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Abstract
Recent work on vector-based compositional natural language semantics has

proposed the use of density matrices to model lexical ambiguity and (graded)
entailment. Ambiguous word meanings, in this work, are represented as mixed
states, and the compositional interpretation of phrases out of their constituent
parts takes the form of a strongly monoidal functor sending the derivational
morphisms of a pregroup syntax to linear maps in FdHilb.

Our aims in this paper are threefold. Firstly, we replace the pregroup front
end by a Lambek categorial grammar with directional implications expressing
a word’s selectional requirements. By the Curry-Howard correspondence, the
derivations of the grammar’s type logic are associated with terms of the (or-
dered) linear lambda calculus; these terms can be read as programs for compo-
sitional meaning assembly with density matrices as the target semantic spaces.
Secondly, we extend on the existing literature and introduce a symmetric, non-
degenerate bilinear form called a “metric” that defines a canonical isomorphism
between a vector space and its dual, allowing us to keep a distinction between
left and right implication. Thirdly, we use this metric to define density matrix
spaces in a directional form, modeling the ubiquitous derivational ambiguity
of natural language syntax, and show how this allows an integrated treatment
of lexical and derivational forms of ambiguity controlled at the level of the
interpretation.
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1 Introduction

Semantic representations of language using vector spaces are an increasingly pop-
ular approach to automate natural language processing, with early comprehensive
accounts given in [4, 16]. This idea has found several implementations, both theo-
retically and computationally. On the theoretical side, the principle of composition-
ality [12] states that the meaning of a complex expression can be computed from
the meaning of its simpler building blocks and the rules used to assemble them. On
the computational side, the distributional hypothesis [11] asserts that a meaning
of a word is adequately represented by looking at what words most often appear
next to it. Joining these two approaches, a distributional compositional categorical
(DisCoCat) model of meaning has been proposed [5], mapping the pregroup alge-
bra of syntax to vectors spaces with tensor operations, by functorialy relating the
properties of the categories that describe those structures, allowing one to interpret
compositionality in a grammar-driven manner using data-extracted representations
of words that are in principle agnostic to grammar. This method has been shown to
give good results when used to compare meanings of complex expressions and with
human judgements [10]. Developments in the computation of these vectors that use
machine learning algorithms [15] provide representations of words that start devi-
ating from the count-based models. However, each model still provides a singular
vector embedding for each word, which allows the DisCoCat model to be applied
with some positive results [30].

The principal limitation of these embeddings, designated static embeddings,
is that it provides the same word representation independently of context. This
hides polysemy, or even subtler gradations in meaning. Using the DisCoCat frame-
work, this issue has been tackled using density matrices to describe lexical ambigu-
ity [22,23], and using the same framework also sentence entailment [24] and graded
hyponymy [1], since the use of matrices allows the inclusion of correlations between
context words. From the computational side, the most recent computational lan-
guage models [7,21] present contextual embeddings of words as an intrinsic feature.
In this paper we aim at reconciling the compositional distributional model and these
developments by presenting density matrices as the fundamental representations of
words, thus leveraging previous results, and by introducing a refined notion of tensor
contraction that can be applied even if we do not assume that we are working with
static embeddings coming from the data, thus additionally presenting the possibility
of eliminating the distinction between context and target words, because all words
can be equally represented with respect to one another. To achieve this, we build
the components of the density matrices as covariant or contravariant by introducing
a metric that relates them, extending to the interpretation space the notion of direc-
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tionality of word application, as a direct image of the directional Lambek calculus.
After that, we attach permutation operations that act on either type of components
to describe derivational ambiguity in a way that keeps multiple readings represented
in formally independent vector spaces, thus opening up the possibility of integration
between lexical and syntactic ambiguity.

Section 2 introduces our syntactic engine, the Lambek calculus (N)L/,\, together
with the Curry-Howard correspondence that associates syntactic derivations with
programs of the ordered lambda calculus λ/,\. Section 3 motivates the use of a
more refined notion of inner product and introduces the concept of a tensor and
tensor contraction as a basis independent application of a dual vector to a vector,
and introduces a metric as the mechanism to go from vectors extracted from the
data to the dual vectors necessary to perform tensor contraction. Section 4 gives
some background on density matrices, and on ways of capturing the directionality
of our syntactic type logic in these semantic spaces using the previously described
metric. Section 5 then turns to the compositional interpretation of the λ/,\ programs
associated with (N)L/,\ derivations. Section 6 shows how the directional density
matrix framework can be used to capture simple forms of derivational ambiguity.

2 From proofs to programs
With his [13, 14] papers, Jim Lambek initiated the ‘parsing as deduction’ method
in computational linguistics: words are assigned formulas of a type logic designed
to reason about grammatical composition; the judgement whether a phrase is well-
formed is the outcome of a process of deduction in that type logic. Lambek’s original
work was on a calculus of syntactic types, which he presented in two versions. With
L/,\ we refer to the simply typed (implicational) fragment of Lambek’s [13] associa-
tive syntactic calculus, which assigns types to strings; NL/,\ is the non-associative
version of [14], where types are assigned to phrases (bracketed strings).1

Van Benthem [27] added semantics to the equation with his work on LP, a
commutative version of the Lambek calculus, which in retrospect turns out to be a
precursor of (multiplicative intuitionistic) linear logic. LP is a calculus of semantic
types. Under the Curry-Howard ‘proofs-as-programs’ approach, derivations in LP
are in 1-to-1 correspondence with terms of the (linear) lambda calculus; these terms

1Neither of these calculi by itself is satisfactory for modelling natural language syntax. To handle
the well-documented problems of over/undergeneration of (N)L/,\ in a principled way, the logics
can be extended with modalities that allow for controlled forms of reordering and/or restructuring.
We address these extensions in [6].
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Terms: t, u ::= x | λrx.t | λlx.t | t / u | u . t

Typing rules:

x : A ` x : A Ax

Γ, x : A ` t : B
Γ ` λrx.t : B/A I/

x : A,Γ ` t : B
Γ ` λlx.t : A\B

I\

Γ ` t : B/A ∆ ` u : A
Γ,∆ ` t / u : B E/

Γ ` u : A ∆ ` t : A\B
Γ,∆ ` u . t : B E\

Figure 1: Proofs as programs for (N)L/,\.

can be seen as programs for compositional meaning assembly. To establish the
connection between syntax and semantics, the Lambek-Van Benthem framework
relies on a homomorphism sending types and proofs of the syntactic calculus to
their semantic counterparts.

In this paper, rather than defining semantic interpretation on a commutative
type logic such as LP, we want to keep the distinction between the left and right
implications \, / of the syntactic calculus in the vector-based semantics we aim
for. To achieve this, our programs for meaning composition use the language of
Wansing’s [29] directional lambda calculus λ/,\. Wansing’s overall aim is to study
how the derivations of a family of substructural logics can be encoded by typed
lambda terms. Formulas, in the substructural setting, are seen as information pieces,
and the proofs manipulating these formulas as information processing mechanisms,
subject to certain conditions that reflect the presence or absence of structural rules.
The terms of λ/,\ faithfully encode proofs of (N)L/,\; information pieces, in these
logics, cannot be copied or deleted (absence of Contraction and Weakening), and
information processing is sensitive to the sequential order in which the information
pieces are presented (absence of Permutation).

We present the rules of (N)L/,\ with the associated terms of λ/,\ in Fig 1. The
presentation is in the sequent-style natural deduction format. The formula language
has atomic types (say s, np, n for sentences, noun phrases, common nouns) for
complete expressions and implicational types A\B, B/A for incomplete expressions,
selecting an A argument to the left (resp. right) to form a B.
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Ignoring the term labeling for a moment, judgments are of the form Γ ` A, where
the antecedent Γ is a non-empty list (for L) or bracketed list (NL) of formulas, and
the succedent a single formula A. For each of the type-forming operations, there is
an Introduction rule, and an Elimination rule.

Turning to the Curry-Howard encoding of NL/,\ proofs, we introduce a language
of directional lambda terms, with variables as atomic expressions, left and right λ
abstraction, and left and right application. The inference rules now become typing
rules for these terms, with judgments of the form

x1 : A1, . . . , xn : An ` t : B. (1)

The antecedent is a typing environment providing type declarations for the variables
xi; a proof constructs a program t of type B out of these variables. In the absence of
Contraction, Weakening and Permutation structural rules, the program t contains
x1, . . . , xn as free variables exactly once, and in that order. Intuitively, one can
see a term-labelled proof as an algorithm to compute a meaning t of type B with
parameters xi of type Ai. In parsing a particular phrase, one substitutes the meaning
of the constants (i.e. words) that make it up for the parameters of this algorithm.

3 Directionality in interpretation
In order to introduce the directionality of the syntactic calculus in the semantic
calculus, we expand on the existing literature that uses FdVect as the interpretation
category by calling attention to the implied inner product. We introduce a more
abstract notion of tensor, tensor contraction and the need to introduce explicitly the
existence of a metric, coming from the literature of general relativity, following the
treatment in [28].2 Formally, a metric is a function that assigns a distance between
two elements of a set, but if applied to the elements of a set that is closed under
addition and scalar multiplication, that is, the elements of a vector space, it becomes
an inner product. Since we will be looking at vector spaces, we use the terms metric
and inner product interchangeably.

To motivate the need for a more careful treatment regarding the inner product,
lets look at a very simple yet illustrative example. Suppose that a certain language
model provides word embeddings that correspond to two-dimensional, real valued
vectors. In this model, the words “vase” and “wall” have the vector representations
~v and ~w, respectively

2An alternative introductory treatment of tensor calculus can be found in [8].
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~v = (0, 1), and ~w = (1, 0). (2)

This representation could mean that they are context words in a count-based model,
since they form the standard (orthogonal) basis of R2, or that they have this partic-
ular representation in a particular context-dependent language model. To compute
cosine similarity, the notion of Euclidean inner product is used, where the compo-
nents corresponding to a certain index are multiplied:

~v · ~w = 0 · 1 + 1 · 0 = 0, (3)

which we can use to calculate the cosine of the angle θ between these vectors,

cos(θ) = ~v · ~w
‖~v‖ · ‖~w‖

= 0 · 1 + 1 · 0 = 0
1 · 1 = 0. (4)

Thus, if the representations of these words are orthogonal, then using this measure
to evaluate similarity we conclude that these words are not related. However, there is
a degree of variation in the vectors that are assigned to the distributional semantics
of each word. Static embeddings are unique vector representations given by a global
analysis of a word over a corpus. The unique vector assigned to the semantics
of a word depends on the model used to analyze the data, so different models do
not necessarily put out the same vector representations. Alternative to this are
dynamic embeddings, which assign different vector representations to the same word
depending on context, within the same model.

Therefore, there are at least three ways in which the result of eq.4 and subsequent
interpretation can be challenged:

1. Static Embeddings. If the representations come from a count-based model,
choosing other words as context words changes the vector representation and
therefore these words are not orthogonal to one another anymore; in fact this
can happen with any static embedding representation when the basis of the
representation changes. Examples of models that give static embeddings are
Word2Vec [15] and GloVe [20].

2. Dynamic Embeddings. When the vector representations come from a
context-dependent embedding, changing the context in which the words are
evaluated influences their representation, which might not be orthogonal any-
more. Dynamic embeddings can be obtained with i.e. ELMo [21] and BERT
[7].
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3. Expectation of meaning. Human judgements, which are the outcomes of
experiments where subjects are explicitly asked to rate the similarity of words,
predict that some words should have a degree of relationship. Therefore, the
conclusion we derive from orthogonal representations of certain words might
not be valid if there is a disagreement with their human assessment. These
judgements are condensed in datasets such as the MEN dataset [3].

While points 1 and 2 can be related, caution is necessary in establishing that link.
On a preliminary inspection, comparing the cosine similarity of context-free embed-
dings of nouns extracted from pre-trained BERT [7] with the normalized human
judgements from the MEN dataset [3], we find that the similarity between two
words given by the language model is systematically overrated when compared to
its human counterpart. One possible explanation is that the language model is com-
paring all words against one another, so it is an important part of similarity that
the two words belong to the the same part of speech, namely nouns, while humans
assume that as a condition for similarity evaluation. Further, though we can ask
the language model to rate the similarity of words in specific contexts, that has not
explicitly been done with human subjects. A more detailed comparison between
context-depend representations and human judgement constitutes further research.

One way to reconcile the variability of representations and the notion of simi-
larity is to expand the notion of inner product to be invariant under the change of
representations. Suppose now that by points 1 or 2 the representations of “vase”
and “wall” change, respectively, to

~v′ = (1, 1), ~w′ = (−1, 2). (5)

These vectors also form a basis of R2, but not an orthogonal one. If we use the same
measure to compute similarity, taking normalization into account, the Euclidean
inner product gives ~v′ · ~w′ = (−1) · 1 + 1 · 2 = 1 and cosine similarity gives

cos(θ′) = ~v′ · ~w′

‖~v′‖ · ‖~w′‖
= 1√

2 ·
√

5
= 1√

10
. (6)

If now we have a conflict between which representations are the correct ones, we can
look at the human evaluations of similarity. Suppose that it corresponds too to 1√

10 .
We argue in this paper that, by introducing a different notion of inner product,

we can fine-tune a relationship between the components of the vectors with the
goal to preserve a particular value, for example a human similarity judgement. In
this framework, the different representations of words in dynamic embeddings are
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brought about by a change of basis, similarly to what happens when the context
words change in static embeddings, in which case the value of the inner product
should be preserved. This can be achieved by describing the inner product as a
tensor contraction between a vector and a dual vector, with the latter computed
using a metric.

Let V be a finite dimensional vector space and let V ∗ denote its dual vector
space, constituted by the linear maps from V to the field R. A tensor T of type
(k, l) over V is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R. (7)

Once applied on k dual vectors and l vectors, a tensor outputs an element of the
field, in this case a real number. By this token, a tensor of type (0, 1) is a dual
vector, which is the map from the vector space to the field, and a tensor of type
(1, 0), being technically the dual of a dual vector, is naturally isomorphic to a vector.
Given a basis E = {êi} in V and its dual basis dE = {êj} in V ∗, with êj(êi) = δji ,
the tensor product between the basis vectors and dual basis vectors forms a basis
B = {êi1 ⊗ · · · ⊗ êik ⊗ êj1 ⊗ · · · ⊗ êjl} of a tensor of type (k, l), allowing the tensor
to be expressed with respect to this basis as

T =
∑

i1,...,ik,j1,...,jl

T i1...ik j1...jl
êi1 ⊗ · · · ⊗ êik ⊗ ê

j1 ⊗ · · · ⊗ êjl . (8)

The basis expansion coefficients T i1...ik j1...jl are called the components of the tensor.
We can perform two important operations on tensors: apply the tensor product

between them, T ′ ⊗ T , and contract components of the tensor, CT . The first oper-
ation happens in the obvious way, while the second corresponds to applying one of
the basis dual vectors to a basis vector, resulting in an identification and summing
of the corresponding components:

(CT )i1...ik−1
j1...jl−1

=
∑
σ

T
i1...σ...ik−1

j1...σ...jl−1
. (9)

The outcome is a tensor of type (k − 1, l − 1). Note that this procedure is basis
independent, because of the relationship between the basis and dual basis. For
a tensor of type (1, 1), which represents a linear operator from V to V , tensor
contraction corresponds precisely to taking the trace of that operator. To simplify
the notation, we will use primed indices instead of numbered ones when the tensors
have a low rank. We define a special (0, 2) tensor called a metric d:
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d =
∑
j,j′

djj′ ê
j ⊗ êj′ . (10)

This tensor is symmetric and non-degenerate. The contraction of this tensor with
two vectors v and w gives the value of the inner product:

d(v, w) =
∑
j,j′

djj′v
jwj

′
. (11)

Because of symmetry, d(v, w) = d(w, v), and because of non-degeneracy, the metric
is invertible, with its inverse d−1 expressed as

d−1 =
∑
i,i′

dii
′
êi ⊗ êi′ . (12)

Given that the elements extracted from the data are elements of V , the con-
tractions that need to be performed, for example for the application of the compo-
sitionality principle in vector spaces, must involve a passage from vectors to dual
vectors as seen in the DisCoCat model, before contraction takes place. The metric
can be used to define a canonical map between V and V ∗ via the partial map that
is obtained when only one vector is used as an argument of the metric, giving rise
to the dual vector dv : v 7→ d(−, v), with the slash indicating the empty argument
slot:

d(v, w) ≡ d(v,−)(w) ≡ dv(w). (13)

This formulation is basis independent, since it results from tensor contraction. Once
a basis is defined, the resulting dual vector can be expressed as

vd =
∑
i,j,j′

djj′v
iêj ⊗ êj′(êi) =

∑
j,j′

djj′v
j′ êj =

∑
j′

vj′ ê
j′ , (14)

where we rewrite vj′ =
∑
j djj′v

j′ .
We call the components of vectors, with indices “up", the contravariant compo-

nents, and those of dual vectors, with indices “down", the covariant components.
Thus, consistent with our notation, the metric can be used to “lower” or “raise”
indices, applying contraction between the metric and the tensor and relabeling the
components:
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d(T ) =
∑

i1,...,ik,j1,...,jl+2

djl+1,jl+2T
i1,...,ik

j1,...,jl
êjl+1 ⊗ êjl+2(êi1)⊗ . . .⊗ êjl

=
∑

i1,...,ik,j1,...,jl+1

djl+1,i1T
i1,...,ik

j1,...,jl
êjl+1 ⊗ êi2 ⊗ . . .⊗ êjl

=
∑

i2,...,ik,j1,...,jl+1

T i2,...,ik
jl+1 j1,...,jl

êjl+1 ⊗ êi2 ⊗ . . .⊗ êjl . (15)

The effect of the metric on a tensor can be captured by seeing how we rewrite
the components of some example tensors:

•
∑
j′ djj′T

j′

j′′ = Tjj′′ ;

•
∑
i′ T

i
i′ d

i′i′′ = T ii
′′ ;

•
∑
j′,j′′′ djj′dj′′j′′′T

j′j′′′ = Tjj′′ .

Most importantly, a proper tensor is only defined in the form of eq.8, so whenever
we have a tensor that has components “up” and “down” in different orders, for
example in T i

j , this is in fact a tensor of type (1, 1) of which the actual value of the
components is ∑

i′,j′

dii
′
djj′T

j′

i′ . (16)

Returning to our toy example with the words “vase” and “wall", we can look at
the change in vector representations as a change of basis êi =

∑
i′ Λ i′

i ê
′
i′ :

~v =
∑
i

viêi =
∑
ii′

viΛ i′
i ê
′
i′ =

∑
i′

v′i
′
ê′i′ , (17)

corresponding to a change in the vector components v′i′ = viΛ i′
i . The components

of the metric also change with the basis:

d′j′′j′′′ = Λ j′

j′′′Λ
j
j′′djj′ . (18)

With this change, we can show that inner product remains invariant under a basis
change:

w′i
′
v′i′ = w′i

′
v′j
′
d′j′i′ = w′i

′
v′j
′Λ i
i′ Λ

j
j′ dji = wivjdji = wivi. (19)



Density Matrices with Metric for Derivational Ambiguity

In this way, finding the right metric allows us to preserve a value that is constant
in the face of context dependent representations. Assuming a metric that has the
following matrix representation in the standard basis,

d =
(

2 1
1 5

)
, (20)

its application to the vector elements in eqs.2 gives a value of the inner product
calculated in the new representation:

v′i′w
′i′ =

(
1 0

)(2 1
1 5

)(
0
1

)
= 1. (21)

Since norms of the vectors have to be calculated using the same notion of inner
product,

‖~v‖ =
√
vigijvj , (22)

we find exactly the cosine similarity calculated in eq.6. Note that this formalism
allows us to deal with non-orthogonal basis, but does not require it: in fact, there
is an implicit metric already when we compute the Euclidean inner product in eq.2,

given by dorth =
(

1 0
0 1

)
in the standard basis, which is the one assumed when

talking about an orthonormal basis.
Since these new tools allow us to preserve a quantity in the face of a change

of representation, we can start reversing the question on similarity: given a cer-
tain human judgement on similarity, or another constant of interest, what is the
metric that preserves it across different representations?3 Once the vector spaces
are endowed with specific metrics, the new inner product definitions permeate all
higher-rank tensor contractions that are performed between higher and lower rank
tensors, namely the ones that will be used in the interpretation of the Lambek rules,4

3In case the quantity we wish to preserve is other than that of the Euclidean inner product in
either representation, there is an option to expand the vector representation of our words by adding
vector components that act as parameters, to ensure that the quantity is indeed conserved. This
would be similar to the role played by the time dimension in Einstein’s relativity theory.

4Using this formalism, we can replace the unit and counit maps ε and η maps of the compact
closed category FdVect by

ηl : R→ V ⊗ V ∗ :: 1 7→ 1⊗ d(1,−)
ηr : R→ V ∗ ⊗ V :: 1 7→ d(−, 1)⊗ 1

εl : V ∗ ⊗ V → R :: d(−, v)⊗ u 7→ d(u, v)
εr : V ⊗ V ∗ → R :: v ⊗ d(u,−) 7→ d(u, v).
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and can further be extended to density matrices.

3.1 Metric in Dirac Notation

We want to lift our description to the realm of density matrices. We now show how
the concept of a metric can also be introduced in that description, such that the
previously described advantages carry over.

Dirac notation is the usual notation for vectors in the quantum mechanics lit-
erature. To make the bridge with the previous concepts from tensor calculus, we
introduce it simply as a different way to represent the basis and dual basis of a vector
space. Let us rename their elements as kets |i〉 ≡ êi and as bras 〈j| ≡ êj . The fact
that the bases are dual to one another is expressed by the orthogonality condition
〈j|i〉 = δij , which, if the vector basis elements are orthogonal to each other, is equiv-
alent to applying the Euclidean metric to |i〉 and |j〉. Using Dirac notation, a vector
and dual vector are represented as v ≡ |v〉 =

∑
i v
i |i〉 and vd ≡ 〈u| =

∑
j vj 〈j|.5 If

the basis elements are not orthogonal, this mapping has to be done through a more
involved metric. To express this, in this paper we introduce a modified Dirac nota-
tion over the field of real numbers, inspired by the one used in [9] for the treatment of
quantum states related by a specific group structure.6 The previous basis elements
of V are written now as |i〉 ≡ êi and the corresponding dual basis as

〈
j
∣∣ ≡ êj , such

that
〈
j
∣∣
i
〉

= δji . In this basis, the metric is expanded as d =
∑
j,j′ dj′j

〈
j
∣∣⊗〈j′ ∣∣∣ while

the inverse metric is expressed as d−1 =
∑
ii′ d

i′i |i〉⊗|i′〉. The elements of the metric
and inverse metric are related by

∑
i dj′i′d

i′i = δi
′
j′ . Applying the metric to a basis

element of V , we get

〈i| ≡ d(−, |i〉) =
∑
jj′

dj′j
〈
j
∣∣∣⊗ 〈j′∣∣∣i〉 =

∑
j

dij
〈
j
∣∣∣ . (23)

Acting with this on |i′〉 to extract the value of the inner product, the following
formulations are equivalent:

d(|i′〉 , |i〉) = d(−, |i〉) |i′〉 =
∑
j

dij
〈
j
∣∣∣i′〉 = 〈i|i′〉 = dii′ . (24)

When the inverse metric is applied to
〈
j
∣∣ it gives

5For orthonormal basis over the field of complex numbers, the covariant components are simply
given by the complex conjugate of the contravariant ones, vi = v̄i.

6This treatment can be extended to the field of complex numbers by considering that the metric
has conjugate symmetry, dij = d̄ji [25].
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∣∣∣j〉 ≡ d (−,〈j∣∣∣) =
〈
j
∣∣∣∑
ii′

di
′i |i〉 ⊗ |i′〉 =

∑
i′

di
′j |i′〉 , (25)

with a subsequent application on
〈
j′
∣∣∣ giving

d−1
(〈

j′
∣∣∣ ,〈j∣∣∣) =

〈
j′
∣∣∣ d (−,〈j∣∣∣) =

〈
j′
∣∣∣∑
i′

di
′j |i′〉 =

〈
j′
∣∣∣j〉 = dj

′j . (26)

Consistently, we can calculate the value of the new bras and kets defined in eqs.23
and 25 applied to one other, showing that they too form a basis/dual basis pair:

〈
i

∣∣∣j〉 =
∑
j′

dij′
〈
j′
∣∣∣∑
i′

di
′j |i′〉 =

∑
i′j′

dij′d
i′j
〈
j′
∣∣∣i′〉 =

∑
j′

dij′d
j′j = δji . (27)

If the basis elements are orthogonal, the components of the metric and inverse metric
coincide with the orthogonality condition.

4 Density Matrices: Capturing Directionality
The semantic spaces we envisage for the interpretation of the syntactic calculus
are density matrices. A density matrix or density operator is used in quantum
mechanics to describe systems for which the state is not completely known. For
lexical semantics, it can be used to describe the meaning of a word by placing
distributional information on its components. As standardly presented,7 density
matrices that are defined on a tensor product space indicate no preference with
respect to contraction from the left or from the right. Because we want to keep
the distinction between left and right implications in the semantics, we set up the
interpretation of composite spaces in such a way that they indicate which parts will
and will not contract with other density matrices.

The basic building blocks of the interpretation are density matrix spaces Ṽ ≡
V ⊗ V ∗. For this composite space, we choose the basis formed by |i〉 tensored with
〈i′ |, Ẽ = {|i〉 〈i′ |} =

{
ẼJ
}
. Carrying over the notion of duality to the density matrix

space, we define the dual density matrix space Ṽ ∗ ≡ V ⊗ V ∗. The dual basis in this
space is the map that takes each basis element of Ṽ and returns the appropriate
orthogonality conditions. It is formed by

〈
j
∣∣ tensored with

∣∣∣j′〉, dẼ =
{∣∣∣j′〉 〈j∣∣} ={

ẼJ
}
, and is applied on the basis vectors of Ṽ via the trace operation

7A background for the non-physics reader can be found in [19].
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ẼJ
(
ẼI
)

= Tr
(
|i〉
〈
i′

∣∣∣j′〉〈j∣∣∣) =
∑
l

〈
l
∣∣∣i〉〈i′∣∣∣j′〉〈j∣∣∣l〉

=
∑
jj′

〈
j
∣∣∣i〉〈j′ ∣∣∣i′〉 δji δj′i′ ≡ δJI . (28)

Because density operators are hermitian, their matrices do not change under
conjugate transposition, which extends to elements of the basis of the density matrix
space. In this way, we can extend our notion of metric to the space of density
matrices, where a new metric D emerges from d, expanded in the basis of V ∗ as

D =
∑
J,J ′

DJJ ′Ẽ
J ⊗ ẼJ ′ (29)

=
∑

jj′,j′′j′′′

dj′′j′dj′′′j
∣∣∣j′〉〈j∣∣∣⊗ ∣∣∣j′′′〉〈j′′∣∣∣ . (30)

We can see how both definitions are equivalent by their action on a density
matrix tensor T ≡

∑
I T

IẼI ≡
∑
ii′ T

ii′ |i〉 〈i′ |. Staying at the level of Ṽ and Ṽ ∗, we
use eq.29 to obtain

D(−, T ) =
∑
I,J,J ′

DJJ ′T
IẼJ ⊗ ẼJ ′

(
ẼI
)

=
∑
I,J,J ′

DJJ ′T
IẼJδJ

′
I

=
∑
J,J ′

DJJ ′T
J ′ẼJ ≡

∑
J

TJ Ẽ
J =

∑
jj′

Tj′j
∣∣∣j′〉〈j∣∣∣ , (31)

where we redefine TJ ≡ DJJ ′T
J ′ , thus establishing covariance and contravariance of

the tensor components defined over the density matrix space. Looking in its turn
at the level of V and V ∗, using eq.30, we see that both definitions are equivalent:

D(−, T ) =
∑

ii′,jj′,j′′j′′′

T ii
′
dj′′j′dj′′′j

∣∣∣j′〉〈j∣∣∣⊗ Tr
(∣∣∣j′′′〉〈j′′ ∣∣∣i〉 〈i′ |)

=
∑

ii′,jj′,j′′j′′′

T ii
′
dj′′j′dj′′′jδ

j′′

i δ
j′′′

i′

∣∣∣j′〉〈j∣∣∣
=
∑
ii′jj′

T ii
′
dij′di′j

∣∣∣j′〉〈j∣∣∣ ≡∑
jj′

Tjj′
∣∣∣j′〉〈j∣∣∣ , (32)
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where we rewrite Tjj′ ≡ T ii
′
dij′di′j .8

From these basic building blocks, composite spaces are formed via the binary
operation ⊗ (tensor product) and a unary operation ()∗ (dual functor) that sends
the elements of a density matrix basis to its dual basis, using the metric defined
above. In the notation, we use Ã for density matrix spaces (basic or compound),
and ρ, or subscripted ρx, ρy, ρz, . . . ∈ Ã for elements of such spaces. The ()∗ operation
is involutive; it interacts with the tensor product as (Ã ⊗ B̃)∗ = B̃∗ ⊗ Ã∗ and acts
as identity on matrix multiplication.

Below in (†) is the general form of a density matrix defined on a single space in
the standard basis, and (‡) in the dual basis:

(†) ρÃx =
∑
ii′

Xii′ |i〉 Ã〈i′ |, (‡) ρÃ
∗

x =
∑
jj′

Xj′j

∣∣∣j′〉
Ã∗

〈
j
∣∣∣.

Over the density matrix spaces, we can see these matrices as tensors as we defined
them previously, with XI ≡ Xii′ the contravariant components and with XJ ′ ≡ Xj′j

the covariant components.
A density matrix of a composite space can be an element of the tensor product

space between the standard space and the dual space either from the left or from
the right:

ρÃ⊗B̃
∗

y =
∑
ii′,jj′

Y ii′
j′j

∣∣∣ j′i 〉
Ã⊗B̃∗

〈
j
i′

∣∣∣; (33)

ρB̃
∗⊗Ã

w =
∑
ii′,jj′

W ii′
j′j

∣∣∣j′i〉 B̃∗⊗Ã〈j i′ ∣∣∣. (34)

Although both tensors are of the form (1, 1), the last one is a tensor with com-
ponents Y I

J ′ , which relate with a true tensor form by DII′Y J
I′ DJJ ′ . Recursively,

density matrices that live in higher-rank tensor product spaces can be constructed,
taking a tensor product with the dual basis either from the left or from the right.
Multiplication between two density matrices of a standard and a dual space follows
the rules of tensor contraction:

ρÃ
∗

y · ρÃx =
∑
jj′

Yj′j
∣∣∣j′〉

Ã∗

〈
j
∣∣∣ ·∑

ii′

Xii′ |i〉 Ã〈i′ | =
∑
i′,jj′

Yj′jX
ji′
∣∣∣j′〉 Ã〈i′ |. (35)

8Here we can compare our formalism to that of the compact closed category of completely
positive maps CPM(FdVect) developed in [26]. The categorical treatment applies here at a higher
level, however, introducing the metric defines explicitely the canonical isomorphisms V ∼= V ∗ and
Ṽ ∼= Ṽ ∗, which trickles down to knowing exactly how the symmetry of the tensor product acts on the
compenents of a tensor: σV,V ∗ : V ∗⊗V → V ⊗V ∗ ::

∑
ij
T j

i êi⊗ êj 7→
∑

ii′,jj′ d
ii′djj′T

j′

i′ êi⊗ êj .
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ρÃx · ρÃ
∗

y =
∑
ii′

Xii′ |i〉 Ã〈i′ | ·
∑
jj′

Yj′j
∣∣∣j′〉

Ã∗

〈
j
∣∣∣ =

∑
i,jj′

Xij′Yj′j |i〉
Ã

〈
j
∣∣∣, (36)

respecting the directionality of composition. To achieve full contraction, the trace
in the appropriate space is applied, corresponding to a partial trace if the tensors
involve more spaces:

TrÃ

∑
i′,jj′

Yj′jX
ji′
∣∣∣j′〉 Ã〈i′ |

 =
∑
l,i′,jj′

Yj′jX
ji′

Ã

〈
l

∣∣∣j′〉
Ã∗ Ã

〈
i′

∣∣∣l〉
Ã∗

=
∑
jj′

Yj′jX
jj′ ,

(37)

TrÃ

∑
i,jj′

Xij′Yj′j
∣∣∣i〉 Ã〈j |

 =
∑
l,j′,ij

Xij′Yj′j
Ã∗

〈
l

∣∣∣i〉
Ã Ã∗

〈
j

∣∣∣l〉
Ã

=
∑
jj′

Xjj′Yj′j . (38)

We see that the cyclic property of the trace is preserved.
In §6 we will be dealing with derivational ambiguity, and for that the concepts of

subsystem and permutation operation introduced here will be useful. A subsystem
can be thought of as a copy of a space, described using the same basis, but formally
treated as a different space. In practice, this means that different subsystems do
not interact with one another. In the quantum setting, they represent independent
identical quantum systems. For example, when we want to describe the spin states of
two electrons, despite the fact that each spin state is defined on the same basis, it is
necessary to distinguish which electron is in which state and so each is attributed to
their own subsystem. Starting from a space Ã, two different subsystems are referred
to as Ã1 and Ã2. If different words are described in the same space, subsystems
can be used to formally assign them to different spaces. The permutation operation
extends naturally from the one in standard quantum mechanics. We define two
permutation operators: P Ã1Ã2 permutes the elements of the basis of the respective
spaces, while PÃ1Ã2

permutes the elements of the dual basis. If only one set of basis
elements is inside the scope of the permutation operators, then either the subsystem
assignment changes,

P Ã1Ã2 |i〉 Ã1
〈i′ |P Ã1Ã2 = |i〉 Ã2

〈i′ |; PÃ1Ã2

∣∣∣i′〉
Ã1
∗

〈
i
∣∣∣PÃ1Ã2

=
∣∣∣i′〉

Ã2
∗

〈
i
∣∣∣; (39)

or the respective space of tracing changes,
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TrÃ1

(
PÃ1Ã2

|i′〉 Ã2
∗〈i|PÃ1Ã2

)
= TrÃ2

(
|i′〉 Ã2

∗〈i|
)
. (40)

Note that permutations take precedence over traces. If two words are assigned to
different subsystems, the permutations act to swap their space assignment:9

P Ã1Ã2 |i〉 Ã1
〈i′ | ⊗ |j〉 Ã2

〈
j′
∣∣P Ã1Ã2 = |i〉 Ã2

〈i′ | ⊗ |j〉 Ã1

〈
j′
∣∣, (41)

PÃ1Ã2

∣∣∣i′〉
Ã1
∗

〈
i
∣∣∣⊗ ∣∣∣j′〉

Ã2
∗

〈
j
∣∣∣PÃ1Ã2

=
∣∣∣i′〉

Ã2
∗

〈
i
∣∣∣⊗ ∣∣∣j′〉

Ã1
∗

〈
j
∣∣∣. (42)

If no word has that subsystem assignment then the permutation has no effect.

5 Interpreting Lambek Calculus derivations
Let us turn now to the syntax-semantics interface, which takes the form of a ho-
momorphism sending the types and derivations of the syntactic front end (N)L/,\
to their semantic counterparts. Consider first the action of the interpretation ho-
momorphism on types. We write d.e for the map that sends syntactic types to the
interpreting semantic spaces. For primitive types we set

dse = S̃, dnpe = dne = Ñ , (43)

with S the vector space for sentence meanings and N the space for nominal expres-
sions (common nouns, full noun phrases). For compound types we have

dA/Be = dAe ⊗ dBe∗, and dA\Be = dAe∗ ⊗ dBe. (44)

Given semantic spaces for the syntactic types, we can turn to the interpretation of
the syntactic derivations, as coded by their λ/,\ proof terms. We write J·Kg for the
map that associates each term t of type A with a semantic value, i.e. an element
of dAe, the semantic space where meanings of type A live. The map J.K is defined
relative to a assignment function g that provides a semantic value for the basic
building blocks, viz. the variables that label the axiom leaves of a proof. As we saw

9We define this as a shorthand application of the permutation operations as defined in eq.39,
such that eq.41 can be calculated w.r.t. that definition as

P Ã1Ã2 |i〉Ã1

(
Ã1
〈i′ |P Ã1Ã2

)
⊗
(
P Ã1Ã2 |j〉Ã2

)
Ã2
〈j′ |P Ã1Ã2

= P Ã1Ã2 |i〉Ã1 Ã2
〈i′ | ⊗ |j〉Ã1 Ã2

〈j′ |P Ã1Ã2 = |i〉 Ã2
〈i′ | ⊗ |j〉 Ã1

〈j′ |,
and similarly for eq.42.
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above, a proof term is a generic meaning recipe that abstracts from particular lexical
meanings. Specific lexical items, as we will see in §6, have the status of constants.
These constants are mapped to their distributional meaning by an interpretation
function I. The distributional meaning corresponds to the embeddings assigned by
a particular model to the lexicon. Below we show that this calculus is sound with
respect to the semantics of section 4.

Axiom q
xA

y
g

= g(xA) = ρdAex =
∑
ii′

Xii′ |i〉 dAe〈i′ |. (45)

Elimination Recall the inference rules of fig.1
E/: Premises tB/A, uA; conclusion (t / u)B:

q
(t / u)B

y
g
≡ TrdAe

(r
tB/A

z

g
·
q
uA

y
g

)
(46)

= TrdAe

∑
ii′,jj′

T ii
′
j′j

∣∣∣ j′i 〉 dBe⊗dAe∗〈 ji′ ∣∣∣ ·∑
kk′

Ukk
′ |k〉 dAe〈k′ |

 (47)

=
∑
ii′,jj′

∑
kk′

T ii
′
j′j · Ukk

′
δjkδ

j′

k′ |i〉 dBe〈i′ | =
∑
ii′,jj′

T ii
′
j′j · U jj

′ |i〉 dBe〈i′ |. (48)

E\: Premises uA, tA\B; conclusion (u . t)B:

q
(u . t)B

y
g
≡ TrdAe

(q
uA

y
g
·
r
tA\B

z

g

)
(49)

= TrdAe

∑
kk′

Ukk
′ |k〉 dAe

〈′
k

∣∣ · ∑
ii′,jj′

T ii′
jj

∣∣∣j′i 〉 dAe∗⊗dBe〈ji′ ∣∣∣
 = (50)

=
∑
kk′

∑
ii′,jj′

Ukk
′ · T ii′

j′j δjkδ
j′

k′ |i〉 dBe〈i′ | =
∑
ii′,jj′

U jj
′ · T ii′

j′j |i〉 dBe〈i′ |. (51)

Introduction I/: Premise tB, with xA as its rightmost parameter; conclusion
(λrx.t)B/A:

r
(λrx.t)B/A

z

g
≡
∑
kk′

(
JtBKgx

kk′
⊗
∣∣∣k′〉

dAe∗

〈
k
∣∣∣) (52)
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I\: Premise tB, with xA as its leftmost parameter; conclusion (λlx.t)A\B:

s(
λlx.t

)A\B{

g

≡
∑
kk′

(∣∣∣k′〉
dAe∗

〈
k
∣∣∣⊗ JtBKgx

kk′

)
(53)

Here gxkk′ is the assignment exactly like g except possibly for the parametric vari-
able x which takes the value of the basis element |k〉 dAe〈k′ |. More generally, the
interpretation of the introduction rules lives in a compound density matrix space
representing a linear map from Ã to B̃. The semantic value of that map, applied to
any object m ∈ Ã, is given by JtBKg′ , where g′ is the assignment exactly like g except
possibly for the bound variable xA, which is assigned the value m. Note that now,
given the introduction of the metric, the interpretations of A/B and B\A are related
by it: if the components of the first are T I

J , then those of the second are given by
those in eq.16 adapted for density matrices. This is what introduces directionality
in our interpretation: using the metric, we can extract a certain representation for
a function word and distinguish by the values of the components whether it will
contract from the left or from the right.

6 Derivational Ambiguity

The density matrix construction has been successfully used to address lexical ambi-
guity [22], as well as lexical and sentence entailment [1,24], where different measures
of entropy are used to perform the disambiguation. Here we arrive at disambiguation
in a different way, by storing in the diagonal elements of a higher order density ma-
trix the different interpretations that result from the different contractions that the
proof-as-programs prescribes. This is possible due to the the set-up that is formed
by a multi-partite density matrices space, so that, by making use of permutation
operations, it happens automatically that the two meanings are expressed indepen-
dently. This is useful because it can be integrated with a lexical interpretation in
density matrices optimized to other tasks, such as lexical ambiguity or entailment. It
is also appropriate to treat the existence of these ambiguities in the context of incre-
mentality, since it keeps the meanings separated in their interaction with posterior
fragments.

We give a simple example of how the trace machinery can be used on an ambigu-
ous fragment, providing a passage from one reading to the other at the interpretation
level, and how the descriptions are kept separated. For this application, the coeffi-
cients in the interpretation of the words contain distributional information harvested
from data, either from a count-base model or a more sophisticated language model.
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The final coefficient of each outcomes is the vector-based representation of that
reading.

We illustrate the construction with the phrase “tall person from Spain”. The
lexicon below has the syntactic type assignments and the corresponding semantic
spaces.

syn type A dAe
tall n/n N∗ ⊗N ⊗ (N∗ ⊗N)∗

person n N∗ ⊗N
from (n\n)/np (N∗ ⊗N)∗ ⊗N∗ ⊗N ⊗ (N∗ ⊗N)∗
Spain np N∗ ⊗N

Given this lexicon, “tall person from Spain” has two derivations, corresponding to
the bracketings “(tall person) from Spain” (x/tall, y/person, w/from, z/Spain):

axx : n/n ` x : n/n axy : n ` y : n
/E2(x : n/n, y : n) ` (x / y) : n

axw : (n\n)/np ` w : (n\n)/np axz : np ` z : np
/E1(w : (n\n)/np, z : n) ` (w / z) : n\n \E3[(x : n/n, y : n), (w : (n\n)/np, z : n)] ` ((x / y) . (w / z)) : n

versus “tall (person from Spain)”:

axx : n/n ` x : n/n

axy : n ` y : n

axw : (n\n)/np ` w : (n\n)/np axz : np ` z : np
/E1(w : (n\n)/np, z : n) ` (w / z) : n\n \E2[y : n, (w : (n\n)/np, z : n)] ` (y . (w / z)) : n

/E3(x : n/n, [y : n, (w : (n\n)/np, z : n)]) ` (x / (y . (w / z))) : n

In the first reading, the adjective “tall” is evaluated with respect to all people,
before it is specified that this person happens to be from Spain, whereas in the
second reading the adjective “tall” is evaluated only in the restricted universe of
people from Spain.

Taking “from Spain” as a unit for simplicity, let us start with the following
primitive interpretations:

• Jtalln/nKI =
∑
ii′,jj′ T

j′j
ii′

∣∣∣ij′〉N⊗N∗〈i′j∣∣∣,
• JpersonnKI =

∑
kk′ Pkk′

∣∣∣k〉
N

〈
k′
∣∣∣,

• Jfrom_Spainn\nKI =
∑
ll′,mm′ Fl′l

mm′ | ml′ 〉N∗⊗N
〈
m′
l

∣∣∣.
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Interpreting each step of the derivation in the way described in the previous
section will give two different outcomes. The first one is

Jtall_person_from_SpainnK1
I =

= TrN

TrN

∑
ii′,jj′

Tii′
j′j

∣∣∣ j′i 〉N⊗N∗〈 ji′ ∣∣∣ ·∑
kk′

Pkk′ |k〉N 〈k′ |


·
∑

ll′,mm′

F mm′
l′l

∣∣∣l′m〉
N∗⊗N

〈
l
m′

∣∣∣


=
∑

ii′,jj′,mm′

Tii′
j′j Pjj′ F mm′

i′i |m〉N 〈m′ |, (54)

while the second one is

Jtall_person_from_SpainnK2
I =

= TrN

∑
ii′,jj′

Tii′
j′j

∣∣∣ j′i 〉N⊗N∗〈 ji′ ∣∣∣ · TrN

(∑
kk′

Pkk′ |k〉N 〈k′ |

·
∑

ll′,mm′

F mm′
l′l

∣∣∣l′m〉
N∗⊗N

〈
l
m′

∣∣∣


=
∑

ii′,jj′,ll′

Tii′
j′j Pll′ F jj′

l′l |i〉N 〈i′ |. (55)

The respective graphical representations of these contractions can be found in fig.2.
Though the coefficients might be different for each derivation, it is not clear how both
interpretations are carried separately if they are part of a larger fragment, since their
description takes place on the same space. Also, this recipe gives a fixed ordering
and range for each trace. To be able to describe each final meaning separately, we
use here the concept of subsystem. Because different subsystems act formally as
different syntactic types and in each derivation the words that interact are different,
it follows that each word should be assigned to a different subsystem:

• Jtalln/nKI1 = Jtalln/nKI2 =
∑
ii′,jj′ Tii′

j′j

∣∣∣ j′i 〉N1⊗N2∗

〈
j
i′

∣∣∣,
• JpersonnKI1 =

∑
kk′ Pkk′ |k〉N2〈k′ |,

JpersonnKI2 =
∑
kk′ Pkk′ |k〉N3〈k′ |,
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Figure 2: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), without subsystems. The final value
is a coefficient in the Ñ space as in eq.54 and in eq.55, respectively.

• Jfrom_Spainn\nKI1 =
∑
ll′,mm′ F mm′

l′l

∣∣∣l′m〉
N1∗⊗N3

〈
l
m′

∣∣∣,
Jfrom_Spainn\nKI2 =

∑
ll′,mm′ F mm′

l′l

∣∣∣l′m〉
N3∗⊗N2

〈
l
m′

∣∣∣.
Notice that the value of the coefficients given by the interpretation functions I1 and
I2 that describe the words does not change from the ones given in I, only possibly
the subsystem assignment does. Rewriting the derivation of the interpretations in
terms of subsystems, the ordering of the traces does not matter anymore since the
contraction is restricted to its own subsystem. For the first reading we obtain

Jtall_person_from_SpainnK1
I1 =

= TrN1

TrN2

∑
ii′,jj′

Tii′
j′j

∣∣∣ j′i 〉N1⊗N2∗

〈
j
i′

∣∣∣ ·∑
kk′

Pkk′ |k〉N2〈k′ |

·
∑

ll′,mm′

F mm′
l′l

∣∣∣l′m〉
N1∗⊗N3

〈
l
m′

∣∣∣


=
∑

ii′,jj′,mm′

Tii′
j′j Pjj′ F mm′

i′i |m〉N3〈m′ | (56)

and for the second
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Jtall_person_from_SpainnK2
I2 =

= TrN2

∑
ii′,jj′

Tii′
j′j

∣∣∣ j′i 〉N1⊗N2∗

〈
j
i′

∣∣∣ · TrN3

(∑
kk′

Pkk′ |k〉N3〈k′ |

·
∑

mm′,ll′

F mm′
l′l

∣∣∣l′m〉
N3∗⊗N2

〈
l
m′

∣∣∣


= TrN3

TrN2

∑
ii′,jj′

Tii′
j′j

∣∣∣ j′i 〉N1⊗N2∗

〈
j
i′

∣∣∣ ·∑
kk′

Pkk′ |k〉N3〈k′ |

·
∑

ll′,mm′

F mm′
l′l

∣∣∣l′m〉
N3∗⊗N2

〈
l
m′

∣∣∣


=
∑

ii′,jj′,ll′

Tii′
j′j Pll′ F jj′

l′l |i〉N1〈i′ |. (57)

The interpretation of each derivation belongs now to different subsystems, which
keeps the information about the original word to which the free “noun” space is
attached. We can see this by comparing the upper and lower links in fig.3.

However, it is not very convenient to attribute each word to a different subsystem
depending on the interpretation it will be part of, since that is information that
comes from the derivation itself and not from the representations of words. To
tackle this problem, one uses permutation operations over the subsystems. Since
these have precedence over the trace, when the traces are taken the contractions
change accordingly. This changes the subsystem assignment at specific points so
it is possible to go from one interpretation to the other, without giving different
interpretations to each word initially. Thus, there is a way to go directly from the
first interpretation to the second:
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Figure 3: Representation of contractions corresponding to the first reading (lower
links) and to the second reading (upper links), with subsystems. The final value is
a coefficient in the Ñ space as in eq.56 and in eq.57, respectively.
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∣∣∣
 . (58)

The reasoning behind this is as follows: the permutation P 23 swaps the space as-
signment between that of “person” and the free space in “from_Spain”, according
to eq.42; after that a permutation P13 is used as in eq.39 to change the argument
space of “from_Spain” from N1∗ to N3∗ , and then the same permutation is applied
again to change the space of tracing, following eq.40. In this way, all the coefficients
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Figure 4

will have the correct contractions and in a different space from the first reading. In
fig.4 we can see the action of the permutations by visualizing how both the spaces
and the traces change as we go from the lower to the upper links.
Although the metric is not used explicitly in the application of the permutation
operators, it is necessary to generate the correct tensors where the permutation
operator is applied in the first place, by going from the vector representation that
comes directly from the data to one that allows contraction. As an example, the
adjective “tall” would have a vector representation from the data as an element of
Ṽ ⊗ Ṽ , of the form Tii′,kk′ . We need the metric dkj′dk′j to change its form to T ii′j′j .
By defining the interpretation space of adjectives as Ñ⊗Ñ∗, we assume this passage
has already been made when we assign an interpretation to a word in this space. As
an alternative to this derivation, we mention that it is possible to apply a P 23 per-
mutation followed by a P 13 permutation that results in the correct contraction of the
indices, but fails to deliver the results of the two derivations in different subspaces;
it is however noteworthy that, in order to start with a unique assignment for each
word, this alternative derivation can, in any case, only be achieved by distinguishing
between subsystems, as well as the covariant and contravariant indices.

7 Conclusion and Future Work

In this paper we provided a density matrix model for a simple fragment of the
Lambek Calculus, differently from what is done in [2] who uses density matrices to
interpret dependency parse trees. The syntax-semantics interface takes the form of
a compositional map assigning semantic values to the λ/,\ terms coding syntactic
derivations. We proposed the use of a metric as a way to reconcile the various vector
representations of the same word that come from different treatments, assuming that
there is a quantity that is being preserved, such as human judgements. If we know
the metric, we can confidently assign only one embedding to each word as its seman-
tic value. A metric can relate these various representations so that we can assign
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only one vector as its semantic value. The density matrix model enables the inte-
gration of lexical and derivational forms of ambiguity. Additionally, it allows for the
transfer of methods and techniques from quantum mechanics and general relativity
to computational semantics. One example of such transfer is the permutation opera-
tor. In quantum mechanics, this operator permits a description of indistinguishable
particles. In the linguistic application, it allows one to go from an interpretation that
comes from one derivation to another, without the need to to go through the latter,
but keeping this second meaning in a different subsystem. Another example is the
introduction of covariant and contravariant components, associated with a metric,
that allow the permutation operations to be properly applied. In future work, we
want to explore the preservation of human judgements found in the literature via
a metric that represents the variability of vector representations of words, either
static or dynamic. We also want to extend our simple fragment with modalities for
structural control (cf [17]), in order to deal with cases of derivational ambiguity that
are licensed by these control modalities. Finally, we want to consider derivational
ambiguity in the light of an incremental left-to-right interpretation process, so as to
account for the evolution of interpretations over time. In enriching the treatment
with a metric, we want to explore the consequences of having this new parameter in
treating context dependent embeddings.
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