and climate
change), the economic structure of the past will likely also be incomparable to that
of the future in many aspects.

The lesson for scientific practice here is that model structures should always be
open to revision in light of new empirical developments. In the same vein, it is
unlikely that we will settle on a particular macroeconomic structure that is useful
across widely varying policy regimes, over longer time horizons, and across various
geographical locations.

Practice can respond to newly observed economic developments in two crucial ways.
First, existing model structures can be altered to fit particular data more effectively.
This most often involves the addition of new validation criteria to the existing set,
as seen in the wake of the 2008 financial crisis. DSGE models are now generally
supplemented with financial frictions to account for the financial sector, which was
seen as the main driver of the 2008 financial crisis (see, for example, (Christensen &
Dib, 2008)).

The second method is to start from a new model structure. This implies a com-
plete revision of the set of validation criteria associated with a particular model
purpose, and potentially the building material as discussed in the introduction. The
example studied in Chapter 2 are agent-based models, where the focus is on the re-
production of phenomenological criteria that are largely different from DSGE models
as a different building material, namely agent-based computer simulations.

Methodological innovations in these ways are thus a natural consequence of the
relatively inherent lack of stability of the correlational relationship between macroe-
conomic models and the real-world economic structure. Innovation should therefore
be encouraged. An attitude in which the main macroeconomic questions are seen
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as somehow resolved stands in conflict with the nature of macroeconomic modeling.
Infamously, Blanchard (2009) remarked that the state of macro was good and that
the “central problem of depression-prevention has been solved.” This was written
shortly before the inability of macroeconomic modeling to be of aid during the 2008
financial crisis became clear.

6.4 Empirical Validation, Realism and Instrumen-

talism

The above discussion points toward an instrumentalist view of models in economics.
In other words, models are useful instruments for providing understanding or for pre-
dicting, but that they do not necessarily inform us about the structure’s unobserved
reality. This is in contrast to a realist view of economic models, which would entail
that models inform us about the essential economic process as they exist in reality.
These two concepts present us with a dichotomy of epistemic views.

While the instrumentalist view is indeed aligned with a view of models as corre-
lational artifacts, the realism instrumentalist dichotomy is still useful in informing
us about the motivations behind a particular empirical validation approach. For
instance, it is sometimes claimed that the reason why agent-based models are em-
pirically validated as they are is to bring them more in line with a realist view of
modeling (Windrum et al., 2007). The purpose of the discussion here is to demon-
strate how the realist instrumentalist dichotomy may play a role in the empirical
validation process and to give us a better understanding about empirical validation
practices in relation to the realist instrumentalist dichotomy. As an example, I will
investigate the aforementioned claim that agent-based models are empirically vali-
dated more in line with a realist view compared to DSGE models.

To understand how it is necessary to discuss in more depth how empirical vali-
dation enhances the perceived correctness of a model from an epistemological point
of view. We have discussed this issue in Section 2.4.4 I will repeat some points from
that discussion here.

A model’s answer is composed of a target and a structural account of the mech-
anisms by which said target was generated. This coincides with the notion of an
explanation, which consists of an explanandum –that which is to be explained (i.e.,
the model target) – and the explanans from which the explanandum follows (i.e., the
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model structure). In principle, we could say that all empirical data that are somehow
a reflection of elements in either the explanandum or the explanans are within the
domain of the model. We can think of an example of an answer provided by the
model where the explanandum is the business cycle and the explanans is an account
of the mechanisms that generate this business cycle.

This implies that for elements within the model target or the model structure that
are not in line with the available empirical evidence, we know that the answer pro-
vided by the model, or at least part of it, is empirically false. If the elements are
empirically observed, we know that the model’s answer is not empirically false given
the available data. Importantly, any set of available empirical data is always under-
determined by the model’s answer. That is, in principle, there are always multiple
ways in which a model can reproduce any set of data (Stanford, 2009). We can say
that for a given set of data that is within the domain of the answer of model A, we
can always conjure a model B that is also consistent with this same set of empirical
data. The epistemic value of empirical validation is therefore not to definitively es-
tablish that the model is empirically true, but to make it less likely that it is false.
In this sense, empirical validation serves to reduce underdetermination.

Given this epistemic value of phenomenological validation criteria, note that the
more relevant empirical facts are involved in the validation process, the more un-
derdetermination can be reduced as long as these facts are within the domain of
the model’s answer. This is in line with the view of some modeling practitioners
that models that are able to reproduce a larger number of empirical facts are more
epistemically valued.

What is the relationship between empirical validation as reduction of underdeter-
mination and the realist instrumentalist dichotomy? In order to understand this, we
should consider that the subsets of the model domain that should be in line with
empirical evidence to enhance model validity may be different for an answer provided
by a model in line with an instrumentalist view compared to a realist view.

To understand this difference, we should recall the discussion of model purpose in
Chapter 5. Modeling within a realist view presumes that the relationships within
the model structure ought to exist in reality. This implies that the answer provided
by the model is an explanation that involves an ontological description of reality.
The purpose of a model within a realist view is therefore to provide us with such an
explanation. This can be understood as a stricter specification of why questions as
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discussed in the previous chapter.

Within an instrumentalist view, scientific methods such as models are not considered
capable of informing us about the ontological structure of reality. The purpose of
models is therefore not to provide explanations of the kind described in the previous
paragraph. The purpose of modeling within an instrumentalist view is, in some sense,
more open. Generally speaking, this purpose is strongly connected to the function of
the model – that is, what the practitioner aims to do with the model. In this regard,
we have distinguished two types of model purposes: to answer how-much questions
and to answer how’s-that questions.

In Section 2.4.3, we discussed how these types of questions are associated with dif-
ferent types of models and different types of structure validation. Why questions
are associated with white-box models and direct structure validation, how’s-that
questions with gray-box models and indirect structure validation, and how-much
questions with black-box models and no structure validation (see also Table 2.1).

The above categorization implies that a more realist view of modeling requires direct
structure validation, meaning that the individual relationships present in the model
structure are subject to empirical validation. This means that all information within
the model domain that is in line with empirical evidence enhances the validity of
the model within a realist view. Within an instrumentalist view of modeling, which
information within the model domain is subject to validation is dependent on the
purpose of the model. For how-much questions, agreement between the structure of
the model and empirical evidence does not enhance the validity of the model. For
how’s-that questions, the structure is assessed through the output of the model as a
whole. The agreement between the individual structural relationships of the model
and empirical evidence does not enhance the validity of the model.

To relate DSGE models and MABMs to the realist instrumentalist dichotomy, let
us position both types of models within the categorization laid out above. DSGE
models are grey-box models, since their workings are mainly validated using impulse
response functions. If the model is able to reproduce the correct response to a va-
riety of economic shocks, the model is deemed correct. Grey-box models, generally
speaking, have a modular structure, meaning that they are comprised of multiple
sub-models, the interaction of which is part of the model structure. In DSGE mod-
els, these modules could be seen as consumer and firm behavior, and they are only
validated in so far as they are useful for generating correct output at the level of the
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model as a whole. In the case of DSGE models, therefore, these modules can be con-
sidered black boxes, and DSGE models can be characterized as grey boxes built from
black boxes. As I have described in Chapter 2, MABMs are grey-box models but,
contrary to DSGE models, they are built from directly validated modules, making
their modules white boxes. The question is: What do such characterizations tell us
about the purpose of the models in relation to the realist instrumentalist dichotomy?

It is helpful to look at this issue in terms of reducing underdetermination within a
model’s domain, as we have discussed before. Within a purely instrumentalist view,
one would seek to reduce the possible models by looking at which model performs
better in terms of output generated by the model as a whole. In MABMs, through
direct structure validation at the micro level, however, we are eliminating only po-
tential models whose structure, that take us from the micro level to the macro level,
would only be correct from an instrumental perspective (in terms of model output).
The reason for this that any model that starts from agent behavior and that does
not isolate elements of agent behavior that can be fitted to the empirical information
we have about agents, can necessarily only be correct in an instrumentalist sense.
Or, to put it differently, the ontological structure of the macroeconomy must in some
sense be derived from the ontological structure of economic behavior at the agent
level.

It is helpful to look at this issue in terms of reducing underdetermination within
a model’s domain, as we have already discussed. Within a purely instrumentalist
view, one would seek to reduce the possible models by considering which model per-
forms better in terms of the output generated by the model as a whole. In MABMs,
through direct structure validation at the micro level, however, we are eliminating
only potential models whose structure, which takes us from the micro level to the
macro level, would only be correct from an instrumental perspective (in terms of
model output). The reason for this is that any model that starts from agent behav-
ior – and which does not isolate the elements of agent behavior that can be fitted
to the empirical information we have about agents – can necessarily only be correct
in an instrumentalist sense. Or, to put it differently, the ontological structure of
the macroeconomy must, in some sense, be derived from the ontological structure of
economic behavior at the agent level.

As discussed in the previous section, the converse is not necessarily true. Because of
the fundamental problem of underdetermination, multiple agent-specifications that
fit the information we have about agents will always exist. Therefore, the possibility
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will always remain that an MABM validated at both the agent and the macro level
contains a structure that is only correct from an instrumentalist perspective. Again,
put differently, it is possible that within the degrees of freedom we have in modeling
agent behavior, we make choices that lead to a model whose structure is not correct
from a realist perspective, but which still manages to be correct instrumentally. The
exercise of validation at the micro level, however, reduces the space of instrumen-
talist structural elements. This increases the validity of the model from a realist
perspective compared to, for example, DSGE models. Therefore, MABMs represent
a shift toward a more realist perspective on how to model economic phenomena.

In this way, the realist instrumentalist dichotomy can help us better understand the
general focus in the case of MABMs on the validation of individual agent behavior.
The desire for realism in macroeconomic models is an active concern in some mod-
eling practices, and this should be taken into account when seeking to understand
such modeling practices. Given our discussion of models as correlational artifacts, it
is my view that efforts in favor of realism may not be a productive focus given the
inherently complex structure of the macroeconomic system.
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Summary

The main aim of this dissertation is to contribute to the systematic understanding of
modeling practices within macroeconomics. As its chosen method, it analyzes three
particular cases, which, each in their own way, may be taken to be representative of
modeling practices today. Subsequently, the results from the case studies are inte-
grated and evaluated.

The first case is discussed in Chapter 2 and focuses on the empirical validation of
macroeconomic agent-based models. It is shown that agent-based models in macroe-
conomics can be best understood by considering them as complex systems with a
multitude of interaction levels. Empirical validation tests, as observed in practice,
can be related to these levels of interaction. Furthermore, I distinguish between val-
idation tests directed at the model target and the model structure and consider how
these apply to macroeconomic agent-based models. The broader insight from this
case study is a categorization of phenomenological validation criteria.

The second case is discussed in Chapter 3 and concentrates on the shift in dy-
namic stochastic general equilibrium (DSGE) models from being calibrated to being
estimated. Estimation is considered preferable to calibration for several reasons, in
particular because it allows for the parametrization of models with a large number of
parameters. In turn, this makes possible the construction of larger models that incor-
porate more of the complexity of the real-world economic system. This shift required
DSGE models to evolve into what I label as a ‘hybrid model structure’, which is a
model with a representational core supplemented with non-representational stochas-
tic elements. This hybrid model structure has come under fire from several authors.
I argue that this critique is warranted if it is understood as a disruption in the rela-
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tionship between the outcome of an empirical validation test and the validity of the
model. This case study thus emphasizes the importance of technical and theoretical
validation criteria in addition to phenomenological criteria. Moreover, it introduces
the concept of model scope, which refers to the overlap between the model and the
real world.

The third case, presented in Chapter 4, discusses interdomain model transfer. The
case studied is that of the Yule process, a model originally developed in evolutionary
biology but later reused as a model for firm growth. The aim of the chapter is to pro-
vide an explanation of why such model transfer may appear. It presents a framework
of model transfer in which the various validation criteria distinguished in Chapter 3
play a central role. A model is transferred from an original to a new domain when
it is found to be useful in both domains. This is the case when overlap is found
between the validation criteria of both domains. Special attention is paid here to
overlap between phenomenological criteria, which is enabled through the existence
of observed universal patterns. Overlap of this type is an important explanation in
the case of the Yule process.

The main result of this dissertation is the model construction framework presented
in Chapter 5. In this framework, the insights of the case studies are integrated. The
framework is centered on the concepts of model purpose, invariance, model valida-
tion, and model scope, as well as how these concepts fit together. The main view
that it yields is that models are constructed for a certain purpose. Often, this pur-
pose is to provide an invariant answer to a question. This purpose can be translated
into more concrete validation criteria, which come in different types. Fulfilling some
of these validation criteria requires a particular model scope. Ultimately, this is
a framework that provides a systematic understanding of macroeconomic modeling
practice. It is useful both for practitioners in macroeconomics seeking to construct
models from a systematic basis as well as philosophers of science seeking to better
understand observed modeling practices.

133



Chapter 8

Nederlandse Samenvatting

Het centrale doel van dit proefschrift is om bij te dragen aan een systematisch be-
grip van modelleringspraktijken binnen de macro-economie. De methodologie van
dit proefschrift bestaat uit analyseren van drie casus die representatief zijn voor
modelleren in de huidige praktijk. Deze drie studies vormen de basis voor een inte-
grerende en evaluerende beschouwing in het licht van de onderzoeksvraag.

De eerste casus wordt besproken in hoofdstuk 2 en richt zich op de empirische val-
idatie van macro-economische agent-gebaseerde modellen. Het inzicht dat hieruit
naar voren komt, is dat agent-gebaseerde modellen in de macro-economie het best
begrepen kunnen worden door ze te beschouwen als complexe systemen met een
veelvoud aan interactieniveaus. Empirische validatietests (oftewel fenomenologis-
che validatiecriteria), zoals waargenomen in de praktijk, kunnen worden gerelateerd
aan deze interactieniveaus. Daarnaast maak ik onderscheid tussen validatietests
gericht op het doel en de structuur van het model en heb ik besproken hoe deze van
toepassing zijn op macro-economische agent-gebaseerde modellen. De inzichten va-
nuit deze casus vormen de basis voor een categorisatieschema van fenomenologische
validatiecriteria, waar in latere hoofdstukken vaker naar wordt verwezen.

De tweede casus vormt het onderwerp van hoofdstuk 3 en richt zich op de verschuiv-
ing in dynamische stochastische algemeen evenwichtsmodellen (DSAE) van zogeheten
kalibratie naar meer formele statistische ramingsmethoden. Deze ramingsmethoden
hebben verschillende voordelen ten opzichte van kalibratie, met name dat het de
kwantificatie van modellen met een groot aantal parameters mogelijk maakt. Dit,
op zijn beurt, maakt de constructie van grotere modellen mogelijk die de complex-
iteit van het werkelijke economische systeem in een grotere mate kunnen bevatten.
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De verschuiving vereiste dat DSAE-modellen evolueerden naar wat ik aanduid als
een hybride modelstructuur, een model met een representatieve kern aangevuld met
niet-representatieve stochastische elementen. Deze hybride modelstructuur is bekri-
tiseerd door verschillende auteurs. Ik betoog dat deze kritiek gerechtvaardigd is als
deze begrepen wordt als een verstoring in de relatie tussen de uitkomst van een em-
pirische validatietest en de validiteit van het model. De casus werpt zo licht op het
belang van technische en theoretische validatiecriteria naast fenomenologische cri-
teria om een modeleringspraktijk volledig te kunnen duiden. Daarnaast wordt het
concept van modelbereik geintroduceerd, dat betrekking heeft op de overlap tussen
het model en de echte wereld.

De derde casus in hoofdstuk 4, behandelt het fenomeen van modeloverdracht tussen
wetenschappelijke domeinen. De casus betrof het Yule-proces, dat oorspronkelijk
werd ontwikkeld als een model in de evolutionaire biologie, maar later werd herge-
bruikt als een model voor bedrijfsgroei. Het doel van het hoofdstuk is om een verk-
laring te geven waarom dergelijke modeloverdracht kan plaatsvinden. Er wordt een
raamwerk van modeloverdracht gepresenteerd waarin de verschillende validatiecrite-
ria, zoals onderscheiden in hoofdstuk 3, een centrale rol spelen. Een model wordt
overgedragen van het oorspronkelijke naar een nieuw domein wanneer het nuttig
wordt bevonden in deze beide domeinen. Dit is het geval wanneer er overlap is
tussen de validatiecriteria van beide domeinen. In het hoofdstuk wordt in het bij-
zonder aandacht besteed aan de overlap van fenomenologische criteria, wat mogelijk
wordt gemaakt doordat er universele patronen worden waargenomen. Deze vorm van
overlap is een belangrijke verklaring voor de modeloverdracht van het Yule-proces.

Het belangrijkste resultaat van dit proefschrift is het modelconstructieraamwerk dat
wordt gepresenteerd in hoofdstuk 5. In dit raamwerk zijn de inzichten van de ca-
sus gëıntegreerd. Het raamwerk draait om de concepten van modeldoel, invariantie,
modelvalidatie en modelbereik, en hoe deze concepten op elkaar aansluiten. Het be-
langrijkste inzicht dat het oplevert, is dat modellen worden geconstrueerd met een
bepaald doel. Vaak is dit doel om een invariant antwoord te geven op een vraag.
Dit doel kan worden vertaald naar meer concrete validatiecriteria, die verschillende
typen kunnen hebben. Het vervullen van sommige van deze validatiecriteria vereist
een specifiek modelbereik. Het raamwerk vergroot het begrip van macroeconomische
modellering in de praktijk. Het is nuttig voor de bouwers van macroeconomische
modellen, die dit willen doen op een meer systematische basis, en voor wetenschaps-
filosofen die modelleringspraktijken beter willen begrijpen.
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