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We construct a theory for Bose-Einstein condensation of light in nanofabricated semiconductor microcavities.
We model the semiconductor by one conduction and one valence band which consist of electrons and holes that
interact via a Coulomb interaction. Moreover, we incorporate screening effects by using a contact interaction
with the scattering length for a Yukawa potential and describe in this manner the crossover from exciton
gas to electron-hole plasma as we increase the excitation level of the semiconductor. We then show that the
dynamics of the light in the microcavities is damped due to the coupling to the semiconductor. Furthermore,
we demonstrate that on the electron-hole plasma side of the crossover, which is relevant for the Bose-Einstein
condensation of light, this damping can be described by a single dimensionless damping parameter that depends
on the external pumping. Hereafter, we propose to probe the superfluidity of light in these nanofabricated
semiconductor microcavities by making use of the differences in the response in the normal or superfluid phase
to a sudden rotation of the trap. In particular, we determine frequencies and damping of the scissors modes that
are excited in this manner. Moreover, we show that a distinct signature of the dynamical Casimir effect can be
observed in the density-density correlations of the excited light fluid.
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I. INTRODUCTION

The first observation of Bose-Einstein condensation in a
dilute atomic vapor opened up several different possibilities to
explore many-body phenomena in a completely new regime.
As before this observation it was hard to experimentally access
the macroscopic quantum regime, the low temperatures of
these systems created a playground for the investigation of
several interesting quantum effects. One prominent example is
the observation of superfluidity via the existence of quantized
vortices [1–3]. These developments were even more encour-
aged by the large experimental control that is available in the
cold atomic gases, leading also to the possibility to investigate
dynamical behavior.

More recently a class of Bose-Einstein condensates have
been observed that are fundamentally different from atomic
condensates and also allow for different experimental probes.
These Bose-Einstein condensates of bosonic quasiparticles
such as magnons [4], exciton-polaritons [5,6], and photons [7]
are dissipative systems. This leads to the possibility to
investigate phenomena that are not not yet observed in
atomic condensates, such as large number fluctuations in a
Bose-Einstein condensate of photons [8,9]. Moreover, it is
also interesting to investigate whether certain equilibrium
phenomena are still present in these dissipative systems.

Although the Bose-Einstein condensate of light allows
for dynamical measurements and new experimental probes,
there are still some disadvantages to the current experimental
approach [7,10]. First, it is inconvenient to dynamically change
the trap geometry of the photons. Supposing there exist few-ps
mechanical effects, see, e.g., Ref. [11], that in principle can
be used to excite the system, it remains to be seen if these
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techniques affect the interactions of the photons with the
dye. If so, these techniques may have a strong influence on
the thermalization of the photons. Last, it is very hard to
predict theoretically, and to a large extent it is still unknown
experimentally, how strongly the photons interact and what the
origin of the effective photon-photon interaction is. Therefore,
this is a large disadvantage for studying various many-body
phenomena of light.

To overcome these problems we propose to follow a differ-
ent experimental approach, namely nanofabricated semicon-
ductor microcavities. In this system we use a semiconductor
with a periodic array of holes filled with air to create a photonic
crystal as is shown in Fig. 1. The photons thermalize due to the
interaction with the electrons and holes in the semiconductor.

Moreover, by simply increasing the size of the holes when
moving further away from the center of the semiconductor, the
photons feel an effective harmonic trapping potential [12]. Fi-
nally, also in this case there is external pumping to compensate
for photon losses out of the microcavity. Although this suggests
that light in such nanofabricated semiconductor microcavities
is similar to photons in a dye-filled optical microcavity, the
former system has several advantages. Most importantly,
the interaction between the light and the semiconductor is
well understood; see, e.g., Ref. [13]. Therefore, there are
good prospects of controlling the effective photon-photon
interaction. Moreover, it is possible to change the cavity
geometry and it is also achievable to influence the photon
trap dynamically on a subpicosecond time scale [14–16].

A prime example of a many-body phenomenon of light
where the advantages of the semiconductor microcavity can
be utilized is superfluidity. In Ref. [17] it is shown that in
dissipative condensates a superfluid density can exist and
therefore it is expected that also a Bose-Einstein condensate
of photons can exhibit superfluidity. Although some work has
been carried out that mainly focuses on the frictionless flow of
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FIG. 1. A diagram of the proposed experimental setup to measure
the superfluidity of light: a semiconductor photonic crystal with
spatially varying hole size.

light through an obstacle, see, e.g., Refs. [18–21], up to now the
superfluidity of a Bose-Einstein condensate of photons has not
yet been explored, since it is unclear how the superfluidity of
this system can be probed in the current experiments. Namely,
recall that the standard experiment for probing the superfluid
behavior, i.e., observing the existence of quantized vortices
after rotation of the condensate, appears not to be feasible in a
dye-filled optical microcavity.

From studies in atomic Bose-Einstein condensates we know
that there is another method to obtain direct evidence for
superfluidity [22,23]. By applying a small sudden rotation
of the trapping potential the so-called scissors modes can be
excited. The modes are quite different from the excitations of
the atoms in the normal state. Therefore, the time evolution
of the angle between the axial direction of the condensate and
the new trap direction is distinct in the normal and superfluid
phases. As mentioned before, in current experiments this is
difficult to observe as a rotation of the cavity highly affects
the interactions of the photons with the dye and therefore
destroys the thermalization of the photons. In contrast, in a
semiconductor microcavity the trap geometry can be changed
on a subpicosecond time scale [14], which is much shorter
than the inverse trapping frequency which is typically on
the order of tens of gigahertz. Therefore, this fast change
of the cavity geometry is nonadiabatic, which allows for the
excitation of the scissors modes and probing the superfluidity
of a Bose-Einstein condensate of light.

Nonetheless, there are still major differences between the
dynamics of the scissors modes in Bose-Einstein condensates
of atoms and photons. The former systems are very clean and
therefore damping is typically not an issue, especially because
most experiments are carried out in the collisionless regime. As
a result, only for fine-tuned configurations of the experimental
setup, such as in Ref. [24], the scissors modes are damped by
Beliaev processes. In a Bose-Einstein condensate of light, on
the other hand, the photons are, as envisaged here, coupled

to electrons and holes in the solid-state cavity, that is pumped
with an external laser beam. In the context of exciton-polariton
systems it is shown that this pumping of the external bath
affects the superfluid properties [25,26]. We show here that
the coupling with the external bath gives rise to damping of
the scissors modes and in addition that this damping offers the
possibility to observe a dynamical Casimir effect. Moreover,
we demonstrate that the amount of damping also depends on
the external pumping.

The aim of this article is to investigate the superfluidity of
light. Since it is most convenient to study the superfluidity
of photons in nanofabricated semiconductor microcavities, we
first develop a model for describing light in a semiconductor.
In particular, we quantify the regime where exciton formation
is suppressed by calculating the susceptibility of the electronic
system and showing that at high enough densities there is no
excitonic response. In this regime there is photon gain without
exciton-polariton physics. To perform the calculation we first
need to understand the equation of state that relates electronic
chemical potentials to densities. To account for screening
effects, we determine how the electron-hole scattering length
depends on the carrier density by considering scattering from
a Yukawa potential with a screening length set by the electron
and hole densities. The equation of state is discussed both
for high and low carrier densities, however the high carrier
density is the one that is ultimately relevant. As this system
gives an opportunity to investigate the superfluidity of light
via the excitation of scissors modes, we also study the scissors
modes and in particular quantify the damping processes.

The layout of the paper is as follows. In Sec. II we model the
semiconductor by one conduction and one valence band and
describe the interactions between the electrons and holes by an
effective contact interaction, which is especially appropriate in
the electron-hole plasma regime of interest to us here where the
Coulomb potential is screened to a short-range interaction. We
include screening effects by calculating the scattering length
for the appropriate Yukawa potential. Hereafter, we consider
the coupling between light and the semiconductor in Sec. III.
We show that the coupling results in damping of the light and
we demonstrate that this damping can be characterized by a
single dimensionless parameter that depends on the external
pumping. After this, we apply our model and study an example
of a many-body phenomena of light where the advantages of
semiconductor microcavities are particularly useful. Namely,
in Sec. IV we propose to investigate the superfluidity of
light via the excitation of scissors modes. In Sec. IV A we
consider a sudden rotation of the trapping potential of an
elongated photon condensate and we calculate the decay
rates of the excitations in the Thomas-Fermi limit. Hereafter,
in Sec. IV B we propose to measure the density-density
correlations of the excited light fluid, since the decay products
of the scissors mode quanta also demonstrate an analog of the
dynamical Casimir effect. Finally, we end with conclusions
and discussion in Sec. V.

II. SEMICONDUCTOR

To investigate Bose-Einstein condensation of light in a
nanofabricated semiconductor we in the first instance ig-
nore the light and start with a model for a homogeneous
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semiconductor. We consider the following action:

Ssc[φ∗,φ] = −�

∑
i,ν

∫
�β

0
dτ

∫
dx φ∗

i,ν(x,τ )G−1
0i φi,ν(x,τ )

−
∑
ν,ν ′

∫
�β

0
dτ

∫
dx dx′ φ∗

e,ν(x,τ )φ∗
h,ν ′(x′,τ )

×Vs(x − x′)φh,ν ′(x′,τ )φe,ν(x,τ ). (1)

In this model we only take into account one valence and
conduction band and i denotes the electron e or hole h respec-
tively. The generalization to for instance one conduction band
and three valance bands is straightforward and can be easily
achieved once the experimentally relevant semiconductor is
known. The electron field and hole field are denoted by φi,ν

and φ∗
i,ν with ν and ν ′ representing the spin degeneracy that is

denoted by ↑ or ↓. The noninteracting Green’s function G−1
0i

is defined as

G−1
0i = −1

�

{
�

∂

∂τ
− �

2∇2

2mi

− μi

}
, (2)

where μi is the chemical potential and mi is the corresponding
mass of the electron or hole. Note that the band gap of the
semiconductor is absorbed in our definitions of the chemical
potentials. The same is true for the band-gap renormaliza-
tion due to the electron-electron and hole-hole Coulomb
interactions. The electron-hole interaction, however, needs
to be considered explicitly due to the possibility of exciton
formation.

In a semiconductor there are usually Coulomb interactions.
However, since we are mostly interested in the highly excited
regime where excitons do not exist and screening plays a
dominant role, we may simplify the theory and replace the
interaction potential by a contact interaction

Vs(x − x′) → −V0δ(x − x′), (3)

with V0 the effective interaction strength that we determine
self-consistently later on.

Now we perform Hubbard-Stratonovich transformations to
the pairing fields and integrate out the fermionic fields [27].
Note that we have to perform four different transformations
and therefore we introduce the fields �νν ′(x,τ ), of which the
averages are given by

〈�νν ′ (x,τ )〉 = V0〈φh,ν(x,τ )φe,ν ′ (x,τ )〉. (4)

We apply here the Nozières-Schmitt-Rink approximation and
only consider terms up to quadratic order in the pairing
fields [28], which is the simplest approximation that correctly
incorporates the crossover between an exciton gas and an
electron-hole plasma that occurs as a function of excitation,
i.e., pumping, of the semiconductor. In this approximation we
find that the thermodynamic potential 	 is given by

	 := 	1 + 	2 = 4

β

∑
P,n

ln[−1/�T MB(iωn,P)]

− 2

β

∑
p,i

ln(1 + e−β(εp,i−μi )), (5)

where ωn are bosonic Matsubara frequencies and εp,i =
�

2p2/2mi is the kinetic energy of the particle or hole. The
thermodynamic potential thus consists of the sum of the ideal
electron and hole contributions and a fluctuation correction.
The many-body T matrix in the above expression is defined as

1

T MB(iωn,P)

= 1

V0
− 1

V

∑
p′

1

εp′,e + εp′,h

+ 1

V

∑
p′

1 − NFD(εP−p′,e − μe) − NFD(εp′,h − μh)

−i�ωn + εP−p′,e + εp′,h − μe − μh

,

(6)

where NFD(x) = 1/(eβx + 1) is the Fermi-Dirac distribution
function. From now on we simplify the notation by omitting
the arguments of the many-body T matrix.

A. Interactions

To obtain a better understanding of the effect of the
interactions in our model, we now focus on the many-body
T matrix.

For simplicity we consider relatively small densities of
electrons and holes, such that the many-body effects, i.e., the
Fermi-Dirac distribution function in Eq. (6), can be neglected.
In this regime we find

1

T MB
= 1

V0
− m

3/2
r

2π�3

√−2(z − εP,e+h + μe + μh), (7)

where z is the complex center-of-mass energy associated with
the Matsubara frequencies iωn and mr is the so-called reduced
mass which is defined as

mr =
(

memh

me + mh

)
. (8)

Moreover, εP,e+h is the kinetic energy of the center-of-mass
motion of the electron and hole involved in the interaction that
is given by

εP,e+h = �
2P2

2(me + mh)
. (9)

We write the effective interaction strength as V0 = 4π�
2a/mr

with a the so-called effective scattering length of the potential
between the electron and hole.

From the expression for the many-body T matrix in Eq. (7)
we obtain two features as a function of the complex energy z.
First, we find that for positive values of V0 there is a pole on
the real axis. This corresponds to the exciton that is a bound
state of an electron and a hole. Second, we find that there is a
branch cut on the real axis, which corresponds to the continuum
of electron-hole scattering states. To see this explicitly we
calculate the density of electrons in the semiconductor. As we
only consider optical excitations, the electron density ne is
equal to the hole density nh. Hence, we define a carrier density
n as

n = ne = nh = − 1

V

(
∂	

∂μe

)
T

. (10)
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Since we have an analytical expression for the many-body
T matrix, we can also calculate the density analytically. By
using similar techniques as shown in Ref. [29], we perform the
summation over Matsubara frequencies by contour integration.
Note that we have to be careful with the branch cut and the
pole when choosing the contours. Ultimately, we find

n = nid + nex + nsc, (11)

where

nid = 1

2π2

(
2mi

�2

)3/2 ∫ ∞

0
dε

√
ε NFD(ε − μi),

nex = 
(a)

π2

(
2(me + mh)

β�2

)3/2 ∫ ∞

0
dε

√
ε NBE(εex),

nsc = − 1

2π3

�th

4a
√

π

(
2(me + mh)

β�2

)3/2

×
∫ ∞

0
dε

∫ ∞

−∞
dy

√
ε
NBE[ε − β(μe + μh) + y2]

y2 + (�th/4a
√

π )2
,

(12)

with 
 the Heaviside step function, β = 1/kBT , �th =
(2π�

2β/mr )
1/2

the thermal de Broglie wavelength, NBE(x) =
1/(ex + 1) the Bose-Einstein distribution function, and we
defined the dimensionless exciton energy εex as

εex = ε − β(μe + μh) − 1

16π

(
�th

a

)2

. (13)

We see that there are three contributions to the carrier density.
The first contribution is simply the ideal gas result. The second
part originates from the exciton bound state and the third part
describes the scattering continuum of electron-hole states. We
can calculate the separate contributions to the density as a
function of the value of the scattering length. In order to obtain
these values, we first take a certain carrier density n. Then we
can find the chemical potentials as a function of the scattering
length, by using Eqs. (11) and (12) for both i = e and i = h.
By resubstituting the chemical potentials, we obtain that every
contribution to the density only depends on the scattering
length and the carrier density. Therefore, we investigate the
effect of changing the value of these physical parameters. Of

course, because of screening, the effective scattering length
will also depend on the carrier density, but we ignore this in
the first instance and come back to this problem in a moment.

In Fig. 2 we show the exciton contribution nex and the
sum with the scattering contribution nsc as a function of
the scattering length. As an example, we take ZnO at room
temperature and use me = 0.28m0, mh = 0.59m0 with m0 the
bare electron mass; see Ref. [27]. First, we note from Eq. (12)
that there are only excitons for positive values of the scattering
length and therefore we only show the number of excitons
in this regime. For smaller values of the scattering length the
contribution of the excitons becomes larger. Furthermore, by
looking at the sum of the exciton and scattering contribution
as a function of the interactions, we note that there is a
smooth crossover from �th/a � 0 when the electrons behave
as an ideal gas, to �th/a 
 0 where almost all electrons
form excitons. Therefore, we note that this model for the
semiconductor describes both the exciton regime and the
regime where there is a electron-hole plasma. Moreover, we
note that the sum of the exciton and the scattering contribution
is an analog for the behavior of the Cooper-pair density in the
BEC-BCS crossover [30].

B. Scattering length

Up to now we have considered the scattering length as a
free parameter. However, in a semiconductor the interaction
depends on the value of the carrier density due to screening
effects. Here we only consider the effects of static screening
that can be described by using a Yukawa potential. Therefore,
we can make our model self-consistent by calculating the
scattering length for the Yukawa potential.

The standard procedure for calculating the scattering length
is via the so-called Born series. However, for a Yukawa
potential this will lead to divergences and taking into account
only the first term of this expansion is not sufficient. Therefore,
we here use a different approach. First, we note that the
scattering length is associated with a low-energy two-body
scattering wave function that is given by

ψ(r)
r→∞= A

(
1 − a

r

)
, (14)
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FIG. 2. (a) Fraction of electrons in excitons and (b) total fraction of electrons in the excitons and the scattering contributions as a function of
the inverse of the interaction parameter a for ZnO. The solid and dashed lines correspond to a carrier density of n = 1023 m−3 and n = 1024 m−3

respectively. We obtain a smooth crossover from �th/a � 0 where the electrons and holes behave as an ideal gas and form an electron-hole
plasma, to �th/a 
 0 where almost all electrons and holes form excitons.
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where A is a normalization constant that is usually taken
to be 1 for many-body applications. Moreover, if we define
u(r) = rψ(r) then this function satisfies the following radial
Schrödinger equation:

�
2

2mr

d2u(r)

dr2
= V (r)u(r), (15)

where V (r) is a potential and r is the relative coordinate
between the electron and hole. Note that this is an equation for
the relative motion between the electron and hole and therefore
we have to use the reduced mass mr in the kinetic energy
part. For relatively large distances the potential vanishes and
therefore the wave function given by Eq. (14) is a solution to
this equation.

Hence, we have to solve this equation and look at the
solution at large distances. To find the scattering length, we
use that

−a = lim
r→∞

(
u(r)

u′(r)
− r

)
. (16)

Thus by solving the radial Schrödinger equation as written in
Eq. (15) we can find the scattering length.

For the semiconductor we assume that there is only static
screening and therefore we are allowed to take a Yukawa
potential that is defined as

V (r) = − e2

4πε0εrr
e−r/λs , (17)

with e the electron charge, ε0 the vacuum permittivity, εr the
appropriate relative dieletric constant, and λs the screening
length. We calculate the screening length by assuming that
only the unbound carriers screen the potential. Although this
approximation leads to an overestimation of the screening
length, we expect that this is a small effect since screening by
bound carriers is weaker than screening by unbound carriers.

In this approximation the screening length λs satisfies
λ−2

s = λ−2
e + λ−2

h with

λi =
√

ε0εr

e2

∂μ0
i

∂n
, (18)

the screening lengths of the electron and hole plasmas
respectively. Note that in this formula the superscript 0 of
the chemical potential indicates that we calculate from the
unbound carrier density by treating the electron and hole as
ideal Fermi gases. To find the scattering length for the Yukawa
potential we still need to specify the boundary conditions in
Eq. (15). Since the potential is infinite at r = 0, we must take
u(0) = 0. Moreover, we set u′(0) = 1. Note that this latter
boundary condition is simply a matter of normalization and
does not affect the value of the scattering length.

In Fig. 3 we display the scattering length as a function
of the carrier density by determining the screening length
with the ideal-gas parts of the electron and hole densities. For
convenience we again consider ZnO with the values as stated
in Ref. [27]. We observe that there are multiple resonances or
equivalently values of the carrier density where the scattering
length diverges. This is a consequence of the changing value of
the screening length for different carrier densities. For larger
carrier densities, the screening length becomes smaller and

a/
Λ

   th

0
    n(        m    )   -3

-100

100

0

1023
1 2

FIG. 3. The scattering length for ZnO as a function of the carrier
density by using the Yukawa potential with a screening length
that is calculated for the ideal-gas parts of the electron and hole
densities. We obtain that the last resonance occurs at the Mott density
nM � 2.3 × 1024 m−3.

therefore roughly speaking the potential is less deep. Hence,
for small carrier densities the Yukawa potential supports more
bound states. Furthermore, every resonance corresponds to
a bound state and we find that the last resonance occurs
at the Mott-density nM � 2.3 × 1024 m−3. Densities up to
two orders of magnitude above the Mott density are readily
obtainable below the damage threshold of ZnO, in bulk as
well as nanowire samples [27,31]. For carrier densities that
are larger than the Mott density, the scattering length always
remains negative. Therefore, this calculation shows that there
are only excitons for carrier densities that are smaller than the
Mott density. Note that this is in agreement with previously
obtained results and the value for the Mott density is within
the range of published data [27].

For large carrier densities we only have to take into account
the last resonance. Moreover, for carrier densities that are close
to nM we can approximate

a(n)

�th
� 2.1

nM

nM − n
. (19)

C. Many-body effects

We are primarily interested in the regime where the amount
of excitons is negligible, because this is the regime where
Bose-Einstein condensation of light is possible. From the
results in the last section, we know that we therefore have
to consider large carrier densities. At these high densities the
many-body effects, i.e., the Fermi-Dirac distribution functions
in Eq. (6), become important. Therefore, we now focus on
these contributions and we consider the part of the many-body
T matrix that has been neglected before, namely

1

(2π )3

∫
dp′ NFD(εP−p′,e) + NFD(εp′,h)

i�	n − εP−p′,e − εp′,h + μe + μh

. (20)

In first instance we only consider the imaginary part and
we neglect the real part. For further purposes we need to
calculate this many-body T matrix for i	n → ω+ = ω + iε,
where ε > 0 is infinitesimally small. By switching to spherical
coordinates and performing the angular integration, we find
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that there is only a nonzero imaginary part if

y := �ω + μe + μh − εP,e+h > 0. (21)

The imaginary part is given by


(y)

4π�2P

[∫ ph
max

ph
min

dp k me NFD(εp,h) + 〈e ↔ h〉
]
, (22)

where P = |P| and 〈e ↔ h〉 denotes that there is a similar
contribution as the first integral where the indices e and h are
interchanged. Furthermore,

ph
min = 1

�

√
2y

memh

me + mh

− mh

me + mh

P,

(23)

ph
max = 1

�

√
2y

memh

me + mh

+ mh

me + mh

P,

where pe
min and pe

max are given by a similar expression with
again the indices e and h interchanged.

By using∫ ph
max

ph
min

dp p NFD(εp,h)

= − mh

β�2
ln

[
e−βμh + e−β�

2(ph
max)2/2mh

e−βμh + e−β�2(ph
min)2/2mh

]
, (24)

we obtain for the full many-body T matrix

1

T MB
= 1

V0
− 
(−y)

m
3/2
r

π�3

√
−y + iε

2
− imemh

4πβ�4P

×
(y)ln

[
cosh

(
β

2 {�ω + Ce+h}
) + cosh

(
β

2 Ce−h

)
cosh

(
β

2 {�ω − Ce+h}
) + cosh

(
β

2 Ce−h

)]
,

(25)

where

Ce+h = 4
√

memh

me + mh

√
y εP,e+h,

(26)
Ce−h = μe − μh + me − mh

me + mh

(y − εP,e+h).

Note that this result includes the two-body result as given by
Eq. (7). Moreover, in the context of ultracold Fermi gases a
similar calculation has already been performed in Ref. [32].
As expected, we agree with that result if we put me = mh = m

and μe = μh = μ.
Now we use this result to find a self-consistent solution for

the chemical potential of the electrons and holes. Recall that

ni = − 1

V

(
∂	

∂μi

)
T

= 2

V

∑
p

NFD(εp,i)

− 4�

V

∑
P

∫
d(�ω) ρi(ω,P)NBE(ω), (27)

where

ρi(ω,P) = − 1

π�
Im

[
T MB(ω,P)

∂

∂μi

1

T MB(ω,P)

]
. (28)

As in the previous sections, we only want to consider optical
excitation. Therefore, for simplicity, from now on we neglect

the dependence of the many-body T matrix on μe − μh and
set

Ce−h = me − mh

me + mh

(
y − εP,e+h

)
. (29)

In this case the spectral function is the same for i = e and
i = h and we again define the carrier density as n = ne = nh.

The spectral function ρ(ω,P) = ρe(ω,P) = ρh(ω,P) of the
pairs contains two different contributions that we can separate
by considering either y < 0 or y > 0. For y < 0, we obtain
that the logarithm does not contribute in Eq. (25). In this case
we can analytically determine the spectral function and we
find

ρ(ω,P) = 
(a)

�
δ

(
�ω − εP,e+h + μe + μh + �2

th

16πβa2

)
.

(30)

By using the result of Eq. (13) we recognize that this
contribution to the spectral function is simply a δ function
at the exciton energy. Again recall that this contribution is
only present when the scattering length is positive and from
the results in the previous section this implies that for carrier
densities larger than the Mott density this contribution is not
present.

The other contribution to the spectral function is obtained
by taking y > 0. In this case the square root in the expression
for the many-body T matrix vanishes and we are left with the
contribution from the logarithm. This represents the scattering
continuum of electrons and holes.

In Fig. 4 we show the result for the chemical potentials
of electrons and holes as a function of the carrier density n

for ZnO as discussed in Ref. [27]. In comparison with the
calculation in that article, where the chemical potentials are
determined by treating the electron and holes as two ideal
Fermi gases, we find slightly smaller values for both chemical
potentials. For example, we find for the value of the carrier
density that corresponds to population inversion, i.e., μe +
μh > 0, a value that is roughly two times larger than stated in
Ref. [27].

βμ
i

0 6 8

0

2

-2

-4

4

6

    n(       m )-31025

1042

FIG. 4. The chemical potential of the electrons μe (solid) and the
chemical potential of the holes μh (dashed) for ZnO as a function of
the carrier density by using the self-consistent scattering length for
the Yukawa potential.
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III. LIGHT IN SEMICONDUCTOR MICROCAVITIES

Now that we worked out the model for the semiconductor,
we consider the full situation and include the coupling to an
external light field. Similar to Bose-Einstein condensation of
light in a dye-filled cavity, we can describe the complete dy-
namics using the Schwinger-Keldysh formalism as presented
in Ref. [33]. As will follow from the results in this section,
in this case the self-energy as given in the Langevin field
equation in Ref. [33] is proportional to the susceptibility of the
semiconductor. However, also for Bose-Einstein condensation

of light in nanofabricated semiconductor microcavities the
system relaxes towards a steady state that can be described
by standard equilibrium methods. It is important to realize
here that throughout our paper we are always considering the
thermalized case, and in particular are not discussing the fully
nonequilibrium laser regime of this system. Moreover, the
typical harmonic oscillator length of the photon trap mentioned
in the Introduction is sufficiently large such that the effects
of the trap can be treated in local-density approximation and
therefore we only need to consider the homogeneous case here.

We start from the action

S[ak,a
∗
k,φk,φ

∗
k] = Ssc[φk,φ

∗
k] +

∑
k

∫
�β

0
dτ a∗

k(τ )

{
�

∂

∂τ
+ εph(k) − μph

}
ak(τ )

− geh√
V

∑
k,p,ν

∫
�β

0
dτ a∗

k(τ )φh,p,−ν(τ )φe,k−p,ν(τ ) − geh√
V

∑
k,p,ν

∫
�β

0
dτ ak(τ )φ∗

e,k−p,ν(τ )φ∗
h,p,−ν(τ ). (31)

This action contains several parts. First, Ssc[φk,φ
∗
k] describes

the semiconductor, which is the momentum-space representa-
tion of Eq. (1). The second part describes the light with a∗

k(τ )
and ak(τ ) the photon fields. Here, εph(k) is the kinetic energy
of the photons. By performing a full band structure calculation,
e.g., see Ref. [12], we know that

εph(k) ∼= E0 + �
2(k − k0)2

2m
, (32)

with E0 the energy of the photon at the minimum of the band
with respect to the energy of the band gap of the semiconductor,
k0 the wave number at the minimum of the band, and m the
effective mass that arises from the local curvature of the band.
In equilibrium, the sum of the number of electron and photons
and the sum of holes and photons is conserved. Therefore, in
equilibrium we have

μph = μe + μh. (33)

The last two terms of Eq. (31) describe the interaction of
the light with the semiconductor. The first of these terms
corresponds to the annihilation of electron-hole pairs by the
electric field and the second term is the creation of electron-
hole pairs by the electric field. Recall that ν represents the
spin degeneracy of the electrons and holes and can be either
↑ or ↓.

In the interactions terms we only consider electrons and
holes with opposite spin and therefore we only take into
account transitions without spin flip.

Moreover, we introduced the coupling constant geh and we
assumed that the coupling is independent of energy. Finally,
note that the photons and the corresponding momentum k are
two dimensional. However, the electron and holes are three
dimensional and therefore p is also a three-dimensional vector.
This convention will be used throughout the remainder of this
paper.

To obtain the effect of the coupling to the semiconductor
on the behavior of the photon gas, we use second-order
perturbation theory in the coupling constant geh. By following
the same steps as in the Appendix of Ref. [27], we find the

effective action for the photons to be

Seff[ak,a
∗
k] := −

∑
k,n

a∗
k,n�G−1

γ (k,iωn)ak,n

=
∑
k,n

a∗
k,n{−i�ωn + εph(k) − μph − χk(ωn)}ak,n.

(34)

Here the susceptibility χk(ωn) acts as a self-energy for the
photons. In the Nozières-Schmitt-Rink approximation it is
given by

χk(ωn) = g2
eh

V

∑
p

χk,p(ωn), (35)

with

χk,p(ωn) = χ0
k,p(ωn)

⎛
⎝1 − V0

V

∑
p′

χk,p′(ωn)

⎞
⎠. (36)

Hence,

χk,p(ωn) = χ0
k,p(ωn)

1 + V0
V

∑
p′ χ

0
k,p′(ωn)

, (37)

where

χ0
k,p(ωn) = 1 − NFD(εk−p,e) − NFD(εp,h)

i�ωn − εk−p,e − εp,h + μe + μh

. (38)

From the previous section we know the effective interaction
strength V0 and the chemical potentials as a function of
the carrier density. Therefore, we can determine the finite
lifetime effects of the photons due to the interaction with
the electron-hole plasma by calculating the imaginary part of
the susceptibility χk(ω) for every carrier density. In principle
we can determine the susceptibility for arbitrary photon
momentum k. However, since we are primarily interested
in Bose-Einstein condensation of the photons, we from now
onwards only consider k = 0.
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FIG. 5. The imaginary part of the susceptibility χ0(ω) divided by
the energy of the photon at the minimum of the band E0 as a function
of the photon energy for geh � 1.7 × 10−32 J m3/2 and E0 = 0.72 eV.
The dotted, dashed, and solid curves correspond to a carrier density
of n = 1025 m−3, n = 5 × 1025 m−3, and n = 1026 m−3 respectively.

In Fig. 5 we display the imaginary part of the suscep-
tibility for geh � 1.7 × 10−32 J m3/2. Note that this value
only changes the absolute value of the imaginary part and
does not affect the qualitative behavior. However, the actual
value for these physical parameters should be obtained from
experiments on optical spectra of the semiconductor. We find
that for small carrier densities the imaginary part is only
nonzero for positive photon energies. However, for carrier
densities that are large enough, we also obtain negative
contributions for negative energies. This is a consequence of
the fact that only for large enough carrier densities there is
gain of photons by emission processes. Moreover, we find that
for large carrier densities, where there is substantial gain of
photons, the imaginary part of the susceptibility is linear for
small values of the photon energy. Note that this is similar to the
result for Bose-Einstein condensation of light in a dye-filled
optical microcavity as presented in Ref. [33]. Therefore, in this
regime we can write for small energies

Im[χ0(ω)] � iα�ω, (39)

where α is the slope at zero frequency of the curves in
Fig. 5. Hence, in this regime of large carrier densities we can
combine the finite-lifetime effects of the photons in a single
dimensionless parameter α. This parameter contains all the
dependence on the properties of the semiconductor and also
depends on the carrier density and therefore the pumping of the
material. This parameter α is important to determine whether
the photons are thermalized, since the lifetime through the
interaction with the electron-hole plasma typically reads

τ = �

αE
, (40)

where E is the energy of the photon. To obtain a thermalized
photon gas τ should be a few orders of magnitude smaller than
the time that the photon remains in the system. Therefore,
whether the photons thermalize can directly be determined
from our model after the parameters of the semiconductor
are known and the coupling constant geh is determined from
comparing with experimental data on the reflectivity of the
semiconductor. For now it is difficult to determine an accurate

estimate for the thermalization as for this the incorporation of
carrier-phonon, carrier-impurity, and carrier-carrier scattering
in the semiconductor is also important [27]. However, by
using the values as stated in Ref. [27], we obtain that the
thermalization is at least within the subnanosecond regime.
Note that we considered a homogeneous semiconductor
coupled to an external light field. However, in the proposed
experiment as envisaged here, the semiconductor contains air
holes, in which there are of course no electron or holes. In this
case we need to multiply α by 1 − ηair, where ηair corresponds
to the fraction of the volume of the holes of the semiconductor.

Up to now we only considered carrier densities that are
larger than the Mott density. In this case we are in the
pure photon regime, whereas for carrier densities that are
smaller than the Mott density the photons are coupled to the
exciton and therefore exciton-polariton excitations exist. To
emphasize the difference between the two density regimes,
we now investigate the spectral function of the photons in the
two different regimes. We define the spectral function of the
photons as

ργ (k,ω) = −1

π�
Im[Gγ (k,ω+)], (41)

where Gγ (k,iωn) is defined in Eq. (34) and ω+ = ω + iε with
ε is infinitesimally small.

In Fig. 6 we show the dimensionless spectral function
ργ (k,ω) eV for geh � 9 × 10−34 J m3/2 and E0 = 0.4 eV as a
function of the photon energy. Below the Mott density we have
two distinct contributions. Due to the coupling of the excitons
to the photons, we have two peaks corresponding to the lower
and upper exciton-polariton branches. Note that the photons
that are part of the upper exciton-polariton acquire a finite
lifetime, since their energy is larger than the energy threshold
for the scattering continuum of electrons and holes. However,
for carrier densities that are larger than the Mott density, the
excitons are no longer present. In this case the spectral function
only has a pure photon contribution, where the interaction
with the semiconductor results in a finite lifetime of the
photon. Therefore, in this spectral function we clearly find
the physical differences between the exciton-polariton and the
photon limits of the crossover. It is important to note that
Bose-Einstein condensation of photons appears only in the
regime described in Fig. 6(b).

IV. SCISSORS MODES

In the previous section we constructed a model for Bose-
Einstein condensation of light in nanofabricated semicon-
ductor microcavities. From now onwards we focus on an
example of a many-body phenomenon of light that cannot
be studied with the currents experiments on Bose-Einstein
condensation of photons, but can be investigated in the
proposed experimental setup. Namely, we consider probing
the superfluidity of light via the excitation of scissor modes.

We consider a two-dimensional photon gas with effective
mass m and an effective pointlike interaction g in an external
harmonic trapping potential V ext(x) with trapping frequencies
ωx and ωy . Note that in the nanofabricated semiconductor
microcavities the harmonic potential arises by systematically
increasing the size of the holes from the center to the edge
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FIG. 6. The spectral function of the photons above and below the Mott density of n � 2.3 × 1024 m−3 for geh � 9 × 10−34 J m3/2 and
E0 = 0.4 eV. In (a) the density is n = 3.1 × 1023 m−3 and (b) is for a carrier density of n = 1 × 1025 m−3. Below the Mott density there are
two different contributions corresponding to the upper and lower exciton polaritons. However, above the Mott density excitons do not exist and
therefore there are only pure photons that acquire a finite lifetime through the interaction with the electrons and holes. This is the regime in
which Bose-Einstein condensation of light is possible.

of the semiconductor. Furthermore, in the previous section
we showed that there is an excitation exchange between the
photon gas and the electron-hole plasma, but, apart from such
processes, photons are assumed to be conserved. Therefore, we
are allowed to consider this quasiequilibrium photon gas in the
grand-canonical ensemble and to introduce the chemical po-
tential μ of the photons. Moreover, we introduce a dimension-
less interaction parameter g that describes the interactions be-
tween the photons. By using a similar procedure as performed
in Ref. [9] and applying fourth-order perturbation theory in the
coupling constant geh, an explicit expression for this parameter
can be obtained from Eq. (31). However, this calculation is
rather involved and beyond the scope of this article. There-
fore, we here simply use a phenomenological approach to
incorporate the interactions between the photons and leave the
calculation of the photon-photon interaction for future work.

We are interested in the dynamics of a condensate of light
after a sudden rotation of the trap. In the following, we treat
the local density and local phase of the condensate separately
and we consider a condensate with a large number of photons
such that we can use the Thomas-Fermi approximation. Note
that the scissors modes also exist in the regime where the
Thomas-Fermi approximation is not valid and we only use
this approximation for simplicity.

In the Thomas-Fermi approximation the equilibrium con-
densate density n0(x) is equal to

n0(x) = μ

g
[1 − (x/RTF,x)2 − (y/RTF,y)2], (42)

with R2
TF,i = 2μ/mω2

i the Thomas-Fermi radius in the corre-
sponding direction. Furthermore, the density is zero outside
the ellipse that is spanned by these two radii. A rotation of the
trap by a small angle χ results into a change in the condensate
density δn(x) that is given by

δn(x,t) := [n0(x′) − n0(x)]e−iωt = Cxye−iωt , (43)

where x′ are the coordinates after the sudden rotation of the
trap and C is a normalization constant. Here we used that for
an eigenmode the time dependence is harmonic with angular
frequency ω. To obtain more information about the fluctuations
of the local phase, we consider the hydrodynamic equations

of the condensate as for example can be found in Ref. [34].
By assuming that both the velocity of the condensate and the
density fluctuations δn(x) are small, we find for the phase of
the condensate

δφ(x,t) = g

i�ω
Cxye−iωt . (44)

Moreover, for a harmonic trapping potential the frequency of
the scissors mode is given by ω = (ω2

x + ω2
y)1/2. The normal-

ization constant C can be determined from the normalization
condition of the corresponding Bogoliubov amplitudes and we
find

C :=
√

12�ω

πgR3
TF,yR

3
TF,x

. (45)

In the normal state the dynamics after a sudden rotation is
different and we have to distinguish between the collisional and
collisionless regime. In the collisional regime the frequency of
the excitations is the same as in the superfluid phase [22].
However, if the gas is dilute and the interactions are weak,
the system is in the collisionless regime and the analog of the
scissors-mode frequency is equal to ωx + ωy . By comparing
the classical collision rate with the trap frequencies, we
can make a distinction between both regimes. By using the
expressions as specified in Ref. [22], we know how to construct
the experiment conditions such that we are in the collisionless
regime and we can distinguish whether the photons are super-
fluid or not by measuring the frequencies of the excitations of
the photon gas after applying a rotation to the trap.

A. Damping of scissors modes

We have just seen that the superfluidity of the photons can
be studied by looking at the frequencies of the excitations
after applying a sudden rotation to the trap. These scissors
modes result in oscillations that can directly be observed in
experiments. For high pumping powers the number of photons
that are not in the ground state can be neglected and the scissors
modes can be observed by simply monitoring the oscillations
in the position of the condensed photons. However, due to
the coupling of the photons with the electron-hole plasma the
damping of the scissors modes is enhanced and it is worthwhile
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2

v

v

FIG. 7. The cigar-shaped superfluid photon gas after a sudden
rotation of the trapping potential by a small angle χ . The dashed
lines indicates the oscillations of the condensate and the solid arrows
denote the irrotational velocity �v of the condensed photons. The red
wiggly arrows represent the decay products of the scissors mode
quanta that can be used to demonstrate the dynamical Casimir effect.

investigating how this coupling leads to the damping of these
oscillations.

We have demonstrated that for a Bose-Einstein condensate
of light, at large carrier densities the effects of the electron-
hole plasma can be characterized by a single dimensionless
damping parameter α that depends on the external pumping.
Moreover, the photon gas equilibrates to a steady state that
is a dynamical balance between particle losses and external
pumping. In the following we start from this steady state and
we investigate the associated decay processes of the scissors
modes. In particular, we show that the decay rate depends on
the value of α and thereby on the external pumping.

To observe properties of the damping, we are primarily in-
terested in configurations that allow for many decay processes.
For an elongated trap, the difference between the energies
of two adjacent modes in the direction with the small trap
frequency is small. Therefore, we expect that in that case the
energy of the excitations in the long direction almost forms
a continuum and the scissors mode quanta can decay into
many other modes. Hence, this elongated trap is particularly
interesting and we only consider this configuration throughout
the remainder of this paper. A summary of the proposed
structure is displayed in Fig. 7.

We are interested in damping processes where fluctuations
of the condensate induce the creation of noncondensed excita-
tions and therefore we only have to consider the interaction part
of the Hamiltonian. We substitute for the creation and annihila-
tion operator of the photons ψ̂(x,t) = 〈ψ̂(x,t)〉 + δψ̂(x,t) and
we only consider terms up to quadratic order in the fluctuations
δψ̂(x,t). In this Bogoliubov approximation, we therefore study

Ĥint(t) = g

2

∫
dx 〈ψ̂(x,t)〉2[δψ̂†(x,t)]2

+ g

2

∫
dx 〈ψ̂†(x,t)〉2[δψ̂(x,t)]2

+ g

∫
dx |〈ψ̂(x,t)〉|2δψ̂†(x,t)δψ̂(x,t). (46)

Now we explicitly separate the dynamics of the local
phase and density of the condensate by writing 〈ψ̂(x,t)〉 =√

n0(x) + δn(x,t)eiδφ(x,t), with n0(x) the equilibrium conden-
sate density and both δn(x,t) and δφ(x,t) fluctuations that
are known from the calculations in the previous section.
Since these fluctuations are small, we only consider the first
nonvanishing term in the condensate fluctuations. For the

harmonic potential that is considered here, the parts of the
Hamiltonian that are linear in the condensate fluctuations
δn(x,t) and δφ(x,t) vanish, since the fluctuations are odd
under y → −y. Hence, there is no decay of a single scissors
mode quantum at this level of approximation and we have to
consider the parts of the Hamiltonian that are quadratic in the
condensate fluctuations.

We introduce the Bogoliubov amplitudes uj (x) and vj (x)
according to

δψ̂(x,t) =
∑

j

[uj (x)b̂j (t) − v∗
j (x)b̂†j (t)],

(47)
δψ̂†(x,t) =

∑
j

[u∗
j (x)b̂†j (t) − vj (x)b̂j (t)],

where j = 1,2, . . . indicates the mode number of the excita-
tion. Note that we neglect the contributions coming from j = 0,
since we are only interested in the decay into noncondensed
excitations and the j = 0 term correspond to the dynamics of
the global phase of the condensate. Therefore, we have

ĤI (t) = e−2iωt
∑

j,j ′ �=0

Hj,j ′ b̂
†
j (t)b̂†j ′(t)

= (gC)2

�ω
e−2iωt

∑
j,j ′ �=0

(
H 1

j,j ′ + gH 2
j,j ′

�ω

)
b̂
†
j (t)b̂†j ′(t),

(48)

where

H 1
j,j ′ =

∫
dx x2y2[u∗

j (x)u∗
j ′ (x) − v∗

j (x)v∗
j ′(x)],

(49)

H 2
j,j ′ =

∫
dx x2y2n0(x)[u∗

j (x)u∗
j ′(x) + v∗

j (x)v∗
j ′(x)].

To make further progress, we need to determine the Bo-
goliubov amplitudes and determine the time dependence of
the operators b̂j (t) and b̂

†
j (t). Hence, we need to solve the

Bogoliubov–de Gennes equations.
In two dimensions the general solution of the Bogoliubov–

de Gennes equations is not known. However, in the elon-
gated configuration we expect that the dynamics of the
long-wavelength photons is approximately one dimensional.
Therefore, we use the exact solution of the Bogoliubov–de
Gennes equations in one dimension, see, e.g., Ref. [35], in
order to make a proper variational ansatz for the form of
the noncondensed fluctuations in the elongated configuration.
In the Appendix we show that in this variational approach
b̂j (t) = b̂j e

−iωj t , with energy eigenvalues �ωj that are given
by

�ωj = �ωx

√
j (j + 1)/3. (50)

Here ωx is the trapping frequency in the long direction, i.e.,
ωx � ωy . Moreover,

uj (z) = 1√
Nj

(
Aj

√
1 − |z|2 + Bj√

1 − |z|2

)
Pj (x̃),

(51)

vj (z) = 1√
Nj

(
Aj

√
1 − |z|2 − Bj√

1 − |z|2

)
Pj (x̃).
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with z = (x̃,ỹ) = (x/RTF,x,y/RTF,y) and Pj (x̃) the Legendre
polynomials. Furthermore, the explicit expression of the
normalization constant Nj is equal to

Nj = 4(5
√

6 − 12)
∫ 1

−1
dx̃(1 − x̃2)1/2[Pj (x̃)]2, (52)

and the constants Aj and Bj are given by

Aj = (3 − √
6)√

RTF,xRTF,y

√
2μ√
6�ωj

,

(53)

Bj = (
√

6 − 2)

2
√

RTF,xRTF,y

√√
6�ωj

2μ
,

with ωj the energy eigenvalues from Eq. (50). By using these
expressions for the Bogoliubov amplitudes, we find for Hj,j ′

as defined in Eqs. (48) and (49),

Hj,j ′ = 2g

πRTF,yRTF,x

×
⎡
⎣(√

ωj ′

ωj

+
√

ωj

ωj ′
+

√
ωjωj ′

2ω

)
Z

2,3
j,j ′√

Z
0,1
j,j Z

0,1
j ′,j ′

+ 16μ2

35�ω
√

�ωj�ωj ′

Z
2,7
j,j ′√

Z
0,1
j,j Z

0,1
j ′,j ′

⎤
⎦, (54)

where we used the shorthand notation

Z
m,n
j,j ′ =

∫ 1

−1
dx̃ x̃m(1 − x̃2)n/2Pj (x̃)Pj ′ (x̃). (55)

To investigate the damping of the scissors modes, we are
interested in the transition rate for creating two excitations
with frequency ωj and ωj ′ from the vacuum through the decay
of two scissors mode quanta.

By applying Fermi’s “golden rule,” we obtain

Wj,j ′ � 8π |Hj,j ′ |2
�(1 + δj,j ′ )

ρ(ωj + ωj ′). (56)

From this expression we observe that the matrix elements
Hj,j ′ determine the magnitude of the decay rate and therefore
are important for determining which decay processes are
dominant. Also

ρ(ωj + ωj ′ ) = 1

π�

α(ωj + ωj ′ )

(ωj + ωj ′ − 2ω)2 + [α(ωj + ωj ′ )]2
. (57)

Here we introduced a final density of states ρ(E) to incorporate
that, due to the interaction with the electron-hole plasma,
there is a probability that the photon is in a state with an
energy that is within a small band around ωj + ωj ′ . Note that
for the current experiments we have that β(�ωj + �ωj ′ ) � 1
with β = 1/kBT the inverse of the thermal energy. Therefore,
we used the low-energy approximation for the density of
states [33]. As the dimensionless damping parameter α is
small, we directly satisfy Wj,j ′ � 0 to a very good approx-
imation if the photons scatter into a state with energy outside
the small band around ωj + ωj ′ . Note that the nonzero value of
α makes our calculation specific to dissipative Bose-Einstein
condensates and not immediately applicable to a cold atomic
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FIG. 8. The decay rate of two scissors mode quanta into a
noncondensed mode Wj = ∑

j ′ Wj,j ′ (1 + δj,j ′ ) with mode number
j for μ = 10 ωy , ωy = 10 ωx , and α = 10−2.

gas, where α = 0 and Beliaev damping of the scissors modes is
only possible in the presence of fine-tuned degeneracies [24].

In Fig. 8 we show the decay rate Wj = ∑
j ′ Wj,j ′ (1 + δj,j ′ )

for μ = 10 ωy , ωy = 10 ωx and α = 10−2. Because half the
frequency of the scissors mode ω is roughly equal to ω17, we
obtain a peak for j = 17. Furthermore, we find that the decay
of the scissors modes indeed leads to the population of several
noncondensed modes.

B. Density-density correlation function

We now consider the situation that the scissors modes are
being excited and we consider the density-density correlation
function in the operator formalism. Thus, we define

g(2)(x,x′,t) = 〈ρ̂(x,t)ρ̂(x′,t)〉
〈ρ̂(x,t)〉〈ρ̂(x′,t)〉 − 1, (58)

where ρ̂(x,t) = ψ̂†(x,t)ψ̂(x,t) is the density operator. We
again take ψ̂(x,t) = 〈ψ̂(x,t)〉 + δψ̂(x,t) and we explicitly
separate the fluctuations that are described as scissors modes
and Bogoliubov excitations by writing δψ̂(x,t) = δψ̂s(x,t) +
δψ̂B(x,t). As a consequence, the density-density correlation
function contains the density-density correlations from the
scissors modes and also a term from the density-density cor-
relations between the Bogoliubov modes. From now onwards
we take y = y ′ = 0 such that the contribution of the scissors
modes vanishes, as can be seen explicitly in Eqs. (43) and (44).

For the part with the Bogoliubov excitations we can use
Eq. (47) to rewrite the result in terms of the Bogoliubov
amplitudes u(x) and u(x). We find

g(2)(x,x′,t) = 1√
n0(x)n0(x′)

∑
n

[un(x) − vn(x)]

× [un(x′) − vn(x′)]{1 + 2〈b̂†n(t)b̂n(t)〉}, (59)

where Nn(t) = 〈b̂†n(t)b̂n(t)〉 is the number of excitations in
a mode n at time t . The contribution of g(2)(x,x′,t) that is
independent of Nn(t) has an ultraviolet divergence that can
be resolved by an appropriate subtraction [36]. However,
generally this part is negligible compared to the contribution
that depends on Nn(t) as the photons are at room temperature.
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Thus, in the following we neglect this so-called quantum
contribution.

To find the number of excitations Nj (t), we solve the
following coupled system of equations:

∂Ns(t)

∂t
+

∑
j

∂Nj (t)

∂t
= 0,

∂Nj (t)

∂t
= N2

s (t)
∑
j ′

Wj,j ′ [1 + Nj ′ (t)][1 + δj,j ′ + Nj (t)],

(60)

where Ns(t) denotes the number of scissors mode quanta
and Wj,j ′ is the decay rate that is defined in Eq. (56). As a
lower limit we neglect the Bose stimulation factors in the rate
equations and in this approximation we find

Nj (t) = N2
s (0)

∑
j ′ Wj,j ′ (1 + δj,j ′ )t

1 + Ns(0)
∑

j,j ′ Wj,j ′ (1 + δj,j ′ )t
. (61)

Now we use the decay rates as displayed in Fig. 8 and as an
illustration we consider a time t such that Nj (t) = Wj/Wmax.
The corresponding contribution of the decay of the scissors
modes to the density-density correlation function is displayed
in Fig. 9.

Note that in experiments there is always another contribu-
tion from the thermal background, which is given by replacing
〈b†n(t)bn(t)〉 by the Bose-Einstein distribution function at
energy �ωn. Therefore, to obtain the result of this figure
experimentally, the contribution from the thermal background
should be subtracted.

This is only possible when the contribution originating
from this decay process is large enough compared to the
background contribution. If we consider a time t such that
Nj (t) = Wj/Wmax, for x � x ′ the value of the background
contribution is at least two orders of magnitude larger and
therefore we expect that in this region it is difficult to observe.
However, for |x̃ − x̃ ′| � 0.2 the largest value of the thermal
background is maximally a factor of 10 larger than the

x
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FIG. 9. The density-density correlation function of the Bogoli-
ubov excitations 8n0ξ

2g(2)(x,x′,t), where n0ξ
2 = �

2/2mg with ξ the
so-called coherence length and n0 the condensate density in the center
of the trap, in terms of (�ωx)2

�ωy/μ
3 for y = y ′ = 0.

scissors mode contribution. The exact time scale at which
the number of excitations Ni(t) takes this value depends on
many parameters such as the number of scissors modes and
the trapping frequencies. For an estimate we take the values
of the parameters from current experiments on Bose-Einstein
condensation of photons and we obtain that this condition can
be fulfilled within the nanosecond regime.

We calculated the number of excitations Nn(t) while
ignoring the Bose stimulation factors in the rate equations.
To compare with experimental results, the incorporation of
these additional terms can be important. In first approximation
these factors can be incorporated by replacing the number of
excitations by their expectation value. As this renormalization
increases the decay rate, we obtain that within the nanosecond
regime the signal of the decay of the scissors modes is
comparable to the background for |x̃ − x̃ ′| � 0.2. Hence, we
expect that the effect of the decay of the scissors modes can
be distinguished from the background and is observable in the
density-density correlation function.

In the elongated configuration, as envisaged here, the
Bogoliubov amplitudes are proportional to Legendre poly-
nomials. Since these are approximately standing waves, the
scissors mode decays predominantly into a pair of excitations
consisting of an excitation with a certain local momentum
k and −k. This then also explains the correspondence with
the dynamical Casimir effect as an external perturbation,
in this case a sudden rotation of the trap, which leads to
the creation of phonon pairs from the vacuum. Therefore,
a measurement of this density-density correlation function
would give a demonstration of an analog of the dynamical
Casimir effect in a Bose-Einstein condensate of light, which
up to now only is considered in atomic and exciton-polariton
condensates [37–39].

V. DISCUSSION AND CONCLUSION

In this work we discussed a model for a semiconductor that
qualitatively contains the correct crossover physics. However,
to obtain the correct quantitative result, several improvements
have to be made. First, in our model we only take into account
one conduction and valence band. In a realistic semiconductor
there are multiple bands that all have to be included. Moreover,
we have not taken into account the band-gap renormalization
when self-consistently determining the chemical potential.
However, for quantitative agreement it will be important to
be more careful about this and include the effect of Coulomb
screening on the renormalization of the band gap.

Another simplification is the use of the contact interaction
for the interactions between the electrons and holes. Normally,
these interactions are described by a Yukawa potential due to
screening effects in the semiconductor. Although we use the
scattering length for the Yukawa potential as input for the
strength of the contact interaction, taking a contact interaction
for the interactions between the electrons and holes is still a
rough approximation at low carrier densities where screening
is not very effective. However, we are primarily interested in
large carrier densities and in this regime the Yukawa potential
behaves more and more like a contact interaction. We verified
that in this regime the susceptibility for Yukawa interactions
and the contact interaction agree quite well. For a quantitative
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agreement at all carrier densities, the Yukawa potential has
to be taken into account. Another extension of our model
is to consider dynamical screening effects, which become
important at very high carrier densities [40].

In conclusion, we considered Bose-Einstein condensation
of light in nanofabricated semiconductor microcavities. We
modeled the semiconductor as a two-band system consisting
of electrons and holes that interact via a contact interaction.
To incorporate screening effects, we use the scattering length
for the Yukawa potential as input parameter for the strength
of the contact interaction. We demonstrated that this model
contains a qualitative description of the regime with and
without excitons. Moreover, we have shown that if we couple
light to the semiconductor, for large carrier densities the finite
lifetime effects of the photons can be characterized by a single
dimensionless parameter α, which is proportional to the slope
of the imaginary part of the susceptibility at zero energy.
Hereafter, we have proposed to probe the superfluidity of
the light in the nanofabricated semiconductor microcavities
via the excitation of the scissors modes. By using Fermi’s
golden rule and a variational ansatz to calculate the Bogoliubov
amplitudes, we determined the decay rates of the scissors
modes into the noncondensed excitations. Finally, we have
demonstrated that the density-density correlation function of
the excited light fluid exhibits an analog of the dynamical
Casimir effect.
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APPENDIX: DERIVATION OF BOGOLIUBOV
AMPLITUDES

In this Appendix we give the details of the variational cal-
culation of the solution of the two-dimensional Boguliobov–
de Gennes equations for a cigar-shaped condensate in the
Thomas-Fermi limit. Since the exact solution is not known,
we perform a variational calculation and consider the ansatz

uj (z) = 1

2
√

Cj

[
αj

√
1 − |z|2 + βj√

1 − |z|2

]
Pj (x̃),

(A1)

vj (z) = 1

2
√

Cj

[
αj

√
1 − |z|2 − βj√

1 − |z|2

]
Pj (x̃),

with z = (x̃,ỹ) = (x/RTF,x,y/RTF,y) and Pj (x̃) the j th
Legendre polynomial. Furthermore, the constants αj and βj

are given by

αj = 1√
RTF,xRTF,y

√
μ

�	j

,

(A2)

βj = 1

2
√

RTF,xRTF,y

√
�	j

μ
,

with 	j = ωx

√
j (j + 1)/2 the energy eigenvalues of the

one-dimensional problem. Also RTF,x and RTF,y correspond
to the Thomas-Fermi radius of the condensate in the specified
direction. Moreover, we defined the constant Cj which is
given by

Cj =
∫ 1

−1
dx̃ (1 − x̃2)1/2[Pj (x̃)]2. (A3)

This ansatz corresponds to a solution for an elongated trap
where the excitation only propagates in the direction with
the small trapping frequency. Note that if from the start we
would have set y = 0, our ansatz simplifies to the exact
solution in one dimension as given in Ref. [35]. This implies
that in one dimension the Boguliobov–de Gennes equation
becomes diagonal in the basis (uj (x,0),vj (x,0)). However, in
two dimensions the modes (uj (x,y),vj (x,y)) are not exact
eigenmodes and are coupled to each other. In the remainder of
this Appendix we show how the resulting off-diagonal problem
can again be diagonalized and results in Eq. (51) of the article.

Since the photons are in a good first approximation
equivalent to nonrelativistic particles with an effective mass
m and pointlike interaction with strength g, we consider the
following action within the functional-integral formalism in
the Bogoliubov approximation:

S[φ∗,φ] =
∫

dτ

∫
dx φ∗(x,τ )G−1(x,τ )φ(x,τ )

+ g

2

∫
dτ

∫
dx n0(x){[φ∗(x,τ )]2 + [φ(x,τ )]2}.

(A4)

Here we defined

G−1(x,τ ) = �
∂

∂τ
− �

2∇2

2m
+ V ext(x) − μ + 2gn(x). (A5)

Furthermore, φ(x,τ ) and φ∗(x,τ ) are the fields that describe the
fluctuations that originate from the Bogliubov approximation
ψ(x,τ ) = 〈ψ(x,τ )〉 + φ(x,τ ), n0(x) is the condensate density,
n(x) equals the total density, and V ext(x) corresponds to the
external trapping potential. We consider the usual Bogoliubov
transformation with

φ(x,τ ) =
∑

j

[uj (x)bj (τ ) − v∗
j (x)b∗

j (τ )], (A6)

and the ansatz from Eq. (A1) for the coherence factors. This
allows us to rewrite

S = 1

2

∫
dτ

∑
j,j ′

[
bj (τ )
b∗

j (τ )

]†
·
([

Gj,j ′,11 Gj,j ′,12

Gj,j ′,12 Gj,j ′,11

]

+ �
∂

∂τ

[
Gj,j ′ 0

0 −Gj,j ′

])
·
[
bj ′ (τ )
b∗

j ′ (τ )

]
, (A7)
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with

Gj,j ′ =
∫

dx [uj (x)uj ′ (x) − vj (x)vj ′(x)],

Gj,j ′,11 = −g

∫
dx n0(x)[uj (x)vj ′(x) + uj ′ (x)vj (x)]

+
∫

dx [uj (x)G−1(x)uj ′ (x) + vj (x)G−1(x)vj ′(x)],

Gj,j ′,12 = g

∫
dx n0(x)[uj (x)uj ′(x) + vj (x)vj ′(x)]

−
∫

dx [uj (x)G−1(x)vj ′ (x) + vj (x)G−1(x)uj ′(x)].

(A8)

Here we used that un(x) and vn(x) are real. Furthermore,

G−1(x) = G−1(x,τ ) − �
∂

∂τ
= − �

2

2m

∂2

∂x2
+ gn0(x), (A9)

where we used the Gross-Pitaevski equation in the Thomas-
Fermi limit. Moreover, in this limit we can also neglect the
second-order derivative with respect to y. This is valid as G−1

acts on un(x) and vn(x) that only have y dependence in the
density.

We consider Fj (x) = uj (x) + vj (x) and Gj (x) = uj (x) −
vj (x) with uj (x) and vj (x) as given by Eq. (A1). Then,

− �
2

2m

∂2

∂x2
uj (x) = − �

2

4m

∂2

∂x2
[Fj (x) + Gj (x)]

= − �
2

4m

∂2

∂x2
Fj (x) = 1−x̃2−ỹ2

1 − x̃2

�	j

2
Gj (x),

(A10)

where we used the results of Ref. [29] and the fact that we
are in the Thomas-Fermi limit and therefore neglected the
derivatives of the densities. Namely, all these derivatives result
into second-order derivatives of densities or terms that contain
n′

0(x)/n0(x), which are all small in the Thomas-Fermi limit.
Similarly, we find that

− �
2

2m

∂2

∂x2
vj (x) = 1 − x̃2 − ỹ2

1 − x̃2

�	j

2
Gj (x). (A11)

Now, we define

Ij,j ′ = 1√
CjCj ′

∫ 1

−1
dx̃ Pj (x̃)Pj ′ (x̃)

√
1 − x̃2. (A12)

Then,

Gj,j ′ = 1

2

[
4

√
j ′(j ′ + 1)

j (j + 1)
+ 4

√
j (j + 1)

j ′(j ′ + 1)

]
Ij,j ′ ,

Gj,j ′,11 =
(

�	j ′

3
+ �	j

2

)
4

√
j ′(j ′ + 1)

j (j + 1)
Ij,j ′ , (A13)

Gj,j ′,12 =
(

�	j

2
− �	j ′

3

)
4

√
j ′(j ′ + 1)

j (j + 1)
Ij,j ′ .

For now we ignore the coupling between modes where j �= j ′.
Note that this is in general a good approximation as the integral

Ij,j ′ has a maximal value for j = j ′ and gradually decreases if
j is further and further away from j ′. This allows us to rewrite

S = 1

2

∫
dτ

∑
j

b∗
j (τ )

(
�

∂

∂τ
+ 5�	j

6

)
bj (τ )

−1

2

∫
dτ

∑
j

bj (τ )

(
�

∂

∂τ
− 5�	j

6

)
b∗

j (τ )

+�	j

12

∫
dτ

∑
j

[bj (τ )]2 + [b∗
j (τ )]2. (A14)

To complete our variational approach we determine the
equations of motion, which allows us to determine the time
dependence of the operators bj (τ ) and b∗

j (τ ). We find for the
equations of motion(

�
∂

∂τ
+ 5�	j

6

)
bj (τ ) + �	j

6
b∗

j (τ ) = 0,

(A15)(
�

∂

∂τ
− 5�	j

6

)
b∗

j (τ ) − �	j

6
bj (τ ) = 0,

for every j = 0,1, . . .. Hence,

bj (τ ) = c∗
ne

√
/2/3	j τ + dj e

−√
2/3	j τ ,

(A16)
b∗

j (τ ) = cne
−√

2/3	j τ + d∗
j e

√
2/3	j τ .

Thus the energy of the excitations for j = 0,1,2, . . . is
equal to

�ωj = �	j

√
2/3 = �ωx

√
j (j + 1)/3. (A17)

To quantify the effect of neglecting the nondiagonal terms,
we numerically determine the eigenvalues of the full problem,
where we consider terms from j = 1 to j = 75. The largest
error of roughly 15% occurs for j = 1. For the other values of
j the error is even smaller and less than 10%. Therefore, it is
indeed a good first approximation to neglect the nondiagonal
terms.

By resubstituting the expressions in Eqs. (A16) into
Eqs. (A15) we obtain

d∗
j = −(5 + 2

√
6)c∗

j ,
(A18)

cj = (2
√

6 − 5)dj .

Hence, up to an overall normalization constant

φ(x,τ ) =
∑

j

[ũj (x)dj e
−ωj τ − ṽ∗

j (x)d∗
j eωj τ ], (A19)

where

ũj (x) = uj (x) + (5 − 2
√

6)v∗
j (x),

(A20)
ṽ∗

j (x) = v∗
j (x) + (5 − 2

√
6)uj (x).

By using this result from the variational ansatz, we obtain our
final expression as stated in Eqs. (51)–(53).
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