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Abstract: Large area photonic crystal cavities are devices of interest for
photovoltaics, optoelectronics, and solid-state lighting. However, depending
on their dimensions they pose a large computational challenge. Here, we use
a local density approach to avoid direct simulation of the device. We capture
the effect of both ideal and distorted photonic crystals in an effective mass
and an effective potential. We use these to map the problem of calculating
the electromagnetic field modes to solving a simple time-independent
Schrödinger equation. We show that, in the case that the hole radius varies
quadratically as a function of position, the eigenmodes of the photonic
crystals can be described by the corresponding eigenmodes of the quantum
harmonic oscillator with typical agreements well above 90%.
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1. Introduction

Photonic crystals are periodic dielectric structures which can exhibit a complete photonic band
gap [1, 2]. This photonic band gap is analogous to the band gap observed in semiconductors [3].
The defining property of the photonic band gap is that it forbids propagation of light in a certain
frequency range [1, 2]. This property enables full control and manipulation of light. This has
led to many applications such as omni-directional mirrors [4], heterostructure cavities [5], slow
light generation [6], photonic crystal LEDs [7], solar cells [8], (chirped [9]) photonic crystal
fibers [10], and chirped photonic crystal coupled waveguides [11, 12].

For all these applications, the design of the photonic crystal device is crucial for the ma-
nipulation of light. However, designing and simulating large photonic crystals devices requires
large computational power. Accurately capturing the effect of the periodicity requires a high
resolution within the unit cell, which in a finite-difference time-domain (FDTD) calculation
additionally leads to a very small time step. Furthermore, as one needs to simulate a large de-
vice, a large number of these unit cells have to be included in the simulation. This results in a
very large memory usage and long simulation times which can span several days.

This problem can be overcome using slowly varying envelope approximations [13, 14], in
which deviations from a perfectly periodic structure are treated perturbatively. We on the other
hand obtain the envelope using a local density approximation. We summarize the effect of the
band structure in terms of an effective mass and the energy of the bottom of the band of interest.
We then use this energy as an effective potential for a massive particle and solve the wave
equation for that particle. This amounts to solving the time-independent Schrödinger equation.
In this way the microscopic problem is transformed into solving a macroscopic equation.

Here, we give a proof of principle of this method for one and two-dimensional photonic
crystals of air holes, in the specific case that the hole radius varies quadratically as a function
of position. For these systems we determine the overlap between the solutions of the time-
independent Schrödinger equation and high resolution FDTD simulations. We show that our
method can even take into account disorder due to fabrication imperfections which are always
present in real photonic crystal devices. Our method offers more insight in the modes of large
area photonic structures and greatly relaxes the computational effort in designing these struc-
tures. It therefore opens up new possibilities to design, develop and understand larger and more
complex devices relevant to photovoltaics, optoelectronics, and solid-state lighting.
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2. Theory

From Maxwell’s equations for dielectric media with permittivity ε and permeability µ , the
wave-equations for the electric and magnetic fields are given by [1]

∇×
(

1
µ

∇×E
)
− εk2

0E = 0, (1)

∇×
(

1
ε

∇×H
)
−µk2

0H = 0, (2)

where k0 =
√

ε0µ0ω denotes the wavevector, ω the frequency, and ε0 and µ0 the vacuum per-
mittivity and permeability, respectively.

In a medium where ε or µ vary periodically in space, i.e.

ε(x+R) = ε(x) and µ(x+R) = µ(x),

where R is any lattice vector, it is well known that the eigenstates obey Bloch’s theorem and
thus take the form

Em,k(x) = EEE m,k(x)eik·x, (3)

Hm,k(x) = HHH m,k(x)eik·x, (4)

with EEE m,k(x+R) = EEE m,k(x) and HHH m,k(x+R) =HHH m,k(x). Solving the wave equations using
these functions as an ansatz, yields a set of eigenvalues k0 for each k that correspond to the
dispersion ωm,k/c of the Bloch bands.

The dispersion exhibits bands (labeled m) and band gaps. For our method we need an isolated
band, the bottom of which does not overlap with other bands i.e. the first band above a band gap.
In two dimensions the third TM band of a triangular lattice of air holes is a good example [1].
When one decreases the hole radius in a small region of the crystal the bands in this region shift
down. This means that light can be trapped there. Famous practical examples of this mechanism
are so-called double-heterostructure cavities [15, 16], and photonic crystal microcavities [17].
As these cavities are usually optimized to have a small mode volume they can be effectively
simulated using FDTD methods. Large mode-area cavities on the other hand do not easily lend
themselves to direct simulation.

However, when the mode-area is large, we can assume that the hole radius varies only slowly
as a function of position and that the cavity mode thus samples only a small distribution of
hole radii. In that case, we expect that we can to a good approximation find the eigenmodes of
the cavity by simply multiplying the Bloch solutions by a scalar function Ψn(x) that creates a
slowly varying envelope for mode n. We thus write

En(x) = Ψn(x)a3/2
∑
{kmin}

EEE mc,kmin(x)e
ikmin·x, (5)

Hn(x) = Ψn(x)a3/2
∑
{kmin}

HHH mc,kmin(x)e
ikmin·x, (6)

where mc denotes the number of the band used to create the cavity mode, and a the lattice
constant. The summation is performed over all wavevectors kmin in the first Brillouin zone that
yield a minimum of the band.

The eigenmodes of the photonic crystal cavity can thus be described by the corresponding
envelope Ψn(x). To find this envelope without performing time consuming FDTD simulations,
we use a local density approach. We first calculate the band structure for a photonic crystal
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with a certain hole radius. From this band structure, we extract the bottom of the mc-th band
and the curvature at the bottom, which we express in terms of an effective mass. We repeat this
calculation for a range of hole radii to obtain the frequency ω0(ρ) at the bottom of the band
and the effective mass m∗(ρ) as a function of the hole radius ρ . As we will show, for a suitable
choice of the system, the effective mass varies only weakly with hole radius. We therefore will
assume that the effective mass is constant over the system. The bottom ω0(ρ) on the other hand
scales approximately linearly with the hole radius.

If we change the hole radius as a function of the position of the lattice vector Ri, i.e. ρi =
ρ(Ri), we can approximate the energy of light in the mc-th band at that lattice vector as Ei =
h̄ω0(ρ(Ri)), where h̄ denotes the reduced Planck’s constant. In the local density approximation,
we now treat this position dependent energy as a potential energy

V (x) = h̄ω0(ρ(x)). (7)

Note that in the above equation, we treat ρ(x) as a continuous function, where before we only
defined ρ on the lattice vectors of the photonic crystal. The effective wave equation for the
envelope can thus be written as Eq. (8), which corresponds to the time-independent Schrödinger
equation [14] {

− h̄2
∇2

2m∗
+V (x)

}
ψ(x) = Eψ(x). (8)

We will thus use the solution ψ(x) as an approximation to Ψn(x).
When the hole radius varies quadratically as a function of the distance from the center of the

device, and the bottom ω0 goes approximately linearly as a function of hole radius, the potential
energy V (x) becomes approximately harmonic. In this case, the solution of the Schrödinger
equations are the well known harmonic oscillator states. In the following, we will compare the
results of FDTD calculations with the results obtained in the local density approximation in one
dimension. Subsequently, we will add disorder to the hole radius ρi. For this case, we will solve
Eq. (8) for a distorted harmonic potential, and again compare the resulting ψ(x) with FDTD
calculations. We will conclude with the discussion of a two-dimensional example.

3. One-dimensional harmonic cavity

3.1. Effective mass and effective potential

In Fig. 1 the band structure of a one-dimensional photonic crystal is shown. This photonic crys-
tal consists of dielectric slabs with a thickness w = 0.45a, where a denotes the lattice constant.
The remaining 55% of the unit cell consists of air. The band structure was obtained using the
open-source MIT photonic band (MPB) package [18]. To a good approximation, the first band
above the band gap in the dispersion relation around the edge of the first Brillouin zone can
be taken to be parabolic. This means that we describe the energy of the electromagnetic modes
with a dispersion that is similar to that of a massive particle

E(k) = E0 +
h̄2 (k− k0)

2

2m∗
, (9)

where E0 denotes the energy of a photon at the minimum of the band, k0 the wavenumber at
the minimum of the band, and m∗ the effective mass that arises from the local curvature of the
band. Since we describe the local curvature in terms of an effective mass we include h̄. This
inclusion will make the relation to the Schrödinger equation more recognizable. Note however
that despite the appearance of h̄, our description is still completely classical.

Fitting a second order polynomial to the band in a small region around the minimum, and
converting the scale invariant dimensionless units used by MPB to more conventional units, we
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Fig. 1. Photonic band structure (blue) of a one-dimensional photonic crystal with a con-
stant dielectric slab width of w = 0.45a. In red (dashed), a local parabolic approximation
according to Eq. (9) is depicted. The vertical gray dashed line indicates the edge of the first
Brillouin zone.

find E0 = 0.72eV and m∗ = 1.82µme, where me denotes the electron mass. Here we have used
a lattice constant a = 500nm and a dielectric constant ε = 12.

This calculation has been performed for a large range of widths w, resulting in Fig. 2. As
shown in Fig. 2(a), the energy of a photon at the minimum of the band decreases for increasing
slab width. Figure 2(b) shows the relation between the effective mass and the slab width. As
can be seen from this figure, for small widths the effective mass increases for increasing slab
width, passes through a maximum for w≈ 0.38a, and then decreases approximately linearly.

We now select a range of widths where m∗ is approximately constant. The boundaries of the
range are depicted by the vertical black dashed lines located at w = 0.35a and w = 0.45a. For
this range we find a clear linear dependence of E0 on the width. Using this linear dependence,
we construct our one-dimensional photonic crystal such that we slowly decrease the slab width
away from its center (w = 0.45). This thus effectively results in a trapping potential for light
in the crystal because the bands shift up when moving away from the center of the chirped
photonic crystal.

By decreasing the slab size quadratically away from the center of the structure, the effective
potential becomes harmonic since in our region of interest the dependence of E0 on w is linear.
Chirping the photonic crystal quadratically is achieved via

w(x) = w0−
(

x
η

)2

, (10)
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Fig. 2. MPB calculations for a range of slab widths w. In (a) the energy of the bottom of
the band E0(w) (red circles) is depicted. A first order polynomial (blue) is fitted to the data
points within the range depicted by the two vertical black dashed lines. In (b) the effective
mass m∗(w) is indicated by green triangles.

where w(x) is treated as a continuous variable similar to Eq. (7), w0 = 0.45a denotes the slab
width at the center of the structure, x the distance from the center, and η is a measure for the
chirping of the photonic crystal. We use crystals described by Eq. (10) in FDTD simulations to
investigate their electromagnetic mode profiles.
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3.2. FDTD results

The simulation results discussed in this paper are obtained using the open source FDTD soft-
ware package MEEP [19]. In an FDTD calculation, Maxwell’s equations are evolved over time
within a finite region. By analyzing the response of a system to a short pulse one can obtain
frequencies, decay rates, and field patterns of the eigenmodes of a system.

For the simulations, the chirped photonic crystal is first initialized. In one dimension, this is
achieved by setting a fraction of a unit cell to be dielectric material. For all photonic crystals
discussed in this paper a dielectric constant ε = 12 is considered for the dielectric material. At
the boundaries of the photonic crystal, a perfectly matched layer (PML) is added. The PML acts
like an absorbing material that prevents reflections at the simulation boundaries. The photonic
crystal including the PML is discretized in space and time by the resolution of the simulation.
The resolution denotes the computational grid resolution, in pixels per unit distance.

Subsequently, we excite the eigenmodes of our photonic crystal using a short pulse with a
center frequency fcen and broad bandwidth f∆ from a point current source (Hz), positioned
inside the photonic crystal. This position will be referred to as the excitation point. During
the evolution of the field inside the photonic crystal, the point current source is turned on.
After the source is turned off, the field is evolved further and the resulting field at the location
of the source is used to determine the frequencies fcen,n of the eigenmodes using harmonic
inversion [20]. In order to obtain the field patterns of an eigenmode, we run the simulation
again using a pulse with a narrow-bandwidth fδ around fcen,n. This way we excite only the
mode in question.

Table 1. Simulation parameters for the one-dimensional chirped photonic crystal, where
c denotes the speed of light. The value for the excitation point has been chosen such that
it does not lie at the origin because this would result in the excitation of only the even
(n = 0,2,4, ...) eigenmodes.

Parameter Value
a 500 nm
w0 0.45a
η 40

√
a

resolution 128 px
a

f∆ 0.2 c
a = 120THz

fcen 0.3 c
a = 180THz

fδ 0.001 c
a = 600GHz

excitation point −4.0a

Using a single core of an Intel Core i3-2130 processor, calculating the field pattern of a
single mode in one dimension takes ≈ 8.4min for the values listed in Table 1. In Fig. 3, the
resulting field patterns of the first four eigenmodes of the photonic crystal are shown in blue.
In this figure the dielectric function of the photonic crystal is depicted in gray. From this figure
we see that the magnetic field component (Hz) is confined to the dielectric slabs. Also, for each
successive eigenmode we observe additional nodes in the apparent envelope of the field pattern.
These apparent envelopes strongly resemble the quantum harmonic oscillator modes [21]. We
quantify this resemblance in the next sections.
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3.3. Local density results

As mentioned in Sec. 3.1, the potential can be approximated to be harmonic when the photonic
crystal is chirped quadratically. In the one-dimensional case, Eq. (8) can thus be written as

− h̄2

2m∗
d2ψ(x)

dx2 +
1
2

m∗Ω2x2
ψ(x) = (E−V (0))ψ(x), (11)

where Ω denotes the harmonic oscillator frequency, and V (0) the potential energy at x = 0.
The eigenvalues and eigenfunctions of this equation are well known and are given by [21]

En′ =V (0)+ h̄Ω

(
n′+

1
2

)
, (12)

and

ψn′(x) =
(

m∗Ω
π h̄

)1/4 1√
2n′n′!

Hn′(ξ )e
−ξ 2/2, (13)

where Hn′(ξ ) denotes the n′-th Hermite polynomial, and ξ = x/lHO a dimensionless variable
with lHO =

√
h̄/m∗Ω the harmonic oscillator length. Using the values for a and η from Table 1,

we find Ω = 2π ·4.23THz and lHO = 1.53µm.
In Fig. 3 the squared absolute value of the wavefunctions (red-dashed) of Eq. (13) are plotted

using these values. The wavefunctions show an excellent correspondence with the apparent
envelope of the field patterns obtained by the FDTD simulation. As explained in Section 3.1,
the key to the local density approach is the fact that the effective mass m∗ can be considered
constant for a large enough range of widths w. To map the envelope function we furthermore
require a linear relation between the energy of the bottom of the band E0 and w. Since the
higher order modes extend further towards the outside of the structure, they are more sensitive to
deviations from these ideal conditions. For higher order modes we therefore observe a mismatch
between the envelopes obtained in the local density approach and the exact envelope obtained
from FDTD.

To quantify the agreement between the FDTD simulation and the quantum harmonic os-
cillator modes, we first compare the mode frequency spacings. From the FDTD simulation
we obtain a mode frequency spacing of 2π ·3.82THz between fcen,0 and fcen,1. As mentioned
above, the local density approximation yields Ω = 2π ·4.23THz. This amounts to a difference
of 10% which already shows a good agreement.

3.4. Detailed analysis of the local density results

In the previous section we have seen promising results from our local density approach. How-
ever, what we are interested in are the mode profiles of photonic crystals while avoiding time
consuming FDTD calculations. In this section we therefore determine the agreement between
the envelope Ψn(x) of the eigenmodes obtained from FDTD simulations and the quantum har-
monic oscillator modes ψn′(x). We do this by computing the inner product

cn,n′ = 〈Ψn(x)|ψn′(x)〉 , (14)

where cn,n′ thus denotes the contribution of ψn′(x) to Ψn(x).
To determine cn,n′ we must first obtain the envelope function Ψn(x) from the FDTD simula-

tions. We do this by spatially Fourier transforming the field pattern, retrieving the components
of the field in reciprocal space, i.e. the Fourier transform of Eq. (6). In the case of a one-
dimensional photonic crystal, {kmin} corresponds to the edges of the first Brillouin zone. In
Fig. 4(b), the spatial Fourier transform is shown (blue solid line) of the fundamental mode of
the field pattern in Fig. 4(a).
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Fig. 3. FDTD results of the field patterns in one dimension for (a) the first, (b) the sec-
ond, (c) the third, and (d) the fourth eigenmode. The intensity of the field patterns (blue)
are plotted as a function of position x. The absolute squared eigenmodes of the quantum
harmonic oscillator (red dashed) are plotted. In the background the dielectric function ε(x)
(gray) of the photonic crystal is plotted, its value indicated on the right axis.

The spatial Fourier transformation of Eq. (6) can be written as

H̃mc(k) = Ψ̃n(k)⊗H̃HH mc,kmin(k), (15)

where ⊗ denotes a convolution and

H̃HH mc,kmin(k) = ∑
kmin,κ

H̃HH kmin,κ δ (k− (kmin +κ)) , (16)
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Fig. 4. Obtaining the envelope of an eigenmode of the chirped photonic crystal. In (a)
the complex field pattern (blue) of Fig. 3(a) is depicted. In (b) the spatial Fourier transform
(blue) of (a) is shown. A mask (red dashed) is centered at the edge of the first Brillouin zone.
Multiplying (b) with the complex conjugate of the corresponding plane wave, and taking
the inverse Fourier transform results in (c). Here, the resulting envelope Ψ0 is indicated by
the green dashed line.

where κ = ia∗+ jb∗ with a∗ and b∗ the reciprocal lattice vectors, and i, j ∈ Z.
Placing a mask as indicated by the red dashed curve in Fig. 4(b) over the positive valued kmin

of the first Brillouin zone, Eq. (15) is reduced to

H̃mask,mc(k) = Ψ̃n(k)⊗H̃HH mc,kminδ (k−kmin) , (17)

where H̃mask,mc(k) denotes the masked Fourier transform of the magnetic field.
Taking the inverse Fourier transform of Eq. (17), and multiplying the result with the complex

conjugate of a plane wave with wavevector kmin, in order to eliminate the exponential term,
yields the envelope Ψn(x) as indicated by the green dashed line in Fig. 4(c).

Now, the contributions of ψn′(x) to Ψn(x) can be determined. As an example, the contribu-
tions of ψn′(x) to the third eigenmode of the FDTD simulation (n = 2) are shown in Fig. 5.

From Fig. 5 we observe a very good agreement between the envelope (a) and corresponding
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Fig. 5. Envelope of a single mode Ψn compared to all theoretical harmonic modes ψn′ .
In (a) the envelope of the third eigenmode Ψ2, (b) the first harmonic ψ0, (c) the second
harmonic ψ1, (d) the third harmonic ψ2, (e) the fourth harmonic ψ3, (f) all other harmonic
modes ψrest. In the upper right corner of subplots (b) - (f) the contribution |c2,n′ |2 of ψn′ to
Ψ2 is depicted.

eigenmode of the quantum harmonic oscillator (d): |c2,2|2 = 92.4%. We also observe that the
neighboring eigenmodes of the quantum harmonic oscillator ψ1(x) and ψ3(x) show a contribu-
tion of a few percent. This is likely because the zero crossings of the n = 2 harmonic oscillator
wavefunctions are close to the maxima of the Bloch function of the magnetic field which leads
to a local violation of the local density approximation. Quantitative analysis of the electric
field, of which the Bloch function already has a minimum at those zero crossings, supports this
statement, as for the electric field the envelope much more closely approaches the quantum
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harmonic oscillator.
For the one-dimensional case, the modes found from the FDTD simulations are thus in excel-

lent (> 90%) quantitative agreement with the eigenmodes of the quantum harmonic oscillator.

3.5. One-dimensional harmonic cavity with disorder

We have just seen that the FDTD simulations for a chirped photonic crystal show an ex-
cellent agreement with the corresponding solutions of the one-dimensional time-independent
Schrödinger equation. However, fabricated photonic crystals will not be perfect in the sense
that the diameter and position of the air holes can deviate from their intended value. These
fabrication imperfections result in a distorted harmonic potential.

For a fabrication error on the position ∆x of the air holes, the local effective refractive index of
the photonic crystal is comparable to that of the perfect quadratically chirped photonic crystal.
In the band structure of Fig. 1 this means that there is a small displacement in the ±k-direction
at the bottom of the band. Since this is a local minimum, E0 is unaltered up to first order in k.
However, in the same figure a fabrication error on the diameter ∆w(xi) of the air holes results
in a vertical shift i.e. a change of E0. Hence, this vertical shift has a much stronger effect on the
distortion of the harmonic potential than that of the horizontal shift at the bottom of the band.
For the distorted harmonic potential we therefore only consider fabrication imperfections on
the diameter of the air holes.

Including fabrication imperfections, the photonic crystal is described by

w(xi) = w0−
(

xi

η

)2

+∆w(xi), (18)

where we now cannot treat w as a continuous variable as the hole size deviation only has a
single value per unit cell.

In Fig. 6, the first four eigenmodes are plotted (blue) for a photonic crystal created using
Eq. (18). Here ∆w(xi) is generated using a random number generator that is normally distributed
with a standard deviation of σw = 10nm. Again, the magnetic field component (Hz) is confined
to the dielectric slabs, but as can be seen from the figure, the field patterns deviate considerably
from those of the ideal system shown in Fig. 3. From the apparent envelopes of the field patterns
in Fig. 6 a monotonic increase of the number of nodes with the mode number is still visible.
However, there is no longer a symmetry plane through the origin.

In our model this is because the potential is no longer harmonic. Taking into account the
fabrication imperfections the potential can be expressed as

V (xi) =
1
2

m∗Ω2x2
i +∆V (∆w(xi)), (19)

where ∆V (∆w(xi)) denotes the distortion of the harmonic potential due to ∆w(xi).
Solving Schrödinger’s equation with the potential as given by Eq. (19) can be achieved using

normalized Numerov integration [22]. Numerov integration is a numerical method for solv-
ing second order differential equations without a first order term. As we only know V on one
point per unit cell, we perform the Numerov integration using a single grid point per unit cell.
For comparison with time-consuming FDTD simulations, finding four modes using Numerov
integration takes a few seconds.

The results of the Numerov integration are indicated by the green dashed line in Fig. 6. The
green dots depict the grid points used for the integration. As can be seen from this figure there
is an excellent agreement between the solutions of the normalized Numerov integration method
and the envelopes of the eigenmodes for a distorted chirped photonic crystal.
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Fig. 6. FDTD results of the field patterns in one dimension with a distorted harmonic po-
tential. The intensity of the field patterns (blue) are plotted as a function of position x for (a)
the first, (b) second, (c) third, and (d) fourth eigenmode. In each subfigure, the normalized
Numerov integration (green dashed) is included. The green dots depict the grid points used
for this integration. In the background the dielectric function ε(x) (gray) of the photonic
crystal is plotted, its value indicated on the right axis.

In one dimension we have shown that the eigenmodes of a perfect quadratically chirped
photonic crystal can be mapped to the eigenmodes of the quantum harmonic oscillator with a
typical agreement of > 90%. When adding disorder to the photonic crystal, its eigenmodes can
still be approximated by the solutions of the Schrödinger equation which are obtained using the
normalized Numerov integration scheme.
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4. Two-dimensional harmonic cavity

4.1. Effective mass and effective potential

We now extend our approach to two dimensions. Analogous to the one-dimensional case, the
photonic crystal needs to be designed such that a complete photonic band gap arises, the effec-
tive mass can be considered constant, and gives rise to an effective harmonic potential.

Two-dimensional photonic crystals are periodic in a certain plane while they are uniform in
the direction perpendicular to that plane. We define this plane to be the xy-plane. Due to mirror
symmetry of the crystal in this plane the modes can be classified into two distinct polarization
classes. When the electric field is confined to the xy-plane the modes are referred to as being
transverse electric (TE). Its polarization is given by (Ex, Ey, Hz). When the magnetic field is
confined to the xy-plane the modes are assigned transverse magnetic (TM). The corresponding
polarization is given by (Hx, Hy, Ez).

We compute the band structure for a two-dimensional photonic crystal consisting of a trian-
gular lattice of air holes. In Fig. 7 we show the band structure for a photonic crystal with an air
hole radius of ρ = 0.42a.
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ω
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]
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Fig. 7. Photonic band structure with the TE (red) and TM (green) bands of a two-
dimensional photonic crystal consisting of a triangular lattice of air holes. The radius of
the air holes equals ρ = 0.42a. The blue horizontal region depicts the complete photonic
band gap.

With ρ = 0.42a a complete photonic band gap is obtained such that no light in a certain
frequency range can propagate through the crystal. This band gap is indicated by the blue hori-
zontal region in Fig. 7. Increasing ρ will increase the size of the band gap. The first minimum
of the band above the band gap is located in the third TM band. Hence, an Ez source can be
used to excite the mode within this band.

Also indicated in Fig. 7 is the hexagonally shaped Brillouin zone. The irreducible part of the
Brillouin zone is indicated by the gray shaded area. Within the Brillouin zone there are three
high symmetry points: Γ, M, and K. As can be observed from the band structure the minimum
of the third TM band is located at a K-point.
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From the curvature of the band around the minimum, we can again determine the effective
mass. However, assigning a single effective mass is problematic in two- and three-dimensional
crystals as the effective mass generally depends on the direction. In this specific case, the dis-
persion is almost isotropic around the K-point; the effective mass varies only a few percent as
a function of direction. For this reason, we use in the following the angle averaged effective
mass.

In one dimension we have seen that by chirping the photonic crystal in a quadratic manner,
an effective harmonic potential is obtained. Quadratically chirping a two dimensional crystal
can be achieved by replacing Eq. (10) with

ρ(x,y) = ρ0 +
1
2

(
x2 + y2

η2

)
, (20)

where ρ(x,y) is again treated as a continuous variable similar to Eq. (7), and ρ0 denotes the
radius of the center air hole. Note that the crystal is now described in terms of the air hole
radius rather than the dielectric slab width as in Eq. (10).

Chirping the photonic crystal according to Eq. (20), the resulting two-dimensional harmonic
potential is given by

V (x,y) =
1
2

m∗Ω2(x2 + y2). (21)

With this harmonic potential the solutions of the two-dimensional time-independent
Schrödinger equation are obtained. These solutions are used to investigate our model in two
dimensions, i.e. to determine their overlap with the envelopes of the corresponding eigenmodes
of the photonic crystal found by performing FDTD simulations.

4.2. Results

In order to excite the mode within the third TM band we use an Ez source as mentioned in
Sec. 4.1. For a simple comparison of the computational effort, we ran the simulation on a single
core of an Intel Core i3-2130 processor using the parameters listed in Table 2. Per eigenmode
of the photonic crystal, this results in a computation time of ≈ 6.5 h.

Table 2. Simulation parameters for the two-dimensional chirped photonic crystal. The ex-
citation point is given as (x, y). The value for the excitation point has been chosen such that
it does not lie on a symmetry axis of the photonic crystal because this would result in the
excitation of only the even (n = 0,2,4, ...) eigenmodes.

Parameter Value
a 500 nm
ρ0 0.405a
η 40

√
a

resolution 32 px
a

f∆ 0.03 c
a = 18THz

fcen 0.38 c
a = 228THz

fδ 0.001 c
a = 600GHz

excitation point (−1.775a,−1.044a)

In two dimensions, the time-independent Schrödinger equation in polar coordinates is given
by {

− h̄2

2m∗

[
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂φ 2

]
+V (r)

}
ψn′,l = Eψn′,l , (22)
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where V (r) = 1
2 m∗Ω2r2 denotes the harmonic potential, and Ω the harmonic oscillator fre-

quency. The subscripts n′ and l denote the principle quantum number and the quantum number
related to the z-component of the angular momentum, respectively.

The solutions of Eq. (22) are given by [23]

ψn′,l(r,φ) =Cn′,le
−ζ 2/2(ζ )|l|L|l|p (ζ 2)eilφ , (23)

where L|l|p (ζ 2) denotes the generalized Laguerre polynomials, p = n′−|l|
2 the radial quantum

number, ζ ≡
√

m∗Ω
h̄ r a dimensionless variable, and Cp,l =

√
2m∗Ωp!
h̄(p+|l|)! a normalization constant.
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Fig. 8. FDTD results of the field patterns in two dimensions. From white to dark red, the
intensity of the field patterns are plotted for (a) the first, (b) the second, (c) the third, and (d)
the fourth eigenmode. On top of the field patterns the chirped photonic crystal is plotted,
where the dielectric material is depicted in black and the air holes in white.

The solutions ψn′,l(r,φ) are complex valued functions, whereas MEEP by default returns
real valued fields. Complex field patterns can be obtained using MEEP. In this case both the
simulation time per mode and the memory usage are increased by a factor 2. A more elegant
way to obtain the complex valued fields is to use a Fourier transformation from the time domain
to the frequency domain of the FDTD field patterns. In the frequency domain we discard the
negative frequency components as they are not a solution to Schrödinger’s equation. By taking
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the inverse Fourier transform to return to the time domain, we recover the complex valued field
patterns.

In Fig. 8 the intensity of the first four eigenmodes is depicted, ranging from white to dark
red. The modes have been normalized to unity as indicated by the colorbar. On top of each
eigenmode the photonic crystal structure is drawn.

To determine the envelopes of the eigenmodes in Fig. 8, we again take the spatial Fourier
transform of the complex valued field pattern. The result of this Fourier transform is given
in Fig. 9(a), where the maximum intensities are distributed in a hexagonal manner due to a
six-fold rotational symmetry of the crystal. We select one of the intensity maxima using a
mask (blue dashed circle). Taking the inverse Fourier transform, and multiplying the result
with the complex conjugate of a plane wave with wavevector kmin yields the envelope Ψn(r,φ),
as indicated in Fig. 9(b).
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Fig. 9. Obtaining the envelope of an eigenmode of the chirped photonic crystal cavity. In
(a) the spatial Fourier transform of the field pattern of Fig. 8(a) is shown. A mask (blue
dashed) is placed around an intensity maxima. Taking the inverse Fourier transform, and
multiplying the result with the complex conjugate of the corresponding plane wave results
in the envelope Ψn(r,φ) in (b).

However, before we determine the overlap between the FDTD envelopes and the eigenmodes
of the quantum harmonic oscillator we first note that for each principal quantum number n′ =
2p+ |l| the eigenmodes of the quantum harmonic oscillator have a (n′+ 1)-fold degeneracy.
Due to this degeneracy, we expect the mode envelopes to be described by a superposition of
degenerate quantum harmonic oscillator modes, i.e.

ψn′(r,φ) = ∑
l

cn,{n′,l}ψn′,l(r,φ), (24)

where cn,{n′,l} denotes the contribution of each degenerate state ψn′,l(r,φ) to Ψn(r,φ). This
contribution is determined via

cn,{n′,l} =
〈
Ψn(r,φ)|ψn′,l(r,φ)

〉
. (25)

The total contribution of the eigenmodes of the quantum harmonic oscillator to the mode
envelopes of the FDTD simulations is expressed by

∣∣cn,n′
∣∣2 = ∑

l

∣∣cn,{n′,l}
∣∣2 . (26)

#228367 - $15.00 USD Received 11 Dec 2014; revised 27 Jan 2015; accepted 9 Feb 2015; published 13 Mar 2015 
(C) 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007481 | OPTICS EXPRESS 7497 



−4

−2

0

2

4

y
[µ

m
]

(a) (b) 0.1 %

−4

−2

0

2

4

y
[µ

m
]

(c) 5.5 % (d) 92.0 %

−4 −2 0 2 4

x [µm]

−4

−2

0

2

4

y
[µ

m
]

(e) 2.0 %

−4 −2 0 2 4

x [µm]

(f) 0.4 %

0

1

|Ψ
2
|2 /
|Ψ

2
|2 m

ax

0

1

|ψ
0
|2 /
|ψ

0
|2 m

ax

0

1

|ψ
1
|2 /
|ψ

1
|2 m

ax

0

1

|ψ
2
|2 /
|ψ

2
|2 m

ax
0

1

|ψ
3
|2 /
|ψ

3
|2 m

ax

0

1

|ψ
re

st
|2 /
|ψ

re
st
|2 m

ax

Fig. 10. Envelope of a single mode Ψn compared to all theoretical harmonic modes ψn′ .
In (a) the envelope of the third eigenmode Ψ2, (b) the first harmonic ψ0, (c) the second
harmonic ψ1, (d) the third harmonic ψ2, (e) the fourth harmonic ψ3, (f) all other harmonic
modes ψrest. In the upper right corner of subplots (b) - (f) the contribution |c2,n′ |2 of ψn′ to
Ψ2 is depicted.

In Fig. 10 the contributions of the eigenmodes ψn′(r,φ) of the quantum harmonic oscillator
to Ψ2(r,φ) are shown. In the upper right corner of (b)-(f),

∣∣c2,n′
∣∣2 is indicated for each mode.

Similar to one dimension, there is an excellent agreement (|c2,2|2 = 92.0%) between the enve-
lope of the third eigenmode of the FDTD simulation and the third eigenmode of the quantum
harmonic oscillator. The neighboring modes again have contributions of only a few percent. For
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the two-dimensional photonic crystal, the eigenmodes obtained from the FDTD simulations can
thus be described in excellent (> 90%) agreement by the eigenmodes of the two-dimensional
quantum harmonic oscillator.

5. Conclusions

We demonstrated a novel and intuitive approach to calculate the electromagnetic field modes
of photonic crystals by translating this task to solving a simple time-independent Schrödinger
equation, thereby avoiding large computational FDTD simulations.

For this approach the local potential energy within a chirped photonic crystal was derived
from the energy of the bottom of a photonic band for a periodic photonic crystal. The effective
mass was obtained from the curvature of this band. We have shown that for a certain range of
air hole radii, the energy at the bottom of the band decreases linearly with the air hole radius,
whereas the effective mass can be considered constant to a good approximation. Increasing the
air hole radius quadratically as a function of distance to the center of the crystal results in an
effective harmonic potential.

With this harmonic potential, we obtained the solutions of the time-independent Schrödinger
equation. Comparing these solutions in both one and two dimensions to the envelopes of the
eigenmodes within the photonic crystals, yields a typical overlap well above 90%. The ana-
lytical solutions of the time-independent Schrödinger equation can thus be used to model the
eigenmodes of one- and two-dimensional photonic crystals to a very good approximation. This
approach reduces computational effort by many orders of magnitude.

We have also shown that adding disorder to the photonic crystal in the form of a deviation
on the air hole radius results in a distorted potential. Using normalized Numerov integration we
solved the time-independent Schrödinger equation with this potential using only a single grid
point per unit cell. The solutions follow the envelopes of the corresponding field patterns of the
FDTD simulations. Our approach thus even works in the presence of disorder.

Our technique could be extended to increase the accuracy for higher order modes. As ex-
plained a mismatch occurs because the linear relation for E0(w) breaks down and the effective
mass m∗ can no longer be considered constant. In this case numerical integration can be per-
formed to account for the non-linearity of E0(w). Also, a position dependent mass could be
included in this integration to obtain a more accurate calculation of the envelope. This is how-
ever beyond the scope of this work.

Due to the intuitive nature and low computational costs of the model it can be of great interest
when designing large photonic crystal structures, for instance in the field of photovoltaics,
optoelectronics, and solid-state lighting.

Acknowledgment

This work is part of the research program of the Foundation for Fundamental Research on
Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO).

#228367 - $15.00 USD Received 11 Dec 2014; revised 27 Jan 2015; accepted 9 Feb 2015; published 13 Mar 2015 
(C) 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007481 | OPTICS EXPRESS 7499 


	Introduction 
	Theory 
	One-dimensional harmonic cavity 
	Effective mass and effective potential
	FDTD results
	Local density results
	Detailed analysis of the local density results
	One-dimensional harmonic cavity with disorder

	Two-dimensional harmonic cavity 
	Effective mass and effective potential
	Results

	Conclusions 



