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Relatedness, Cross-relatedness and
Regional Innovation Specializations: An
Analysis of Technology, Design, and Market
Activities in Europe and the US
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This article examines how regions develop new innova-
tion specializations, covering different activities in
the whole process from technological invention to
commercialization. We develop a conceptual frame-
work anchored in two building blocks: first, the concep-
tualization of innovation as a process spanning
technology, design, and market activities; second, the
application and extension of the principle of relatedness
to understand developments within and between the dif-
ferent innovation activities.We offer an empirical inves-
tigation where we operationalize the different
innovation activities using three intellectual property
rights: patents, industrial designs, and trademarks. We
provide two separate analyses of how relatedness and
cross-relatedness matter for the emergence of new spe-
cializations: for 259 NUTS-2 European regions and for
363 metropolitan statistical areas of the US.While relat-
edness is significantly associated with new regional spe-
cializations for all three innovation activities, cross-
relatedness between activities also plays a significant
role. Our study has important policy implications for de-
veloping and monitoring smart specialization regional
strategies.
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How innovation unfolds in space and over time is a
critical question in understanding the ways in which
regions can reconfigure their activities and thrive
(Feldman 1994). However, what is innovation?
Schumpeter (1934) stresses that invention is not yet
innovation: much needs to happen before a novel
idea turns into an actual new product or process that
can generate value for users and producers alike. Nev-
ertheless, most conceptual and empirical research on
the geography of innovation has examined upstream
and downstream stages of the innovation process in
isolation, with a predominant focus on the former,
that is, technological invention. Turning invention
into innovation also requires capabilities such as
design and marketing (Mendonça 2014; Rodríguez-
Pose and Lee 2020), which are critical for developing
a persuasive innovation that is more likely to be
adopted. Hence, focusing on technology alone can
result in a misrepresentation of the innovation
process, leading to a bias in the preferred policy
options, too (Breznitz 2021). Regional innovation
systems can combine capabilities in all the comple-
mentary activities needed for innovation, but they
also often specialize in specific ones, and not all
regions can or wish to be technology
leaders (Asheim and Coenen 2005; Capello and
Lenzi 2013).

Recognizing the different specializations open to
regions is also at the core of policies toward smart
specialization strategies (S3) (Foray and Hall
2011). The program aims at taking a broad view
on innovation. Yet, regional policy makers and
scholars alike struggle to capture the diversity of in-
novation specializations and end up focusing on one
type of specialization at a time (Foray, Morgan, and
Radosevic 2018). Most often the focus is on special-
ization in science and technology activities: this can
be explained with the belief that investing in the up-
stream stages of innovation will naturally lead to all
kinds of innovations being introduced in the market
(Marques and Morgan 2018) but also with the fact
that those innovation activities have been easier to
monitor with data (Castaldi and Mendonça 2022).
All this has left many regions, especially those
that are not high-tech clusters, struggling with rec-
ognizing and valuing their specific innovation
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capabilities and their ability to build smart specializations from them (Radosevic
2018).

The objective of this article is to develop a conceptual framework to understand the
emergence of regional innovation specializations spanning a broader set of innovation
activities than those focused on technological invention only. Our aim is to offer a frame-
work that resonates with insights from theorizing and empirical findings of prior re-
search, while being applicable in quantitative analyses of regional specializations, for
policy and research purposes alike.

For the theoretical embedding, we leverage and extend the principle of relatedness
(Hidalgo et al. 2018) and insights from evolutionary economic geography on related
diversification (Boschma 2017). To do so, a first conceptual step relies on clarifying
the distinction between invention and innovation: we propose to separate three differ-
ent activities, namely, technology, design, and market. For each activity, we discuss
the key properties and conceptualize the underlying knowledge space and then
discuss how relatedness can be defined in each space. A second conceptual step in-
volves connecting the three innovation activities by introducing the idea of cross-re-
latedness and the possibility of capturing an overall innovation space. By space we
refer to a network where one can represent which innovation activities tend to cospe-
cialize at the regional level. The cospecialization is depicted as a connection, with the
innovation activities being the nodes in the network. Patterns of relatedness (within
each innovation activity) and cross-relatedness (between innovation activity) can
then be used to model the emergence of new regional innovation specializations,
of the three different kinds.

For the operationalization, we propose a comparable set of innovation metrics that
have not been systematically combined in regional innovation studies before. We
capture the three innovation activities by three types of intellectual property rights
(IPRs): (1) (utility) patents, (2) industrial designs, and (3) trademarks. These data
allow us to operationalize relatedness and cross-relatedness using the underlying
patent, design, and trademark classifications. We apply our empirical model to two in-
dependent settings for the period 2003–16. The first is 259 NUTS-2 regions across 21
European countries: this setting is the most salient in relation to smart specialization
policy applications. The second is 363 metropolitan statistical areas (MSAs) areas in
the US, an alternative testbed where the different definition of industrial designs
enables us to compare the role of two specific types of design activities, namely, techni-
cal and aesthetic ones.

We reveal three main patterns. First, relatedness plays a significant role in the
emergence of new regional specializations for all three innovation activities, not
only the upstream ones. Second, cross-relatedness of technology activities with down-
stream ones matters for the emergence of design and market specialization, in line
with traditional technology-push models of innovation. Yet, cross-relatedness of
design and market activities with technology also matters for the emergence of
new specialization, albeit to a lesser extent than relatedness in the same innovation
activity. Nonetheless these backward linkages are indicative of feedback loops and
synergies between regional innovation activities. Finally, the comparison of the Euro-
pean and US contexts highlights the differential role of technical versus aesthetic
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design activities, while also informing the use of IPR metrics to capture such
activities.

Regional Innovation and the Principle of Relatedness:
Toward a Conceptual Framework
Unpacking Innovation: Technology, Design, and Market Activities

Innovation is more than invention: it requires turning a promising new idea into
something that users are willing to buy or adopt. We conceptualize this process as
made of three main activities: technology, design, and market.

New technology typically stems from dedicated research activities, which can be
formal research and development (R&D) or informal on the job activities. The knowl-
edge involved is often synthetic, typical of engineering sciences (Asheim and Coenen
2005). Engineers and other technology developers will consider options across a tech-
nology space (Dosi 2000). A rich empirical literature has used patent data to reconstruct
how companies and/or regions navigate the underlying technology space by following
clear trajectories of learning (e.g., Leten, Belderbos, and Van Looy 2007; Rigby
2015), showing a high degree of path dependence.

Eventually, the new technological options can lead to a new product or a new process,
but these will have to be further developed and designed before they can actually be
applied and used. Design activities include prototyping and tryouts. When presented
with new technological options, designers will work by navigating alternative design
options in what can be defined as a design space (Windrum, Frenken, and Green
2017). Design can be seen as an intermediary function, concerned with finding solutions
to trade-offs between technical feasibility and users’ preferences (D’Ippolito 2014).
Such a role is highly specific to technology-driven innovation processes, where design-
ers are typically called upon only once new technologies emerge. Instead, design can
take a more leading role in innovation processes typical of industries where soft innova-
tion is the main source of change (Stoneman 2010). There, designers focus on aesthetic
design options and the creation of new meanings, often with the aim of initiating new
product lines and allowing differentiation (Verganti 2006).

Working product or process configurations will find their way to the market in the
commercialization stage. In this last stage of the innovation process, capabilities
related to marketing appear crucial. The success of an innovation depends not only on
the quality of the innovation but also on the extent to which it aligns with needs and as-
pirations of consumers. In this phase, symbolic knowledge related to the definition of
new categories and meanings comes into play (Mendonça, Santos Pereira, and
Godinho 2004). When positioning the innovation, firms will consider profiling their of-
fering as a specific option in what can be called the market space. To illustrate the point,
Davids and Frenken (2018) reconstruct how Unilever positioned margarine as a
(healthy) food product after being first introduced as a medical product. Patterns of re-
gional and corporate market diversification and specialization can be captured with
trademarks (Castaldi and Mendonça 2022).

Table 1 summarizes the key features of the three innovation activities as the building
blocks for our framework of regional innovation specialization. Based on the discussion
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above, design activities can be of two kinds. A first kind concerns what one could call
technical design: these activities are common in technology-driven innovation processes
and often involve designers trained at engineering schools, able to combine design think-
ing with synthetic knowledge bases typical of technology activities. A second kind con-
cerns aesthetic design: those activities are common in soft innovation processes where
designers focus on the creation of new products and new meanings, hence combining
design knowledge with symbolic knowledge. These designers are more likely to be
trained in art schools or dedicated design schools. The last row also includes the
metrics that we will use for each activity, which we will explain in detail in
“Methods.” Next, we move to explain how regional specializations can stem from all
three activities.

Regional Innovation Specializations and the Principle of Relatedness

As already hinted in the previous subsection, innovation activities tend to
develop in a path-dependent manner, and the opportunities for further diversification
or specialization get shaped by the knowledge and capabilities already developed at
each point in time (Boschma 2017). This intuition from evolutionary economics has
been conceptualized into the principle of relatedness (Hidalgo et al. 2007) and ex-
tensively applied within evolutionary economic geography. When it comes to inno-
vation activities, researchers have provided strong evidence for the significance of
relatedness in shaping the emergence of new regional technological specializations
(Kogler, Rigby, and Tucker 2013; Boschma, Balland, and Kogler 2015; Petralia,
Balland, and Morrison 2017; Apa et al. 2018). The rationale is that regions will
branch out into new technologies that are related to their existing technological ca-
pabilities by tapping into and recombining existing knowledge bases. The underlying
mechanism behind related diversification relies on the idea that related pieces of
knowledge and capabilities are easier to be recombined thanks to cognitive proxim-
ity (Rigby 2015). At the same time, knowledge spillovers are not the only mecha-
nisms supporting relatedness. As Boschma (2017) discusses, regions can show
specialization in the same two activities because of knowledge spillovers, skill

Table 1

Three Key Innovation Activities and Their Properties

Innovation Activity Technology Design Market

Main output Technological inventions Novel designs New products (goods and

services)

Phase of the

innovation process

Research Design and prototyping Product development and

marketing

Type of knowledge Technological, synthetic,

engineering-based

a. Technical design, in

technology-driven innovation

b. Aesthetic design, in soft

innovation

Symbolic knowledge,

categories, meanings

Knowledge space Technological space Design space Market space

Proxy/Metric Patents a. Design patents

b. Designs

Trademarks

Vol. 99 No. 3 2023
R
E
G
IO

N
A
L
IN

N
O
V
A
T
IO

N
S
P
E
C
IA
L
IZ
A
T
IO

N
S

257

http://www.tandfonline.com/


relatedness, or input–output relations: hence, relatedness can stem both from similar-
ity and complementarity.

Scholars have used the principle of relatedness to examine branching in several eco-
nomic activities in addition to technological ones, including export products (e.g.,
Hidalgo et al. 2007), industries (e.g., Neffke, Henning, and Boschma 2011), and scien-
tific fields (e.g., Boschma, Heimeriks, and Balland 2014). Key to our arguments in this
article is that the underlying logic of new knowledge emerging from the recombination
of related bits of existing knowledge appears indeed to apply to different kinds of knowl-
edge not only technological one. To illustrate how the logic is helpful to conceptualize
developments in all the three knowledge spaces of technology, design, and market, we
refer to an example. Smart phone technologies recombine technologies related to batte-
ries, chips, antennas, audio, video, display, and the internet (Castaldi, Frenken, and Los
2015). At the same time, one can view the corresponding product, that is, the smart
phone, as defining a new product category that recombines communication devices, pho-
tographic instruments, fashion items, and recreational services (Suarez, Grodal, and Got-
sopoulos 2015). Similarly, smart phone product developers have experimented with
different design options, often working around trade-offs in the size, power, and porta-
bility of the new devices (Cecere, Corrocher, and Battaglia 2015).

What this example illustrates is how knowledge spillovers exist for all knowledge
types. Within technology spaces, technological similarity or complementarity will
tend to support cognitive proximity. Within design spaces, design options where
regions tend to cospecialize can be seen as closer to each other because of similar or
complementary types of design solutions. With product spaces, similar or complemen-
tary symbolic knowledge will make regional specializations in two given product cate-
gories more likely than in two categories without a common or connected meaning.

If the principle of relatedness can indeed apply to all three innovation activities, then
we can derive hypotheses about the emergence of new regional specializations in design
and market activities that are similar to those about technology specializations. Specif-
ically, we expect regions to be more likely to develop new innovation specializations
when they show a high degree of relatedness of knowledge in each specific space.

From Relatedness to Cross-relatedness between Innovation Activities

The discussion above has treated the three innovation activities as independent ones.
Yet, there are many ways in which innovation activities are related, through formal
input–output relations but also knowledge feedback loops and even skill relatedness.
The three knowledge spaces are also likely to be strongly connected to each other,
since opting for specific technologies often comes with restricted design and market
choices, and the other way around. These linkages allow expanding the notion of relat-
edness to include cross-relatedness as well.

We are not the first to extend the principle of relatedness to more knowledge dimen-
sions. Catalán, Navarrete, and Figueroa (2020) focus on how scientific capabilities of a
nation can contribute to new related technology specializations and define a sci-tech
space. Pugliese et al. (2019) leverages a complexity perspective to investigate multilay-
ered networks of relations between science, technology, and product capabilities of
countries. Our work differs in several respects. First, our interest is in the regional
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level. Research has demonstrated that both national and regional systems of innovation
are important, but the regional level allows capturing variance in innovation activities
that is left unexplained when taking a national lens (Cooke, Uranga, and Etxebarria
1997). Second, our focus goes beyond the scientific base of regions and concerns,
instead, the more applied stages of innovation, those mostly happening within corporate
borders. Pugliese et al. (2019) include downstream activities by considering new product
specializations, using export data. Such data are not focused on innovation and also tend
to underestimate service activities, which are harder to trade. Finally, both studies
assume a linear relation from science to technology and then market. Instead, our frame-
work can accommodate cross-relatedness to run both ways, from upstream to down-
stream but also the other way around.

Based on our characterization of the three innovation activities, we propose to con-
ceptualize relatedness between activities, that is, cross-relatedness, as the co-occurrence
of specialization in two different innovation activities as revealed by the patterns at the
supraregional level (whole Europe or whole US, in our case).

Cross-relatedness and Regional Innovation Specializations

We discuss here the mechanisms behind cross-relatedness that we expect to play a
role. Similar to the understanding of relatedness, the mechanisms may be quite
diverse: while it is hard to discriminate them empirically (Boschma 2017), we can
discuss those that are most likely to be at play. In the first place, co-occurrence of two
focal innovation activities, say design and market ones, in one region can be there
because local companies possess knowledge that is useful for both activities, hinting
at synergies in the underlying learning processes (Farinha et al. 2019). In the second
place, there might be more formal input–output relations that connect innovation activ-
ities from technology to market (Essletzbichler 2015).

Starting with the ideas of the linear model of technology-push innovation, one could
expect clear patterns of cross-relatedness of technology to the downstream innovation
activities. From a different perspective, Chan, Mihm, and Sosa (2017) show how tech-
nological advances can push the boundaries of designs and even alter the styles of entire
product segments. In general, one would expect regions cospecializing in technology
and technological design activities to rely on similar or complementary knowledge
bases (Corradini and Karoglou 2022). Such tech-design relatedness would likely stem
from underlying synergies in technology-driven innovation (Murmann and Frenken
2006; Dan, Spaid, and Noble 2018) and mostly concern technical design. In such pro-
cesses, tech-market relatedness would also be there, as working combinations of syn-
thetic and symbolic knowledge bases feed cospecialization in specific technologies
and specific markets (Hise et al. 1989; Breznitz 2021).

On the other hand, demand-pull arguments might also be mechanisms for cross-re-
latedness between innovation activities. Firms may experience synergies from embed-
ding technological advances into their branded products/services as a way to deal
with increased competition (Greenhalgh and Rogers 2012). For instance, Bei (2019)
shows how firms may source technology from other firms to capitalize on their
already successful brands. There is also evidence that clusters of firms with strong
market positions have incentives to invest in new technological specializations to
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keep their products up to speed with technological upgrades (Fritsch and Wyrwich
2021). This suggests synergies that would support market-tech relatedness, too.

As for cross-relatedness between design and market activities, mechanisms support-
ing regional cospecialization can also run both ways. They are likely to be strongest
when aesthetic design is concerned, relying on synergies between design and symbolic
knowledge. In fact, design knowledge specialization can be leading in creating synergies
with specific market knowledge bases (Walsh 1996; D’Ippolito 2014), but there is also
rich evidence of significant feedback loops that design activities rest upon, with market
demand or user feedback shaping new product aesthetics and functionalities (Di Stefano,
Gambardella, and Verona 2012). These mechanisms are likely to be more evident in the
case of aesthetic design and for industries where soft innovation works as a key compet-
itive advantage.

Let us also stress two main reasons not to expect cross-relatedness. A first reason
might be that the three innovation activities are independent or to a large extent sep-
arable. Within global or even simply modularized value chains, inventions can occur
in one place and commercialization in another. If this is the case, then our framework
would pick up the resulting lack of cross-relatedness and demonstrate it for those
specific types of activities for which indeed separation is possible. A second
reason is that downstream innovation activities may not need technological inven-
tions to capitalize from. In several low-tech sectors, innovation rests upon soft ele-
ments or gets prompted by user feedback: this is the case in many service sectors but
also in the creative and cultural industries (Millot 2009; Schmoch and Gauch 2009;
Stoneman 2010).

Relatedness, Cross-relatedness, and Regional Innovation Specializations

Our framework suggests that regional innovation specializations in each innovation
stage can be explained by both relatedness in that activity and cross-relatedness with the
other two activities. Table 2 illustrates this in a matrix form, where the diagonal elements
are the relatedness elements expected to be positively associated with each regional in-
novation specialization (the three column headers). The goal is to elaborate on which
relatedness and cross-relatedness dimensions we expect to play a more pronounced
role for the different innovation specializations. We do so by considering the two
types of design, which will also correspond to the two empirical contexts where we
test our hypotheses.

For all three innovation specializations, we expect the relevant relatedness measure
(i.e., the diagonal elements in Table 2) to reveal the strongest association with the emer-
gence of new specialization, following prior theoretical and empirical literature.

For technological specialization, we also expect cross-relatedness with downstream
activities to play a role but less than relatedness. We expect tech-design relatedness to be
positively associated with new technological specialization mostly when design is of a
technical nature. Here the underlying synergies between technological and design
knowledge appear more evident.

For design specializations, we expect differences for technical design versus aesthet-
ic design, with a stronger role for tech-design relatedness, leveraging clear synergies
between synthetic and design knowledge bases versus a stronger role for design-
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market relatedness, leveraging clear synergies between design and symbolic knowledge
bases.

For market specializations, we similarly expect market relatedness to reveal the
strongest association, but cross-relatedness with more upstream activities should also
significantly matter. We envision a role for design-market relatedness, in case of aesthet-
ic design, and for tech-market relatedness overall.

Intellectual Property Rights as Innovation Proxies
To capture technological inventions, design, and market activities, we consider

utility patents, industrial designs, and trademarks. The main advantage of opting
for these three metrics is that they are all intellectual property rights, with comparable
types of data, and some common strengths and limitations. Key common strengths are
that IPRs can be counted at the regional and national level, and they are registered
after undergoing a formal filing procedure where specific requirements are checked.
Key common limitations are at least two. First, their validity as innovation metrics
is weakened by strategic practices in their filings (Greenhalgh and Rogers 2010).
One way to take into account this problem is to consider only filings that made it
to registration, which allows disregarding at least some of the strategic practices.
This is the approach we opt for in our analysis. Second, IPRs only measure a
share of all activities that contribute to innovation. However, they do capture activi-
ties that add value to the economy. At the regional level, there are several studies that

Table 2

Relatedness and Cross-relatedness behind Regional Innovation Specializations: Expected
Strength of Relationships Depending on Type of Design Activity

Regional Innovation Specializations

Dimensions of
(Cross-)relatedness

Technology
Specialization

Technical Design
Specialization Market Specialization

Technology Technological relatedness

(+++)

Tech-design relatedness (++) Tech-market relatedness

(++)

Technical design Design-tech relatedness

(+)

Design

relatedness (+++)

Design-market relatedness

(+)

Market Market-tech relatedness

(+)

Market-design relatedness (+) Market

relatedness (+++)

Dimensions of
(Cross-)relatedness

Technology
Specialization

Aesthetic Design
Specialization

Market Specialization

Technology Technological relatedness

(+++)

Tech-design relatedness (+) Tech-market relatedness

(++)

Aesthetic design Design-tech relatedness

(+)

Design

relatedness (+++)

Design-market relatedness

(++)

Market Market-tech relatedness

(+)

Market-design relatedness (+) Market

relatedness (+++)

Note: the +++ signs summarize the hypothesized relationship and its strength, with +++ denoting the strongest
association in that column, + the weakest, and ++ the intermediate one.
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relate at least one of these IPRs, and sometimes more than one, to innovation and/or
entrepreneurship (Mendonça 2014; Torres-Preciado et al. 2014; Corradini and
Karoglou 2022; Drivas 2022; Pinate et al. 2022) while Filippetti et al. (2019) show
that regions engaging in all three types of IPR activity appear more economically resilient.

Utility patents have been employed most extensively as an innovation metric to
capture technological inventions and the upstream phase of innovation processes (Gri-
liches 1990). While researchers have critiqued the patent system, since several inven-
tions may not pass the patentability threshold (Bessen and Meurer 2008; Boldrin and
Levine 2013), scholars have also shown that patents can provide financial incentives
to inventors; hence, they are specifically used by actors more strongly investing in inven-
tion (Moser 2005; Lerner 2009).

Design rights protect the aesthetics of industrial products and have been discussed as
potential metrics for innovation (Stoneman 2010; Filitz, Henkel, and Tether 2015; Fili-
ppetti and D’Ippolito 2017; Heikkilä and Peltoniemi, 2019). Through the use of design
rights, researchers have shown the evolution of products and styles in an entire industry
(Chan, Mihm, and Sosa 2017). All prior studies have focused either on the US or Europe,
but a key difference between the two systems is that in the US they are actually design
patents, while in Europe design rights are more similar to trademarks (Schickl 2013). As
such, in the US, design rights undergo a similar procedure to patents and are tested for
novelty and industrial applicability, while design rights in Europe capture new designs
that fulfill the condition of distinctiveness. This institutional difference allows connect-
ing US design patents primarily to new technical designs and technology-based innova-
tion processes and European design rights primarily to new aesthetic designs typical of
industries focused on soft innovation. Hence, it also allows testing for hypotheses in-
volving technical design in the US context and those involving aesthetic design in the
European context.

Trademarks are distinctive signs that protect differentiating attributes of a product or
service (Graham et al. 2013). Empirical studies have found significant evidence that
trademarks correlate positively to innovation activity and new product/service introduc-
tion (Mendonça, Santos Pereira, and Godinho 2004; Flikkema, de Man, and Castaldi
2014; Flikkema et al. 2019). What distinguishes trademarks from the other IPRs is
that the applicant needs to provide evidence of use in commerce before being granted
(Graham et al. 2013; Schautschick and Greenhalgh 2016). Hence, trademarks can
capture the most downstream stage of innovation activity.

Utility patents can be classified according to the International Patent Classification
(IPC). Design rights are classified by the international Locarno classification of design
categories: these categories concern industrial design and connect to specific artifacts.
Therefore, these Locarno categories have an intuitive connection with both patent
classes, since patents have to indicate an industrial application, and trademark classes,
since they indicate specific product categories that identify the specific markets where
trademark owners claim protection. Trademark classes are defined by the international
Nice classification, including forty-five classes (one to thirty-four cover goods, and
thirty-five to forty-five cover services). A strength of combining these classifications
is that the three are internationally comparable. A limitation is that they differ in the
degree of detail, with patent classes being the most detailed, followed by design and
trademark classes.
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Methods
Data Collection

Starting with Europe, we collected utility patents filed at the European Patent Office
(EPO) from the OECD’s REGPAT database (Maraut et al. 2008), including applicant’s
NUTS-2 information, and trademark and industrial designs filed at the European Union
Intellectual Property Office (EUIPO). Each EUIPO record was separately located in an
XML file, and after a careful reconfiguration, we obtained each applicant’s country and
postal code information. We assigned each postal code to a NUTS-2 region based on the
European Commission’s NUTS-2 postal codes concordance.1 We included a country’s
NUTS-2 regions if more than 90 percent of the country’s trademarks and industrial
designs were assigned to a NUTS-2 region. The countries that did not satisfy this crite-
rion were Bulgaria, Ireland, Romania, and Lithuania.2 Further, we dropped countries that
only included a single NUTS-2 region as in Xiao, Boschma, and Andersson (2018):
Estonia, Cyprus, Luxembourg, Latvia, and Malta. Finally, we included Switzerland
and Norway though they are not part of the EU, due to the proximity to other EU coun-
tries. Overall, we obtained information for approximately 450,000 patents, 640,000 in-
dustrial designs, and 570,000 trademarks, filed during 2003–16, which made it to
registration and were spread over 259 NUTS-2 regions.

For the US case, we collected utility patent, design patent, and trademark records
from the public databases of the United States Patent and Trademark Office
(USPTO).3 In line with other studies, we chose the MSA level as the geographic
level most comparable to NUTS-2 regions (Lee and Rodríguez-Pose 2013).4 For
each USPTO record, we obtained the application and registration dates, the associated
classes, and the location information of the applicant. Note that patents can also be
counted by inventor location, but since trademarks can only be counted by owner lo-
cation, we opt for the applicant location for all IPRs. For both utility and design
patents, the USPTO has already geocoded the applicants; hence, we only needed to
assign the coordinates to MSAs based on the US census’s Topologically Integrated
Geographic Encoding and Referencing shapefiles, 2010 version. For the case of trade-
marks, we used the postal codes and assigned them to MSAs based on the same
shapefiles. Missing postal codes were searched in Google Earth Pro and, based on
their coordinates, were once again assigned to an MSA. Overall, we obtained infor-
mation for approximately 1 million utility patents, 137,000 design patents, and 3.6
million trademarks, filed during the period 2003–16, which made it to registration
and which were assigned to 363 MSAs.

1 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts.
2 For Bulgaria, Ireland, and Romania, we could not locate the postal code for approximately 50 percent of
the trademark filings from the database. For Lithuania, while we could locate a postal code for the trade-
mark application data, we could only obtain a three-digit postal code. However, from the European Com-
mission’s NUTS-2 postal codes concordance, we could only locate a five-digit postal code, thereby
excluding this country due to the lack of clear concordance.

3 Office of the Chief Economist, https://www.uspto.gov/ip-policy/economic-research/research-datasets. For
a thorough overview of this trademark database, see Graham et al. (2013).

4 Lee and Rodríguez-Pose (2013) focused on MSAs and NUTS-1 regions when comparing US and Euro-
pean regions. However, wherever data availability allowed them to use NUT-2 regions, they performed
the analysis at that level.
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For utility patents, the standard practice in the evolutionary economic geography lit-
erature is to focus on either the three-digit (Balland et al. 2019) or four-digit IPC clas-
sification (Apa et al. 2018). Given the higher level of detail, we opt for the first listed
four-digit IPC classification. For design rights, we employ the four-digit classification
Locarno classification. For trademark classes, we rely on the forty-five Nice classes,
but we discuss possible extensions in the robustness tests and conclusions.

Finally, we decided to count IPRs by filing year, that is, the year closest to the under-
lying activity taking place, but we only counted registered IPRs. This allows counting
IPR filings that underwent the administrative checks of the formal requirements and
hence are likely to be of higher quality than filings that did not make it to registration.
This choice also explains why our sample ends in 2016. Because of the known lags
between filing and registration, we can exploit more recent information to check regis-
tration. Note that EUIPO only started accepting industrial design applications in 2003;
therefore, to provide an even comparison across both testbeds, our samples start in 2003.

Key Variables

Our approach relies on calculating relatedness measures for all three innovation
metrics. In doing so, we first build technology, design, and market spaces, and then
a comprehensive innovation space, where the three activities are related to each
other. For patents and design rights, we consider the main primary listed class. For
the case of trademarks, we opt for whole counting, in case there is more than one
Nice class disclosed. Unlike patents, and design rights, for an applicant to claim an ad-
ditional class s/he needs to provide evidence that the trademark is used in commerce in
all selected classes of goods/services. Therefore, a trademark with several classes has a
wider scope of commercial activity compared to a trademark with a single class. None-
theless, we run several robustness checks where we opt for alternative choices of the
listed classes.

We discuss here the construction of the innovation spaces for the European case and
provide examples specific to this context. The analysis for the US follows exactly the
same steps. First, we bundle years in three time periods: 2003–08, 2009–12, and
2013–16. Therefore, the period dimension, denoted as t, takes three values: t = 0 for
2003–8, t = 1 for 2009–12, and t = 2 for 2013–16. Working with periods instead of
single years ensures that a region’s entry into a new specialization is robust and not
due to a random short-term shock (Neffke, Henning, and Boschma 2011). We first con-
structed the indicator of specialization that has become standard in the relatedness liter-
ature, inspired by Balassa (1965). The indicator identifies whether region r has a
revealed comparative advantage (RCA) in class i for a particular IPR during period t.
For instance, for market specializations, the RCA is defined as

RCAr,i,t =
trademarksr,i,t/

∑
i trademarksr,i,t∑

r trademarksr,i,t/
∑

r

∑
i trademarksr,i,t

In other words, RCAr,i,t at period t measures the share of trademarks in class i that
region r filed over the share of trademarks filed in class i of all trademarks filed. There-
fore, a higher RCAr,i,t implies that region r is relatively more active in trademark class i
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compared to the entire set of regions. Similar specialization indicators are calculated for
patents and design rights. To have a class index that runs through all three classifications,
we recode class i to be a numeric index that takes values between 1 and 836 (1 and 822)
for Europe (US). This comes from the fact that for Europe (US), we have 589 (591) 4-
digit IPC classes and 202 (186) Locarno classes, and 45 Nice classes.

Following the literature (Hidalgo et al. 2007), a region is specialized in class i if its
RCA is above one:

xr,i,t = 1 if RCAr,i,t . 1
0 otherwise

{

The next step generates the key inputs for constructing the innovation spaces cap-
turing the underlying relatedness and cross-relatedness. Following the literature, we
start by estimating proximities among classes from revealed patterns of cospecializa-
tion. We calculate the probability that a region specializes in class i, given that it also
specializes in class j. For the 259 NUTS-2 regions (or 363 MSAs) we count the in-
stances where class i has an RCA > 1 given that class j, where i≠j, has an RCA > 1.
Then by dividing this number with the instances where class j has an RCA > 1, we
obtain the probability P(xi,t|x j,t). This probability does not need to be equal to the op-
posite conditional probability P(x j,t|xi,t). To reconcile this asymmetric distance
between classes, we follow Hausmann and Klinger (2007) and calculate the
minimum of each pair of probabilities. That is

wi,j = min {P(xi,t|x j,t), P(x j,t|xi,t)}

For the European (US) case, wi,j populates an 836×836 (822×822) matrix of proxim-
ities that capture the overall innovation space. Note that this matrix is symmetric by def-
inition, as wi,j = w j,i for each given combination of i and j.

Figures A1 and A2 in the online material display the innovation space for Europe and
the US, respectively. After summing all φ’s, we calculate the minimum spanning tree
(MST) algorithm to display the edges between nodes. For both geographic contexts,
we observe several clusters where technology, design, and market activities are intercon-
nected. For the case of Europe, trademark market classes are linked with many technol-
ogy classes within a core cluster comprised of loosely connected smaller clusters. In the
case of the US, the picture is slightly different with trademark market classes dispersed
across the innovation space instead of within a central cluster. Let us provide some ex-
amples that illustrate how the specific patterns of relatedness and cross-relatedness have
mattered for shaping new regional specializations. In Europe, specializations in industri-
al designs on locking and closing devices tend to co-occur with designs in chain links
and permanent magnets but also with patents on bolts, hinges, and devices for
opening and closing any type of wing. The DE11 region (Stuttgart) displayed a new spe-
cialization in locking and closing devices after it had developed specializations in both
the related design and patent fields. In the US, the MSA of Tampa-St. Petersburg-Clear-
water, FL, exhibited a new market specialization in clothes and footwear trademarks
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after it already specialized in patents that include inventions in outerwear, protective gar-
ments, and accessories.

Going beyond these specific examples, our analysis aims at establishing to what
extent regional relatedness and cross-relatedness matter on average for the emergence
of new regional technology, design, and market specializations. To this end, we estimate
regression models that allow us to gauge the strength and directionality of relatedness
within and between the three innovation activities on the emergence of new regional spe-
cializations. The dependent variables capture the entry of region r in a new specialization
in a particular class i. They take the value of 1 if region r exhibits an RCA in period t,
given it had not in period t-1 and 0 otherwise. That is

Entryr,i,t = 1 if xr,i,t = 1 and xr,i,t−1 = 0
0 otherwise

{

We then construct the main independent variables of interest, capturing regional re-
latedness within and between types of IPRs. Following the literature, we use average
density measures, as they are called in the literature, which consider proximities of
the focal class to the classes where the region already specializes. For exposition,
assume that our interest is on Entryr,i,t where i = 1-45, that is, we focus on new
market specializations. We construct three variables. The first one captures relatedness
specific to market activities:

Market RELATEDNESSi,r =
∑45

j=1,j[r,j=i wij∑45
j=1,j=i wij

The numerator is the sum of wij in the trademark class j in which region r specializes.
The denominator is the overall sum of wij for market class i. This measure captures how
embedded trademark market class i is in the rest of the regional market activities.

The other two variables, capturing cross-relatedness, are

TechMarket RELATEDNESSi,r =
∑634

j=46,j[r,j=i wij∑634
j=46,j=i wij

DesignMarket RELATEDNESSi,r =
∑836

j=635,j[r,j=i wij∑836
j=635,j=i wij

These two variables capture the relatedness of class i to technology and design
classes where the region also specializes.

Similar variables are constructed for the models, explaining the emergence of new
technological and design specializations. Note that cross-related density measures are
not symmetric: TechMarket cross-related density is different from MarketTech related
density, given that the variables depend on the regional specializations.
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Econometric Specifications

To examine the role of the different relatedness measures for new specializations, we
consider separate regressions for each innovation specialization. Each regression can be
understood as the operationalization of the relations in the three columns of Table 2,
which summarizes our conceptual framework.

For new market specializations we consider

Entryr,i,t = a0 + a1Market RELATEDNESSr,i,t−1+
a2TechMarket RELATEDNESSr,i,t−1+
a3DesignMarket RELATEDNESSr,i,t−1+
RegionPeriodr,t + ClassPeriodi,t + 1r,i,t

(1)

For new technology specializations

Entryr,i,t = b0 + b1Tech RELATEDNESSr,i,t−1+
b2MarketTech RELATEDNESSr,i,t−1+
b3DesignTech RELATEDNESSr,i,t−1+
RegionPeriodr,t + ClassPeriodi,t + 1r,i,t

(2)

For new design specializations

Entryr,i,t = g0 + g1Design RELATEDNESSr,i,t−1+
g2MarketDesign RELATEDNESSr,i,t−1+
g3TechDesign RELATEDNESSr,i,t−1+
RegionPeriodr,t + ClassPeriodi,t + 1r,i,t

(3)

Note that the first period’s (2003–8) information is utilized as lagged information for
the period 2009–12. To this end, we can only observe entries in periods 2009–12 and
2013–16. Overall, we expect relatedness to be positively related to new specializations
and hence a1 . 0, b1 . 0 and g1 . 0. In addition, we expect cross relatedness mea-
sures to be positively associated with new specializations, too (i.e., a2 . 0, b2 . 0,
g2 . 0, a3 . 0, b3 . 0 and g3 . 0). To be able to compare coefficients across regres-
sions as well as interpreting them, all relatedness measures are standardized as in Xiao,
Boschma, and Andersson (2018). Note that we only include region-class–period obser-
vations where the region did not display an RCA above 1 in period t-1 (i.e., xr,i,t−1 = 0).
If the region had already specialized in that class, then that region-class pair would add
no information on the relation between the relatedness measures and new specializa-
tions. To take into account region and class intertemporal heterogeneity, we include
both region-period and class-period fixed effects in all regressions. Due to the large
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amount of fixed effects, all regressions are estimated via ordinary least squares (OLS),
since nonlinear estimators, such as probit and logit, are likely to produce biased esti-
mates (Greene 2012; Boschma, Minondo, and Navarro 2013; Gomila 2021). Standard
errors are clustered at the region-class level to avoid serial correlation (Bertrand,
Duflo, and Mullainathan 2004).

Empirical Analysis
Descriptive and Graphical Analysis

Table A1 in the online material shows summary statistics of the dependent variables.
For the European (US) case, there is a 13 percent (15 percent) probability that a new spe-
cialization will take place in a region-trademark class, while for patents and designs, the
probabilities are 6 percent (5 percent) and 7 percent (5 percent), respectively. The lower
likelihood of technology and design specializations is to be expected, given the larger
number of technology and design classes as compared to the market classes. Also, we
observe that the likelihood of new specializations is similar in the two geographic con-
texts. Tables A2–A4 show the correlations of the dependent and independent variables
for Europe (Panel A) and the US (Panel B). Relatedness measures correlate strongly,
which might result in a multicollinearity bias in the econometric analysis. To examine
whether multicollinearity confounds the overall empirical results, we always include re-
latedness and cross-relatedness variables stepwise in the regressions.

Figures 1A–1C display the average relatedness measures for the period 2003–8 for
European regions. Both average Market RELATEDNESS and Design RELATEDNESS
are not always high (low) in regions with high (low) average relatedness in technological
activities. The difference between market and design relatedness, on the one hand, and
technology relatedness, on the other hand, suggests that the first two follow their own
dynamics, which might be (at least partly) independent of technological ones. This
also corroborates our intuition that EUIPO’s designs relate to aesthetic design activities
closer to market activities than technological ones. Figures 2A–2C display the average
Market RELATEDNESS, Tech RELATEDNESS, and Design RELATEDNESS for US
MSAs. Similar to the European case, the map of market relatedness reveals a
somewhat different pattern than technological relatedness. However, unlike the
European case, regions tend to score similarly in terms of technology and design re-
latedness, and high scores often coincide with regions with strong technological pro-
files. This seems in line with the fact that USPTO design rights capture technical
design activities.

Regression Results

In what follows, we present the baseline results for the market, design, and technol-
ogy specializations, that is, Equations (1)–(3) referring to the three columns of Table 2.
In the three tables, we include the results for Europe and the US. Starting with the more
downstream innovation activity, we analyze the emergence of new market specializations
in products and services (Table 3). Note that the variance inflation factor (VIF) for the
case of Europe when all coefficients are included (Column 3) Market RELATEDNESS,
TechMarket RELATEDNESS, and DesignMarket RELATEDNESS are 1.18, 2.15, and
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2.09 while for the US (column 6) the VIF tests are 1.12, 3.6, and 3.47. While these mea-
sures could be considered high, they are far from the critical threshold of 10 (Hair et al.
2006). Also, the stepwise inclusion of the relatedness measures (columns 1–3 and 4–6)
does not reveal any dramatic change in the coefficients; hence, multicollinearity does not
appear to be an issue.

For both geographic contexts, relatedness is significantly associated with new market
specializations. As the independent variables are standardized, the coefficient in the full
model for Europe (column 3) can be interpreted as follows: a one standard deviation in-
crease of Market RELATEDNESSr,i,t−1 from its mean is associated with an increase in
the likelihood that region r will exhibit a new specialization in market class i of 22.0 per-
centage units. TechMarket RELATEDNESSr,i,t−1 is also strongly associated with new
market specializations. A result that stands out is that DesignMarket RELATEDNESS
is neither positive nor significant for the US case. We go back to this finding after pre-
senting all baseline results.

Table 4 reports estimates for the role of relatedness in the emergence of new techno-
logical specializations. The VIF for Tech RELATEDNESS,MarketTech RELATEDNESS,
andDesignTech RELATEDNESS are 2.39, 1.24, and 2.32 for Europe (column 3), while for
the US (column 6), they are 4.18, 1.14, and 4.11, respectively. Also in this case, multicol-
linearity is not an issue. Tech RELATEDNESS is strongly associated with new technolog-
ical specializations, in both contexts. Cross-relatedness measures are significant, but the

Figure 1A. Technology relatedness for the period 2003–8.
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coefficients are significantly lower than the Tech RELATEDNESS coefficient (t-tests com-
parisons are statistically significant at p < 0.01), indicating that relatedness matters more
than cross-relatedness when it comes to new technology specializations.

Table 5 displays estimates for the role of relatedness in new design specializations.
The VIF for Design RELATEDNESS, MarketDesign RELATEDNESS, and
TechDesign RELATEDNESS is 2.29, 1.22, and 2.35 for Europe (column 3), while
for the US (column 6), it is 4.03, 1.13, and 4.10, respectively. Once again, the stepwise
inclusion of the variables does not reveal any multicollinearity issues. All relatedness
measures are significantly and positively related to the emergence of new design special-
izations. For the US, cross-relatedness matters even more than relatedness, particularly
when it comes to technology (t-test comparisons statistically significant at p < 0.01).

We can now relate our findings back to the framework and hypotheses we proposed
in Table 2. We refer to the baseline results in Tables 3, 4, and 5, as the empirical coun-
terparts of the three columns in Table 2, with the US context offering a testbed for the
case of technical design and Europe for aesthetic design. We found that relatedness mat-
tered the most in all regressions, in line with our expectations. There were two excep-
tions. For US regions tech-design cross-relatedness was as strongly associated with
new design specializations as design relatedness, pointing to technical design speciali-
zations being strongly driven by technology. Also, for European regions, new market
specializations were equally strongly associated with all relatedness and cross-

Figure 1B. Design relatedness for the period 2003–8.
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relatedness measures, suggesting strong synergies between all three innovation activities
supporting market leadership.

A consistent pattern across both geographic contexts was that cross-relatedness with
technology mattered when considering new market and design specializations, to an

Figure 1C. Market relatedness for the period 2003–8.

Figure 2A. Technology relatedness for the period 2003–8.

Vol. 99 No. 3 2023
R
E
G
IO

N
A
L
IN

N
O
V
A
T
IO

N
S
P
E
C
IA
L
IZ
A
T
IO

N
S

271

http://www.tandfonline.com/


extent comparable to relatedness and in line with the relevance of synergies from up-
stream to downstream activities. When focusing on new technology specializations,
cross-relatedness with market and design mattered but much less so than technology re-
latedness, as expected for backward linkages from downstream to upstream.

Going back to the results for market specializations (Table 3), we noted that
DesignMarket RELATEDNESS played no role in the case of the US, while it exhibited
a strong positive coefficient in the case of Europe. To further compare this finding to our
intuition that indeed DesignMarket relatedness would mostly be there in technology-
driven innovation processes, we also checked whether results changed when focusing
on high-tech market specializations only. We focused on a subset of trademark classes
that can be related to high-technology products, as suggested by Mendonça and
Fontana (2011),5 and then estimate the same regressions. Column 2 of Table 6
shows that for high-tech product market specializations, the coefficient of

Figure 2B. Design relatedness for the period 2003–8.

Figure 2C. Market relatedness for the period 2003–8.

5 These high-technology product Nice classes are 1, 3, 5, 7, and 9–15.
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Table 3

Role of Relatedness and Cross-relatedness for New Market Specializations

Europe US

VARIABLES (1) (2) (3) (4) (5) (6)

Market RELATEDNESSr,i,t−1 0.228*** 0.229*** 0.220*** 0.242*** 0.248*** 0.242***

(0.012) (0.012) (0.012) (0.015) (0.015) (0.015)

TechMarket RELATEDNESSr,i,t−1 0.158*** 0.134*** 0.137*** 0.141***

(0.041) (0.041) (0.043) (0.044)

DesignMarket RELATEDNESSr,i,t−1 0.171*** 0.150*** 0.002 -0.021

(0.041) (0.041) (0.042) (0.043)

Constant -0.126* -0.176*** 0.014 -0.036 0.136** -0.026

(0.071) (0.068) (0.071) (0.065) (0.060) (0.068)

Observations 14,336 14,336 14,336 21,011 21,011 21,011

R-squared 0.129 0.129 0.130 0.090 0.089 0.090

adj R-squared 0.090 0.091 0.091 0.053 0.053 0.053

Note: The dependent variable in all regressions is Entryr,i,t . All regressions are estimated via OLS and include region-period and Nice class-period dummies. Columns (1)–(3) consider the
European case while columns (4)–(6) consider the US case. Standard errors are clustered at the region-class level and are displayed in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1.
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Table 4

Role of Relatedness and Cross-relatedness for New Technology Specializations

Europe US

VARIABLES (1) (2) (3) (4) (5) (6)

Tech RELATEDNESSr,i,t−1 0.194*** 0.191*** 0.188*** 0.187*** 0.181*** 0.181***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

MarketTech RELATEDNESSr,i,t−1 0.011*** 0.011*** 0.005*** 0.005***

(0.001) (0.001) (0.001) (0.001)

DesignTech RELATEDNESSr,i,t−1 0.020*** 0.019*** 0.011*** 0.012***

(0.003) (0.003) (0.003) (0.003)

Constant -0.068*** 0.046*** 0.046*** -0.051*** -0.061*** -0.058***

(0.010) (0.008) (0.008) (0.012) (0.012) (0.012)

Observations 268,815 268,815 268,815 379,247 379,247 379,247

R-squared 0.089 0.089 0.089 0.115 0.115 0.115

adj R-squared 0.083 0.083 0.083 0.110 0.110 0.110

Note: The dependent variable in all regressions is Entryr,i,t . All regressions are estimated via OLS. All columns include region-period and IPC class-period dummies. Columns (1)–(3)
consider the European case while columns (4)–(6) consider the US case. Standard errors are clustered at the region-class level and are displayed in parentheses. ***p < 0.01; **p < 0.05;
*p< 0.1.
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Table 5

Relatedness and Cross-relatedness for New Design Specializations

Europe US

VARIABLES (1) (2) (3) (4) (5) (6)

Design RELATEDNESSr,i,t−1 0.094*** 0.086*** 0.084*** 0.088*** 0.056*** 0.056***

(0.004) (0.005) (0.005) (0.004) (0.004) (0.004)

MarketDesign RELATEDNESSr,i,t−1 0.017*** 0.015*** 0.008*** 0.006***

(0.002) (0.002) (0.002) (0.002)

TechDesign RELATEDNESSr,i,t−1 0.053*** 0.049*** 0.099*** 0.098***

(0.006) (0.006) (0.005) (0.005)

Constant 0.085*** 0.077*** 0.005 0.052** 0.062*** 0.065***

(0.021) (0.021) (0.021) (0.021) (0.018) (0.018)

Observations 91,686 91,686 91,686 123,493 123,493 123,493

R-squared 0.081 0.081 0.082 0.110 0.114 0.114

adj R-squared 0.072 0.072 0.073 0.102 0.106 0.106

Note: The dependent variable in all regressions is Entryr,i,t. All regressions are estimated via OLS. All columns include region-period and Locarno class-period dummies. Columns (1)–(3)
consider the European case while columns (4)–(6) consider the US case. Standard errors are clustered at the region-class level and are displayed in parentheses. ***p < 0.01; **p < 0.05;
*p < 0.1.
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DesignMarket RELATEDNESS for the US is indeed positive and significant. For consis-
tency with the baseline, we also run a similar estimation for the European case (column
1). Overall, the results confirm the positive coefficients for all relatedness and cross-re-
latedness measures, suggesting strong synergies between all innovation activities for
market specializations in high-tech products.

Robustness Checks

To provide robustness checks for the above results we consider several variations.
Table A5 in the online material provides an overview of all the robustness results, to
highlight similarities and spot instances where the results deviate from the baseline re-
gressions. First, while we opted for OLS to include an array of fixed effects and control
for unobserved heterogeneity, we wish to check that the choice of this estimator is not
driving our results. To this end, we estimated all regressions via probit models, too.
We had to drop class-period dummies due to convergence issues, but Table A6 in the
online material reveals similar results to the baseline estimates. Note that the small
change in sample size from the baseline results in the probit estimations comes from
the fact that a few observations are predicted perfectly and hence are excluded.

Further, for the European case we had excluded five countries (Estonia, Cyprus, Lith-
uania, Latvia, and Malta) since they included a single NUTS-2 region. In Table A7 in the
online material, we add these five countries as additional regions. Results are again
similar to those of the baseline models.

We also validated several critical choices we made about our IPR metrics. A first
issue is whether assigning patents to the inventor location, instead of the applicant loca-
tion, makes a difference. Inventor location is available for USPTO and EPO patents and

Table 6

The Case of High-tech Product Market Specializations

Europe US

VARIABLES (1) (2)

Market RELATEDNESSr,i,t−1 0.225*** 0.185***

(0.030) (0.034)

TechMarket RELATEDNESSr,i,t−1 0.606*** 0.289***

(0.145) (0.108)

DesignMarket RELATEDNESSr,i,t−1 0.188* 0.174*

(0.109) (0.097)

Constant -0.042 -0.118

(0.167) (0.099)

Observations 3,608 5,145

R-squared 0.221 0.181

adj R-squared 0.084 0.041

Note: The dependent variable in all regressions is Entryr,i,t . Both columns consider Nice classes that are related to
medium- and high-technology industries according to Mendonça and Fontana (2011). These Nice classes are 1, 3, 5, 7, and
9–15. All regressions are estimated via OLS. All columns include regionperiod dummies and Nice class-period dummies.
Standard errors are clustered at the region-class level and are displayed in parentheses.
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for USPTO design patents, while all trademarks and EUIPO design rights only include
the applicant location. This is a well-known issue when combining patent and trademark
data. There might be a headquarters effect, with regions hosting headquarters scoring
higher on those activities measured with trademarks simply because trademark filings
only include information on the applicant company. Yet it should be noted that activities
related to marketing and commercialization tend to be more centralized at the headquar-
ters level than upstream research activities anyways (Castaldi and Mendonça 2022). In
Table A8 of the online material, we report results of the models after repeating all anal-
yses with inventor locations for those IPRs where they are available. Results are com-
parable to the baseline ones.

Further, we estimated all regressions with variables calculated using all IPR filings,
not only those that made it to registration. By doing so, we are including more filings,
whose quality might be lower. Focusing on filings might be interesting for two
reasons: first, it provides a timelier indicator, given that registration takes some time;
second, it includes activities by companies that did not have the required financial re-
sources or the expertise to obtain a successful registration. After reestimating the relat-
edness variables, Table A9 in the online material provides the counterparts of Tables 3, 5,
and 6. Overall, results are quite similar.

We also validated our choices in terms of counting classes. On one hand, we consid-
ered fractional counting of trademarks instead of whole counting. After reconstructing
all the variables, we perform the same analysis. Results are displayed in columns 1
and 4 of Tables A10–A12 in the online material for each new innovation specialization
for the US and Europe.

On the other hand, a known limitation of trademark classes is that they are only forty-
five, thereby potentially underestimating new trademark specializations, and also affect-
ing any relatedness measure associated with the trademarks. While we cannot provide a
direct robustness check with alternative versions of trademark classes, we can provide an
indirect test. We considered technology classes (123 in total) at the three-digit IPC clas-
sification instead of the four-digit level, making the level of detail of patent classes more
similar to trademark classes. In this case the wi,j matrix for Europe (US) populates a
370 × 370 (354 × 354) matrix. If the aggregation for the forty-five Nice classes was
problematic, then this analysis would deliver starkly different results, since the level
of aggregation for IPC classes also changed dramatically. In columns 2 and 5 of
Tables A10–A12 in the online material we reestimated the baseline models by whole
counting trademarks, while in columns 3 and 6 we opted for fractional counting. In
both cases we considered the three-digit IPC classification. The results are by and
large similar to the baseline ones. Finally, we revisited the choice of considering only
the first-listed IPC class.6 We considered all the four-digit IPC classes for each utility
patent, and Table A13 in the online material reports the alternative results. They are qual-
itatively similar with the exception of DesignTech RELATEDNESS, whose coefficient
for new technological specialization of US regions is not significant. Yet, the main
result that relatedness has a stronger association than cross-relatedness remains.

6 We did not pursue a similar robustness for design rights. Design patents in the USPTO data simply did not
include any secondary Locarno class, while the EUIPO data only included it for 3.5 percent of the filings.
Therefore, focusing on the first-listed Locarno class is the only option for the overwhelming majority of
the data.
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Conclusion
In this article we aimed to take seriously the calls from researchers and policy makers

for a broader view on regional innovation specializations, beyond technology only. We
developed a conceptual framework grounded on combining insights from innovation
studies and evolutionary economic geography. In our framework we conceptualized
three main types of innovation activities and argued that the principle of relatedness
can be leveraged to understand branching to new specializations within and between
the three innovation activities.

We also showed how IPR metrics can be used to capture developments in three un-
derlying knowledge spaces of technology/patents, design/design rights, and markets/
trademarks. Our empirical analysis of US and European regions in three recent
periods provided support for an overall strong association of both relatedness and
cross-relatedness measures with the emergence of new regional innovation specializa-
tions. This confirmed that path dependence and place dependence act as powerful
forces in technological, design, and market trajectories. At the same time, we found
that cross-relatedness played a significant role in the emergence of new regional special-
izations for all three innovation activities. Design appeared as an intermediary function
lying in between the two other innovation activities and intertwined with both, albeit in
different ways. The two geographic testbeds helped us to gauge the role of technical and
aesthetic design activities. We found design-market cross-relatedness to matter for new
market specializations in the European context, while that link was only there for high-
tech product market specialization in the US case.

To expand further on policy implications, our results can inform the development
and implementation of regional policies of smart specialization in several ways. First,
considering more downstream specializations appears relevant, since actual innova-
tion that has reached the commercialization phase is important to generate jobs and en-
trepreneurial opportunities in regions. In fact, the latest take on S3 smart specialization
strategies (European Commission 2021, 2) acknowledges that “Social, organisational,
market and service innovation, or practice-based innovation, play as important a role in
S3 as technological innovation based on scientific research.” As Foray and Hall (2011,
6) put it, with reference to cases like the one of Pierre-Hyacinthe Caseaux, “the
outcome of the process is much more than a ‘simple’ technological innovation” result-
ing in a new activity that offers to the regional economy “superior commercial pros-
pects.” Additionally, our analysis can be seen as complementary to approaches
focused on the roots and upstream drivers of innovation specializations, specifically
concerned with the development of regional scientific strongholds (Catalán, Navarrete,
and Figueroa 2020).

Second, our analysis has demonstrated that regions have different strengths in each
innovation stage, and a focus on technology only overshadows opportunities for regions
that do not belong to the small circle of high-tech clusters. Some regions may exploit a
history of related design and market capabilities to uncover further specializations even
without investing in technology (Breznitz 2021). In practice, policy makers can analyze
innovation spaces to uncover patterns of cospecialization along the innovation process.
They can draw much more fine-grained maps than what we could show, by leveraging
the public and timely innovation metrics that we suggested here. Even though regional
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and national innovation scoreboards (like the EU Regional Innovation Scoreboard and
the Science and Engineering indicators of the US National Science Foundation) by
now include trademark and design rights counts next to patent ones, such aggregate
counts can hardly characterize regional specializations in a qualitative manner and
help to uncover specific strengths and weaknesses. Instead, unleashing the richness of
the information on technology, design, and market classes, where local companies are
filing different IPRs, allows mapping opportunities and challenges of smart specializa-
tion strategies through a relatedness lens.

Our study offers the potential for several extensions and validation exercises. A
key limitation of our analysis was the coarseness of the trademark classes, which
allowed us to capture market relatedness only between very broad product catego-
ries. Ongoing efforts to define more granular subclasses using text analysis of goods
and service descriptions will offer the opportunity to work at the same level of
detail of patent classes (Neuhäusler et al. 2021; Abbasiharofteh, Castaldi, and Pet-
ralia 2022). This will allow better alignment of empirics with the conceptual inter-
pretation of relatedness in the market space. Another research direction would be to
validate our results using alternative metrics. For instance, trademarks could be sub-
stituted with trade data, in line with how Hidalgo et al. (2007) and Pugliese et al.
(2019) capture the product space. Trademark activity is likely to be related to
export activity, especially when considering registrations at supranational offices
like the EUIPO. Yet, trademark data also capture specializations in nontradable ac-
tivities (mostly low-tech services) that will not be covered by trade data. These ac-
tivities might not matter directly for innovation; still a comparison of patterns could
be interesting.

Finally, our focus on NUTS-2 regions is not without limitations. There is a perennial
issue noted as a modifiable areal unit problem, pointing to the fact that performing the
same analysis on smaller geographic units could reveal nontrivial differences (Fother-
ingham and Wong 1991). Yet, an additional problem that would arise is the presence
of too many zeros in the IPR metrics. A similar argument could be made for focusing
on MSAs for the case of the US instead of counties or cities. Comparative analysis of
different geographic levels could reveal significant insights on the implied spillovers
of smart specialization policies to larger areas, an issue that has only recently been ex-
amined in the literature (Balland and Boschma 2021).

Finally, we envision the potential for several extensions of our framework. One ex-
tension could be to move beyond overall average patterns and analyze heterogeneity in
how relatedness and cross-relatedness matter, for instance for economically developed
ones versus lagging regions. This would align with work suggesting that the explanatory
power of relatedness differs by region type (e.g., Petralia, Balland, and Morrison 2017).
Alternatively, different IPR filings in urban versus rural regions might also be at play and
could be controlled for (Wojan 2019). Finally, one could use our innovation space ap-
proach to zoom in on specific innovation specializations that might be particularly desir-
able from a strategic or societal perspective. For instance, future research could extend
the rich literature on green technology specializations (e.g., Barbieri, Perruchas, and
Consoli 2020) and look at relatedness dynamics for regional green innovation speciali-
zations beyond technology (in line with the firm-level analysis in Ghisetti, Montresor,
and Vezzani 2021). Similarly, one could focus on the digital revolution and analyze
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the extent to which regions might specialize in technology, design, or market activities
related to artificial intelligence or Industry 4.0. Ultimately, this goes in the direction of
pushing for a broader take on regional innovation capabilities and the policies that can
support them.
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