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Abstract: Prenatal exposure to metabolism-disrupting chemicals (MDCs) has been linked to birth
weight, but the molecular mechanisms remain largely unknown. In this study, we investigated
gene expressions and biological pathways underlying the associations between MDCs and birth
weight, using microarray transcriptomics, in a Belgian birth cohort. Whole cord blood measure-
ments of dichlorodiphenyldichloroethylene (p,p’-DDE), polychlorinated biphenyls 153 (PCB-153),
perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and transcriptome profiling
were conducted in 192 mother–child pairs. A workflow including a transcriptome-wide association
study, pathway enrichment analysis with a meet-in-the-middle approach, and mediation analysis
was performed to characterize the biological pathways and intermediate gene expressions of the
MDC–birth weight relationship. Among 26,170 transcriptomic features, we successfully annotated
five overlapping metabolism-related gene expressions associated with both an MDC and birth weight,
comprising BCAT2, IVD, SLC25a16, HAS3, and MBOAT2. We found 11 overlapping pathways, and
they are mostly related to genetic information processing. We found no evidence of any signifi-
cant mediating effect. In conclusion, this exploratory study provides insights into transcriptome
perturbations that may be involved in MDC-induced altered birth weight.

Keywords: endocrine-disrupting chemical; transcriptomics; birth weight; epidemiology

1. Introduction

Metabolism-disrupting chemicals (MDCs) have been defined as natural or anthro-
pogenic endocrine-disrupting chemicals (EDCs) that can promote metabolic changes
and ultimately lead to obesity, type 2 diabetes and/or non-alcoholic fatty liver disease
(NAFLD) [1]. In line with the Developmental Origins of Health and Disease (DOHaD)
hypothesis [1], the prenatal period is a highly sensitive and vulnerable phase during which
stressors, such as MDCs, can alter cell numbers and fate, gene expression, and protein
levels that may lead to changes in tissue and organ function and contribute to increased
susceptibility to a variety of non-communicable diseases later in life [2]. This may be the
result of differences in toxicokinetics between children and adults and from time-dependent
programming during early development [3].

Both high and low birth weight (HBW and LBW) are considered important predic-
tors of later perturbed metabolic outcomes in children and adults [4–6]. While some
observational studies have demonstrated associations between exposure to MDCs [in-
cluding dichlorodiphenyldichloroethylene (p,p’-DDE), polychlorinated biphenyl-153
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(PCB-153), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS)]
and birth weight [7–10], the molecular mechanisms of action remain poorly understood.
The field of omics, based on high-throughput biochemical data, provides promising
opportunities to advance and enhance our understanding of the impact of MDCs on
child health, including by revealing changes in the gene expression using transcriptome
profiling [11,12].

Assessing the effects of various chemical exposures on gene expression may help
to uncover cellular mechanisms through which exposures influence the development of
metabolic disorders in human populations. Several recent epidemiological studies using
transcriptomics data have increased our understanding of how exposure to MDCs may
perturb gene expression, and have identified regulatory pathways that may be affected by
these exposures [13–15], as well as links between gene expression and birth weight [16–19].
However, to our knowledge, a study assessing the transcriptome in relation to both MDCs
and birth weight in the same study population has not been performed.

Based on results from our previous birth cohort study [15], several MDCs (p,p’-DDE,
PCB-153, PFOA, and PFOS) were suggested to play a role in transcriptional changes
which are related to metabolic health outcomes. This led us to hypothesize that prenatal
exposure to MDCs induces transcriptional modifications that, in turn, affect birth weight
and have adverse effects on human health. Here, we aim to identify transcriptomic
alterations in the cord blood of Belgian mother–child pairs that are associated with both
prenatal MDC levels and birth weight in order to better understand the molecular effects
and the underlying mechanisms.

2. Results
2.1. Population Characteristics

Demographic and exposure information for participants are shown in
Tables 1 and S1. The median gestational age was 40 weeks. Most children (98%) had
a birth weight at or more than 2500 g, with a median of 3540 g. The median concentrations
were 75.9 ng/g lipid, 28.7 ng/g lipid, 1600 ng/L, and 2700 ng/L for p,p’-DDE, PCB-153,
PFOA, and PFOS, respectively (Table S1). The majority of the mothers had completed a
high level of education (59%), had a normal pre-pregnancy body mass index (BMI) between
18.5 and 25 kg/m2 (71%), and did not smoke during pregnancy (85%). In addition, 38% of
mothers were nulliparous and 57% were above 30 years of age at delivery.

2.2. Gene Expression Associated with MDCs and Birth Weight

Using a transcriptome-wide association study (TWAS) approach, we failed to select any
features from models (1) or (2) with significance levels of false discovery rate
(FDR) <0.05 or 0.20, and selected only a few features with a stringent p-value < 0.01
(Table 2). In order to avoid excluding weak but possibly relevant features, we used a rela-
tively lenient p-value < 0.05 to select features for further analyses as an exploratory study.
With p-value < 0.05, we found that 2110 out of 26,170 features were associated with one
or more MDCs (777, 623, 333, and 624 for p,p’-DDE, PCB-153, PFOA, and PFOS, respec-
tively; Table 2), and 775 features were associated with birth weight. A similar number
of associated features were found in the sensitivity analyses of gestational age-unadjusted
MDC–transcriptome associations (Table S2). In addition, as shown in the volcano plots
(Figure S1a–e), the significance and directionality of gene expression obtained with and
without adjustment for gestational age were consistent in the TWAS models for MDCs
and features.

At p-value < 0.05, we found overlapping features associated with an MDC (p,p’-DDE,
PCB-153, PFOA, or PFOS) and birth weight (12, 31, 17, and 40, respectively; Figure 1). These
features were annotated to corresponding unique gene symbols, and according to the Hu-
man Protein Atlas and GeneCards [20,21], several were components of metabolism-related
pathways, including branched-chain aminotransferase 2 (BCAT2) (amino acid metabolism;
valine, leucine, and isoleucine degradation; valine, leucine, and isoleucine biosynthesis; and
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pantothenate and CoA biosynthesis), isovaleryl-CoA dehydrogenase (IVD) (valine, leucine,
and isoleucine degradation), solute carrier family 25-A16 (SLC25A16) (pantothenate and CoA
biosynthesis), Hyaluronan Synthase 3 (HAS3) (carbohydrate metabolism and glycosamino-
glycan metabolism), and Membrane Bound O-Acyltransferase Domain Containing 2 (MBOAT2)
(glycerophospholipid metabolism) (Table 3). However, with the mediation analysis, we did
not observe any overlapping gene expression playing a significant mediating role, given
the relatively large FDR values (Table 3). In addition, the individual associations of these
five gene expressions with an MDC or birth weight is shown in Table S3.

Table 1. Study population characteristics of 193 mother–child pairs, Flanders, Belgium.

Characteristics

[n (%) or Median (P25–P75)]
Mother

Education
Low 19 (10)

Median 58 (30)
High 114 (59)

Missing 2 (1)
Parity

0 74 (38)
1 64 (33)
≥2 54 (28)

Missing 1 (1)
Smoking during pregnancy

Non-smoking 164 (85)
Smoking 24 (12)
Missing 5 (3)

Age at delivery (years)
<27 35 (18)

27 < 30 49 (25)
30 < 33 57 (30)
≥33 52 (27)

Pre-pregnancy BMI (kg/m2)
<18.5 12 (6)

18.5 < 25 137 (71)
25 < 30 28 (15)

30 14 (7)
Missing 2 (1)

Child
Sex, n (%)

Boy 96 (50)
Girl 97 (50)

Gestational age (weeks) 40.0 (39.0–40.0)
Missing 3 (2)

Birth weight (g) 3540 (3200–3775)
<2500 3 (2)
≥2500 190 (98)

Abbreviations: BMI, body mass index; P, percentile.

Table 2. Number of features associated with MDCs and birth weight at different significance levels.

FDR < 0.05 FDR < 0.20 p-Value < 0.01 p-Value < 0.05

p,p’-DDE 0 0 138 777
PCB-153 0 0 75 623

PFOA 0 0 23 333
PFOS 0 0 79 624

Birth weight 0 0 162 775
Abbreviations: MDCs, metabolism-disrupting chemicals; p,p’-DDE, dichlorodiphenyldichloroethylene; PCB-153,
polychlorinated biphenyl 153; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; FDR, false
discovery rate.
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Figure 1. Venn diagram of features and enriched pathways associated with MDCs and birth weight.
Number in black refers to the number of features at p-value < 0.05, and number in white refers to the
number of enriched pathways at FDR < 0.05.

Table 3. The ACMEs of an MDC on birth weight via overlapping gene expression.

p,p’-DDE

ProbeID GeneSymbol GeneTitle ACME (95% CI, g) FDR

A_32_P223173 MYO5BP2 myosin VB pseudogene 2 15.56 (1.89, 34.40) 0.08
A_23_P154522 MTA3 metastasis associated 1 family member 3 12.81 (−5.75, 41.79) 0.22
A_24_P303524 MICALL2 MICAL like 2 11.37 (−0.16, 28.40) 0.08
A_23_P46369 RAB13 RAB13, member RAS oncogene family 11.17 (−0.10, 28.29) 0.08
A_23_P435002 SRFBP1 serum response factor binding protein 1 10.95 (−0.66, 28.67) 0.08
A_23_P90163 BCAT2 branched chain amino acid transaminase 2 −9.89 (−28.87, 1.29) 0.14
A_23_P356694 DEFB123 defensin beta 123 −13.10 (−34.55, 0.80) 0.10
A_32_P226186 KIAA1549 KIAA1549 −13.30 (−34.77, −0.28) 0.08
A_32_P126375 NHS NHS actin remodeling regulator −13.52 (−33.89, 0.20) 0.08
A_23_P101240 VSIG10L V-set and immunoglobulin domain containing 10 like −13.91 (−34.95, −0.17) 0.08
A_23_P70566 FKBPL FKBP prolyl isomerase like −15.87 (−36.64, −2.04) 0.08
A_24_P33014 DACT3 disheveled binding antagonist of beta catenin 3 −18.48 (−49.89, 0.22) 0.08

PCB-153
ProbeID GeneSymbol GeneTitle ACME (95% CI, g) FDR

A_23_P213458 BTF3 basic transcription factor 3 19.21 (1.21, 45.76) 0.18
A_23_P129322 IVD isovaleryl-CoA dehydrogenase 15.87 (−3.19, 47.22) 0.18
A_24_P816777 UBL7-DT UBL7 divergent transcript 14.79 (−1.48, 39.40) 0.18
A_24_P941051 CSTF2T cleavage stimulation factor subunit 2 tau variant 14.20 (−1.75, 39.92) 0.18
A_24_P383080 SRRT serrate, RNA effector molecule 14.07 (−1.18, 37.84) 0.18
A_23_P1043 INAVA innate immunity activator 14.06 (−2.30, 41.12) 0.18
A_24_P2093 XAB2 XPA binding protein 2 13.86 (−4.94, 41.67) 0.21

A_23_P170352 MRPL12 mitochondrial ribosomal protein L12 13.57 (−2.58, 36.47) 0.18
A_23_P101972 CAPN13 calpain 13 12.90 (−0.90, 33.91) 0.18
A_23_P208167 FPR3 formyl peptide receptor 3 −14.25 (−40.03, 2.80) 0.18
A_23_P66311 DNASE1 deoxyribonuclease 1 −14.86 (−68.16, 20.26) 0.47
A_32_P174365 SATB2 SATB homeobox 2 −15.07 (−46.51, 3.80) 0.20
A_24_P42001 IGSF3P2 pseudogene similar to part of immunoglobulin superfamily 3 −15.29 (−45.26, 2.47) 0.18
A_23_P45864 TNR tenascin R −15.51 (−52.01, 7.40) 0.27
A_23_P156697 ABHD16A abhydrolase domain containing 16A, phospholipase −15.71 (−55.54, 10.26) 0.30
A_32_P109777 PHBP9 prohibitin pseudogene 9 −15.74 (−70.68, 20.32) 0.43
A_23_P218584 BCL11A BAF chromatin remodeling complex subunit BCL11A −16.11 (−47.21, 2.36) 0.18
A_24_P934800 ERI2 ERI1 exoribonuclease family member 2 −17.04 (−65.34, 13.98) 0.35
A_24_P609323 ZNF213-AS1 ZNF213 antisense RNA 1 (head to head) −17.27 (−61.75, 9.59) 0.30
A_23_P125147 RAB28 RAB28, member RAS oncogene family −17.49 (−44.99, 1.40) 0.18
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Table 3. Cont.

p,p’-DDE

A_23_P68922 MICALL1 MICAL like 1 −18.85 (−58.74, 4.03) 0.21
A_23_P210400 KCNQ2 potassium voltage-gated channel subfamily Q 2 −20.10 (−49.17, −0.69) 0.18
A_24_P186497 GTF2IRD2 GTF2I repeat domain containing 2 −20.28 (−65.43, 7.02) 0.22
A_23_P323196 MDS2 myelodysplastic syndrome 2 translocation associated −20.80 (−59.81, 4.88) 0.18
A_23_P343808 SOS1 SOS Ras/Rac guanine nucleotide exchange factor 1 −21.46 (−60.91, 1.96) 0.18
A_32_P74075 SLC25A16 solute carrier family 25 member 16 −23.23 (−59.66, 0.62) 0.18
A_23_P16275 TSKS testis specific serine kinase substrate −23.31 (−61.08, 1.28) 0.18
A_23_P88466 NPAP1 nuclear pore associated protein 1 −24.11 (−65.66, 1.64) 0.18
A_24_P33014 DACT3 disheveled binding antagonist of beta catenin 3 −25.38 (−75.74, 2.97) 0.18
A_32_P149640 EPHA5 EPH receptor A5 −25.63 (−59.68, −1.67) 0.18
A_23_P49539 BAHCC1 BAH domain and coiled-coil containing 1 −27.18 (−73.81, 2.40) 0.18

PFOA
ProbeID GeneSymbol GeneTitle ACME (95% CI, g) FDR

A_23_P426511 ZGRF1 zinc finger GRF-type containing 1 27.81 (−11.07, 80.77) 0.17
A_24_P173754 C1orf21 chromosome 1 open reading frame 21 25.95 (−2.29, 65.53) 0.12
A_23_P149668 KIF14 kinesin family member 14 25.64 (1.21, 59.18) 0.11
A_23_P35977 PDZD3 PDZ domain containing 3 25.23 (0.14, 65.29) 0.11
A_23_P19723 BMP5 bone morphogenetic protein 5 24.29 (−6.57, 70.05) 0.14
A_24_P383080 SRRT serrate, RNA effector molecule 22.77 (1.52, 51.40) 0.11
A_23_P133956 KIFC1 kinesin family member C1 22.25 (1.91, 52.27) 0.11
A_23_P128956 ZFYVE1 zinc finger FYVE-type containing 1 21.97 (0.10, 53.12) 0.11
A_23_P258377 ERC1 ELKS/RAB6-interacting/CAST family member 1 20.90 (−1.37, 53.51) 0.11
A_32_P148199 VPS54 VPS54 subunit of GARP complex 19.84 (−1.28, 52.35) 0.11
A_23_P329962 SUN3 Sad1 and UNC84 domain containing 3 19.80 (−12.34, 67.49) 0.21
A_23_P357229 HAS3 hyaluronan synthase 3 19.47 (0.69, 48.19) 0.11
A_23_P332413 SLFN13 schlafen family member 13 18.66 (−3.99, 50.40) 0.13
A_23_P94840 DYNLRB2 dynein light chain roadblock-type 2 −19.33 (−53.39, 0.29) 0.11
A_23_P147255 PCBP3 poly(rC) binding protein 3 −22.98 (−56.91, 0.65) 0.11
A_32_P208076 ITGA2 integrin subunit alpha 2 −25.58 (−61.58, −2.19) 0.11
A_23_P89030 C16orf95 chromosome 16 open reading frame 95 −28.31 (−65.10, −3.43) 0.11

PFOS
ProbeID GeneSymbol GeneTitle ACME (95% CI, g) FDR

A_23_P4007 FXR2 FMR1 autosomal homolog 2 22.03 (2.59, 48.02) 0.17
A_24_P919279 ZNF790 zinc finger protein 790 21.33 (−0.11, 57.21) 0.17
A_23_P143514 SSR4P1 signal sequence receptor subunit 4 pseudogene 1 21.11 (−9.85, 65.02) 0.23
A_23_P214727 GPR63 G protein-coupled receptor 63 19.46 (−1.99, 55.15) 0.17
A_24_P325046 ZCCHC7 zinc finger CCHC-type containing 7 19.25 (−9.60, 62.98) 0.23
A_23_P158349 RABL3 RAB, member of RAS oncogene family like 3 19.08 (−0.78, 47.62) 0.17
A_32_P148199 VPS54 VPS54 subunit of GARP complex 18.42 (1.01, 40.65) 0.17
A_23_P426511 ZGRF1 zinc finger GRF-type containing 1 18.30 (−14.27, 71.54) 0.30
A_24_P922808 DESI2 desumoylating isopeptidase 2 18.16 (−5.59, 56.98) 0.18
A_23_P78302 NFE2L1 nuclear factor, erythroid 2 like 1 17.83 (−11.92, 63.48) 0.29
A_24_P98086 GNA12 G protein subunit alpha 12 17.07 (3.13, 39.02) 0.17
A_23_P54088 OR4K17 olfactory receptor family 4 subfamily K member 17 16.96 (−2.58, 49.08) 0.17
A_23_P325661 ZNF134 zinc finger protein 134 16.46 (−2.12, 41.68) 0.17
A_23_P381945 KRT7 keratin 7 15.68 (−0.88, 39.02) 0.17
A_23_P427136 TSSK1B testis specific serine kinase 1B 15.64 (−4.65, 50.75) 0.22
A_23_P154522 MTA3 metastasis associated 1 family member 3 15.31 (−8.64, 57.31) 0.29
A_24_P344295 RNF167 ring finger protein 167 15.04 (−2.19, 39.49) 0.17
A_23_P9209 NIPSNAP3B nipsnap homolog 3B 14.56 (−12.47, 55.74) 0.29

A_23_P135787 GOLGB1 golgin B1 14.37 (−8.34, 51.15) 0.27
A_24_P416301 FOXK2 forkhead box K2 13.92 (−23.25, 71.77) 0.47
A_24_P145629 SERINC2 serine incorporator 2 13.90 (−7.15, 46.81) 0.23
A_23_P306755 CRYAA crystallin alpha A 13.80 (−1.50, 39.97) 0.17
A_24_P169688 MICB MHC class I polypeptide-related sequence B 13.50 (1.03, 29.72) 0.17
A_23_P39454 ZNF556 zinc finger protein 556 13.44 (−3.22, 42.61) 0.21
A_32_P134968 SPTB spectrin beta, erythrocytic 13.43 (−0.03, 36.34) 0.17
A_32_P165116 DNAAF10 dynein axonemal assembly factor 10 13.04 (−1.58, 34.74) 0.17
A_24_P323425 DZANK1 double zinc ribbon and ankyrin repeat domains 1 12.97 (−10.07, 49.64) 0.29
A_24_P173754 C1orf21 chromosome 1 open reading frame 21 12.58 (−2.55, 34.36) 0.17
A_23_P332413 SLFN13 schlafen family member 13 12.36 (−2.49, 32.56) 0.17
A_23_P170352 MRPL12 mitochondrial ribosomal protein L12 12.05 (−0.41, 31.74) 0.17
A_24_P77941 VPS50 VPS50 subunit of EARP/GARPII complex −11.16 (−32.04, 1.69) 0.17
A_24_P384119 IGHV3OR16-13 immunoglobulin heavy variable 3/OR16-13 (non-functional) −11.35 (−31.93, 0.65) 0.17
A_23_P500010 KLK12 kallikrein related peptidase 12 −12.04 (−34.86, 1.61) 0.17
A_23_P210400 KCNQ2 potassium voltage-gated channel subfamily Q member 2 −12.25 (−34.90, 1.95) 0.17
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p,p’-DDE

A_24_P114255 MBOAT2 membrane bound O-acyltransferase domain containing 2 −12.54 (−34.35, 0.66) 0.17
A_24_P77219 ARID1A AT-rich interaction domain 1A −12.58 (−36.30, 1.68) 0.17
A_24_P161604 RPL21P120 ribosomal protein L21 pseudogene 120 −13.40 (−36.42, −0.43) 0.17
A_24_P919084 SLC22A16 solute carrier family 22 member 16 −14.34 (−36.44, −1.04) 0.17
A_23_P94840 DYNLRB2 dynein light chain roadblock-type 2 −17.57 (−41.44, −1.73) 0.17
A_24_P299663 ZBTB18 zinc finger and BTB domain containing 18 −21.07 (−44.19, −4.27) 0.17

Genes highlighted in red represent genes that are components of metabolism-related pathways. Abbre-
viations: ACMEs, average causal mediation effects; MDCs, metabolism-disrupting chemicals; p,p’-DDE,
dichlorodiphenyldichloroethylene; PCB-153, polychlorinated biphenyl 153; PFOA, perfluorooctanoic acid; PFOS,
perfluorooctane sulfonic acid; FDR, false discovery rate.

2.3. Pathways Associated with MDCs and Birth Weight

The MDC- or birth weight-associated pathways at FDR < 0.05 with at least five genes
involved are represented in Table S4. There were 17, 3, 27, 20, and 33 pathways associated
with p,p’-DDE, PCB-153, PFOA, PFOS, and birth weight, respectively; most of them were
related to genetic information processing and organismal systems. Notably, one metabolic
pathway [glycosaminoglycan biosynthesis] was linked to p,p’-DDE; three [metabolism of
xenobiotics by cytochrome P450, drug metabolism, and type 1 diabetes mellitus (T1D)] were
linked to PFOA, two [amino sugar and nucleotide sugar metabolism, type I diabetes melli-
tus] were linked to PFOS, and five [oxidative phosphorylation (OXPHOS), non-alcoholic
fatty liver disease (NAFLD), cysteine and methionine metabolism, sulfur metabolism, and
valine, leucine, and isoleucine degradation] were linked to birth weight.

At FDR < 0.05, we found that four, three, six, and three pathways associated with birth
weight ovrlapped with p,p’-DDE, PCB-153, PFOA, and PFOS, respectively (Figure 1). They
mostly belong to the “genetic information processing” category in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway Database [22], and none of them were metabolism-
related pathways (Table 4). The PC1 scores used to represent pathways in the mediation
analysis explained 37–57% of the variance in the involved genes, and given the insignificant
average causal mediation effects (ACMEs) with large FDR values, we did not observe any
pathway that mediated both MDC and birth weight (Table 4).

Table 4. The ACMEs of an MDC on birth weight via overlapping pathways.

p,p’-DDE

Pathway Category Gene Size Variance by PC1 (%) ACME (95% CI, g) FDR

Olfactory transduction OS (Sensory system) 143 40 −2.21 (−12.41, 3.39) 0.64
Taste transduction OS (Sensory system) 59 39 −1.49 (−10.67, 3.65) 0.64

Ribosome GIP (Translation) 126 49 −5.16 (−18.73, 4.64) 0.64
RNA transport GIP (Translation) 149 38 −1.75 (−11.13, 3.53) 0.64

PCB-153
Pathway Category Gene Size Variance by PC1 (%) ACME (95% CI, g) FDR

Ribosome GIP (Translation) 126 49 −1.10 (−12.15, 8.90) 0.85
Fanconi anemia pathway GIP (Replication and repair) 46 45 2.80 (−9.06, 17.83) 0.85

Mismatch repair GIP (Replication and repair) 22 56 3.42 (−8.67, 18.67) 0.85

PFOA
Pathway Category Gene Size Variance by PC1 (%) ACME (95% CI, g) FDR

Olfactory transduction OS (Sensory system) 143 40 3.11 (−9.18, 19.74) 0.78
NLRI EIP (Signaling molecules and interaction) 219 34 2.99 (−8.60, 18.53) 0.78

Spliceosome GIP (Transcription) 124 53 2.89 (−9.81, 19.16) 0.78
Proteasome GIP (Folding, sorting and degradation) 43 57 2.57 (−10.08, 18.81) 0.78
Autophagy CP (Transport and catabolism) 31 37 1.76 (−9.39, 17.44) 0.78

PPIER GIP (Folding, sorting and degradation) 156 41 2.92 (−8.66, 19.27) 0.78

PFOS
Pathway Category Gene Size Variance by PC1 (%) ACME (95% CI, g) FDR

Spliceosome GIP (Transcription) 124 53 2.44 (−5.78, 13.78) 0.71
Fanconi anemia pathway GIP (Replication and repair) 46 45 1.97 (−7.21, 13.64) 0.71



Int. J. Mol. Sci. 2023, 24, 7607 7 of 15

Table 4. Cont.
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Mismatch repair GIP (Replication and repair) 22 56 2.63 (−6.69, 14.38) 0.71

ACMEs were estimated by summarizing feature intensities with principal component, corresponding to
about 50% of transcription variance in the gene set from each pathway. Abbreviations: ACMEs, average
causal mediation effects; MDCs, metabolism-disrupting chemicals; p,p’-DDE, dichlorodiphenyldichloroethylene;
PCB-153, polychlorinated biphenyl 153; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid;
FDR, false discovery rate; NLRI, Neuroactive ligand–receptor interaction; PPIER, Protein processing in endoplas-
mic reticulum; OS, Organismal Systems; GIP, Genetic Information Processing; EIP, Environmental Information
Processing; CP, Cellular Processess.

3. Discussion

Transcriptome changes in early life may act in response to environmental exposures
and subsequently lead to adverse health outcomes later in life; however, epidemiological
studies are scarce. This is the first paper that evaluated the cord blood transcriptome with
MDC exposures and birth weight. We examined differences in transcriptomics at the gene
and pathway levels.

The five gene expressions that are metabolism-related and were found to be associated
with both an MDC and birth weight are BCAT2, IVD, SLC25a16, HAS3, and MBOAT2. Birth
weight may be altered by an MDC through one of these gene expressions, although we
did not find a mediating effect to be significant. Branched-chain amino acids (BCAAs)
are associated with the progression of obesity-related metabolic disorders [23]; addition-
ally, BCAA catabolism is suggested to play a role in the pathogenesis of metabolic dis-
turbances, and BCAT2 is an important enzyme that catalyzes the initial step of BCAA
catabolism [24,25]. In a recent human study [26], BCAT2 variants were detected in Spanish
infants suspected of having maple syrup urine disease—a rare metabolic disorder that some
babies are born with. In line with our finding on higher BCAT2 expression with high birth
weight, LBW pigs were found to express less BCAT2 mRNA in the longissimus dorsi muscle
compared to normal birth weight pigs [27]. Similarly, higher BCAT2 mRNA was revealed
in the blastocysts of diabetic rabbits compared to control blastocysts [28]. We observed an
inverse association of IVD expression with birth weight. It has been demonstrated that
the deficiency of the mitochondrial enzyme IVD may lead to isovaleric acidemia (IVA), an
inherited metabolic disorder that may cause problems with the breakdown of the amino
acid leucine [29]. Children with this condition may fail to gain weight and often experience
developmental delays [30]. SLC25a16 has been considered as a carrier of Grave’s disease,
which causes hypothyroidism [31]. On the other hand, hypothyroidism is thought to cause
HBW [32,33], which may explain the association we found between SLC25a16 and higher
birth weight, but this needs to be further explored. Our results on gene expression suggest
new insights into birth weight changes indirectly caused by MDCs, and also provide some
support, albeit weak signals, for the existing evidence from transcriptomics–birth weight
research. However, it is also important to note that none of the features selected for further
analyses from the TWAS models passed the FDR correction threshold; our gene expression
results should therefore be viewed as exploratory and hypothesis-generating.

Metabolism-related pathways linked to both an MDC and birth weight were not
observed in this study. However, some results on the metabolism-related pathways as-
sociated with an MDC or birth weight are noteworthy. For PFOA, we have observed
positive associations with the metabolism of xenobiotics by cytochrome P450 and drug
metabolism and inverse association with T1D. In a mouse study, PFOA was found to induce
the cytochrome P450 enzyme by activating constitutive androstane receptor (CAR) nuclear
receptors [34]. Another mouse study has shown that PFOA may induce drug metabolism,
and then lead to liver injury [35]. For PFOS, we observed inverse associations with amino
sugar and nucleotide sugar metabolism, and T1D. Consistently, PFOS-induced altered
amino sugar and nucleotide sugar metabolism were found in a recent zebrafish study, as
well as in Hispanic children [36,37]. In a large U.S. study, PFOA and PFOS were associated
with a reduced risk of T1D in adults [38], but in a recent Finnish study, they both were
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associated with an increased risk of T1D in newborns [39]. For birth weight, lower birth
weight was found to be associated with six metabolism-related pathways, comprising
OXPHOS, NAFLD, cysteine and methionine metabolism, sulfur metabolism, valine, leucine
and isoleucine degradation, and fatty acid biosynthesis. Consistent with our findings,
LBW was shown to be associated with OXPHOS in the skeletal muscle and myotubes of
Danish individuals [40,41]. A study investigating the relationship between birth weight
and NAFLD, in 538 children, also showed an overrepresentation of LBW in those with
NAFLD compared with the general U.S. population [42]. This inverse relationship between
birth weight and NAFLD occurrence was also confirmed in a large French prospective
cohort study of 55,034 adults [43]. Likewise, a recent systematic review and meta-analysis
demonstrated that excess methionine and cysteine led to lower birth weight [44]. The
effect of branched chain amino acids (valine, leucine and isoleucine) on birth weight
was not yet clear, and most of the existing studies were animal studies [44]. In addition,
there is growing evidence that there may be an association between high fatty acid levels
and LBW [45–48].

The strengths of our study include the well-defined sampling frame and the use of
omics techniques, which allow for the investigation of multiple genes and pathways si-
multaneously, in order to explore the impact of MDCs on the transcriptome perturbations
and the subsequent impact on the birth weight. We also acknowledge several limitations
of this study. First, the relatively small sample size (n = 193 mother–child pairs) of our
study population was prone to modest statistical power in detecting associations. Also for
this reason, we did not perform sex-specific analysis despite that EDCs have been shown
to exert different adverse effects in males and females, both in laboratory animals and in
humans [49]. Second, it should also be noted that the concentrations of p,p’-DDE, PCB-153,
and PFOS in our study population were relatively low compared with the median exposure
levels observed in other studies that found associations with birth weight [7,50,51], and
they may not have been high enough to have a measurable effect, or the limited contrast
in exposures may have limited statistical power to detect associations; PFOA levels were
more comparable with levels in other studies. Third, the cross-sectional design of the study
precluded establishing a temporal or causal relationship between MDC concentrations, tran-
scriptome, and birth weight. Last, as with any other observational epidemiological study,
there may be residual confounding bias due to uncontrolled unmeasured confounders, but
we expected these to be minimal, as we carefully adjusted for a set of covariates that have
been shown to be important with the help of directed acyclic graphs (DAGs).

In addition, the mechanisms are complex and sensitive windows, for exposure to
MDCs may vary depending on the specific chemical. Alterations at the molecular level
caused by MDCs may also differ according to the specific outcome being studied. There-
fore, different exposure windows and outcomes should be assessed in further studies
investigating the metabolism-disrupting effects of chemicals.

4. Materials and Methods
4.1. Study Population

We used data from the second cycle of the Flemish Environment and Health Study
(FLEHS II, 2008–2009), whose design and recruitment have been previously described
in detail [52]. In short, 255 mother–child pairs were recruited from Flanders, Belgium,
using a two-stage sampling procedure, with provinces as the primary sampling unit and
maternity units as the secondary sampling unit. Mothers who had lived for at least 10 years
in Flanders and were able to fill in Dutch questionnaires were invited to participate. The
number of participants in each province was proportional to the number of inhabitants.
Among the mother–child pairs, 195 were randomly selected for transcriptome profiling.
We restricted our analyses to the 193 term births (gestational age ≥37 weeks) in this study
because preterm birth is a potential mediator of the effects of chemical exposures on
birth weight [53].
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4.2. Exposure Assessment

Several classes of environmental chemicals were measured in cord blood samples.
Here, we have focused our analyses on MDC exposures that could be detected in at
least 60% of the cord blood samples [54]: p,p’-DDE, PCB-153, PFOA, and PFOS (see
Supplementary Material, Table S1 for detection rates, which ranged from 97 to 100% for
these four chemicals). Samples were collected immediately after birth and stored at −80 ◦C
until the measurements. MDC concentrations were measured using gas chromatography-
electron capture negative ionization mass spectrometry (for p,p’-DDE and PCB-153) and
high-performance liquid chromatography with tandem mass spectrometry detection (for
PFOA and PFOS), as previously described [55,56]. All of the samples had quantifiable con-
centrations of p,p’-DDE, PFOA, and PFOS, while for PCB-153, 3% of the samples had values
below the limit of quantification (LOQ, 300 ng/L). These values were then imputed using
maximum likelihood estimation, assuming a censored log-normal distribution for values
above the LOQ and conditional on the observed values for other biomarkers [54,57]. Lipid-
standardized p,p’-DDE and PCB-153 concentrations were calculated based on estimated
total lipids [total lipids = 50.49 + 1.32 × (cholesterol + triglycerides) (mg/dL)] and expressed as
ng/g lipids for subsequent analyses [15]. All MDC concentrations were log2-transformed
in order to reduce the potential influence of extreme values.

4.3. Transcriptome Profiling and Processing

As previously described [15,58], total RNA was extracted from the cord blood samples
and stored at −80 ◦C. Amplified and labeled cRNA were then hybridized to
4 × 44 K Agilent Whole Human Genome Microarray (design 014850, one-color exper-
imental setup with Cy3-labeling; Santa Clara, CA, USA), according to the manufacturer’s
protocol. Preprocessing, quality assessment, and normalization of the microarray data
were performed as described previously [15]. Briefly, the arrays were scanned with an
Agilent scanner (G2565BA) and were subjected to primary quality control using the Agilent
Feature Extraction Software (Version 10.7; Santa Clara, CA, USA). Furthermore, for each
feature on the array, the quantile-normalized and log2-transformed signal intensity derived
from Cy3 fluorescent dye was used for subsequent analyses. For replicated features on
the array, the mean of signal intensities was calculated. After control and noise filtering
by removing features with signal intensity below 3, 33,543 features retained. Thereafter,
we used the R package Combat to eliminate possible batch effects related to different hy-
bridization dates (28 dates from 14 September 2011 to 11 January 2012) [59,60]. Lastly,
26,170 (78.02%) features were annotated to a total of 17,880 unique gene symbols according
to the Molecular Signatures Database (MSigDB) and were subjected to further statistical and
functional analyses [61].

4.4. Outcome Assessment and Covariates

We considered birth weight (g) as our outcome of interest. DAGs were used to guide
the selection of covariates (Figures S1b and S2a). The set of minimally sufficient covariates
included sex of the child (girl, boy), smoking during pregnancy (smoking, non-smoking),
parity (0, 1, ≥2), maternal education (low, medium, high), maternal age at delivery
(<27, 27 < 30, 30 < 33, ≥33 years), pre-pregnancy BMI (<18.5, 18.5 < 25, 25 < 30,
≥30 kg/m2), and gestational age (weeks). Birth weight and child sex were collected
from maternity medical records. Other covariate data was obtained from questionnaires.
Missing data in covariates and exposures that were completely missing (1–3% and 1% of
participants had one of more missing values, respectively) were singly imputed using the
R package mice [62].

4.5. TWAS

TWASs were conducted in order to investigate the association of global transcriptomics
with (1) MDCs and (2) birth weight. We used the following multivariable linear models to
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evaluate the effects of MDC exposures and potential predictors of birth weight, for each
feature and MDC separately:

log2(feature intensityi) = β0 + β1 log2(MDCi) + β2 sexi + β3 smoking during pregnancyi
+ β4 parityi + β5 educationi + β6 age at deliveryi + β7 pre-pregnancy BMIi + β8

gestational agei + ε1i

(1)

birth weighti = γ0 + γ1 log2(feature intensityi) + γ2 sexi + γ3 smoking during
pregnancyi + γ4 parityi + γ5 educationi + γ6 age at deliveryi + γ7 pre-pregnancy BMIi

+ γ8 gestational agei + ε2i

(2)

where i indexes the study subjects and Model (1) describes the association between a
single transcriptomic feature and a single MDC, while Model (2) describes the association
between birth weight and a single transcriptomic feature. Parameters β0 and γ0 are the
model intercepts, while β1 and γ1 refer to the effect estimates (slopes) for a single MDC
on a single transcriptomic feature, and for a single transcriptomic feature on birth weight,
respectively. Parameters β2–8 and γ2–8 are coefficients corresponding to other covariates
in the model, and ε1i and ε2i represent the residual errors, which are assumed to follow a
normal distribution.

According to observed p-values for β1 and γ1, we estimated FDR using the method of
Benjamini and Hochberg to correct for multiple testing and to select significant features [63].

4.6. Enrichment Pathway Analysis

In order to find pathways associated with MDC exposures and birth weight, we car-
ried out Gene Set Enrichment Analyses (GSEA) using the WEB-based GEne SeT AnaLysis
Toolkit (WebGestalt; Los Angeles, CA, USA) tool with pathway gene sets from the KEGG
database [22,64,65]. First, we generated the respective ranked lists of all 26,170 features,
sorted by their degree of differential expression (log2-fold change) in cord blood in relation
to MDCs and birth weight, i.e., β1 and γ1 obtained from Models (1) and (2) [66,67]. Subse-
quently, the normalized enrichment scores were calculated, reflecting the degree to which
pathways were enriched by ranked genes, where positive and negative values represent
positive and inverse associations of pathways with MDCs or birth weight, respectively [68].
We restricted to pathways with at least five genes involved, and estimated the statistical
significance using 1000 gene set permutations with FDR correction for multiple testing.
Pathways with FDR < 0.05 were considered significant.

4.7. Mediation Analysis

Figure 2 outlines the workflow of the meet-in-the-middle approach used in this
study [69]. The overlapping selected features and pathways observed in association with
any of the four MDCs and birth weight were further explored by mediation analysis using
the R package mediation [70] to explore potential biological mechanisms and mediating
effects linking exposure and outcome. When assessing an overlapping feature as a mediator,
we included it in the mediation model, and computed ACMEs (also known as indirect
effects) using 1000 bootstrapped samples with FDR correction, and it was considered as a
potential mediating feature if the FDR < 0.05. When examining an overlapping pathway
as a mediator, we first performed a principal component analysis (PCA) on the genes
belonging to that pathway, and then used the first principal component score (PC1) to
represent that pathway in the mediation model [71,72]. ACMEs with FDR < 0.05 were
generated to identify potential mediating pathways.

4.8. Sensitivity Analysis

Recognizing that gestational age could be associated with MDC exposure and impact
transcriptome levels [15], combined with several other studies also showing that the
transcriptome was substantially influenced by gestational age [73,74], gestational age was
included as a control variable in our primary regression model of MDCs and transcriptome
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(TWAS Model (1)). On the other hand, the causal direction of the association between
gestational age and MDC is not entirely clear, and it is possible that gestational age mediates
the outcome [75]. Therefore, in a sensitivity analysis, we assessed MDC and transcriptome
associations without adjusting for gestational age in order to avoid adjustment for a
potential mediator [53].

All statistical analyses were performed in R version 4.1.0 [76].

Figure 2. The workflow of meet-in-the-middle approach in the present study.

5. Conclusions

In summary, we integrated cord blood TWASs in order to identify gene expressions
and pathways associated with MDCs and birth weight. Taken together, our study suggested
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five gene expressions associated with at least one MDC and birth weight. This provides
insight into the etiology of higher and lower birth weight and possible later metabolic
disorders, but again, this is an exploratory study with weak signals. In order to validate
our results and further understand the potential link between MDC exposures and birth
weight, and to elucidate the underlying mechanisms, studies with larger sample sizes and
prospective study designs combined with advanced omics techniques are warranted.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087607/s1.
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