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A B S T R A C T

We introduce homophily in a percolation model of word-of-mouth diffusion in social networks by reorganizing
the nodes according to similarity in preferences for adoption of an innovation. Such preferences are described
by a ‘‘minimum utility requirement’’ for an agent to adopt. We show that homophily removes the non-linear
relation between preferences and diffusion in the standard percolation model with a high diffusion regime
(‘‘hit’’) and a low diffusion regime (‘‘flop’’). Instead, in a model with perfect homophily, the final diffusion
scales linearly with individual preferences: all agents who are willing to adopt, do adopt the innovation. We
also investigate the combined effect of homophily and social reinforcement in diffusion. Results indicate that
social reinforcement renders clustered networks more efficient in terms of diffusion size for network with
strong homophily, while the opposite is true for networks without homophily. The simple structure of our
model allows to disentangle the effect of social influence, homophily and the network structure on diffusion.
However, the controllability of the theoretical structure comes at the expenses of the realism of the model.
For this, we discuss possible extensions and empirical applications.
1. Introduction

Social networks are generally considered a key channel for the
diffusion of innovations – here, new products, services and practices
that improve people’s lives – to the extent that people’s decisions
and behaviors are affected by their contacts. Hence, social networks
may greatly affect processes of social diffusion that underlie economic
development, behavioral change, and human health (Valente, 1996).

Innovation diffusion in social networks can be broken down ana-
lytically in two elementary questions. The first question holds: What
is the role of one’s personal network in deciding about adopting an
innovation? If adoption decisions were fully random, innovation diffu-
sion would be a simple probabilistic process of spreading. Instead, one
would expect that in many social contexts individuals are influenced by
the adoption decisions of their network contacts. In particular, when
adoption is costly, risky, or controversial, the willingness to adopt
may require ‘‘social reinforcement’’ resulting from the observations that
multiple network contacts adopted before. This would explain why
some innovations tend to spread better in clustered networks rather
than in random networks (Centola and Macy, 2007; Centola, 2010).

∗ Corresponding author at: School of Innovation Sciences, Eindhoven University of Technology, The Netherlands.
E-mail address: e.m.mas.tur@tue.nl (E.M. Tur).

This leaves us with the second question: what drives individuals to
adopt an innovation beyond influences from their social network con-
tacts? To explain adoption only from social reinforcement would ignore
the individual characteristics that affect adoption decisions. Economists
traditionally subsume individual characteristics under individual pref-
erences towards an innovation (a product’s ‘‘demand curve’’), which are
generally assumed to be uniformly distributed among individuals in a
social network (Campbell, 2013). From a sociological view, however,
it is well known that individuals with similar individual characteristics
tend to be connected much more than dissimilar individuals, a feature
that goes under the name of ‘‘homophily’’ (McPherson et al., 2001).
Similarity here refers to the personal characteristics that correlate with
individual preferences for some innovation.

Homophily in social networks leads to a puzzle in the understanding
of social reinforcement: if one observes diffusion only in certain clusters
in a network, this may simply be a reflection of homophily in per-
sonal characteristics that affect individuals in adopting the innovation
regardless of whether their network contacts adopted before (Shalizi
and Thomas, 2011). Indeed, in observational studies of innovation
vailable online 12 June 2023
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diffusion, it has proven quite hard to disentangle the effect of social
reinforcement from the effect of homophily (Aral et al., 2009). Against
this background, it remains hard to probe the potential of any inno-
vation as its diffusion will depend on the complex interplay between
homophily, social reinforcement and network structure, because both
homophily in individual preferences and the social reinforcement dy-
namics result from the structure of the social network. This motivated
a turn to experimental studies where homophily and network structure
can be manipulated. Such studies are powerful in isolating the effect
of either social reinforcement (Centola, 2010) or homophily (Centola,
2011).

We propose a simulation modeling framework that allows to unpack
the complexities underlying innovation diffusion in social networks. We
extend the standard percolation model of word-of-mouth with three pa-
rameters so as to regulate the levels of homophily, social reinforcement
and network structure. Note that in percolation models the links be-
tween agents are fixed and do not change during the diffusion process,
which means that we do not address the question of ‘selection versus
influence’, where selection refers to agents changing their links to other
agents depending on homophily. While our model is theoretical rather
than empirical, the theoretical nature of the framework allows us to
investigate the full three-dimensional parameter space. Where we build
on past models to implement social reinforcement (Tur et al., 2018) and
network structure (Watts and Strogatz, 1998), the implementation of a
homophily parameter posits a new challenge. One possible approach
is to moderate the influence of network contacts depending on how
similar they are, reflecting a confirmation bias (Konc and Savin, 2019).
In such a model, an agent is more likely to adopt if the adopting social
contact is similar rather than dissimilar to the agent in question. For
such an effect of homophily to take effect, however, one would have
to assume that agents can observe not only the adoption decision of
their network contact, but also her underlying preference regarding the
specific innovation that is diffusing. Instead, one can take homophily
into account as a property of the network and its structure, defining
homophily as the extent to which agents with similar preferences are
clustered together. This means that we do not have to assume that
agents can observe the preferences of their network contacts, but model
a network in which agents with similar preferences are more often in
contact than agents with dissimilar preferences.

After introducing the standard percolation model as our benchmark
model In Section 2, we present our extended framework of analysis
in Section 3. Here the main focus is on understanding how diffusion
depends on the three main factors of the model: homophily, social
reinforcement and network structure. We analyze the extent to which
an innovation diffuses through a network in different scenarios, using
as reference the baseline scenario of a complete network of individuals
who adopt only based on their personal characteristics (preferences).
This approach lends itself to two main assessments of results in Sec-
tions 3 and 4. First, from the perspective of the innovator, the interest
is to understand – given a level of homophily, social reinforcement
and network structure – how an effort to increase the utility of the
innovation will result in larger diffusion. Second, from the perspective
of society as a whole, we can evaluate the efficiency of the diffusion
process, that is the welfare loss associated with incomplete diffusion.
This is caused by information not reaching individuals who would
otherwise have adopted the innovation, and amount to an incomplete
use of social capital in the network. In Section 5 we conclude with some
reflections on how the model can be extended and applied empirically.

2. The benchmark model

2.1. Network structure

We consider social networks, where nodes represent agents and
links represent contacts. Henceforth, agents that are linked to a given
agent are identified as her ‘neighbors’. Social networks may exhibit
13
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different link structures with varying degrees of randomness. Social
networks may exhibit different structures with varying degrees of ran-
domness. We follow Watts and Strogatz (1998) by focusing on diffusion
in small-world networks (see also, Cowan and Jonard, 2004; Delre
et al., 2007). We make this choice for two main reasons. First, small-
world structures are a common, albeit not a universal, feature of social
networks (Dorogovtsev and Mendes, 2013). Second, the small-world
model provides a simple yet powerful framework to study the role of
important network structures in terms of clustering and average path
length while relying on one parameter only.

Scale-free networks constitute another relevant network structure
to consider for the study of diffusion in social systems (Albert and
Barabasi, 2002). However, the low degree of clustering in scale-free
networks render such networks less suitable for the study of how
homophily and social reinforcement affect diffusion.

The small-world network algorithm generates a family of graphs,
which are an interpolation of regular lattices and completely random
networks. The algorithm starts with a regular one-dimensional lattice (a
circle where only agents that are geographically next to each other are
connected, possibly with two or more links on each side) and rewires
every link with some probability.1 The rewiring probability is expressed
by a parameter 𝜇 ∈ [0, 1] which allows to fine tune the randomness of
the network.

Different values of the rewiring probability 𝜇 lead to different
average path length and different clustering coefficient (Fig. 1). The
clustering coefficient of a network is the relative number of triads in
a network. For clustered networks, the probability of two agents being
connected increases if they have a neighbor in common. The case with
𝜇 = 0 is the one-dimensional regular lattice, and the case with 𝜇 = 1 is
he fully random network. For intermediate values of 𝜇, a small-world
etwork presents at the same time a relatively high clustering together
ith relatively low path lengths. Around 𝜇 = 0.01 this feature is most

evident, as the average path length is nearly as low as the one of a
random network, while the clustering coefficient is comparable with
the one-dimensional regular lattice (Watts and Strogatz, 1998).

2.2. Percolation model of diffusion

We use a percolation model to describe word-of-mouth diffusion in
a social network. As a working example, we consider the diffusion of an
innovation that can be transmitted and adopted at no cost throughout a
population of previously unaware agents. In a pure percolation setting,
agents become informed about the existence of the innovation only
locally, meaning through the observation of adoption by their neigh-
bors. Consequently, the structure of the social network where agents
are embedded in, is a determinant of the outcome of the process (Tur
et al., 2018; Qiao et al., 2019). Earlier studies on word-of-mouth
diffusion have also considered percolation processes, but only in regular
networks as a two-dimensional lattice (Solomon et al., 2000; Hohnisch
et al., 2008; Cantono and Silverberg, 2009; Zheng et al., 2013) or in
completely random networks (Campbell, 2013).

The percolation model of social diffusion processes consists of
agents that are the nodes of a social network, and are heterogeneous
in their preferences towards the innovation, or, put differently, their
reluctance to adopt the innovation. This model has a clear counterpart
in models of epidemic diffusion, where this reluctance corresponds to
the resistance of an agent to disease infection. In social percolation,
agents are characterized by a minimum utility requirement (𝑢) for adopt-
ing an innovation. The innovation itself is characterized by an intrinsic

1 An alternative algorithm proposes to add links instead of rewiring the
xisting links (Newman and Watts, 1999). This alternative, however, changes
he density of the networks, which influences the process of diffusion through
ord-of-mouth. To ease the comparison between networks, we use the original
lgorithm. However, we numerically checked that the algorithm did not create

isconnected networks that could be a problem for our analyses.
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Fig. 1. Clustering coefficient 𝐶 (white squares) and average path length 𝐿 (black dots), as a function of the rewiring probability in small-world networks.
Source: Watts and Strogatz (1998)
utility level, which is represented by a number 𝜉 ∈ [0, 1]. The higher
the minimum utility requirement 𝑢 – i.e. the more reluctant an agent is
– the higher the utility she requires from an innovation for adopting it.
For this study, the minimum utility requirement of agents is a random
variable uniformly distributed, 𝑢 ∼ 𝑈 [0, 1].

The theoretical framework just presented corresponds to the so-
called social percolation model (Solomon et al., 2000; Flores et al.,
2012). The main idea of this model is that adopting agents inform their
neighbors, who then decide whether to adopt. In this framework time
is discrete, and an agent i adopts the innovation at a given time 𝑡 if
three conditions are satisfied:

1. the agent has not adopted before 𝑡,
2. the agent is informed about the innovation (which occurs if at

least one neighbor has adopted at time 𝑡 − 1),
3. the utility of the innovation is equal or higher than the minimum

utility requirement of the agent, that is 𝑢𝑖 ≤ 𝜉.

Notice that as soon as the intrinsic utility parameter 𝜉 is set to some
value, it is already known for which agents it holds that 𝑢𝑖 ≤ 𝜉.
We name them ‘‘willing-to-adopt’’ agents. However, these are only
potential adopters. Without a network structure of social contacts, in
what is often referred to as a ‘‘complete network’’, there is perfect
information about the innovation. When the innovation is introduced,
all agents are informed, and all willing-to-adopt agents adopt, while
the rest of the population does not. Since 𝑢 is uniformly distributed
as 𝑢𝑖 ∼ 𝑈 [0, 1], a proportion 100 ⋅ 𝜉% of the population on average
will adopt an innovation of intrinsic utility 𝜉 ∈ [0, 1]. Consequently,
in a population of size 𝑁 , the expected number of agents adopting the
innovation 𝑁𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠 is the expected number of agents with 𝑢 ≤ 𝜉, and
is given by

𝑁𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠 = 𝑁 ⋅ 𝑃𝑟𝑜𝑏(𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛) = 𝑁 ⋅ 𝑃𝑟𝑜𝑏(𝑞 ≤ 𝜉) = 𝑁 ⋅ 𝜉 (1)

Thus, a uniform distribution of individual preferences 𝑢𝑖 in a complete
network gives a linearly increasing diffusion size as a function of the
intrinsic utility.

When agents are embedded in a social network structure instead,
and information travels only through social contacts, two different
regimes arise in the intrinsic utility space 𝜉 ∈ [0, 1]: a high-diffusion
regime, where the diffusion size is about the same that one obtains
in a complete network, and a low-diffusion regime, where diffusion is
almost absent. These two regions are separated by a critical value of the
utility of the innovation, the so-called percolation threshold 𝜉𝑐 , as the
result of a second-order critical transition (Stauffer and Aharony, 1994).
14
Fig. 2. The percolation benchmark model. Simulated diffusion size for different utility
levels of an innovation 𝜉 ∈[0,1] (horizontal axis) in different small-world networks
with decreasing rewiring 𝜇 ∈ [0, 1] (where 𝜇 = 0 is the fully clustered structure of a
regular lattice). Values are averages over 500 runs. The network size is 𝑁 = 10,000
nodes, with 10 seeds (early adopters).

In this case, as further shown below, the introduction of innovations
with utility just above or just below the percolation threshold will have
very different outcomes in terms of high or low diffusion, respectively.
In product diffusion, this threshold is also known as the fine line
separating a ‘‘hit’’ from a ‘‘flop’’ (Solomon et al., 2000).

We analyze the percolation model by means of batch simulation
experiments. These are simulations of the diffusion process repeated
several times (500 replications in our case) in the same configuration
of parameters. For a given set of parameters we compute the average
value of the final diffusion size. Here we do batch simulations experi-
ments for the rewiring probability of networks 𝜇 and the intrinsic utility
of an innovation 𝜉.

Fig. 2 compares the final percentage of adopters as a function of the
intrinsic utility 𝜉 in different small-world networks (Watts and Strogatz,
1998), with rewiring probability 𝜇 ∈ {0, 0.001, 0.01, 0.1}. The case 𝜇 = 0
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corresponds to the regular lattice. All networks have 𝑁 = 10,000 nodes,
each one representing a potential adopter of the innovation, with 𝑘 = 4
neighbors on average. The 𝑢 values of agents are random draws from
a uniform distribution, 𝑢𝑖 ∼ 𝑈 [0, 1]. In all simulations the diffusion
process is initialized with 10 randomly chosen early adopters, the seeds
of the simulation.2 The dashed line shows the cumulative distribution
of the uniformly distributed 𝑢 values. This is the percentage of willing-
to-adopt agents for innovation of utility 𝜉, as shown in Eq. (1), and
would be the final diffusion size in a complete network.

As we see in Fig. 2, the social structure creates ‘‘information fail-
ures’’ compared to the complete network with perfect information.
Some willing-to-adopt agents never become informed about the exis-
tence of the innovation because none of their neighbors have adopted.
As a consequence, the final diffusion size is lower than the linear
function of Eq. (1) representing full information (dashed line). This
information failure undergoes a critical transition, and the diffusion
size presents two different phases, or regimes: a low-diffusion phase
and a high-diffusion phase. Below the percolation threshold, virtually
zero agents adopt, no matter the utility of the innovation. Above the
percolation threshold, the number of adopters increases sharply.3 The
ercolation threshold is approximately 0.3 for the fully random net-
ork, 0.5, 0.7 and 0.8 for the small-worlds with rewiring probabilities
.1, 0.01 and 0.001, respectively, and again 0.8 for the regular lattice.4
s the utility of the innovation increases above the threshold, the
umber of adopters converges to the line representing the cumulative
istribution of the minimum utility requirement 𝑢 of agents, that is the
iffusion size of a complete network.

The information failure causing inefficiency in diffusion stems from
he network structure of the population: when we compare networks
ith a fixed number of links, such as the small-world networks gen-
rated with different probability of rewiring links, clustering hampers
iffusion. Fig. 2 shows that percolation thresholds decrease with 𝜇, and
hat diffusion sizes increase with 𝜇. Low values of rewiring probabilities

produce networks with large values of the shortest path length and
large clustering coefficient. In such networks with high clustering,
ost links are redundant and cannot be used to reach new sources

f information.5 Ultimately, this is a result of an inefficient use of the
ocial capital embedded in social links.

. Homophily and social reinforcement

.1. Homophily

There are two main ways to account for homophily in word-of-
outh diffusion. First, one can assume that an agent is most sensitive to

he adoption decision of a neighbor who is most similar, putting more
rust in the information that comes from sources similar to herself. That
s, an agent is more likely to adopt if informed by a similar neighbor,
ompared to a dissimilar neighbor who has adopted before. This allows
o introduce confirmation bias in the diffusion process (Konc and Savin,
019). In such a case, the network structure may not display any
omophily; rather, neighbors that happen to be more similar in a
etwork with otherwise randomly distributed preferences, will exert
ore influence on each other. For such an effect of homophily to take

ffect, one would have to assume that agents can observe not only the

2 Simulations with a smaller number of seeds (5) and a larger number of
eeds (20) yield the same results (available upon request).

3 This change would be a sharp discontinuity in the case of an infinite
opulation. With finite populations the gap is smoothed.

4 Newman and Watts (1999) show that the theoretical threshold value for
nfinite network size is 𝑝 that solves 𝜇 = 1 − (1−𝑝)2

4𝑝
.

5 Note that information failures would be less pronounced if early adopters,
the seeds of simulations, were not random, but were located in nodes with
special properties, e.g. nodes with high centrality in the network (targeted
seeding).
15
adoption decision of a neighbor, as in the standard percolation model,
but also the neighbor’s underlying preference regarding the specific
innovation that is diffusing.

Second, one can take homophily into account as a property of
the network and its structure, defining homophily as the extent to
which agents with similar preferences are clustered together. We fol-
low this second approach, as we then do not have to assume that
agents can observe the preferences of their neighbors. Indeed, while
one can assume that agents can observe who adopts an innovation in
their neighborhood, it is less obvious to assume that agents can also
observe the minimum utility level that adopting neighbors hold, as the
underlying driver of their adoption decision.

We introduce homophily in the model as a modification of the small-
world network algorithm presented in the previous section. Instead of
drawing the 𝑢 values of each agent in the initial regular lattice from
a uniform distribution (Fig. 3(a)), we first draw the 𝑢 values for the
whole population and then set them in the regular lattice in an orderly
fashion, with values decreasing on either side of the agent with the
highest 𝑢, up until the agent with the lowest 𝑢 (Fig. 3(b)). This orderly
distribution of preferences represents the fully homophilous one, with
all agents having neighbors with very similar preferences. We then
consider different degrees of homophily in the network, with the aim
of understanding in full detail its effect on diffusion. In particular, we
tune the homophily level 𝜌 ∈ [0, 1] by reordering the preferences of a
fully homophilous network. Starting from the configuration of perfect
homophily (Fig. 3(b)) we take each node with probability 1 − 𝜌 ∈
[0, 1] and swap it with another chosen at random (Fig. 3(c)). After
the reordering of preferences, we apply the parameter 𝜇 rewiring a
certain fraction of links in the regular network as to create a small-
world network (Fig. 3(d)). The whole procedure can be summarized as
follows:

• start with the regular lattice (Fig. 3(a))
• place nodes with similar preferences (minimum utility require-

ment) next to each other (Fig. 3(b))
• swap each node randomly, with probability 1 − 𝜌 (Fig. 3(c))
• rewire the links with probability 𝜇 (Fig. 3(d))

This procedure thus leads us from the original regular lattice with
full clustering and randomly distributed preferences as in Fig. 3(a), to
a regular lattice with full clustering and full homophily in Fig. 3(b),
to a regular lattice with only a certain degree of homophily (using
the 𝜌-parameter) in Fig. 3(c), and eventually to the final network
characterized by a certain degree of homophily and by a certain degree
of clustering (using the 𝜇-parameter) in Fig. 3(d). If 𝜌 = 1, there is
no reordering, which is the perfect homophily scenario just studied.
If 𝜌 = 0, all nodes are reordered. This case is equivalent to the
absence of homophily (as in Fig. 3(a)). Between these two extreme
cases, the algorithm provides different degrees of homophily in the
social network. Notice that we first tune the homophily of the network
using the parameter 𝜌, and then rewire links using the parameter 𝜇.
The latter operation will further affect the homophily of the network
as it changes the neighborhood of some of the nodes. This could have
consequences for our analyses, since rewiring links further decreases
the overall homophily of the network.

In order to check the extent to which homophily is affected by 𝜇, we
compute the average difference of preferences in the neighborhood of
each node. The average of these differences for all nodes in the network
gives an indication of the overall homophily of the network: the higher
the average difference, the lower the homophily. Fig. 4 presents the
average values over 1000 repetitions of the same network structure, for
different values of 𝜌 ∈ [0, 1].

Fig. 4 shows the average difference in preferences among nodes
linked to a given node (ego network). Results for 𝜇 = 0, 0.001 and
0.01 are virtually indistinguishable. Homophily levels in these three
networks are almost identical after rewiring the initial regular lattice,

for all values of 𝜌. It is only when rewiring 10% of the nodes as with
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Fig. 4. Effect of swapping nodes (with probability 1−𝜌) on the difference of preferences
of the ego networks.

𝜇 = 0.1, that we observe a difference, albeit marginal. For 𝜌 = 0,
odes are re-reordered and there is no homophily in the initial regular
attice. In this case, all networks have a comparable average difference
f preferences among nodes. As 𝜌 increases, the level of homophily
n the initial regular lattice also increases. Intuitively, the rewiring
rocedure ‘‘opens’’ the neighborhood of an agent, as it gives her access
o other agents with different preferences. However, this difference
16
emains small, and the effect of rewiring on homophily is markedly
maller that the effect of reordering.

.2. Social reinforcement

Social reinforcement is the effect that adoption by neighbors have
n an individual’s adoption decision (Centola, 2015; Liang, 2021).
or some innovations, social reinforcement may be more intense than
or other innovations (McMillan et al., 2018), so we introduce social
einforcement as a parameter. In the context of our social network
odel, following Tur et al. (2018), we introduce social reinforcement in
ecisions at the local level, by means of a minimum utility requirement
which decreases with the number of adopting neighbors. This effect

reates social reinforcement: the more neighbors of an individual 𝑖
ave adopted in the past, the lower the individual minimum utility
equirement 𝑢𝑖 becomes.

In the benchmark percolation model of diffusion, an agent makes
er first adoption decision after the first adoption event in her neigh-
orhood. With social reinforcement this decision is not definitive: an
gent may not adopt the innovation the first time she was informed,
ut she may adopt later, if additional adoptions occur in her neigh-
orhood. In other words, some agents are willing-to-adopt after being
nformed by a first adopting neighbor, while others need more adopting
eighbors to be willing-to-adopt (Berry et al., 2019).

We follow Tur et al. (2018) and model social reinforcement at local
evel with the following expression of an agent’s 𝑢, as described in

Eq. (2).

𝑢𝑖𝑡 = 𝑢𝑖0 ⋅
( 1
𝑎𝑖𝑡

)𝛾
(2)

As the number of adopting neighbors 𝑎𝑖𝑡 increases, the minimum utility
requirement 𝑢𝑖𝑡 decreases. The parameter 𝛾 represents an ‘‘intensity’’ of
social reinforcement: for a given number of adopting neighbors, the
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updated value of 𝑢 will be lower for higher 𝛾. Arguably, the larger 𝛾 is,
he wider is diffusion. For 𝛾 = 0 (no social reinforcement), the updated
coincides with the benchmark case 𝑢𝑖𝑡 = 𝑢𝑖0 ∀𝑡. As demonstrated in Tur
t al. (2018), this function satisfies four conditions: (1) it is decreasing
n 𝑎𝑖𝑡, (2) it is decreasing in 𝛾, (3) with no social reinforcement (𝛾 = 0)
t replicates the benchmark percolation model, and (4) the first consid-
ration of adoption is based on the initial minimum utility requirement
𝑖
0 only. In particular, the first adoption event in a neighborhood is
ndependent on social reinforcement, since when only one neighbor
dopts 𝑢𝑖𝑡 = 𝑢𝑖0.

Note that, in a way, this model is a type of stochastic actor-oriented
odel (Snijders, 1996): the actors of the model are connected by a
etwork, and they have attributes which can change: their minimum
tility requirement and whether they have adopted. The only stochastic
lement in our model, however, lies in the initial conditions. Once the
inimum utility requirements are randomly drawn, the network is set,

nd the seeds are decided, then all the following steps are deterministic.

. Simulation results

We simulate percolation in different networks with different levels
f homophily and social reinforcement, using the same general setting
s in the benchmark model: with a population of 𝑁 = 10,000 nodes,
= 4 neighbors on average, and 10 seeds. Fig. 5 shows the final

verage percentage of adopters in the different cases. In this figure,
ach panel presents a different combination of homophily (𝜌) and social
einforcement (𝛾). Each column keeps the level of social reinforcement
ixed, and homophily increases as we move down the panels. Each row
eeps the level of homophily fixed, and social reinforcement increases
s we move right. The top left figure (𝜌 = 0, 𝛾 = 0) shows the benchmark
ase as in Fig. 2, while the bottom right panel shows the case with
xtreme homophily and extreme social reinforcement.

.1. Homophily

We first focus on the bottom left figure in Fig. 5, the case with
xtreme homophily but no social reinforcement (𝜌 = 1 and 𝛾 = 0).
ll homophilous networks present almost identical adoption sizes,

ncluding the regular lattice. In other words, the diffusion size does not
iffer substantially for different values of the rewiring probability 𝜇.
oreover, the diffusion pattern is almost the same as for a complete

etwork, with a linear correspondence between diffusion size and util-
ty of the innovation. This is equivalent to saying that in a homophilous
etwork, the network structure does not play a role in the diffusion
rocess.

The intuition behind the effect of extreme homophily can be ex-
lained as follows. In the original regular lattice with a perfect ho-
ophily ordering, all agents that are willing-to-adopt the innovation

re situated in a same connected component of agents with 𝑢 higher
han the utility of the innovation, the so-called operational network. In

small-world network, a tiny fraction of links are rewired, and it is
nlikely that rewiring disconnects the operational network connected
omponent. If at least one early adopter belongs to this component,
ll agents in this component will eventually be informed and adopt
s well. In this case, the number of adopting agents approaches the
umber of willing-to-adopt agents. Since the utility thresholds of agents
ollow a uniform distribution on the support [0, 1], the expected number
f agents willing-to-adopt an innovation of utility 𝜉 ∈ [0, 1] is 𝜉 ⋅ 𝑁
Eq. (1)). Thus, the expected number of adopters increases linearly
ith the utility of the innovation. That is to say, homophily corrects
lmost completely the information failure stemming from clustering in
etworks.

Homophily introduces order in the network. In the limit of perfect
omophily, its effect is a ‘‘linearisation’’ of diffusion, as it eliminates the
harp transition between high-diffusion and low-diffusion regimes of
he network. Increasing homophily enhances diffusion, and this effect
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s stronger in more clustered networks (low rewiring 𝜇). In the left
olumn panels of Fig. 5 from the top (𝜌 = 0) to the bottom (𝜌 = 1) we
bserve how increasing homophily boosts the diffusion size of clustered
etworks, with the largest effect obtained in regular lattices (𝜇 = 0).

The important implication of results presented above is that ho-
ophily corrects the information failure of percolation in clustered
etworks. Agents are located ‘‘at the right place’’: with high proba-
ility, agents with similar preferences are connected to each other.
omophilous networks bring information exactly where it needs to be,
roviding a more efficient diffusion process. With perfect homophily,
nce an agent adopts, all willing-to-adopt agents are informed. Only un-
onnected network components without early adopters are lost, which
n a small-world are a negligible fraction.

This result has important practical applications, e.g. in the context
f information campaigns and marketing strategies. Since the real
tructure of a social network is hardly known, the degree of homophily
s a highly valuable information: the more homophily among agents
onnected in a network, the less important the network structure is for
iffusion, and the more diffusion size depends proportionally on the
tility of the innovation. By contrast, in networks without homophily,
here is a critical threshold value for utility, which means that achieving
utility above this threshold is pivotal.

.2. Adding social reinforcement

Looking at the different columns of Fig. 5 from left to right, we move
rom a context without social reinforcement (𝛾 = 0) to a context with

strong social reinforcement (𝛾 = 1). Here, we observe that social rein-
forcement supports diffusion. The reason is that social reinforcement
from neighbors triggers adoption by agents who otherwise, based on
their initial individual preference, would not have adopted. The effect
of social reinforcement, however, decreases markedly for higher levels
of homophily. Social reinforcement has only a small positive effect on
diffusion for highly homophilous networks. In homophilous networks
agents are clustered in terms of their preferences, and social reinforce-
ment has no effect in a cluster of agents who are all willing-to-adopt
anyway, while it can exert little effect in a cluster of unwilling-to-adopt
agents.

The most subtle results regarding social reinforcement are obtained
for high levels of homophily (𝜌 = 0.9, 𝜌 = 0.8). Comparing to the case

ithout homophily this means a larger diffusion size for low utility
f the innovation 𝜉, and lower diffusion size for high utility of the
nnovation. One implication of this result is that social networks with
oderate levels of both clustering and homophily are good terrains for

he diffusion of early innovations in their infancy, for which we may
xpect that utility is still relatively low. When dealing with mature
nnovations instead, likely characterized by high utility, the positive
eedback of social reinforcement boosts diffusion by adding further
emand in a less homophilious network. This effect emerges from
he interaction of social reinforcement and homophily: without social
einforcement (first column of Fig. 5), homophily always leads to more
iffusion. With social reinforcement, two regimes of no-diffusion and
ull-diffusion emerge, each time around the same critical threshold 𝜉.
he second order phase transition of diffusion on networks disappears,
nd a first order transition occurs, which separates the two regimes. A
irst order critical transition between alternative coordination equilibria
s typical of processes of social reinforcement (Brock and Durlauf, 2001,
002).

These results are relevant to all cases of social diffusion, and par-
icularly to initiatives – public or private – that have the objective
f promoting the extent of social diffusion: if we assume, as it is
atural, that utility of an innovation is proportional to a form of effort
e.g. investment, time, etc.), in a scenario with moderate levels of
omophily it does not pay off to put any effort on utility, until a level
igh enough is reached. Above this sort of threshold, or critical mass,
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Fig. 5. Diffusion size (vertical axis) for different intrinsic utility levels 𝜉 (horizontal axis) and for different small-world network structures (𝜇). Results are presented for increasing
homophily levels (panels in different rows, where 𝜌 = 0 is no homophily, while 𝜌 = 1 is perfect homophily) and for increasing social reinforcement intensities (where 𝛾 = 0 is no
social reinforcement, and where 𝛾 = 1 is maximum social reinforcement). Reported values are averages over 500 simulation runs. The network size is 𝑁 = 10,000 nodes, with 10
early adopters.
the diffusion outcome takes off. Social reinforcement moves this thresh-
old to lower utility levels, making it easier to obtain large diffusion
outcomes. Around this threshold the marginal return to investment is
largest.

Another interesting result concerns how social reinforcement affects
the relative efficiency of different network structures. Less clustered
networks remain the most efficient network for diffusion for low levels
of homophily, regardless of social reinforcement. However, by looking
at diffusion size for high levels of social reinforcement (right panels of
Fig. 5) and relatively high levels of homophily, we observe that more
clustered networks are relatively more efficient. The results indicate
that social reinforcement renders clustered networks more efficient
in terms of diffusion size for network with strong homophily. These
theoretical results may shed a new light on mixed evidence found
18
on the effect of homophily and of social reinforcement in empirical
diffusion studies (for a recent review, see Ertug et al., 2022).

For the sake of comparison, we have also simulated diffusion on
undirected scale-free networks with and without homophily and social
reinforcement, based on the algorithm by de Almeida et al. (2013).
The results are in Fig. A.7 of the Appendix. As we can see, the role
of homophily on diffusion size is very marginal. This is most likely
due to the fact that scale-free networks have very little clustering, thus
preventing cascading effects (Centola, 2010; Jeong and Yu, 2022).

4.3. The non-linear effects of homophily on diffusion

The impact of homophily on diffusion is non-linear. In order to
better evaluate such impact, we have calculated the absolute difference
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Fig. 6. The marginal effect of homophily: the heat maps represent the absolute difference in simulated diffusion between a small-world network and the diffusion reference level
of a complete network. A given color refers to a given difference range with respect to the complete network. For instance, areas in yellow indicate a difference between 3 and
4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
between the actual diffusion size in small-world networks and the
potential level of diffusion that realizes in a complete network (the
45◦ line), and integrated over utility values. This measure represents
inefficiency, or what in economics goes under the name of loss of
consumer welfare as it counts the number of agents who would have
liked to adopt the innovation, but do not. It amounts to an inefficient
use of the social capital contained in the structure of a social network.
The heat maps of Fig. 6 report the results. The values of the heat maps
represent the area between the diffusion size curve of a given network
and the complete network diffusion. For a network with no innovation
diffusion this area is maximum, and measures 0.5 (the integral of the
45◦ line over the range [0, 1]).

The impact of changes in the homophily level is very different
depending on whether we consider high homophily networks or low
homophily. For instance, in a regular lattice (𝜇 = 0) without social
reinforcement, an increase in homophily from 0.9 to 1 generates an
increment of diffusion size more than twice as large as the increment
that we obtain for a change in homophily from 0 to 0.5. The same
criticality emerges in cases where lower levels of homophily bring
more diffusion. In a small-world with 𝜇 = 0.01 and strong social
reinforcement, lowering homophily from 𝜌 = 1 (perfect ordering of
agents) to 0.6 induces a change of diffusion size at least seven times
as large as lowering homophily further from 0.6 to 0 (no homophily).

The heat maps analysis also allows to observe an interesting phe-
nomenon about the interplay of social reinforcement and network
structure: for a given level of homophily, in the more regular networks
(𝜇 = 0, 0.001, 0.01) an increase of social reinforcement induces an ever-
smaller departure from the diffusion of a complete network (from white
to pink to orange regions). Instead, in the relatively more disordered
network (𝜇 = 0.1) the opposite realizes, as increasing social reinforce-
ment makes this departure larger (from yellow to orange). This reversal
of effects can be seen by observing the different direction in the pattern
of contour lines in the bottom-right panel compared to the other three
panels of Fig. 6.
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Concluding, for any level of clustering in small-world networks
(𝜇) and any intensity level of social reinforcement (𝛾), the effect of
a spatial ordering of intrinsic preferences as described by homophily
in a network has the following non-linear connotation: introducing
homophily with ordering more than half the agents of the network
has very moderate effects while further spatial ordering of the pref-
erences of agents in the population generates relatively large effects on
diffusion.

5. Conclusion

We have proposed a simulation model of diffusion through word-of-
mouth in a social network with homophily and social reinforcement.
A theoretical understanding of the combined roles of homophily and
social reinforcement is important, as it has proven difficult to disen-
tangle their effect on diffusion empirically. Innovations tend to diffuse
in clustered parts of social networks, which may equally point to
homophily as a driving factor (as agents with similar preferences tend
to be connected) or to social reinforcement (as adopting agents may
convince connected agents to adopt as well), or a combination of the
two. Our study confirms that both homophily and social reinforcement
support diffusion, but in very different ways: while homophily in a
network makes it possible to fulfill preferences, so that in the limit of
perfect homophily all potential adopters do adopt, social reinforcement
‘overcomes’ preferences, adding adoption for those consumers who
initially would not have adopted.

We start from a benchmark model of percolation in small-world
networks without homophily nor social reinforcement, where i. all
network structures exhibit a percolation threshold separating a low-
diffusion and a high-diffusion regime, and ii. the less clustered a
network’s structure, the more efficient the percolation of information.
The latter finding can be understood from the detrimental role of
clustering generating redundancy in information flows among agents
resulting in an inefficient percolation process.



Social Networks 76 (2024) 12–21E.M. Tur et al.

a

Compared to the benchmark model, our findings on homophily and
social reinforcement can be summarized as follows. Firstly, homophily
greatly improves the efficiency of diffusion compared to the benchmark
case, especially for clustered networks. Homophily means that agents
with similar preferences are connected, leading information to perco-
late easily to agents who are willing-to-adopt. As a consequence, ho-
mophily eliminates the phase transition of diffusion in social networks.
Instead, diffusion scales linearly with the utility of the innovation
diffusing.

Secondly, social reinforcement also greatly improves the efficiency
of diffusion compared to the benchmark case, especially for clustered
networks. This can be readily understood as social reinforcement ren-
ders agents more willing-to-adopt when more neighbors have adopted
before. In contrast to the effect of homophily, diffusion with social
reinforcement retains and amplifies the separation between a low-
diffusion and high-diffusion regime. In presence of social reinforcement
the transition between no-diffusion and diffusion phases is more abrupt,
and it occurs at the same critical utility level for all networks.

Thirdly, the ‘‘linearization’’ of diffusion observed for homophilous
networks is robust to the introduction of social reinforcement: inno-
vations hardly diffuse more in homophilous networks with social re-
inforcement than without social reinforcement. This means that social
reinforcement has little effect on diffusion among agents that are alike,
while it has a strong effect on diffusion among agents that are differ-
ent. This finding can be understood as a ‘‘preaching-to-the-converted’’
effect: in homophilous networks, agents that are willing-to-adopt are
already clustered allowing information to percolate easily, and social
reinforcement has little or no additional effect on diffusion.

The theoretical findings of our model can inform empirical studies
on diffusion in several ways. First, we have established that both
homophily and social reinforcement support diffusion of innovations,
but in ways that lead to very different diffusion patterns. Homophily
renders diffusion more in line with the utility of an innovation, as
agents who are willing-to-adopt will generally be informed in the
percolation process. Hence, given a good ex ante estimation of the
utility of an innovation – whatever its precise definition or meaning in
particular context – one can readily predict how much an innovation
will diffuse. By contrast, social reinforcement (without homophily)
makes diffusion much less predictable. While innovations with very
low utility will certainly hardly diffuse and innovations with very high
utility will certainly almost fully diffuse, there is high uncertainty about
the diffusion size of innovations with moderate utility. There is a very
fine line with a total hit or total flop, and the utility level associated
with this threshold is not easy to predict as it depends on the exact
network structure as well as the exact level of social reinforcement.
Given this theoretical results, divergent findings between empirical
studies may be related to different levels of homophily and social
reinforcement.

The model also provides insights in strategies that actors can employ
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that wish to achieve high diffusion of some innovation. For example,
authorities may want to reach out to as many people as possible in pub-
lic health campaigns, and firms may want to market their new product
as many potential consumers as possible (Solomon et al., 2000). The
theoretical implications of our model for investment strategies, then,
are twofold. First, the marginal returns to investments in the utility
of an innovation in terms of diffusion size are close to constant in
social networks with high degrees of homophily (regardless of social
reinforcement). In such settings, a cost–benefit analysis can easily be
made. By contrast, investments in an innovation’s utility in the context
of high social reinforcement (and low homophily) are very risky. One
may underinvest in utility leading to little diffusion, thus generating
very low return on investment. Reversely, one may over-invest in utility
as full diffusion could have been reached already with lower utility.
Second, rather than reasoning from a given and fixed social network,
investment strategies should take into account the relevant network at
play for the particular innovation they want to diffuse, in particular, to
what extent the network is homophilous and exert social reinforcement.
It may be that regarding certain innovations, agents interact very much
with neighbors with similar preferences, while for other innovations
they may interact more with neighbors that exert social reinforcement.

The theoretical model can be extended in a number of ways. Starting
with the benchmark model of percolation through word-of-mouth,
a number of variations can be introduced. First and foremost, the
assumption that information about a new innovation is always passed
on by adopters and never by non-adopters is arguably a strong one,
which can be relaxed such that adoption raises the probability of
passing on information, instead of fully determining it. Rather than
assuming that adopters always pass on information and non-adopters
never pass on information, one can introduce a parameter expressing
the likelihood of agents passing on information depending on whether
or not they themselves have adopted it. A second promising extension is
to have the exertion of social reinforcement depend on the degree of ho-
mophily between two agents, as for example in the model by Konc and
Savin (2019). This extension would also speak closer to experimental
evidence that suggests that similar agents exert greater social reinforce-
ment (Centola, 2011). A third topic for future research is to compare
random seeds, as we applied, to targeted seeds common in marketing
campaigns modeled as percolation processes (Campbell, 2013). For
example, one may assume that organizations promoting an innovation
will target agents with high centrality (Valente and Davis, 1999; Va-
lente and Vega Yon, 2020). As a final avenue for research, we foresee
applications of the percolation model with homophily and social re-
inforcement to network structures other than small-world networks,
including two-dimensional regular lattices (Solomon et al., 2000) and
scale-free networks (Konc and Savin, 2019).

Appendix. Simulations for the scale-free network

See Fig. A.7.
Fig. A.7. Diffusion size (vertical axis) for different intrinsic utility levels 𝜉 (horizontal axis) and for homophilious and non-homophilious scale-free networks. Reported values are
verages over 500 simulation runs. The network size is 𝑁 = 10,000 nodes, with 10 early adopters.
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