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Chapter 1

General introduction

"One of the most common and important
uses for data is prediction."

Jerome H. Friedman [1]

Prediction modeling can be described as ’the process of applying a statistical or
data mining algorithm to data for the purpose of predicting new or future data’
[2]. Out of the vast field covered by this definition, this dissertation will focus
on the use of statistical methods for prediction purposes in healthcare settings.
This entails both ’regular’ prediction modeling reflecting the association between
a set of predictors and the outcome of interest, and causal prediction aiming to
predict the effect of a modification of one or more of the predicting variables.1

1To illustrate the difference, assume that, unknown to the statistician, variability in some
measure B causes variability in some measure A. Capturing the association by means of a
regression of A on B will provide meaningful predictions of B for different levels of A. However,
manipulating A will not change the distribution of B, and hence the model does not provide
meaningful causal predictions of the effect of A.
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Associative prediction modeling

Typical prediction models used in healthcare settings are of the associative
kind, modeling the association between a set of predicting variables and an
outcome of interest. For example, well-known clinical prediction models in-
clude the Framingham models for 10-year coronary heart disease risk [3] and
general cardiovascular risk [4], the QRISK3 model predicting 10-year risk of
a heart attack or stroke (https://qrisk.org/three/) [5], and the National
Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT) for 5-year
breast cancer risk predictions [6, 7]. Such risk predictions with respect to key
future clinical events have clear practical relevance and play an important role
in contemporary medicine. The can for instance be used to inform patients and
physicians and may help to inform treatment decisions. As an example of the
latter, it might be deemed desirable to restrict known effective treatment with
severe side effect to those who are at a high risk of adverse outcomes based on
their demographics and clinical presentation.

The road to successful implementation of such associative prediction models
is well-described and researched for the associative type of prediction models
[8, 9]. The general process consists of prediction model development including
internal validation, external validation in independent data, and assessment of
model impact in practice [10, 11]. During this process, conceptual knowledge
of the underlying processes being modeled is a major factor, since it limits the
amount of information that needs to be estimated from the data (e.g., in terms of
variables importance, interactions, and functional form) and may thereby help to
diminish model uncertainty to a practically feasible level. Moreover, conceptual
knowledge or study design may provide information that cannot be distilled from
the data (e.g., with respect to likely missing data processes, exchangeability, or
possibly informative censoring). Ideally, conceptual knowledge is combined with
a substantive amount of high-quality data [12, 13, 14]. As an example, this holds
for all of the successfully implemented models mentioned above.

While the general process of prediction model development has been well-descri-
bed, many challenges remain. One of the key challenges that arises in practical
situations is the occurrence of missing data. While dealing with missing data
during model development has received much attention [15, 16, 17, 18], the
problem of missing data at the time of model application in practice has received
only scarce attention [19]. In this dissertation, I will touch on this problem in
the context of individualized risk prediction with respect to key future clinical
events (Chapter 1). A second major challenge concerns the combination of
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limited prior knowledge on the proper specification of a prediction model and
limited availability of data. While novel sophisticated methods bring promising
results in areas with abundant data [20], settings with relatively low numbers of
observations/replications with respect to model complexity remain challenging.
I will touch on this problem in the context of time-to-event data (Chapter 2).
In addition to general prediction modeling problems, such as covariate selection
for main and interaction effects and functional form, models for this type of data
also have to deal with the additional challenges of censored data and possibly
time-varying covariate effects. Since the amount of prior knowledge on all these
modeling aspects is often limited, this is a setting in which the optimization of
data-driven modeling strategies may be fruitful.

Aside from the interesting challenges that remain to be solved within associa-
tive prediction modeling, such models also have a fundamental limitation in
that they do not necessarily convey the effect of interventions on the predicting
variables. For instance, natural variability in systolic blood pressure is known to
relate to long term risk of heart disease and therefore included in the QRISK3
model [5], but this model does not describe the effect of intervening on systolic
blood pressure. To endow predictions with this desired additional meaning, the
model should reflect the causal effect of systolic blood pressure on the outcome
of interest, and not just their association.

Causal prediction

Causal inference aims to describes the effect of a modification of one or more vari-
ables on the outcome, and is thereby able to answer ’what if’ type of questions
[21, 22]. For instance, "what if I were to start a certain treatment regimen?"
Within the medical domain, the preferred type of study design to answer such
questions is the randomized controlled trial (RCT), which attempts to isolate the
causal effect of an intervention. In such trials, patients are randomly allocated
to two or more treatment regimens and followed until measurement of a clini-
cal outcome of interest. The main goal of randomization is to ensure that the
treatment groups are theoretically comparable (i.e., exchangeable) with respect
to factors other than treatment. Typically, these trials aim to answer questions
with respect to the average effect of treatment: "Will the effect of treatment
A, on average, differ from the effect of treatment B?" While well-conducted
randomized controlled trials have brought about much progress, they do not
directly answer the physician’s most important question: "Should I administer
treatment A or treatment B to this particular individual?" That is, the aim is to
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provide individualized causal predictions of the outcome of interest under each
of the available treatment options, with causal here referring to the idea that
the differences between these predictions should be caused by differences in the
chosen treatment regimen.

As will be elaborated upon in Chapter 3, the answer to such more individ-
ualized causal questions requires a combination of typical prediction modeling
techniques and explanatory modeling techniques. The prediction modeling tech-
niques are required to build individualized and hence potentially complicated
multivariable models, while avoiding overfitting (i.e. still obtaining good per-
formance in independent test data). The explanatory or causal angle is required
to support the attribution of differences in predicted individualized treatment
to the treatment intervention, and hence to avoid spurious association with
treatment. In practice, a major challenge lies in the fact that causal effects can
never be directly observed on the individual level [23]. Hence, causal prediction
is a considerably more challenging task than associative prediction modeling.
Nonetheless, recent years have shown an increase in the development of such
methods for both randomized and observational data [24, 22]. The main focus
of Chapter 3 is on the development of prediction models for individualized
treatment effect within the context of randomized trials. Subsequently, Chap-
ter 4 focuses on measures for their evaluation, which is still very much an open
area of research. More specifically, it focuses on measures of calibration and
discrimination for predicted individualized treatment effects, hence extending
the typical use of calibration and discrimination measures on the level of the
outcome [9, 8]. Lastly, (Chapter 5) describes an applied clinical study that
examines possible heterogeneity in prognosis and treatment effect using data
from different sources.

Outline

This dissertation describes statistical models for both typical (associative) pre-
diction and causal prediction, with the latter focusing on individualized treat-
ment effects in the context of randomized trial data. It touches upon modeling
assumptions, model development, and model assessment procedures. Out of
these, the modeling assumptions and the principles of model development are
relatively well understood, but understanding of the proper evaluation proce-
dures for causal prediction models is only just emerging.

The outline of my dissertation is as follows:
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Chapter 2: ‘Handling missing predictor values when validating and applying
a prediction model to new patients’ discusses the issue of missing data at the
time of model application. If missing data are to be expected in practice, this
also has implications for the handling of missing data during model validation.
Most notably, care is required during internal validation.

Chapter 3: ‘Regularized parametric survival modeling to improve prediction
models’ joins the strengths of parametric survival modeling and regularization,
with a specific focus on the analysis of non-proportional hazards.

Chapter 4: ‘A tutorial on individualized treatment effect prediction from ran-
domized trials with a binary endpoint’ introduces causal prediction in the con-
text of individualized treatment effect prediction, provides guidance for the de-
velopment of such models, and highlights pitfall and areas of future research.

Chapter 5: ‘Evaluating individualized treatment effect predictions: a new per-
spective on discrimination and calibration assessment’ picks up on the perfor-
mance assessment of individualized treatment effect prediction models. Model-
based approaches are introduced for both discrimination and calibration pur-
poses.

Chapter 6: ‘Prognosis and prediction of antibiotic benefit in adults with
clinically diagnosed acute rhinosinusitis: an individual participant data meta-
analysis’ is an applied study that evaluates the possible presence of treatment
effect heterogeneity in a set of randomized trials. Many of the considerations
encountered in earlier chapters return in this clustered data context.

Chapter 7: General discussion
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Chapter 2

Handling missing predictor
values when validating and
applying a prediction model
to new patients

Hoogland J, van Barreveld M, Debray TPA, Reitsma JB, Verstraelen TE,
Dijkgraaf MGw, Zwinderman AH. Handling missing predictor values when vali-
dating and applying a prediction model to new patients. Statistics in Medicine,
2020; 39(25):3591-3607. DOI: 10.1002/sim.8682
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Abstract
Missing data present challenges for development and real-world application of
clinical prediction models. While these challenges have received considerable
attention in the development setting, there is only sparse research on the han-
dling of missing data in applied settings. The main unique feature of handling
missing data in these settings is that missing data methods have to be per-
formed for a single new individual, precluding direct application of mainstay
methods used during model development. Correspondingly, we propose that
it is desirable to perform model validation using missing data methods that
transfer to practice in single new patients. This article compares existing and
new methods to account for missing data for a new individual in the context of
prediction. These methods are based on (i) submodels based on observed data
only, (ii) marginalization over the missing variables, or (iii) imputation based
on fully conditional specification (also known as chained equations). They were
compared in an internal validation setting to highlight the use of missing data
methods that transfer to practice while validating a model. As a reference, they
were compared to the use of multiple imputation by chained equations in a set
of test patients, because this has been used in validation studies in the past.
The methods were evaluated in a simulation study where performance was mea-
sured by means of optimism corrected C-statistic and mean squared prediction
error. Furthermore, they were applied in data from a large Dutch cohort of
prophylactic implantable cardioverter defibrillator patients.

8



22

Chapter 2

2.1 Introduction

An increasing number of prediction models are published in support of clinical
decision making. Well-known examples in the cardiovascular domain are the
QRISK3 (predicting risk of heart attack and stroke) [5] and the Seattle Heart
Failure [25] models. Recently, several guidelines were published on how to per-
form and report prediction modeling [10, 11, 26], generally involving (i) model
development, (ii) validation, and (iii) real world application. Missing data are
a key issue in each of these stages. Especially the handling of missing data at
the time of model development has been an active research area and multiple
imputation has arisen as a general-purpose tool to account for data [27, 28].
Assuming missingness at random, multiple imputation methods allow for the
use of all available data (avoiding selection bias and loss of statistical power)
and at the same time account for uncertainty with respect to the missing data
[27, 29, 30]. While missing data during the model development stage have at-
tracted much attention, there is a scarcity of research on how to account for
missing data during validation and real-world application of models. We pro-
pose that the methods by which missing data are handled should be an integral
part of prediction model development, and be transferable to any new data, be
it validation data of new individual cases.

Starting with the validation setting, prediction model validation has received
considerable attention [31, 32, 33]. Its main goal is to provide empirical evi-
dence of model performance beyond the data used for its development, ideally
across different (but related) settings and populations [34]. As for prediction
model development studies, validation data are usually affected by missing val-
ues. We propose that the correct way of handling missing values in validation
data depends on the intended use of the to be validated model. More specifi-
cally, it depends on whether one intends to allow for missing data during model
application in practice. To make the underlying rationale more clear, let’s con-
sider the use of imputation as applied independently in a set of validation data
[35, 36, 37]. Use of this this strategy requires estimation of the necessary im-
putation models in the validation set, and thereby uses information that is not
readily available in practice when a single new patient presents with missing
values. That is, it uses information from other new patients (in the validation
set) and in practice patients present individually. The main consequence is that
the validation study approximates model performance for those with complete
data. This could be in line with the intended use of the model, but the implied
performance estimate is expected to be optimistic when allowing for missing
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data in real life application. Also, validation performance becomes a mixture of
prediction model performance and a local procedure to handle missing data. If
the goal is to allow for missing data in practice, one ideally assesses prediction
model performance and a transferable missing data method at the same time.
Here we focus on this latter goal.

When applying previously developed prediction models in new, individual pa-
tients, accounting for missing values is not straightforward. As described above,
one ideally disposes of both a prediction model and a missing data method that
transfers to new individual patients. However, in practice most models do not
allow for missing data, or do so by means of methods that have been shown to be
problematic. Examples of prediction models enforce valid values for all predictor
include implementations of the classic Framingham model (e.g. on mdcalc.com
[38]) and the before mentioned Seattle Heart Failure model [25, 39]. Alterna-
tively, some models allow for missing data on a limited set of variables and use
simple imputation procedures. For example, the well-known QRISK3 model
uses the average value from the development study for a measure of deprivation
when geographical region is unknown (i.e. mean imputation), a conditional av-
erage based on ethnicity, age, and sex for missing values of Cholesterol/HDL
ratio, blood pressure and BMI (i.e. conditional mean imputation), and zero
imputation when the standard deviation of the last two blood pressure readings
is missing [40]. Each of these methods has been shown to have issues in the
context of model development [27], but there is no clear guidance on missing
data problems in the model application stage.

As an example of the possible mismatch between model validation and model
application in practice, QRISK3 validation removed all patients with unknown
geographical region and used multiple imputation by chained equations to han-
dle remaining missingness [5]. This validation does not contain any information
on those with missing region and reflects performance for otherwise complete
data, while the application allows for missing predictors. We have not been able
to find an example in which missing data were allowed in practice and where
missing data was handled consistently between validation and application.

In this paper, we propose that validation, whether internal or external, should
handle missing data in a way that only depends on the development data and is
applicable when making predictions for new individual patients.1 This implies
the need for missing data methods that transfer to real-life application. We

1As described above, when the intended use of the prediction model is to allow for missing
data in practice.
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consider six strategies to address missing values in individual patients when
calculating a risk prediction. We compare them with the before mentioned use
of (independent) multiple imputation in an internal validation setting. Our
work builds on methods developed and described by Marshall et al [41] and
Janssen et al [42]. We will describe their suggestions, present new methods, and
describe all methods in a realistic setting including missing data in the model
development data. The various methods will be illustrated with simulated data
and data from an ongoing project on the prediction of mortality for primary
therapy with an implantation cardioverter defibrillator (ICD) in heart failure
patients at risk for cardiac arrhythmia and death (the DO-IT Registry) [43].

2.2 Methods

We consider prediction models with expectation of the form E [yi|xi] = g−1(xib),
where yi is the outcome of patient i, xi is the vector with values of the set of
prediction variables, b is the associated vector of regression weights, and g−1(·)
is an (inverse) link-function. We here focus on the binary case, and discuss
extensions to cope with censored outcomes in the applied example section.

When applying a prediction model in individual patients, several approaches can
be considered to account for missing predictor values. For ease of exposition
it helps to introduce some notation. First, define xi as the partition (xio, xim)
where xio is the vector of observed predictors, and xim is the vector of unob-
served predictors for individual i. Analogously, define b as the partition (bo, bm)
where bo and bm represent the vectors of weights of the observed and unobserved
predictor variables respectively. The model of interest can then be written as
E [yi|xio, xim] = g−1(xiobo+ximbm)and cannot be evaluated directly due to the
missing xim. Several apporaches can be taken to arrive at predictions for a
new individual conditional on his or her observed data only. The approaches
described in the current paper can be separated into three groups based on the
underlying theory. These will be shortly summarized in order to give a quick
overview of the methods. To simplify notation, the subscripts will be omitted
in further equations.

The first group of methods aims to find a submodel of the original model based
on the observed covariates only. That is, the aim is to find

E [y|xo] = g−1(xob̌o)

11
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where b̌o represents the vector of weights for a model conditional on the observed
data only. Such a model is directly applicable for prediction purposes. The
challenge for these submodel methods is to estimate b̌o. The second group of
methods integrates over the unobserved data to arrive at the predictions of
interest. That is, the full model E [y|xo, xm]) is integrated over the conditional
distribution g(xm|xo) as follows

E [y|xo] =

∫
E [y|xo, xm] g(xm|xo)∂xm

where g(xm|xo) describes the uncertainty in the unobserved data given the ob-
served data. This marginalization over the unobserved data retains the original
full model coefficients. The challenge for this group of methods is to estimate
g(xm|xo). The third group of methods aims to impute the missing covariates to
enable use of the original full model, as in

E [y|xo, x̂m] = g−1(xobo + x̂mbm)

where x̂m contains the imputed values for the unobserved covariates. Here,
the challenge lies in identification of the imputation models. All imputation
methods that we considered were based on chained equations, also known as
fully conditional specification [27, 16]. Imputation methods that have been
shown to have issues in previous research have not been evaluated, and will
not be covered in detail. These include zero imputation, mean imputation, and
conditional mean imputation [27].

The methods to be described in the following sections are submodels directly
estimated in the development data (method 1) and submodels based on the one-
step-sweep (method 2), marginalization over the unobserved predictors (method
3) and marginalization over both the unobserved predictors and the outcome
(method 4), single imputation based on chained equations (method 5) and mul-
tiple imputation based on chained equations (method 6). Each of these can
be applied to new individual patients and therefore apply to both validation
and application of prediction models. In addition, since it has been used in
practice for validation purposes, the independent use of multiple imputation in
the validation set (method 7) will be evaluated. Note however that this use of
multiple imputation does not extend to new individual patients, since in that
case there is not enough data to independently estimate the imputation mod-
els. Regarding terminology, development data is used to refer to the data on
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which the prediction model was originally developed. Training and test data
were reserved for the description of internal validation procedures to describe
splitting of the development data. Importantly, note that the outcome value
is always missing during model application. While it is commonly available in
internal and external validation settings, the information in the observed out-
comes should never be used when interest is in evaluation of model performance
in real-life settings.

2.2.1 Submodel methods

The submodel approaches described by Janssen et al [42] refer to the develop-
ments of Marshall et al [41]. As described above, the underlying idea is to find
the necessary submodels to cope with missing data in the application setting
(i.e. submodels based on the observed data only). The most straightforward
way to do so is to fit all necessary submodels in the development data. For
a two variables example, this implies that not only the full prediction model
E [y|x1, x2] = g−1(x1b1 + x2b2) is fitted and reported, but also the submodels
E [y|x1] = g−1(x1b̌1) and E [y|x2] = g−1(x2b̌2). The prediction for a new person
with a missing x2 value is then calculated using the E [y|x1] = g−1(x1b̌1) sub-
model. It is not difficult to estimate the submodels in the development data,
but if the number of predictor variables (say, k) is large and all of them may
be missing, then the number of submodels may be very large: with k predictor
variables there are 2k submodels. If k = 15, the number of submodels is already
32, 768 and this is not rare: both the before mentioned QRISK3 and Seattle
Heart Failure model have k ≥ 15. This direct estimation of the 2k submodels
was the first of the implemented methods.

To avoid estimation of a large number of submodels, Marshall et al [41] sug-
gested to approximate b̌ based on the weights of the full prediction model only.
Note that b may include an intercept, and hence the design matrix a corre-
sponding unity column. The approximation starts from the assumption that
the full model estimate b has a multivariate normal distribution with true mean
b and covariance matrix S. Hence, by simply reporting the regression coeffi-
cients b of the full prediction model and its variance-covariance matrix S, pre-
dictions can be made for new patients, regardless of whether they are affected
by missing values. Note that the estimates of b and S may also be pooled es-
timates over multiply imputed development data. Either way, the predictions
are only based on the development data and do not require any imputation pro-
cedure for prediction for new individuals with missing data. Using the above
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described partition of b as (bo, bm), and accordingly partitioning covariance ma-

trix S as
(
Soo Som

Smo Smm

)
, the conditional distribution of the weights of the non-

missing predictor variables given the weights of the missing predictor variables
is normal with approximate mean calculated with the sweeping operation as
b̌o = bo−SomS−1

mmbm. For instance, again using the two variable example of full
model E [y|x1, x2] = g−1(x1b1 + x2b2), then for a patient with missing x2, their
prediction will be based on E [y|x1] = g−1(x1b̌1 with b̌1 = b1 − S12(1/S22)b2,
where the right-hand side contains full model parameter estimates and b1 is the
estimated parameter for predictor x1, S12 is the covariance between b1 and b2,
and S22 is the variance of b22. Interestingly, for the logistic model, predictions
based on these submodels correspond one-to-one to procedures that impute xm

with the best linear predictor based on xo, weighted by the binomial variance
in the development data [41].

2.2.2 Marginalization methods: integrating over the un-
known values

As described above, an alternative approach arises when we partition the vector
of covariate values too, and estimate E [y|xo] as follows:

E [y|xo] =

∫
E [y|xo, xm] g(xm|xo)∂xm

All required conditional distributions can be estimated in the development data,
but with large numbers of predictor variables the number of conditional distri-
butions would again be extremely large. For this reason, we propose to estimate
the joint distribution of x = (xo, xm) in the development study, and to derive
the required conditional distributions from this joint distribution. This is espe-
cially attractive when x follows the multivariate normal distribution with mean
µ and covariance matrix Σ. When we partition µ as (µo, µm) and Σ accord-

ingly as
(
Σoo Σom

Σmo Σmm

)
, then the conditional distribution g(xm|xo) has mean

µm +ΣmoΣ
−1
oo (xo − µo) and covariance Σmm − ΣmoΣ

−1
oo Σom.

In most situations, the vector x will consist of both categorical and quantita-
tive variables and the joint distribution will therefore almost certainly be non-
normal. We hypothesize however that the normal distribution is close enough
to the true joint distribution. If that is the case, then the following approach
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will approximate E[y|xo] to any desired degree of precision. Alternatives may
involve nonparametric distributions estimated with multivariate splines [44] or
copula models [45, 46].

The mean µ and covariance matrix Σ can be estimated in the development
data. These µ̂ and Σ̂ are then used for a new person i with missing data to
derive the conditional distribution ĝ(xim|xio). We then draw a number of ran-
dom vectors x̃im1, . . . , x̃imj , . . . , x̃im,ndraws from this distribution. Concatenating
x̃ij = (xio, x̃imj) one may calculate E[yi|xio, x̃imj ] and average over the ndraws:

E[yi|xio] =

ndraws∑
j=1

E[y|xio, x̃imj ]
ĝ(x̃imj |xio)∑ndraws

r=1 ĝ(x̃imr|xio)

This Monte Carlo integration approximates the integral of interest over g(xm|xo)
and was implemented as method 3 with ndraws = 100. It is based on available
predictor variables and the estimated normal approximation of the joint distri-
bution of predictors in the development data. Note that integration over is not
the same as evaluation of the full prediction model at (xo,E[g(xm|xo)]).

For use of multiple imputation during model development, it has been recognized
that imputation of missing xm may also depend on y. Consequently, imputations
are derived from the conditional distribution g(xm|xo, y) [27]. If the parameters
of this imputation model were known, the model could also be used to impute
missing xm given (xo, y) in a new patient. This model is however depending on
the outcome variable which is in principal not available for a new patient. One
could use the entire chained-equations imputation-model from the development
data and impute y too, but here we examine the possibility to integrate out
y from the imputation model. This is essentially an extension of method 3
that also integrates over the outcome. In this method, we therefore use the
conditional distribution g(xm|xo) that is obtained by integrating out y:

g(xm|xo) =

∫
g(xm|xo, y)h(y|xo)∂y

If y is a binary outcome this simplifies to

g(xm|xo) = g(xm|xo, y = 1)h(y = 1|xo) + g(xm|xo, y = 0)h(y = 0|xo)
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which nicely illustrates that g(xm|xo) is obtained by averaging g(xm|xo, y) for
every possible value that y may have, but weighted with the probability that y
has that particular value.

Notice that h(y|xo) is a submodel of the full prediction model, and this suggests
an algorithm which is a combination of methods 2 and 3. Thus, we estimate
the joint distributions g(x|y = 0) and g(x|y = 1) in the development data and
we approximate h(y|xo) using Marshall et al’s [41] suggestion (as in method 2).
For a new person i with missing values of covariates in the vector xim, we first
sample a number of outcomes yi1, . . . , yij , . . . , yi,ndraws from ĥ(y|xo) and given
the sampled values yij(j = 1, . . . , ndraws), we sample x̃imj from ĝ(xim|xio, y =
yij), and j = 1, . . . , ndraws. As with method 3 the joint distribution g(x|y = y)
will usually not be normal, but for the current application we approximate
g(x|y = y) with the multivariate normal distribution. As above, alternatives
may involve nonparametric distributions estimated with multivariate splines or
copula models.

2.2.3 Imputation methods

As described above, the main goal for imputations methods is to find imputa-
tions such that one can arrive at proper predictions based on the full original
model. That is, the original set of regression weights (bo, bm) is applied to a
combination of the observed and imputed values (xo, x̂m) as in

E[y|xo, x̂m] = g−1(xobo + x̂mbm)

The mainstay method for multiple imputation during model development is
multiple imputation by chained equations, also known as fully conditional spec-
ification [27, 29, 16]. These names refer to the typical specification where each
variable has its own imputation model conditional on all the other variables (i.e.
for the outcome given all of the x variables, for x1 given the outcome and all
other x variables, . . .). That is, they are fully conditioned (on all other vari-
ables) and chained in the sense that all variables are used as both predictor and
outcome. The main advantage of imputation by chained equation resides in the
great flexibility that is available for the specification of each of these models,
which can take any form.

It has previously been suggested that these fully conditional imputation models
developed for missing data in the development dataset can also be used to
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impute missing data in new patients [42]. From a methodological viewpoint, it is
perfectly valid to use the previously fitted imputation model(s) in a new patient;
the prediction and imputation model are considered as a unit. Although it is
theoretically possible to extract the fully conditional imputation models from
the development data, common software packages do not store the estimated
parameters of the imputation models (e.g. packages like mice in R [29]; for
an overview of available free and commercial statistical software for multiple
imputation see Nguyen et al. [28]). To the best of our knowledge only the
Amelia package in R [47], which assumes multivariate normality on the complete
data, provides multiple imputation model parameters. This makes application
of the imputation models to data of new patients difficult. Moreover, if the
fully conditional models were available, they could not be used directly when
multiple missing values are present in the new individual. This is because a
fully conditional model can only be used for imputation when all predictors are
known.

Two separate approaches can be taken to overcome these technical aspects.
First, as proposed by Janssen et al. [42], one can simply stack the new patient
below the original development data, and impute all patients together. A second
possibility is to fit the required fully conditional models on the imputed develop-
ment data and use these models to impute missing values in the new individual.
These two methods were implemented as our method 5 and 6 respectively.

Use of the stacked imputation procedure (method 5) solves two problems. First,
it does not require the imputation model parameters to be available, and second,
it naturally copes with multiple missing values in the new individual. However,
is also poses two new problems. First, re-running the imputation process over
the combination of the entire development data and the new patient is a con-
siderable computational burden to arrive at a single prediction. Second, a more
theoretical issue is that simultaneous imputation of the development data and
the new case allows sharing of information between them, while one would pre-
fer to separate them for validation purposes. That is, the imputation model
is re-estimated while it should theoretically be fixed as part of the prediction
model. While this issue may only be theoretical for a single patient, the issue
more clear when predictions for an entire validation set are required: the im-
putation models will be highly influenced by the validation data. To cope with
these issues, we propose to derive the imputed development data before stack-
ing. In this way, the imputed sets can be stored for later use (thus avoid the
computational burden of the imputation process in the development data) and
the imputation models are not affected by the new individual. The latter relates
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to the fact that updating of the imputation models only makes use of cases with
observed outcomes [27], and the new patient is thus always omitted for the nec-
essary imputation models (i.e. those for which the new individual has missing
values). A further issue is that imputation models used at the time of model
development are based on all variables in the analysis including the outcome
variable y. The outcome variable y is however missing per definition for new
patients. Therefore, the chained equation approaches will automatically impute
y for the new patient. This value can simply be discarded. The most important
downside however, is that the original development data need to be available
for every new prediction (also see Box 1 for each method’s requirements). Be-
sides computational, storage, and network issues relating to online availability
of data, the most pressing issue is in limitations due to privacy regulation and
data sharing limitations for many data sets.

To avoid the need for availability of the development data, we propose to derive
the fully conditional model for each variable in the multiply imputed develop-
ment data (method 6). This summarizes all the required information from the
development data set for the future imputation process, and at the same time
copes with the computational burden occurring with straightforward stacked
imputation (since the imputation models are directly available and do not have
to be re-estimated). Additionally, no tricks are required to avoid sharing of
information between development data and new case(s). In case of missingness
in the model development data, note that these fully conditional models may be
pooled models over multiple imputations. Also, as for the stacked imputation,
there is great flexibility in the possible classes of models to be used. For the cur-
rent application, linear models were used for continuous variables and logistic
regression was used for dummy coded variables. However, many more classes
are conceivable and have been used successfully in multiple imputation (e.g.
Poisson regression, multinomial regression, multi-level models) [27]. Due to es-
timation of the full conditional models in multiply imputed development data,
the models adequately reflect the available information accounting for missing
data (assuming missingness at random). Imputations for a new case can be
derived iteratively in a small number of iterations. Starting from imputation of
the missing x variables with the marginal means as estimated in the develop-
ment data, one iterates over the full conditional models as in standard chained
equation procedures. A key difference though, is that the imputation models
remain fixed. First, the outcome is predicted based on the observed x variables
and initial imputations for missing x variables. Second, the imputation of the
first missing x variable is updated based on its fully conditional model and the
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current state of the data, and so on over all other missings and repeated until
convergence to the most likely imputations given the observed data (usually
in < 5 iterations). Note that predicted probabilities are used in the iterative
process and not the most likely binary class. Also, note that this method is
essentially a simplification of traditional imputation by chained equations with
the stochastic components removed. Therefore, it inherits the same theoretical
limitations with respect to the relatively weak theoretical underpinnings, and
assessment of its value will mainly have to come from empirical evidence [16].

2.2.4 Independent multiple imputation by chained equa-
tions for sets of patients

Lastly, while not applicable in a new patient, presence of an entire validation
set allows for standard multiple imputation by chained equations as commonly
used during model development. As described above, this was also the way in
which the QRISK3 model was validated. A key feature of this method is that
is does not allow the development data to influence validation data. However,
there are at least two issues. First, the imputation method applied during
validation cannot be applied in practice to new patients (hence explaining the
different practical solutions implemented in for instance the QRISK3). This is
only of interest when only the performance for complete cases is of interest,
and the model is not to be applied in cases with missing data. Second, the
imputation models are allowed to vary between development and validation
set, and consequently obscure performance evaluation in the validation when
transportability of the imputation procedure is of interest. Considering these
issues, this method was only evaluated as a reference since it is used in practice,
but it does not apply for our main goal under evaluation: application of a
prediction model in a new case with missing data. If the latter is the goal of
interest, we argue that it follows directly that this method should not be used
for validation purposes

2.2.5 Implementation requirements

The information that is required to be able to perform these different procedures
varies across the methods and ranges from just the prediction model and the
variance covariance matrix of its parameters to the entire development data set.
A summary of these requirements per method is available in Box 1.
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Box 1: Information that needs to be available for each of the
implementation missing data methods

Each of the methods to handle missing data when applying a prediction
model in new patients requires additional summary statistics and or data
beyond the prediction model itself. This box enlists these requirements in
addition to the full model parameter vector b.
Data requirements
Method

1. Estimation of all submodels: requires estimated regression coeffi-
cients for all (possibly 2k) submodels of the prediction model of in-
terest.

2. Submodels by means of the one-step-sweep: only requires estimated
regression coefficients and the variance-covariance matrix of devel-
oped prediction model of interest.

3. Marginalize over missing x variables: requires estimated means, and
their variance-covariance matrix, for all variables in the development
dataset that are used in the prediction model of interest.

4. Marginalize over missing x variables and the outcome: requirements
are those for method 2 and 3 combined, where the latter are needed
conditional on the outcome.

5. Stacked multiple imputation: requires the entire development data-
set.

6. Imputation by fixed chained equations: requires the vector of param-
eter estimates for each of the fully conditional models as derived in
the development dataset, as well as the means of each variable in the
development data.

7. Independent imputation by chained equations: requires a set of test
cases and can therefore not be used in case of a single new patient.
This method was included for comparison in the validation setting
where a set of test cases is available.

Note
In case of missing data in the development data set, multiple imputation
can be used and pooled estimates can be derived for each of the required
pieces of information using Rubin’s rules (e.g. pooled model parameter
estimates, variable means and variance-covariance matrices).
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2.3 Simulation

2.3.1 Set-up
The set-up of the simulation study in summarized in Figure 2.1. To study the
performance of the six methods we simulated data of N = 1000 persons with
values on six predictor variables x = (x1, x2, . . . , x6) and a binary outcome y.
Values for x were sampled from the multivariate normal distribution with mean
zero and variance 1 and a positive correlation of 0.3. Covariates x2 and x5 were
dichotomized equal or below versus above zero, and covariates x3 and x6 were
log-squared transformed according to log(0.01 + x2) causing their distributions
to be (left) skewed. Covariates x1 and x4 were not transformed. After these
transformations, all continuous covariates were standardized again to have mean
zero and variance 1. The binary outcome variable was modelled using a logit-
link function.

Given the sampled (transformed) values for x, the probability of outcome-value
y = 1 was calculated per person using the logit-function log(Odds(y = 1)) =
α+ xβ, where β was chosen as (0.8, 0.9, 1.0, 0, 0, 0) and α such that the relative
frequency of y = 1 was about 30%. Given the associated probabilities Pr(y =
1|x), values for y were sampled from corresponding Bernoulli distributions. For
this simulation design, a (logistic) prediction model with linear additive effects
of (x1, x2, . . . , x6), estimated by means of maximum likelihood, leads to a c-
statistic of about 0.8.

Next, we created missing data using eight scenarios. Scenarios one, two, three,
and four use a completely random process with 1) 5% missing data for all
variables, 2) 20% missing data for all variables, 3) 20% missing data for all
variables except x1 which had 50% missing data, and 4) 50% missing data for all
variables. Scenarios five, six, seven, and eight use a missing at random process
where the missingness on variable xj depended on the observed values of y
and the other observed covariates. Percentages of missing data follow the same
sequence as for the missing completely at random settings. The missingness
models were logistic and details are given in table 2.1.
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Figure 2.1: The flow of both the simulation study and applied example are
shown. Parts relating only to the simulation study are shown with dashed lines.
The applied example included 100 bootstrap sample evaluations. *) note that
within each simulation iteration these are the same cases as the OOB samples
with missing data, but with fully observed information.
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Given the simulated data (including introduction of missingness), a bootstrap
sample was drawn with replacements and sample size equal to the full data set.
Standard multiple imputation by chained equations with m = 5 imputed data
sets was used within the bootstrap sample [30]. Both the pooled full (logistic)
prediction model and the necessary requirements for each missing data method
(see Box 1) were derived from the imputed bootstrap data. Where appropriate,
these required estimates were pooled using Rubin’s rules. For instance, the
estimated mean and variance-covariance matrix of the variables requires for the
one-step-sweep submodel method were pooled across imputations. Based on the
pooled prediction model of interest and the missing data method requirements,
all that needs to be estimated in the bootstrap sample is available and was
applied to the out-of-bag (OOB) cases one by one. That is, predictions were
derived for the OOB samples one-by-one by means of each of the missing data
methods for individuals under evaluation. This one-by-one application was in
line with the intended goal of the missing data methods: to provide methods
that apply in practice to new individuals.

Prediction performance for these OOB cases was summarized by means of the
C-statistic (as a measure of discriminative performance) and the root mean
squared prediction error (rMSPE). Prediction based on multiple imputation
methods were averaged. The C-statistic could be obtained directly based on
the predicted values and the observed outcomes. The rMSPE was obtained
based on the predicted values and the known simulated event probabilities for
the OOB cases. Also, we obtained ‘reference’ performance measures based on
complete OOB data (as illustrated in Figure 2.1). To do so, complete data was
obtained for those in the OOB sample (from earlier steps in the data simula-
tion), and the pooled prediction model was applied. This reference performance
therefore corresponds to model performance in absence of missing data during
model application, but already accounting for the decrease in prediction model
performance caused by incomplete development data. Note that this reference
is expected to be unachievable (some information is always unrecoverably lost
due to missing data).

As a further comparison, independent multiple imputation in the OOB cases
was evaluated (method 7). Performance measures were derived as for the meth-
ods applying to individual cases. Also, to illustrate the effect of including the
outcome when performing missing data methods during model application, both
stacked imputation (method 5) and independent multiple imputation (method
7) were evaluated without deleting the outcome in the OOB samples.
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2.3.2 Simulation results

Results for discriminative performance are presented in Figure 2.2 and Sup-
plemental Table S2.1. Mean reference performance in complete OOB samples
was a C-statistic around 0.78-0.79 across missing data settings. This illustrates
that standard multiple imputation by chained equations handled missing data
well in the model development part of the evaluation (i.e. there was only a
small decline in performance when the amount of missing data during model
development increased). With respect to the missing data methods under eval-
uation, Figure 2.2 shows that all methods came close to reference level model
performance under complete OOB data in settings with only 5% missing data.
However, discrepancies began to appear when the amount of missing data in-
creased. The one-step-sweep submodel method (method 2) was clearly less dis-
criminative then the others. On the contrary, the approaches failing to omit the
outcome information (5y and 7y) showed optimistic performance (i.e. higher
than reference performance under complete OOB data). This clearly illustrates
the need for omission of outcome information in the test set(s) of an interval
validation procedures. Of the remaining methods, the 2k submodels (method
1) and fixed chained equations (method 6) performed best and were closely
followed by stacked multiple imputation (method 5). In most runs, they even
performed better than independent multiple imputation in the test set (method
7). This is expected to relate to the relatively small sample size of the test data
(OOB samples) with respect to the training data (bootstrap sample), which
always had a ratio of approximately 1 to 1.7. Both marginalization methods
(method 3 and 4) had intermediate performance.

Root mean squared prediction error results are shown in Figure 2.3. In general,
performance declines as the amount of missing data increases. The comparative
performance of the methods with respect to prediction error was very similar to
the pattern for discriminative performance. The best performing methods are
the 2k submodel method (method 1), the fixed chained equations (method 6),
and the two methods making use of the outcome information not available in
practice (method 5y and 7y) that were just included for purpose of illustration.

With respect to processing times, Supplemental Figure S2.1 shows the distri-
bution of maximum individual prediction times (including application of the
missing data method) for each out-of-bag sample. As expected, stacked impu-
tation takes longest with up to 8 seconds of processing time. However, all other
methods derived predictions in less than half a second; more precisely, less than
0.3 seconds for the 2k submodels and the marginalization approaches and less
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Figure 2.2: Boxplots for the difference between the estimated OOB C-statistic
and reference C-statistic (as derived under complete OOB data) are shown per
missing data method and missing data setting. Each simulation iteration renders
an observation.

than 0.06 seconds for the one-step-sweep and fixed chained equations. These
processing times illustrate applicability in practice with respect to speed of the
evaluated methods and of those without stacked imputation in particular.

Beyond discriminative performance, prediction error, and processing times, Sup-
plemental Figure S2.2 illustrates the associations between predicted probabilities
derived from each of the applied methods to a those with missing data in a test
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Figure 2.3: Boxplots for the average root mean squared prediction error (rM-
SPE) per missing data method and missing data setting. Each simulation iter-
ation renders an observation.

set (i.e. OOB sample). Predicted probabilities are shown for each of the eight
simulated missing data scenarios for the first simulation run. As shown, both
marginalization approaches have a high correspondence across settings. The
same holds for predictions based on the 2k submodels (method 1) and those
based on the fixed chained equations approach (method 6).
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2.4 ICD STUDY

2.4.1 Set-up

As an empirical example, we describe the results of each of the seven methods
to deal with missing data in persons in test sets with data from the DO-IT
registry. In the study alongside this registry, prediction models are developed
to help decision making on implantation of cardioverter defibrillators (ICD) in
primary prevention patients at risk for cardiac arrhythmia and death. This
registry included 1433 patients between September 2014 and June 2016 from
all Dutch ICD implanting hospitals [43]. Only patients with a primary indica-
tion according to the Dutch national guidelines for ICD therapy were included.
Patients were followed for occurrence of appropriate ICD therapy (defibrillator
shock or antitachycardia pacing for ventricular tachyarrhythmias) or all cause
death. At date of implantation, a set of 45 patient characteristics was gath-
ered including biographic, clinical and biochemical risk factors of arrhythmia
and sudden death. These included binary variables (such as sex), categorical
variables (such as classes of mitral insufficiency), and continuous variables such
as age, weight, NTproBNP and eGFR levels and QRS duration. Some of the
continuous variables showed extremely skewed distributions.

Primary goal of the project was to develop a joint prediction model for appropri-
ate ICD therapy and death with the total set of patient characteristics. Survival
time was censored in 92% of the sample. Details are available in van Barreveld
et al [43]. For the current paper, we focus only on the prediction model for
all cause death. We chose to analyze these data with a Cox regression model,
and therefore used a log-log link function. We used the algorithm specified in
Figure 2.1 for internal validation. We performed Cox regression with AIC based
backward selection of the 45 predictor variables in the imputation sets of the
bootstrap training samples. Each predictor that was selected in at least half of
the imputations was selected in the final model. Instead of backward selection,
one could use lasso or another penalization approach to select the relevant vari-
ables; which selection algorithm is best for our data falls outside the scope of
the current paper.

Inevitably, there were missing values in the set of patient characteristics. Aver-
aged over the sample of patients and the set of characteristics, the percentage
of missing values was 4.6%. However, some variables had a much higher miss-
ing data percentage, with the highest percentages for the levels of NTproBNP
(60.0%) and BUN (blood urea nitrogen) (20.7%). NTproBNP also showed to
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be one of the most important predictor variables.

In order to apply the methods in this survival setting with a censored outcome,
several extensions were necessary for methods 4 (marginalization over x and
y) and the imputations methods. These will be described here in the context
of the internal validation setting of the application study. To cope with the
censored outcome, we calculated martingale residuals for each person in the
training sets using the Kaplan-Meier survival curve and used these residuals in
the imputation models in the training sets.

For the imputation methods, the martingale residuals were included in the im-
putation models instead of the outcome and time-to-event. Instead of full condi-
tional models for the event indicator and time-to-event, a linear full conditional
model with the martingale residual as the outcome was used. Accordingly, the
martingale residual was also used as a predictor in the full conditional models
for the covariates. While improvements have been proposed [48], this was not
the subject of the current study.

While these relatively simple changes suffice for the imputation methods, the
extension required for method 4 is more involved. The martingale residual of
person i with event or censoring at ti has expectation zero but is usually very
skewed. We nevertheless approximated the distribution of (xi,mri) with the
multivariate normal distribution with mean (µx, µmr) and partitioned covari-

ance matrix
(

Σxx Σx,mr

Σmr,x Σmr

)
that was estimated in the training sets (averaged

over the imputation sets).

Now consider persons with missing values on covariates xm and observed val-
ues on covariates xo. We partitioned the vector (x,mr) as (xo,mr, xm) with
partitioned mean (µo, µmr, µm) and covariance matrix

Σ =

 Σoo Σo,mr Σo,m

Σmr,o Σmr Σmr,m

Σm,o Σm,mr Σmm


We next approximated the distribution of (xo,mr) negating xm (as with method
2), with the multivariate normal distribution with mean (µ̄o, µ̄mr) = (µo, µmr)−
Σ(o,mr),mΣ−1

mmµm and variance Σ̄o,mr|m = Σ(o,mr) − Σ(o,mr),mΣ−1
mmΣm(o,mr),

where
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Σ(o,mr) =

(
Σoo Σo,mr

Σmr,o Σmr

)
, and Σ(o,mr),m =

(
Σo,m

Σmr,m

)

In person i with missing xim values and observed values xio the mean and
variance of the distribution of mri given xio was next calculated as ¯̄µmr =
µ̄mr− Σ̄mr,o|mΣ̄−1

o|m(xio− µ̄o) and ¯̄Σmr|o = Σ̄mr|m− Σ̄mr,o|mΣ̄−1
o|mΣ̄o,mr|m, where

Σ̄o|m,Σ̄mr,o|m,Σ̄o,mr|m, and Σ̄mr|m are the submatrices of Σ̄(o,mr)|m. We then
sampled mri a couple of times ( ndraws = 100 times) from the normal distribu-
tion with mean ¯̄µmr and variance ¯̄Σmr|o: mri1, . . . ,mrij , . . . ,mri,ndraws .

Given the sampled value of the martingale residual mrij , the mean and variance
of the conditional distribution (xm|xio,mri = mrij) were calculated in a similar
fashion as described under method 3 and we sampled then a couple of values xm

from this distribution: xim1, . . . , ximj , . . . , xim,ndraws . Given the sampled values
for xm and given the observed values for xio the linear predictor of the Cox
regression model was calculated for patient i and averaged over the sampled
values for xm.

2.4.2 Application results

The apparent results and the internal validation results based on these survival
extensions were as follows. The median number of predictor variables that was
selected in the 100 bootstrap training sets was 8 (IQR 7-10). Almost all predictor
variables were selected at least once, but only age, weight, mitral insufficiency
category, use of diuretics, blood sodium, blood urea nitrogen, ACE inhibitor
or AT-II antagonist use, and NTproBNP were selected more than 40% of the
time. The average apparent c-statistic calculated in the 100 bootstrap samples
0.827 (sd 0.023) and the average c-statistics over the 100 out-of-bag samples are
shown in Table 2.2. All methods showed very similar results, with the patterns of
differences among methods similar to the simulations: the corrected C-statistic
for the one-step-sweep submodels was relatively low and that for methods failing
to ignore the outcome was relatively high. Given the relatively low proportion
of missing data in the applied example, these relatively similar results across
methods were expected and are in line with the simulation study results.
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Method Mean (OOB) C (sd)*
in the test sets

2k submodels 0.747 (0.034)
One-step-sweep submodel 0.736 (0.041)
Marginalization over missing x variables 0.747 (0.034)
Marginalization over missing x and y 0.747 (0.034)
Stacked multiple imputation 0.747 (0.034)
Stacked multiple imputation with y 0.764 (0.033)
Fixed chained equations 0.748 (0.033)
Independent multiple imputation 0.746 (0.034)
Independent multiple imputation with y 0.756 (0.034)

Table 2.2: Prediction performance statistics for the applied example
*mean over 100 out-of-bag samples.

2.5 Conclusion

With implementation of a prediction model there is a choice to make about
whether missing values of predictor variables are accepted for a patient who
wants to know their likelihood of some future outcome. If one chooses not to
accept missing values in new patients we think that validation of the prediction
model should be done with test sets without missing data, or using independent
multiple imputation in the test data (method 7). We focused on the setting
where one wants to allow for missing data in during model application in prac-
tice, and therefore in model validation as well. We propose to only use missing
data methods in validation that can also be used in practice in single new pa-
tients, and have considered several ways of dealing with missing values for new
patient when applying or validating a prediction model.

With respect to accuracy of predictions for new individual patients in case of
missing data, use of the 2k submodels (method 1) and use of fixed chained
equations (method 6) were best in terms of corrected C-statistic and root mean
squared prediction error, with only small mutual differences. Both methods
abide by our two main principles: (i) the imputations should only depend on
the model development data, and (ii) they should be applicable in new indi-
vidual patients. Furthermore, predicted event probabilities as derived by both
methods for new individuals with missing data were very highly correlated across
missing data settings. However, the methods are very different in nature. The
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2k submodels method uses a different prediction model for each missing data
pattern, whereas the same full prediction model is used on imputed data when
applying fixed chained equations.

Of the remaining methods, marginalizing over the missing data (method 3 and
4) and use of stacked multiple imputation (method 5) showed intermediate per-
formance with respect to the above described methods. Submodels based on
the one-step-sweep (method 2) did not perform well. Importantly, our evalu-
ation of imputation methods that fail to ignore available data on the outcome
in the test set showed over-optimistic performance estimates. This also holds
for use of independent multiple imputation in the test data. It is therefore key
to omit outcome data in the test set when validation a model for use in prac-
tice. Interestingly, independent multiple imputation in the test set was included
to show reference performance, but it was outperformed by both method 1(2k
submodels) and 6 (fixed chained equations).

Lastly, the difference between the evaluated methods were small in the applied
example, which had an average percentage of missing data of 4.6%. These results
were as expected when looking at the simulation study results for a relatively
low proportion of missing data, and the pattern across methods was similar as
well. Therefore, the difference between the different methods will only start
to have a larger impact on the results when the proportion of missing data
increases.

2.6 Discussion

We have evaluated two submodel methods, two marginalization methods, and
two imputation methods to derive predictions for new individuals with missing
data. Several of these methods show promising results, with the best perfor-
mance for estimation of separate submodels based on observed covariates only
(2k submodels) and an imputation approach based on fixed chained equations.
Also, computation times were extremely fast for these two methods.

A key feature of all of the evaluated approaches was that they were only based on
the prediction model development data. Therefore, both the prediction model
of interest and the requirements for the method to handle missing data in fu-
ture individuals can be considered as a unit. We have proposed to also use
these methods when validating a prediction model that is intended to cope with
missing data in practice (in contrast to independent use of multiple imputation

32



22

Chapter 2

in the validation set). To the best of our knowledge, the notion that both the
prediction model and the missing data method for use in practice should be
used during model validation has not been fully recognized.

Beyond these key messages, the differences among the evaluated methods are
worth some discussion. Starting with the theoretical basis, both the submodel
methods and marginalization methods have a firm theoretical grounding. The
submodels based on observed data only are an obvious reflection of all the avail-
able information. While our implementation of the estimation of submodels
leans on the missing at random assumption (due to being estimated in multi-
ply imputed data that was imputed under that assumption), this is not strictly
necessary. Mercaldo and Blume have recently implemented a pattern-mixture
variant that does not need this assumption [19]. The downside is that the sub-
models used in their approach are more difficult and sometimes impossible to
estimate. The great computational, storage, and reporting savings achieved by
the one-step-sweep submodels are achieved by additional assumptions, among
which the multivariate normality of prediction model coefficients. These as-
sumptions led to a decrease in performance offsetting the benefits.

The marginalization approaches, marginalizing over the missing data, are ef-
fectively just another way to arrive at the submodel of interest by integrating
out the unknown covariates. The main limiting factor for these methods is not
in their theoretical basis, but in the implementation that assumed multivariate
normality of the data. If the multivariate distribution of the data could be
properly reflected, these methods should retain all relevant information.

The story is somewhat different for the imputation approaches which all make
use of chained equations. There has long been a lack of strong theoretical
grounding for the use of imputation by means of chained equations. Citing
from an overview article on imputation using chained equations by White et al.
[16]: “justification of the multiple imputation by chained equations procedure
has rested on empirical studies rather than theoretical arguments”. Nonetheless,
advances have been made recently and this literature is nicely summarized in
the second edition of van Buuren’s monograph on missing data (Section 4.5-4.6)
[17]. Here we highlight two key references. First, Hughes et al. provided con-
ditions (compatibility and non-informative margins) on the conditional models
under which chained equation based imputations are draws from the joint dis-
tribution of interest (finite-sample results) [49]. Second, Liu et al. provided
asymptotic results showing that compatibility alone is sufficient as sample size
tends to infinity [50]. In practice though, model compatibility is difficult to
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check. In fact, citing Liu et al.[50]: “it is precisely when a joint model is dif-
ficult to obtain that iterative imputation is preferred.” Regardless of the diffi-
culty of checking these theoretical properties in practice, imputation by means
of chained equations has been used effectively in many areas [17]. The main
benefit of the chained equations resides in the great amount of flexibility in
model specification. Basically, any model can be used, thus avoiding the pos-
sibly problematic assumption of multivariate normality. With respect to the
fixed chained equations, note that they are essentially a simplified version of
the standard chained equations implementations where all stochastic elements
are removed: the imputation model parameters remain fixed. Also, note that
it is relatively straightforward to extend the use of fixed chained equations to
allow for multiple imputation. Instead of using the point estimates for the
imputation model coefficients, one can sample coefficients from the estimated
multivariate normal distribution of imputation model coefficients and thereby
propagate the uncertainty. The main rationale for use of single imputation in
the current implementation of fixed chained equations related to the interest in
point predictions, which do not require propagation of uncertainty.

Beyond theoretical aspects, more practical aspects are often limiting factors in
practice. These primarily relate to processing speed and data availability. For
instance, use of stacked imputation, as originally proposed by Janssen et al [42],
is computationally very expensive, because each new prediction requires impu-
tation of the entire development data. Possibly even more important is that the
development data has to be available at the time of prediction, which is often
not possible due to privacy regulations. For instance, we are currently develop-
ing prediction models for mortality of metastatic cancers using training data of
the Dutch cancer registry and test data of the Belgium cancer registry. Both
data sets cannot leave their respective countries, making stacked imputation
virtually impossible. All other methods can be performed based on summaries
of the development data, as shown in Box 1. While these summaries can be
quite extensive (such as 2k imputation models), modern computers and mobile
apps can easily store and process this amount of information.

Following the need for missing data methods applicable in practice, we have
proposed that prediction model validation should also be based on these meth-
ods. The main reason for doing so is when one wants to allow for missing data
in practice. If that is not the case, then use of standard multiple imputation
in development and validation data separately would provide as estimate of
performance when all variables are observed. Besides the intended use of the
prediction model, a brief discussion of the similarity between the internal and

34



22

Chapter 2

external validation setting is of interest. We propose that they are handled in
the same way, using missing data methods that transfer to practice in the vali-
dation data (whether hold-out sample, cross-validation hold-out fold, out-of-bag
samples, or truly external data). The alternative for internal validation would
be to impute first and cross-validate or bootstrap later. However, in case of
internal validation and use of multiple imputation, it is preferable to let the
bootstrap evaluations reflect the uncertainty in estimation of the imputation
models [37]. We think this argument extends to other missing data methods.

With respect to study limitations, we did not evaluate the possible use of aux-
iliary variables that are not included in the prediction model, but that might
provide information about missing variables. If these auxiliary variables are
available at the time of model developments and application, they could be
envisioned to improve imputation procedures. Also, we have evaluated perfor-
mance based on point predictions, but did not tough upon their uncertainty.
Furthermore, since we have evaluated an internal validation setting, we have
not evaluated generalizability to other settings. Just as prediction models may
need updating in new populations, the required data for each of the missing
data methods may also need updating for those settings. In that sense, they are
just additional models and have to be treated accordingly. Lastly, the evaluated
methods all assume missingness at random. When there is a strong suspicion
that missing data may be missing not at random, the above described method
by Mercaldo and Blume may be of interest [19].

Summarizing, the allowance for missing data when applying a prediction model
to new individuals requires specific missing data methods that differ from the
model development setting. We have proposed and evaluated such approaches
and have shown good performance of a submodel method basing predictions
on observed data only and an imputation method based on fixed chained equa-
tions. Both are feasible in practice and the choice should be made based on
aspects beyond accuracy and computational burden, such as the desire for a
single prediction model (as for fixed chained equations) or lack of the need for
imputation (as for the submodel methods). Moreover, we have emphasized the
need to use missing data methods that translate to practice during prediction
model validation.
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Missing data Method Mean training Mean test
scenario C (SD)* (OOB) C (SD)*

no missing data 0.801 (.024) 0.793 (.021)
5% MCAR in all x 0.802 (.024)

Ref. 0.793 (0.021)
m1 0.787 (0.021)
m2 0.784 (0.021)
m3 0.784 (0.021)
m4 0.784 (0.021)
m5 0.785 (0.021)
m5y 0.798 (0.021)
m6 0.786 (0.020)
m7 0.785 (0.021)

36



22

Chapter 2

m7y 0.798 (0.022)
no missing data 0.801 (.022) 0.792 (.025)
20% MCAR in all x 0.801 (.024)

Ref. 0.790 (0.026)
m1 0.763 (0.027)
m2 0.704 (0.036)
m3 0.753 (0.025)
m4 0.752 (0.025)
m5 0.758 (0.026)
m5y 0.811 (0.027)
m6 0.762 (0.027)
m7 0.756 (0.027)
m7y 0.806 (0.029)

no missing data 0.801 (.022) 0.792 (.024)
20% MCAR in all x
but x1 (50% MCAR in
x1)

0.804 (.025)

Ref. 0.790 (0.024)
m1 0.743 (0.027)
m2 0.646 (0.054)
m3 0.717 (0.030)
m4 0.719 (0.030)
m5 0.734 (0.027)
m5y 0.824 (0.029)
m6 0.742 (0.027)
m7 0.735 (0.027)
m7y 0.815 (0.038)

no missing data 0.799 (.021) 0.793 (.029)
50% MCAR in all x 0.804 (.027)

Ref. 0.785 (0.028)
m1 0.713 (0.027)
m2 0.568 (0.042)
m3 0.681 (0.032)
m4 0.681 (0.032)
m5 0.698 (0.027)
m5y 0.853 (0.027)
m6 0.712 (0.027)
m7 0.695 (0.027)
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m7y 0.839 (0.040)
no missing data 0.802 (.024) 0.790 (.024)
5% MAR in all x 0.800 (.020)

Ref. 0.790 (0.025)
m1 0.783 (0.025)
m2 0.774 (0.025)
m3 0.778 (0.025)
m4 0.779 (0.025)
m5 0.781 (0.025)
m5y 0.794 (0.025)
m6 0.782 (0.025)
m7 0.781 (0.025)
m7y 0.794 (0.026)

no missing data 0.803 (.020) 0.793 (.024)
20% MAR in all x 0.799 (.024)

Ref. 0.791 (0.024)
m1 0.758 (0.025)
m2 0.665 (0.046)
m3 0.741 (0.024)
m4 0.739 (0.025)
m5 0.752 (0.024)
m5y 0.813 (0.023)
m6 0.754 (0.025)
m7 0.750 (0.024)
m7y 0.811 (0.028)

no missing data 0.805 (.020) 0.788 (.025)
20% MAR in all x but
x1 (50% MAR in x1)

0.803 (.028)

Ref. 0.785 (0.026)
m1 0.731 (0.027)
m2 0.640 (0.053)
m3 0.708 (0.031)
m4 0.707 (0.030)
m5 0.724 (0.028)
m5y 0.829 (0.031)
m6 0.725 (0.027)
m7 0.719 (0.028)
m7y 0.821 (0.041)
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no missing data 0.804 (.021) 0.790 (.027)
50% MAR in all x 0.797 (.034)

Ref. 0.781 (0.029)
m1 0.682 (0.030)
m2 0.607 (0.034)
m3 0.660 (0.028)
m4 0.658 (0.029)
m5 0.668 (0.030)
m5y 0.837 (0.034)
m6 0.676 (0.030)
m7 0.664 (0.031)
m7y 0.831 (0.049)

Table S2.1: Prediction performance statistics for the simulated data. Reference
performance was derived in complete OOB data. Note that the ’no missing
data’ condition was evaluated prior to the introduction of each missing data
scenario (hence replicated 8 times). *) mean over 100 bootstrap data-splits.
Abbreviations: (Ref.) for reference performance, (m1) 2k submodels, (m2) one-
step-sweep submodels, (m3) Marginalize over xm, (m4) Marginalize over xm

and y, (m5) Stacked MI, (m5y) Stacked MI including y, (m6) Fixed chained
equations, (m7) Independent MI, and (m7y) Independent MI including y.
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Figure S2.1: The distribution of maximum individual prediction time per OOB
sample is shown per missing data method and missing data setting. Each obser-
vation is the maximum processing time to derive a prediction for an individual
in an OOB sample including implementation of the missing data method.
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure S2.2: Figures a-h show the relation between the predicted event proba-
bilities for those out of bag samples with missing data. Scatterplots for relation
between predicted probabilities across the implemented methods are shown be-
low the diagonal; their correlation is shown above the diagonal. Each sub-figure
shows results for a specific missing data setting as labelled in the sub-figure
titles. Predictions are shown for the first (OOB) bootstrap sample.
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Abstract
We propose to combine the benefits of flexible parametric survival modeling and
regularization to improve risk prediction modeling in the context of time to event
data. Thereto, we introduce ridge, lasso, elastic net, and group lasso penalties
for both log hazard and log cumulative hazard models. The log (cumulative)
hazard in these models is represented by a flexible function of time that may
depend on the covariates (i.e., covariate effects may be time-varying). We show
that the optimization problem for the proposed models can be formulated as a
convex optimization problem and provide a user-friendly R implementation for
model fitting and penalty parameter selection based on cross-validation. Simu-
lation study results show the advantage of regularization in terms of increased
out-of-sample prediction accuracy and improved calibration and discrimination
of predicted survival probabilities, especially when sample size was relatively
small with respect to model complexity. An applied example illustrates the
proposed methods. In summary, our work provides both a foundation for and
an easily accessible implementation of regularized parametric survival modeling
and suggest that it improves out-of-sample prediction performance.
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3.1 Introduction

The estimation of individualized survival probabilities is often of key interest
in medical and biostatistical research [51, 8]. A suitable prediction model for
this task describes survival probabilities as a function of time and the covariates
of interest. In this context, fully parametric models provide a very direct and
possibly parsimonious means to obtain predicted survival curves over time [52,
53]. With respect to the ubiquitous semi-parametric Cox model [54, 55], note
that the way in which it elegantly avoids estimation of the baseline hazard is not
a feature in this context: the baseline hazard is of key interest to obtain predicted
survival probabilities. While either the Breslow estimate (of the cumulative
baseline hazard) [56] or the Kalbfleisch Prentice estimate (of baseline survival)
allow for survival predictions, both of these estimates involve a large number of
parameters and are computationally intensive when sample size is large and/or
in the presence of time-dependent effects.

A particularly flexible class of parametric survival models uses splines to model
time and was introduced by Royston and Parmar [52]. This increases flexibil-
ity beyond well-known but possibly restrictive families (e.g. such as Weibull
models), while retaining the benefits of a fully parametric model. Software im-
plementations for Royston-Parmar model implementation are readily available
(e.g. stpm2 [57] in Stata [58] and rstpm2 [59] in R [60]). Nonetheless, none
of these implementations provides the means for regularization, while this has
proven to be an important tool in prediction modeling to improve out-of-sample
prediction accuracy [61, 20]. Key examples include ridge regression [62, 63], lasso
regression [64], and elastic net regression [65]. The common idea is to put some
cost on the size of model parameters (i.e. regression coefficients). This cost
introduces a bias towards zero on the parameter level, consequently shrinking
or selecting parameters, and hence reducing the variability of model predictions
and thereby lowering the risk of overfitting. The objective is to find the sweet
spot of this bias-variance trade-off that minimizes out-of-sample prediction er-
ror.

In this paper, we introduce regularization methods for flexible parametric sur-
vival models to aid the development of prediction models in the context of sur-
vival data. More specifically, we focus on models that are multiplicative on the
hazard scale (like the well-known Cox model) or cumulative hazard scale (like the
most common Royston-Parmar model). While both flexible parametric survival
modeling and regularization are well-known and described in their own right,
their combination is non-trivial due to the presence of constrained functions of
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time described by splines (e.g., the hazard and cumulative hazard function) and
the allowance for interactions with these functions (i.e., time-varying covari-
ate effects). To the best knowledge of the authors, the regularization of fully
parametric log hazard and log cumulative hazard modeling constitutes a novel
contribution to the literature, providing the means to regularize survival mod-
els with time-varying model components that provide smooth survival estimates
over time. The main aim is to increase out-of-sample accuracy of predicted sur-
vival probabilities over time in settings where sample size is limited with respect
to model complexity.

In this paper, we introduce regularization methods for flexible parametric sur-
vival models to aid the development of prediction models in the context of
survival data. More specifically, we focus on models that are multiplicative on
the hazard scale (like the well-known Cox model) or cumulative hazard scale
(like the most common Royston-Parmar model) The main aim is to increase
out-of-sample accuracy of predicted survival probabilities over time in settings
where sample size is limited with respect to model complexity.

The remainder of the paper is structures as follows: Sections 3.2 and 3.3 describe
log cumulative hazard models and log hazard models respectively. Section 3.4
focuses on the regularization objective and details the elastic net and group lasso
penalties used. Subsequently, section 3.5 details the optimization procedures
with respect to the model parameters and section 3.6 discusses cross-validation
for the penalty parameters. Section 3.7 illustrates the proposed methods in
a simulation study and compares them to available competitive methods, and
section 3.8 provides an applied example in the Veterans’ Administration Lung
Cancer study. Lastly, section 3.9 describes the implementation in R and section
3.10 provides a general discussion.

3.2 Royston-Parmar log cumulative
hazard models

Royston and Parmar [52] describe a parametric model that combines propor-
tional covariate effects with a smooth model of the log cumulative hazard as a
function of log time. It has the nice property that it simplifies to the well-known
Weibull proportional hazards model when the log cumulative hazard is a linear
function of log time. Details are readily available in the original manuscript; here
we just summarize key properties that are built upon in subsequent sections.
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Let h(t|Z) be the hazard at time t, conditional on n×p covariate matrix Z for n
subjects and p covariates, with corresponding coefficient vector β expressing the
log hazard ratios. The Weibull proportional hazards model (not to be confused
with the accelerated failure time parametrization) can be parametrized as

h(t|Z) = ζνtν−1eZβ = h0(t)e
Zβ

with scale parameter ζ, shape parameter ν [66], and baseline hazard h0(t) =
ζνtν−1. Note that the Weibull further simplifies to the exponential distribu-
tion when ν = 1, which is of importance later on. Subsequently integrating
with respect to time provides the cumulative hazard formulation of the Weibull
proportional hazards model.

H(t|Z) =

∫ t

0

ζνuν−1eZβdu

= ζtνeZβ

= H0(t)e
Zβ

Taking the (natural) logarithm on both sides gives

lnH(t|Z) = lnζ + νlnt+Zβ = lnH0(t) +Zβ

and shows that the Weibull log cumulative hazard form of the proportional
hazards model is a linear function of log time with intercept lnζ and slope ν.

The Royston-Parmar proportional hazards model provides a more flexible way
to model log time by means of restricted cubic splines. Starting from the log
cumulative hazard form given above, log time is modeled with restricted cubic
splines as

lnH(t|Z) = s(u|α,k) +Zβ (3.1)

where u = ln(t) and s(u|α,k) denotes the restricted cubic spline basis functions
of u and their corresponding coefficients α for some set of knots k. The outer
knots are taken to be the minimum and maximum of the observed event times,
and a total of m− 2 inner knots are set to ordered quantiles of the distribution
of event times. More specifically, s(u|α,k) is a linear combination of basis
functions vj , with j ∈ {1, . . . ,m}, and coefficients α that can be written as

s(u|α,k) = α0 + α1v1 + α2v2 + . . .+ αmvm, (3.2)
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where the definition of the basis functions depends on knots k. In our imple-
mentation, we follow the definition of restricted cubic splines as provided by
Harrell [67] (details are provided in the supplementary material, Part S3.1).
The equivalence to the Weibull model arises when no interior knots are speci-
fied and there is only a single basis column v1 = u. In presence of interior knots,
the first basis function is still defined as v1 = u, but further basis functions are
added.

Time-dependent covariate effects One can incorporate time-dependent (or
non-proportional) covariate effects by inclusion of covariate interactions with
time. For instance,

lnH(t|Z) = s(u|α,k) +Zβ + s(u,ZI |γ,κ) (3.3)

where s(u|α,k) and Zβ are defined as in equation (3.1) and (3.2), and s(u,ZI |γ,κ)
denotes the interaction of restricted cubic spline basis functions of u with covari-
ate matrix ZI , where I is the subset of covariates for which a time-dependent
effect is incorporated, κ denotes the knots for the spline of time, γ denotes the
corresponding coefficients. For example, when two continuous covariates each
interact with a restricted cubic spline representation of time with one interior
knot, s(u,ZI |γ,κ) can be written as

s(u, Z1,2|γ,κ) = γ1,1v1Z1 + γ1,2v2Z1 + γ2,1v1Z2 + γ2,2v2Z2 (3.4)

where the γ subscripts index the covariates and spline basis functions respec-
tively. Note that κ (the set of knots for interactions with time) may differ from
k (the set of knots for the log cumulative baseline hazard) to allow for interac-
tions with time that are less (or more) granular then the model for the baseline
hazard. In fact, κ could also be a matrix KI with different sets of knots per
time-dependent covariate effect. The vector of coefficients γ corresponding to
the example s(u, Z1,2|γ,κ) has length mκ × q, where mκ is the number of basis
function based on knots κ and q is the number of covariate columns in ZI .
Further details are available in the supplementary material, Part S3.1. Also,
for ease of reference, note that the parameters in equation (3.3) are grouped
in log cumulative baseline hazard parameters α, main (proportional) effect pa-
rameters β, and parameters relating to time-varying (non-proportional effects)
γ. Lastly, it is apparent from equation (3.3) that time-dependent effects for the
log cumulative hazard model are additive on the log cumulative hazard scale
(and hence multiplicative on the cumulative hazard scale). Analogously, time-
dependent effects for log hazard models (next section) are additive on the log
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hazard scale. That is, all time-dependent effects (and hence the α and γ param-
eters) have an effect and interpretation that depends on the scale of the model.
In contrast, the time-constant (proportional) effects with coefficients β have the
same interpretation for both log cumulative hazard and log hazard models.

Log-likelihood The log-likelihood for both the proportional model (3.1) and
the non-proportional model (3.3) is available in closed form, where the first is
just a simplification of the latter. Writing θ = (α : β : γ), the general form of
the log-likelihood is

l(θ) = δlnh(t|Z)−H(t|Z) (3.5)

with δ the vector of subject event indicators taking value 0 for (right) censored
cases and 1 for events, and H(t|Z) and h(t|Z) given by

H(t|Z) = exp (s(u|α,k) +Zβ + s(u,ZI |γ,κ)) (3.6)

h(t|Z) =
∂

∂t
H(t|Z) = H(t|Z) {s′(u|α,k) + s′(u,ZI |γ,κ)} (3.7)

where s′(·) denotes the derivative of s(·) with respect to t (see the supplemen-
tary material, Part S3.1 for further detail). It is important to note that equation
(3.6) should be monotone non-decreasing in time since it describes a cumula-
tive process. Accordingly, equation (3.7) should always be non-negative. This
constraint was not specifically enforced in the originally proposed optimization
procedure [52], but Liu et al. later described a constrained optimization pro-
cedure to enforce non-negative hazards [59]. Nonetheless, in the most general
case, a solution to the constrained optimization solution still only guarantees the
constraints to hold in the development data. This is most easily seen in equa-
tion (3.7), where the contribution s′(u,ZI |γ,κ), the derivative with respect to
time of the time-covariate interactions, depends on the observed data in ZI .
Therefore, non-negativity of s′(u,ZI |γ,κ) not only depends on the estimated
parameters, but also on the observed data, and cannot be guaranteed when
extrapolating beyond the development data in which the non-negative hazards
constraint was enforced.
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3.3 Log hazard models
In order to ensure non-negative hazards (and hence non-decreasing cumulative
hazards), a straightforward alternative that automatically satisfies these con-
straints is to model on the log hazard scale. In that case, the linear additive
part is on the log hazard scale. Since all of the components of equation (3.3)
can be directly inserted here, we move directly to the general case including
non-proportional effects.

lnh(t|Z) = s(u|α,k) +Zβ + s(u,ZI |γ,κ) (3.8)

As opposed to the log cumulative hazard models (equation (3.3)), models of the
form of equation (3.8) require numerical integration to derive the cumulative
hazard contributions to the log-likelihood. These cumulative hazard contribu-
tions were approximated using Gauss-Legendre quadrature [68, 53, 69].

3.3.1 Gauss-Legendre quadrature
In essence, Gauss-Legendre quadrature is just a weighted sum of q smartly
chosen points at which to evaluate the function. Therefore, the likelihood con-
tribution for individual i can be written as

li(θ) = δilnh(ti|Zi)−
q∑

j=1

wjh(tij |Zi) (3.9)

with weights wj and evaluation time points tij . Weights for a specific j are
fixed, but the time points evaluated depend on the observed time to event ti
(hence the double subscript in tij). Since the right-hand side is essentially the
weighted sum of q evaluations of the hazard function at individual specific time
points, an illustrative way to write the individual contributions is

li(θ) = δilnh(ti|Zi)−
q∑

j=1

wje
gijθ (3.10)

where gij is the design vector for individual i evaluated at time point tij . That
is, gij is the vector of values that corresponds to the evaluation of equation
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(3.8) for individual i at time point t = tij . This form emphasizes that the
numerical approximation of the cumulative hazard consists of a weighted sum
of an exponentiated affine function gijθ that is linear in θ. The right choice of
q for a sufficiently accurate approximation can be found in an iterative manner,
increasing q until the analysis results are stable (i.e. specified tolerance is met).

3.4 Regularization

Regularization can be implemented by means of penalized maximum likelihood.
We have implemented both an elastic net type penalty and a group lasso penalty.
Section 3.6 describes tuning parameter selection based on cross-validation.

3.4.1 Elastic net

The elastic net penalty can be written as

Pnet(ω, θ) = λ

D∑
d=1

ωdϕd|θd|+
1

2
(1− ωd)ϕdθ

2
d (3.11)

with global penalty scaling parameter λ scaling the weighted sum of regression
coefficient specific contributions to the penalty. The regression coefficient vector
θ has elements d ∈ 1, . . . , D, corresponding parameter specific penalty scaling
factors ϕd ∈ [0,∞), and mixing factors ωd ∈ [0, 1] with extremes ωd = 1 being
a lasso penalty and ωd = 0 a ridge penalty. Note that in contrast to the well-
known and widely applied elastic net penalty in generalized linear models ([65]),
we allow for parameter specific specification of the mixing factor (as opposed to
a global choice). This allows the user to combine penalties that only shrink and
penalties that may also remove coefficients from the model. This is especially
relevant to the survival setting. For example, it allows one to choose ridge
regression for baseline (cumulative) hazard parameters (to avoid selection of
individual basis functions) and a penalty that also provides parameter selection
for the remaining parts of the model. With respect to the penalty scale factors
ϕd, note that ϕd = 0 equals unpenalized θd and that ϕd = ∞ leads to θd =
0. Setting some elements of ϕ to zero could for instance be used to avoid
penalization of the baseline hazard.
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3.4.2 Group lasso

We implemented a group lasso penalty that can be written as

PGL(ω, θ) = λ

G∑
g=1

ωgϕg∥θg∥2 +
1

2
(1− ωg)ϕg∥θg∥22 (3.12)

for partitions g ∈ 1, . . . , G of θ. Note that in this case, mixing factors ωg and
penalty scaling factors ϕg relate to the norms of G partitions of θ denoted by
θg. In addition to the usual group lasso formulation (e.g. [70]), and analogous
to the elastic net penalty, the group lasso penalty in equation (3.12) allows for
group specific ωg, thus allowing some groups to follow a group lasso penalty
and others to follow a ridge penalty. As for the elastic net case, this allows
users to only shrink a subset of parameter-groups (ensuring that they stay in
the model), while potentially also selecting amongst other groups of parameters
(group lasso). Note that in the group lasso case, we restrict ωg to take value in
{0, 1}, but this could be extended to the entire range [0, 1].

3.4.3 Survival specific nuances

Since penalization shrinks the parameters towards zero, care must be taken to
specify the model such that it still makes sense under extreme penalization. In
ridge, lasso, and elastic net implementations for generalized linear models, it
is standard practice to avoid penalization of the intercept by centering of both
outcome y and the columns of design matrix X, and to allow penalization of
the remaining parameters [64, 65, 20]. However, this strategy is not directly
applicable in the case of parametric survival analysis. First, centering of the
outcome is not possible and the intercept therefore remains in the model and
should be estimated. Therefore, our implementation treats the intercept as an
unpenalized parameter. That is, the scaling factor for the intercept penalty
(ϕ1) is always equal to 0, unlike the remainder of ϕ. Second, a log cumulative
hazard model needs at least an intercept and a slope to provide a sensible model
(i.e. an intercept only model implies a constant log cumulative hazard). At this
points, it is convenient that the first basis function of the implemented restricted
cubic splines provides this slope in the form of a linear contribution of log time.
Nonetheless, it may still be desirable to penalize the slope estimate. Thereto, log
cumulative hazard models are estimated with a log time offset (i.e. slope equal
to 1) whereby penalization of the slope parameter effectively shrinks towards
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unity instead of zero. Consequently, the simplest model has an unpenalized
intercept α0 and an log time offset, which can be recognized as an exponential
survival distribution with rate parameter eα0 .

3.5 Optimization
The general optimization problem can be formulated as

maximize lpen(θ) = l(θ)− P (θ) (3.13)
subject to h(u|θ,Z) > 0

where l(θ) is the appropriate form of the log-likelihood in equation (3.5) for
either a log hazard or a log cumulative hazard model, P (θ) is either the elastic
net penalty (equation (3.11)) or the group lasso penalty (equation (3.12)), and
h(u|θ,Z) denotes the hazard contributions. Note that for the latter, strict
positivity could be relaxed to positivity except at event times. In order to choose
the right optimization approach, we need to know more about the mathematical
structure of each of the elements of the optimization problem. In this section,
we show that the necessary objective functions and constraints can be written
in an equivalent but convex form, such that convex optimization procedures can
be used to find the global optimal value and corresponding solution(s) θ∗ [71].

3.5.1 Convexity
A particularly elegant way to establish convexity for our optimization problem
is by composition of functions with well-known properties. The required com-
position rules for a composition f(h1, . . . , hk) to be convex [72], are that f is
convex, and at least one of the following conditions should hold for each of the
possibly vector-valued functions hi with i = 1, . . . , k

• hi is affine,

• hi is convex and f is increasing in argument i

• hi is concave and f is decreasing in argument i

Alternatively, for f(h1, . . . , hk) to be concave, f should be concave, and at least
one of the following conditions should hold for each of the possibly vector-valued
functions hi with i = 1, . . . , k

• hi is affine,
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• hi is concave and f is increasing in argument i

• hi is convex and f is decreasing in argument i

Details on the derivation of these rules are provided elsewhere (Chapter 3 in
[71]). To ease application of the rules, it is useful to write out the parts of
equation (3.13) for each of the problems at hand.

Log cumulative hazard likelihood In case of a log cumulative hazard model,
the likelihood contributions are already available in equation eqs. (3.5) to (3.7).
For the current purpose, a more abstract formulation is more helpful. Also, the
offset u = ln(t) still needs to be incorporated. Thereto, let

H(t|Z) = exp (X(u)θ + u)

and
ln(h(t|Z)) = X(u)θ + ln(1+X′(u)θ)

where θ = (α : β : γ), X(u) is the design matrix for s(u|α,k) + Zβ +
s(u,ZI |γ,κ), and X′(u) is the design matrix for s′(u|α,k) + s′(u,ZI |γ,κ).
Consequently, the log-likelihood contributions are

l(θ) = δ [X(u)θ + ln(1+X′(u)θ)]− exp (X(u)θ + u) (3.14)

Equation (3.14) is now composed of well-known mathematical atoms that lead
to the desired result by means of the composition rules. For cases with an
event, l(θ) consists of X(u)θ which is affine, ln(1+X′(u)θ) which is concave
(since the natural logarithm is a concave function and is taken over 1+X′(u)θ
which is affine), and exp (X(u)θ + u) which is convex (since the exponential
function is convex and taken over X(u)θ + u which is affine). Hence, l(θ) is
concave since it is the sum of an affine part, a concave part, and the negation
of a convex (and thus also concave) part [71]. For censored cases, l(θ) simplifies
to −exp (X(u)θ + u) which is concave.

Log hazard likelihood In the same line, the log-likelihood contributions for
the log hazard models can be shown to be concave. Thereto, write the log-
likelihood as

li(θ) = δx(u)iθ −
q∑

j=1

wje
gijθ

with x(u)i the design matrix vector for individual i for s(u|α,k) + Zβ +
s(u,ZI |γ,κ). Then the individual contributions li(θ) are concave since x(u)iθ
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is affine and −
∑q

j=1 wje
gijθ is concave. The latter follows from the fact that∑q

j=1 wje
gijθ is the sum of weighted exponentials of the affine parts gijθ and

thus the sum of convex functions and hence itself also convex [71].

Penalty functions Both the elastic net penalty and the group lasso penalty
are weighted sums of norms and/or quadratic parts and therefore weighted sums
of convex functions and hence also convex.

Constraints this just leaves the constraints h(u|θ,Z) which are trivial in the
log hazard case and can be further simplified in the log cumulative hazard
case. In the latter case, h(u|θ,Z) = exp(X(u)θ)(1 + X′(u)θ) > 0. Since
exp(X(u)θ) > 0 is always satisfied, the constraint can be simplified to 1 +
X′(u)θ > 0 which is affine.

Conclusion Since the log-likelihood contributions are both concave in θ, their
negation is convex; also, both penalty functions are convex, and the necessary
constraints are affine. Therefore, the optimization problem can always be for-
mulated as a convex optimization problem:

minimize − lpen(θ) = −l(θ) + P (θ) (3.15)
subject to − h(u|θ,Z) ≤ 0

Consequently, the proposed regularized parametric survival models have a global
optimal value for fixed values of ω and ϕ which is obtained for solution θ∗.

3.5.2 Solver
The optimization problem can be formulated as a convex optimization problem
for all of the proposed regularized parametric survival models. Therefore, effi-
cient software is available for the optimization [73, 71] and is easily accessible by
means of R package CVXR [72]. More specifically, CVXR provides a user-friendly
interface that transforms the standard convex programming form of the prob-
lem into a second-order cone program, that can subsequently be solved with
interior-point solver ECOS (embedded conic solver) [73].

3.6 Cross-validation
The choice of tuning parameters ω and λ can be informed by a grid search
using cross validation, repeated cross validation, or bootstrapping. The log-
likelihood or deviance can be used as a measure of out-of-sample performance
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[70]. However, log cumulative hazard models do not necessarily provide valid
out-of-sample log-likelihoods since the non-negative hazards constraint can only
be enforced within the development data. Therefore, in the context of log cu-
mulative hazard models, we chose to optimize the objective function lpen(θ) in
the selected cases while enforcing the non-negative hazards constraint in the
whole sample. This enforced non-negative hazards for out-of-sample predic-
tions and hence valid out-of-sample log-likelihood contributions in the context
of cross-validation (or other resampling algorithms).

3.7 Simulation study

3.7.1 Data generating mechanism
To simulate survival data, we followed a proposal by Crowther and Lambert and
simulate from a two-component parametric mixture [74]. The main motivation
was to generate survival data that are sufficiently complex to resemble real
data, and at the same time avoid that any of the models under evaluation
contains the exact data generating mechanism. Specifically, we sampled from a
two-component mixture Weibull distribution that was additive on the survival
scale. Clearly described details on the derivation are available elsewhere [74], so
we only re-state the general form of the baseline hazard function

h0(t) =
λ1γ1t

γ1−1pmixe
−λ1t

γ1
+ λ2γ2t

γ2−1(1− pmix)e
−λ2t

γ2

pmixe−λ1tγ1 + (1− pmix)e−λ2tγ2
(3.16)

This baseline hazard can be combined with time-independent (proportional)
or time-dependent covariate effects. For our data generating mechanism, the
Weibull mixture parameters were set to λ1 = 0.21, λ2 = 0.05, γ1 = 1.1, γ2 = 1.4
and pmix = 0.4 and cases were censored administratively at time = 30. This
mixture describes a non-monotone hazard function that first increases and
subsequently decreases before stabilizing. Eleven covariates were simulated
from a multivariate standard normal distribution with pair-wise correlations
set to 0.25. The true main effect coefficients for these eleven covariates were
0, 0, 0.5,−0.5, 0.25,−0.25, 0.125,−0.125, 0.625,−0.625 and 0.5 respectively. The
effects of the first three covariates varied with time according to 0.9t with coeffi-
cients −1, 0.75 and −0.5. Combining the time-constant and time-varying effects,
the log hazard ratio of the first and second covariates started at −1 and 0.75
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respectively and diminished over time, and the log hazard ratio for the third
covariate started at 0 and its effect increased over time to 0.5. The supplemen-
tary material (Part S3.2) visualizes the baseline hazard and time varying effects
corresponding to the data generating mechanism. A total of 110,000 observa-
tions were sampled based on this mechanism. A fixed set of 10,000 was used
for external validation purposes. Development samples were sampled from the
remaining 100,000 observations.

3.7.2 Simulation settings

A total of 500 simulation runs was performed for four development sample
size settings: 100, 250, 500, and 1000. In each simulation run, all survival
models were fitted on the development sample and evaluated in the independent
validation sample. For all modeling purposes, the 11th covariate was considered
to be unmeasured to provide more realistic scenarios, and thus not included in
the models.

3.7.3 Survival modeling methods

Ten different modeling techniques were compared.

1. Regularized log hazard model including time-varying effects (RegHazTV):
regularized log hazard models with the log baseline modeled with a re-
stricted cubic spline with 5 degrees of freedom, 10 linear main effects
(i.e. for each measured covariate), and including interactions with log
time by means of a 2 degrees of freedom restricted cubic spline for all
ten covariates. The log baseline hazard and main effect parameters were
penalized with a ridge penalty, and the time-varying effects with a group
lasso penalty with separate groups for each covariate. With respect to the
time-varying effects (.i.e. interactions with spline basis functions), the
group lasso penalty ensures that coefficients belonging to the same spline
transformation are simultaneously zero or non-zero.

2. Regularized log cumulative hazard model including time-varying effects
(RegCumHazTV): same as (1), but on the log cumulative hazard scale.
NB: the interactions with time are therefore also on the log cumulative
hazard scale and hence differ from the specification in (1).

3. Cox proportional hazards model (CoxPH): a Cox proportional hazards
model with 10 linear main effects. Predicted survival was derived based on

57



Chapter 3

the Cox model and the corresponding Breslow estimate of the cumulative
baseline hazard.

4. Cox model including time-varying effects (CoxTV): same as (3), but allow-
ing for time-varying effects as a function of a 2 degrees of freedom restricted
cubic spline of log time. To encode these time-varying effects, the data
set was transformed into start-stop format with splits at all percentiles of
the observed event times and subsequent derivation of the covariate-time
interaction columns [75].

5. Cox proportional hazards lasso model (CoxPHlasso): same as (3), but
with a lasso penalty on all parameters.

6. Cox time-varying effects ridge model (CoxTVridge): same as (4), but with
a ridge penalty on all parameters. Note that a regular lasso penalty is not
directly applicable due to the presence of spline components.

7. Royston-Parmar proportional hazards model (RPrcsPH): a proportional
Royston-Parmar model (i.e. log cumulative hazard model) as imple-
mented by Liu et al. [59], with a 5 degrees of freedom natural cubic
spline for the log cumulative baseline hazard and 10 linear main covariate
effects.

8. Royston-Parmar time-varying effects model (RPrcsTV): same as (7), but
including interactions with log time by means of a 2 degrees of freedom
restricted cubic spline for all ten covariates.

9. Royston-Parmar proportional hazards model (RPssPH): a proportional
Royston-Parmar model (i.e. log cumulative hazard model) as imple-
mented by Liu et al. [59], with a smoothing spline for the log cumulative
baseline hazard and 10 linear main covariate effects.

10. Royston-Parmar time-varying effects model (RPssTV): same as (9), but
including interactions with log time by means of a smoothing spline for
all ten covariates.

Certain groups of methods can be distinguished within these 10 methods. For
instance, we will refer to methods 1, 2, 4, 6, 8, and 10 as methods that allow
for time-varying effects (TV), and to the complementary set of methods 3, 5, 7,
and 9 as proportional hazards methods (PH). In addition, the methods can be
grouped into methods that incorporate regularization on the size of the model
parameters (methods 1, 2, 5, and 6) and methods that do not (methods 3, 4,
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7-10).1 For all regularized models, the optimal value of the penalty parameter
λ was estimated by means of 10-fold cross-validation minimizing the deviance.

3.7.4 Performance measures
Prediction performance with respect to predicted survival probabilities was eval-
uated by means of root mean squared prediction error (rMSPE) as evaluated
at the observed time-to-event for all individuals in the external validation data.
Since this is a simulation setting, the true survival probabilities were used as
the reference. Additionally, rMSPE was evaluated at the fixed time points
2.5, 5, 7.5, 10, 20 and 30. Likewise, both time-average and fixed time point dis-
criminative performance was evaluated against the true survival probabilities
by means of the C-statistic [8]. Based on the observed outcomes in the vali-
dation data, calibration was assessed at the fixed time points using graphical
calibration curves and integrated calibration indices based on hazard regression
[76].

3.7.5 Simulation study results
Figure 3.1 shows that the time-averaged rMSPE of the proposed regularized
models (RegHazTV and RegCumHazTV) were amongst the best performing
methods in all sample size settings. In the smallest sample size setting (N=100),
prediction accuracy of RegHazTV and RegCumHazTV slightly outperformed
modeling methods assuming proportional hazards, and clearly outperformed
other time-varying effects methods. With increasing sample size (N=250), the
other time-varying effects methods start to catch up with the proportional haz-
ards models. Further increase in sample size (N=500) shows that the possibility
of time-varying effects models to more fully capture the data generating mech-
anism generally overcomes their tendency to overfit: all of the time-varying
effects models outperform the proportional hazards methods. The final increase
in sample size up to N=1000 shows that the non-regularized time-dependent ef-
fects models (CoxTV, RPrcsTV, RPssTV) start to catch up with the proposed
regularized models.

Figure 3.2 shows rMSPE results over time. In line with the time-average results,
the proposed regularized parametric methods performed well across all sample

1Note that methods 9 and 10 implement penalization on the second derivative of smooth
functions over time (i.e. log cumulative baseline hazard and time-varying effect), which differs
from what we refer to as regularization. More specifically, penalizing non-smoothness simplifies
functional form towards linearity, while regularization reduces coefficients towards zero.
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Figure 3.1: Boxplots of root mean squared prediction error for each of the
methods as enumerated in section 3.7.3: (1) RegHazTV, (2) RegCumHazTV,
(3) CoxPH, (4) CoxTV, (5) CoxPHlasso, (6) CoxTVridge, (7) RPrcsPH, (8)
RPrcsTV, (9) RPssPH, (10) RPssTV. Boxes cover the interquartile range and
have a solid bar showing the median; whiskers extend to 1.5 times the interquar-
tile range. The horizontal dotted line crosses the median rMSPE for the best
performing method in a specific sample size setting. NB: The scale of the y-axis
differs between subfigures to enhance visual clarity of the differences within sce-
narios.
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Figure 3.2: Root mean squared prediction error over time each of the evalu-
ated methods. Note that the line for CoxPH is hardly visible since its curve is
almost identical to the curves of RPrcsPH and RPssPH. Solid lines are for mod-
els allowing for time-varying coefficients; dashed lines for proportional hazard
models.

size settings. Their benefit was most apparent for later prediction times. As
for the time-averaged results, the proportional hazards methods were at a clear
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disadvantage in large sample size settings (due to misspecification), but had the
edge over non-regularized TV methods in smallest sample size setting (due to
decreased risk of overfitting). This pattern was not clearly time-dependent.

The supplementary material shows discriminative performance (Part S3.3) and
calibration performance (Part S3.4) in the validation data. Results were in
line with the rMSPE results, with RegHazTV and RegCumHazTV consistently
performing well in terms of both time-averaged discriminative performance and
discriminative performance at each of the fixed times points. With respect to
calibration, average calibration curves across simulations converged towards the
diagonal with increasing sample size for all time-varying effects methods except
for CoxTVridge. Average calibration curves for RegHazTV and RegCumHazTV
did so faster than other time-varying effects methods. PH-method curves clearly
reflected misspecification in the larger sample size settings, especially for early
and late time-points. The latter was according to expectation since the trends of
the true time-varying effects over time were all monotone and thereby cross the
time-constant (PH) approximation that captures the average across time. This
results in good approximations near the crossing point and bad approximations
further away, with the bad approximations corresponding to (on average) high
survival probabilities (early in time) and low survival probabilities (later in
time).

3.8 Veterans’ Administration Lung Cancer study

The Veterans’ Administration Lung Cancer (VALC) study is a randomized trial
of two chemotherapy treatments in males with advanced inoperable lung cancer
[66]. The primary endpoint was time to death and 128 out of 137 patients died
during follow-up (the remainder being censored). Data on a selection of variables
is available in Kalbfleisch and Prentice [66] and includes time-to-event, event
status, and baseline data on treatment (standard vs new chemotherapy), age
(in years), prior therapy (yes/no), histological type (squamous, small cell, adeno,
large cell), performance status (Karnofsky rating from 0-100, with higher scores
relating to better status), and time between diagnosis and randomization (in
months). A Cox proportional hazards model including all of these measures as
main effects shows clear signs of non-proportionality based on the Grambsch and
Therneau test on Schoenfeld residuals [75] (p = 3.2e−5), with clear individual
contributions of cell type (χ2

3 = 15.2, p = 0.0016) and Karnofsky rating (χ2
3 =

12.9, p = 0.0003). This provides us with an interesting setting to illustrate all of
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the methods used in the simulation study. The models and methods as applied
in the VALC data were as listed below.

1. Regularized log hazard model including time-varying effects (RegHazTV),
with the log baseline modeled with a restricted cubic spline with 4 degrees
of freedom, all main effects, and including linear interactions with log time.
The log baseline hazard parameters were penalized with a ridge penalty,
and the remaining parameters with a lasso penalty (group lasso in case of
cell type which had 3 groups).

2. Regularized log cumulative hazard model including time-varying effects
(RegCumHazTV): same as (1), but on the log cumulative hazard scale.

3. Cox proportional hazards model (CoxPH): a Cox proportional hazards
model with all main effects. Predicted survival was derived based on
the Cox model and the corresponding Breslow estimate of the cumulative
baseline hazard.

4. Cox model including time-varying effects (CoxTV): same as (3), but al-
lowing for time-varying effects as a linear function of log time.

5. Cox proportional hazards lasso model (CoxPHridge): same as (3), but
with a ridge penalty on all parameters. Ridge was preferred over lasso
due to presence of a categorical variable with 3 groups (cell type).

6. Cox time-varying effects ridge model (CoxTVridge): same as (4), but with
a ridge penalty on all parameters.

7. Royston-Parmar proportional hazards model (RPrcsPH): a proportional
Royston-Parmar model (i.e. log cumulative hazard model) with a 4 de-
grees of freedom natural cubic spline for the log cumulative baseline hazard
and all main covariate effects.

8. Royston-Parmar time-varying effects model (RPrcsTV): same as (7), but
including interactions with log time for all ten covariates.

9. Royston-Parmar proportional hazards model (RPssPH): a proportional
Royston-Parmar
model (i.e. log cumulative hazard model) with a smoothing spline for the
log cumulative baseline hazard and all main covariate effects.

10. Royston-Parmar time-varying effects model (RPssTV): same as (9), but
including interactions with log time for all ten covariates.
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11. Regularized log hazard model (RegHazPH), same as (1), but without the
time-varying effects.

12. Regularized log cumulative hazard model (RegCumHazPH): same as (2),
but without the time-varying effects.

Due to the limited sample size in the VALC data, note that, compared to the
simulation study, 1 df less was spent on the baseline hazard for parametric
models, and that time-varying effects were modeled linearly instead of using
splines for all methods where applicable. For the same reason, the last two
models were added as simplifications of the first two in light of the simulation
results.

A bootstrapping approach was used to evaluate model performance. All penalty
parameters were selected based on 10-fold cross-validation as performed in (i.e.
nested in) bootstrap samples. Performance measures were derived in out-of-bag
samples. Performance was measured in terms of time-dependent Brier score
[77], time dependent c-statistic [78] and graphical calibrations curves [76]. The
time dependent c-statistic as described by Antolini et al. [78] was adapted to
match Harrel’s C [79] in case of proportional hazards by counting tied prediction
for discordant outcomes as 0.5 instead of 0. Time-points for the derivation of
an integrated Brier score were the .1, .2, . . . , .9 quantiles of the event times dis-
tribution in the full data set (with equal weights for all time-points). Graphical
calibration curves were derived at the median event time (t=62). A total of 500
bootstrap runs was performed.

Results are shown in Table 3.1 and Figure 3.3 for all methods except CoxTVridge,
which did not converge regardless of the choice of penalty. Even though the dif-
ferences were small, RegHazTV, RegCumHazTV, RegHazPH, RegCumHazPH,
and RPrcsTV performed significantly better than the remaining methods in
terms of squared prediction error. In terms of rank-ordering, the two regular-
ized proportional hazards models performed best (RegHazPH, RegCumHazPH).
Figure 3.3 shows calibration performance at median event time (t=62). Reg-
HazPH and RegCumHazPH again performed well and the curves for the other
regularized models also look reasonable and in agreement with the Brier scores.
Summarizing, the proportional regularized parametric models performed best
on all measures, but differences were small. Even though allowing for time-
varying effects is quite a stretch given the limited sample size, the regularized
time-dependent effects models performed reasonably well.
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Briertd (se) Ctd (se)
RegHazTV 0.152 (0.042) 0.698 (0.044)
RegCumHazTV 0.152 (0.042) 0.695 (0.049)
CoxPH 0.155 (0.043) 0.705 (0.036)
CoxTV 0.154 (0.043) 0.682 (0.057)
CoxPHridge 0.154 (0.043) 0.708 (0.035)
RPrcsPH 0.154 (0.043) 0.705 (0.036)
RPrcsTV 0.152 (0.043) 0.692 (0.044)
RPssPH 0.154 (0.043) 0.705 (0.036)
RPssTV 0.153 (0.042) 0.676 (0.060)
RegHazPH 0.152 (0.042) 0.713 (0.035)
RegCumHazPH 0.152 (0.042) 0.713 (0.035)

Table 3.1: Mean and standard error of the integrated time-dependent Brier
score (Briertd) and the time-dependent c-statistics (Ctd) are shown as derived
based on 500 out-of-bag estimates for the Veterans’ Administration Lung Cancer
study.

3.9 Software
Regularized log hazard and log cumulative hazard modeling has been imple-
mented in R [60] package regsurv. A development version of the package is
available on GitHub https://github.com/jeroenhoogland/regsurv and pro-
vides functions for model optimization and penalty parameter tuning, as well
as convenience functions for prediction and plots of loss and coefficients paths
across a penalty parameter grid. Royston-Parmar modeling software is readily
available (e.g. stpm2 [57] in Stata [58] and rstpm2 [59] in R, and the same
holds for standard cox modeling (e.g. the survival package [80] in R) and regu-
larized cox modeling (e.g. the glmnet package [81] in R). R script for replication
of the simulation study and applied example is available as supplementary ma-
terial.
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Figure 3.3: Calibration curves for out-of-bag predictions at median event time
in the VALC data. Solid lines represent the average calibration curve over 500
out-of-bag estimates; dotted lines are for the 10th and 90th percentile.

3.10 Discussion

We have introduced regularization methods for parametric survival models with
a flexible baseline hazard or cumulative hazard. This opens an important tool-
box that constrains the risk of overfitting and increases prediction accuracy for a
flexible class of models. Importantly, these models explicitly model the baseline
(cumulative) hazard, which is of interest for absolute risk prediction over time
and when modeling time-varying effects.
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From a theoretical perspective, it was shown that the optimization problems for
the proposed methods can be formulated as convex optimization problems. This
entails that there exists a global optimal value. From a pragmatic perspective,
convexity allows for the use of well-known solving methods to find a solution
corresponding to the global optimal value. The introduced penalty functions in-
clude the well-known elastic net penalty (and hence ridge and lasso penalty) and
the group lasso penalty. Simulation work showed that the proposed methods
performed well in comparison to alternative methods including Cox regression,
regularized Cox regression, and Royston-Parmar models of various types. Im-
portantly, regularization was beneficial even in large sample size settings. In
line with the simulation results, the applied example in the Veterans’ Admin-
istration Lung cancer study showed that the proposed methods performed well
in terms of squared prediction error, rank-ordering, and calibration. A software
implementation for model fitting, penalty parameter tuning, and prediction has
been developed in the form of R package regsurv and is available on GitHub.

Regarding practical implementation, the choice between log hazard and log
cumulative hazard modeling deserves some further attention. The log cumula-
tive hazard is naturally constrained to be monotone non-decreasing (i.e. non-
negative hazards). Both our implementation and the unregularized Royston-
Parmar implementation by Liu et al. [59] enforce this constraint in the develop-
ment data, while this is not the case in the original proposal [52]. Nonetheless,
monotonicity depends on the data in case of time-varying effects models and
can hence not be guaranteed when the model is applied in new data. In our
experience, such predictions of negative hazards (at some time points for some
patients) occur more frequently for models with many time-varying components.
While the final contribution of such a time point with a negative predicted haz-
ard to a predicted probability may be small, it is inconvenient. Possible solutions
are not straightforward and possibly cumbersome; one idea is to limit model
applicability to a multivariable domain in the predictor space where the model
always satisfies the monotonicity constraint. While modeling of the log hazard
is computationally inconvenient, it does provide an unconstrained optimization
problem and a model that generalizes to new data without problem. Therefore,
we prefer log hazard models when incorporating time-varying effects.

With respect to limitations, it should be noted that the simulation study and
applied example were intended as a proof-of-concept for the introduced method-
ology, and future research is needed to investigate performance in a wider range
of settings. Also, the computation time for regularization paths can be consid-
erable for the log hazard models due to the required numerical integration. For
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example, individual solving times for fixed tuning parameters took up to 10 sec-
onds for the large sample size setting for the log hazard models, whereas these
took only around half a second for the log cumulative hazard models. Nonethe-
less, computation times for the glmnet implementation of Cox regression with
time-varying effects may be even longer without coarsening the grid of event
times used to represent time-varying effects.

The current application of convex optimization techniques in the context of
parametric survival modeling is a particular example of a widely applicable
technique [71, 72]. Any penalty that can be formulated as a convex function
can be added to any log-likelihood that can be formulated as a convex function,
with the option to include convex constraints. The recent implementation of
an elastic net penalty for the family of transformation models provides a recent
example illustrating the generality of the approach [82]. The challenge is in the
recognition of particular problems as convex problems.

As final note on the use of penalized maximum likelihood, its application in the
context of regularization of parameter size (as in the current work) should be
distinguished from its application in the context of penalized splines. The first
shrinks model parameters towards zero, while the latter shrinks functional forms
to linear (e.g. by penalizing curvature as quantified by second derivatives). Ex-
amples of the latter in the context of parametric survival modeling include the
earlier mentioned work of Liu et al.[59] that uses the generalized additive mod-
eling framework [83] to enable flexible modeling of the log cumulative baseline
hazard (e.g. using smoothing splines). A similar synergy between generalized
additive modeling and log hazard models has recently been implemented by
Fauvernier et al. [84] (available in R package penSurv [85]). Ideally, penalized
splines are used to shrink functional form to linear, and then ridge/lasso is used
to shrink further if needed. Such a hybrid approach has already been described
and implemented in R package gamsel for gaussian and binomial families [86].

Summarizing, parametric log hazard and log cumulative hazard models provide
a flexible tool for survival analysis, and the current addition of regularization
further enhances flexibility while controlling for overfitting in settings with lim-
ited sample size in light of model complexity. This is of particular interest for the
development of prediction models with the aim to predict survival probabilities
over time.
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Supplementary Material
The supplementary material consists of further information on restricted cubic
splines (Part S3.1), the data generating mechanism used in the simulation study
(Part S3.2), and discrimination and calibration results for the simulation study
(Part S3.3 and Part S3.4 respectively).

S3.1 Restricted cubic spline details
For set of knots k = k1, . . . , km, including outer knots taken to be the lower (k1)
and upper (km) limit of the observed range of u, and m − 2 inner knots equal
ordered quantiles of u, restricted cubic spline s(u|α,k) is defined as [67]

s(u|α,k) = α0v0 + α1v1 + α2v2 + . . .+ αmvm = V α (3.17)

where v0 is a vector of 1s, v1 = u, and

vj+1 =
1

τ

{
(u− kj)

3
+ − km − kj

km − km−1
(u− km−1)

3
+ +

km−1 − kj
km − km−1

(u− km)3+

}
for j = 1, . . . ,m and τ = (km − k1)

2.
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Derivative with respect to t In our implementation of the log cumulative
hazard models, u = ln(t) and the derivative of s(u|α,k) with respect to t is
required for computation of the hazard. This derivative can be written as

s′(u|α,k) = α0v
′
0 + α1v

′
1 + α2v

′
2 + . . .+ αmv′m = V ′α (3.18)

where v′0 is a vector of 0s, v′1 is a column of 1s, and

v′j+1 =
3

t

1

τ

{
(u− kj)

2
+ − km − kj

km − km−1
(u− km−1)

2
+ +

km−1 − kj
km − km−1

(u− km)2+

}

for j = 1, . . . ,m and τ = (km − k1)
2. Note that only the equation for the basis

functions differs from s(·) and that α,k, τ , and the scaling factors km−kj

km−km−1

and km−1−kj

km−km−1
are exactly equivalent between s′(·) and s(·).

Non-proportional hazards The covariate × log time interactions for a single
covariate column zj , knots κ and coefficients γ is defined as

s(u, zj |γ,κ) = DV γ

where Dn×n = diag(zj), Vn×m contains the basis columns v1, . . . , vm for u
and knots κ, and γ is a column vector with the corresponding coefficients. We
use s(u,ZI |γ,κ) to denote the concatenation of s(u, zj |γ,κ) for each of the
covariates in set I to be modelled as non-proportional. That is, for covariates
1, . . . , q in set I,

s(u,ZI |γ,κ) = D1V γ1 + . . .+DjV γj + . . .+DqV γq

where Dj is a diagonal matrix with the j’th non-proportional covariate on the
diagonal, V is as above and is therefore constant over j, and γj contains the
coefficients for the interactions with covariate zj . The derivatives s′(u,ZI |γ,κ)
with respect to t can be derived analogously to the main effect restricted cubic
splines and only involve substitution of the matrix V by V ′ containing the ∂

∂t
columns of V .
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S3.2 Data generating mechanism
Figure S3.1 shows baseline survival, cumulative baseline hazard, baseline hazard,
and the time-varying effects corresponding to the data generating mechanism
used in the simulation study.

Figure S3.1: Baseline survival (top left), cumulative baseline hazard (top mid-
dle), baseline hazard (top right), and the time-varying effects for the first three
covariates (bottom row) for the data generating mechanism used in the simula-
tion study.
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S3.3 Discrimination results
Each of the figures shows C-statistics for each of the 10 methods under eval-
uation: (1) RegHazTV, (2) RegCumHazTV, (3) CoxPH, (4) CoxTV, (5) Cox-
PHlasso, (6) CoxTVridge, (7) RPrcsPH, (8) RPrcsTV, (9) RPssPH, (10) RPssTV.
Separate figures are provided for each sample size setting and for time-averaged
C-statistics and fixed time-point C-statistics. Boxplots reflect results from 500
simulation runs each.
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S3.4 Calibration results
Each of the figures shows calibration curves as averaged over simulation runs
for each of the sample size settings, time-points, and methods under evaluation.
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Chapter 4

Abstract
Randomized trials typically estimate average relative treatment effects, but de-
cisions on the benefit of a treatment are possibly better informed by more in-
dividualized predictions of the absolute treatment effect. In case of a binary
outcome, these predictions of absolute individualized treatment effect require
knowledge of the individual’s risk without treatment and incorporation of a
possibly differential treatment effect (i.e. varying with patient characteristics).
In this paper we lay out the causal structure of individualized treatment effect in
terms of potential outcomes and describe the required assumptions that underlie
a causal interpretation of its prediction. Subsequently, we describe regression
models and model estimation techniques that can be used to move from average
to more individualized treatment effect predictions. We focus mainly on logis-
tic regression-based methods that are both well-known and naturally provide
the required probabilistic estimates. We incorporate key components from both
causal inference and prediction research to arrive at individualized treatment
effect predictions. While the separate components are well known, their suc-
cessful amalgamation is very much an ongoing field of research. We cut the
problem down to its essentials in the setting of a randomized trial, discuss the
importance of a clear definition of the estimand of interest, provide insight into
the required assumptions, and give guidance with respect to modeling and es-
timation options. Simulated data illustrates the potential of different modeling
options across scenarios that vary both average treatment effect and treatment
effect heterogeneity. Two applied examples illustrate individualized treatment
effect prediction in randomized trial data.
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4.1 Introduction

Prediction of risk and prediction of treatment effect are two key components in
modern medicine and personalized healthcare. On the one hand, risk predictions
are classically functions of multiple patient characteristics. They include predic-
tions of the risk of having a specific health outcome or condition (diagnosis) or
of developing a future health outcome (prognosis). Also, risk predictions vary
naturally across patients, are descriptive, and can be uniformly expressed as
probabilities [51]. Importantly, risk prediction models are generally descriptive
and are not intended to reflect the causal mechanism; in particular, included
predictor effects in the model are not intended to reflect the extent to which their
removal or modification would change an individual’s prediction. On the other
hand, predictions of treatment effect do express an expected difference due to
modification of the treatment condition. They have classically been studied on
a group level (e.g. treated group versus control group), often assume a constant
effect across individuals, have a causal interpretation, and are traditionally ex-
pressed using relative effect measures (e.g. odds ratio, relative risk, or hazard
ratio) [87].

Risk predictions and treatment effect estimation are two important areas of
research but have largely developed in separation, leading to an apparent con-
tradiction between methods for prediction and methods for causal inference.
However, answers to many important questions need to bridge the divide. For
instance, "How will a possible treatment change predicted outcome risk?" or "Is
there variability in the effect of this treatment across patients (i.e. differential
treatment effect)?". These questions involve both the causal effect of treatment
on a targeted health outcome and the adequate incorporation of associations
with individual patient characteristics.

It is exactly these types of questions that need to be answered to provide more
tailored, stratified, personalized, or precision medicine [88, 89, 90]. The limi-
tations of average relative treatment effects have long been recognized and the
promise of a more individualized yet evidence-based approach has been entic-
ing. Such a strategy requires focus on heterogeneity between patients and its
relation to risk of the outcome of interest and variability in treatment effect.
Also, moving towards more individualized estimates inherently means moving
to more absolute expressions of variability in risk and treatment effect that are
interpretable on the individual level [91, 92]. For example, predictions of the
absolute risk of a future event under different treatment conditions provide a
natural basis for shared decision-making.
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In this tutorial, we aim to give a platform for statisticians and other researchers
embarking on the prediction of individualized treatment effect. We focus on
the risk of developing a binary outcome or endpoint, and aim to combine the
highly conditional nature of typical risk prediction modeling with causal infer-
ence about treatment effectiveness. While the problem is well-known, it is very
complex and therefore, we will cut it down to its essentials in the setting of a
randomized trial, and mainly limit our scope to regression-based methods. We
discuss the importance of a clear definition of the estimand of interest, provide
insight into the required assumptions, and give guidance with respect to the
modeling and estimation options. Key considerations with respect to the choice
of modeling and estimation methods are further illustrated in a simulation study
and two applied examples.

4.2 Defining individualized treatment effect

The main idea underlying our endeavor is that the effect of treatment may be
different for each individual, and that it may be beneficial to personalize or
individualize its estimate. In the context of risk prediction, this implies that
treatment causes a change in predicted outcome risk that may vary across in-
dividuals conditional on their characteristics. In other words, a personalized
or individualized treatment effect describes the effect of modifying a treatment
condition (i.e. setting its value) while controlling for (i.e. conditioning on) that
individual’s characteristics. We restrict our description to settings in which
variables besides treatment do not have a causal interpretation, since this nicely
aligns with the typical design of a randomized trial. This lack of causal interpre-
tation for the set of variables conditioned on, is typical for classical prediction
modeling. While the inner workings of a model that simultaneously describes
both causal and mere associative relations may not need to discern between
these different roles, they are of importance when interpreting the model.

To that effect, distinguishing between variables that do and do not have a causal
interpretation is helpful for a precise definition of the individualized treatment
effect of interest. Two common approaches to make this distinction are the
do(·) operator introduced by Pearl [21] and the potential outcomes framework
popularized by Rubin [93]. The do(·) operator is an operator that describes
the effect of setting or modifying a variable to take a certain value (e.g. P (Y =
y|do(X = x))) and clearly separates this case from classical conditional notation
(e.g. P (Y = y|X = x)). The potential outcomes framework, as popularized by
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Rubin, allows for a formal distinction at the level of the outcomes that arises
when the causal variable takes on different values [94, 93]. For instance, if
interest is in the causal effect of a treatment, and treatment takes values a ∈ A,
Y A=a denotes the potential outcome for treatment a. In case of a treatment
variable that can be set to 0 (control) or 1 (treated), the two potential outcomes
are Y a=0 and Y a=1. The notation easily allows for conditioning, such that the
effect δ of treatment on the risk of an event, conditional on covariates X, can
be written as

δ(x) = P (Y a=1 = 1|X = x)− P (Y a=0 = 1|X = x) (4.1)

where bold face indicates vectors. The same quantity could be written in do(·)
notation as

δ(x) = P (Y = 1|do(A = 1),X = x)− P (Y = 1|do(A = 0),X = x) (4.2)

For our purposes, the differences between these frameworks are not of interest
and we adopt the potential outcomes framework throughout the remainder of
the paper for reasons of familiarity in statistical research.

A final remark on the nature of ’individualized’ or ’personalized’ is in place: the
estimand of interest is not truly individual, but relates to groups of individu-
als sharing a covariate pattern. A truly individual treatment effect can never
be observed since only one potential outcome can be observed at any time (or
equivalently, only one treatment can be assigned). This problem has been re-
ferred to as the fundamental problem of causal inference [23]. Acknowledging
this, for a dichotomous outcome Y , we define the individualized treatment effect
(δ(xi)) for individual i with covariate vector xi as

δ(xi) = P (Y a=1
i = 1|X = xi)− P (Y a=0

i = 1|X = xi) (4.3)

The individualized treatment effect δ(xi) can be interpreted as the expected
difference in outcome risk for an individual with covariate values xi under two
different treatment conditions. This definition is easily extended to ≥ 2 treat-
ment conditions, but we will focus on a setting with 2 treatment conditions.
While we will focus on δ(xi) as our estimand of interest, note that impor-
tant information is lost when only looking at the difference between potential
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outcomes. Therefore, the main task is to predict the conditional risk of both
potential outcomes, which provides a more complete picture and directly leads
to an estimate of δ(xi). Section 4.3 first discusses the assumptions that allow
estimation of δ(xi) from randomized trial data. Subsequently, sections 4.4 and
4.5 describe specification and estimation of regression models for the purpose of
predicting δ(xi).

4.3 Identifiability assumptions

The individualized treatment effect specified in equation (4.3) is written as a
difference between two potential outcomes. However, in practice only a sin-
gle potential outcome will be observed for each individual. Identification of
δ(xi) based on the observed data requires assumptions to supplement the data.
The necessary identifiability assumptions are consistency, exchangeability, and
positivity. We here shortly introduce the fundamentals as relevant to our set-
ting; excellent introductory [95] and comprehensive texts on causal inference are
available elsewhere [22].

Consistency refers to equality between the observed outcome Y and the poten-
tial outcome for the actually assigned treatment Y a. When A takes on value 0
(control) or 1 (treated), this can be expressed as Y = AY a=1+(1−A)Y a=0. This
assumption holds when the data reflect well-defined treatments. As a counter
example, consider a situation in which there is much variability in the active
treatment (e.g. different starting times, intensity or dosage, duration) but these
are all just labelled a = 1: the causal contrast Y a=1 − Y a=0 is no longer clearly
defined. As is clear from equation (4.3), the contrast of interest actually requires
consistency conditional on covariates X. This extension is trivial if marginal
consistency holds.

Exchangeability requires that the potential outcomes are independent of treat-
ment assignment (Y a ⊥⊥ A for all a). In other words, the actually assigned
treatment does not predict the potential outcome [95]. As an example, consider
a two-arm study of a new treatment: in terms of potential outcomes, exchange-
ability with respect to treatment here implies that it does not matter which
arm received the new treatment. Since our interest is in a conditional treat-
ment effect, exchangeability should hold conditionally (Y a ⊥⊥ A|X for all a).
While this is a challenging assumption to satisfy in general, it holds automati-
cally in the context of a randomized trial. After either marginal randomization
(i.e. a common probability of treatment for all) or conditional randomization
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(i.e. with the probability of treatment depending on covariates, also known
as stratified randomization), conditional exchangeability holds when condition-
ing on (at least) the variables used during randomization. It is important to
realize that randomization only provides exchangeability at baseline, and the
causal contrast δ(xi) at that time therefore reflects an intention-to-treat effect.
Any conditioning on post-randomization information is no longer protected by
randomization and the exchangeability assumption will no longer be guaran-
teed to hold [96, 97]. For instance, estimation of a per protocol individualized
treatment effect would require further assumptions such as absence of any un-
measured confounders and correct specification of all confounders [98]. We here
limit our overview to intention-to-treat effects.

Positivity reflects the assumption that each patient should have a non-zero prob-
ability of either treatment assignment, which is clearly fulfilled in case of a
randomized study.

A final assumption that is often made is the assumption of no interference,
stating that the potential outcomes for one individual do not depend on treat-
ment assignment of other individuals. While not strictly necessary, the situa-
tion quickly grows in complexity without this assumption since the potential
outcome definitions would then have to incorporate the dependence on other
units [93, 98]. The combination of consistency and no interference is also often
referred to as the stable unit treatment value assumption (SUTVA) [93].

The definition of δ(xi) in equation (4.3) assumes no interference, which follows
from the fact that the potential outcome for individual i only depends on the
individual’s own covariate status and treatment assignment. Further assuming
positivity provides a causal interpretation of the treatment effect conditional on
covariates xi, with i from 1, . . . , n. Finally, consistency and exchangeability are
necessary to re-write the estimand in terms of observed variables only:

δ(xi) = P (Y a=1
i = 1|X = xi)− P (Y a=0

i = 1|X = xi)

= P (Y a=1
i = 1|A = 1,X = xi)− P (Y a=0

i = 1|A = 0,X = xi)

(by exchangeability)
= P (Yi = 1|A = 1,X = xi)− P (Yi = 1|A = 0,X = xi)

(by consistency) (4.4)

In summary, the identifiability assumptions allow δ(xi) to be estimated from the
observed data. While equation (4.4) essentially allows for fully non-parametric
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estimation of δ(xi), there is usually insufficient data to do so when interest
is in a highly conditional treatment effect (as is the case for an individualized
treatment effect). That is, there will not be sufficient cases with X = xi under
both treatments to reliably estimate δ(xi). This brings us to the need of a
model for P (Yi = 1|A = ai,X = xi) to smooth over the gaps in the observed
set of all xi across both treatments.

4.4 Models for the prediction of individualized
treatment effect

With the identifiability conditions in place for a causal interpretation of δ(xi) as
estimated based on the observed trial data only, the remaining problem can be
recognized as a typical prediction modeling problem (equation (4.4)). There-
fore, well-established modeling techniques can be used to model the required
conditional risks. While a vast array of possible prediction modeling techniques
is available, we will focus on modeling techniques that have a basis in gener-
alized linear modeling. More specifically, due to the binary outcome, we will
focus on methods that have a basis in logistic regression, which has been the
mainstay method for clinical prediction models in settings with a binary end-
point [51]. Key features of logistic regression include that it directly provides
the probabilistic estimates of interest [99] and has well-known properties. Also,
it is a possibly parsimonious model family for the task at hand as explained in
the next section.

4.4.1 Homogeneous treatment effect
The aim is to model the observed outcomes Y as a function of treatment as-
signment A and covariates X to provide estimates for the right-hand side of
equation (4.4) and hence δ(xi). While the treatment effect of interest is ex-
pressed in terms of a difference in probabilities when the outcome is binary, this
may not be the most appropriate scale to model treatment effect. The reason
that the logistic model might provide a parsimonious model to predict the re-
quired conditional probabilities, is that a constant effect on the log odds scale
has a valid interpretation across the entire range of predicted probabilities. For
instance, the effect of treatment on outcome risk could really be constant on the
log odds scale regardless of outcome risk in absence of treatment. This property
does not hold for linear probability models or relative risk models, but very
similar results may be obtained for probit models. As a quick reminder, Figure
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4.1 shows the logistic link that transforms the log odds or linear predictor scale
to the probability scale. A constant treatment effect on the log odds scale has
a large effect on the probability scale when the linear predictor equals zero and
approaches zero for very low and high linear predictor values. This nicely re-
flects the difference in the amount of wiggle room when the control outcome risk
reflects unpredictability versus near certainty respectively. The reason to em-
phasize these well-known properties is to highlight that a very simple model on
the log odds scale may very well lead to potentially relevant differences between
individuals on the level of δ(xi) (i.e. differences in absolute risk).
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Figure 4.1: The translations of effects from the linear predictor (LP) scale to the
absolute scale vary depending on location as shown for the logistic link function
( 1
1+e−LP ). Therefore, a constant or homogeneous relative effect, here shown

as a 1-point difference on the linear predictor (i.e. log odds) scale for ease of
exposition, has different implications on the absolute risk scale. For example,
for a patient with a control risk of 50% (LP=0), a treatment effect of -1 on
the log odds scale reduces predicted absolute risk to 27% (LP=−1, resulting in
an absolute risk reduction of 23%). For a patient with a control risk of 27%
(LP=−1), the same treatment effect on the log odds scale leads to a predicted
risk of 12% (LP=−2, resulting in an absolute risk reduction of 15%).

The simplest way to create such a model is to assume absence of any interaction
between treatment and the other covariates. Thus, the (conditional) treatment
effect is assumed to be homogeneous or constant on the log odds scale. In terms
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of notation, let Yi denote the independent dichotomous observed outcomes, as-
sumed to have patient specific mean µi (i.e. Yi

i.i.d.∼ Bernoulli(µi)). Also, with
vector xi denoting the p individual characteristics and ai being the treatment
indicator as before, this leads to the following simple logistic regression model

logit(P (Yi = 1|A = ai,X = xi)) = β0 + βtai + β⊤xi (4.5)

with regression parameters β0, βt, and β = (β1, . . . , βp). The key assumptions
for this logistic model including a conditional homogeneous treatment effect βt

are i) appropriateness of the logistic link function, ii) linearity in the parameters,
and iii) additivity of at least the treatment effect on the log odds scale (i.e. there
are no treatment-covariate interactions on the log odds scale). The linearity
assumption on the covariate contributions could easily be relaxed, allowing for
global or local transformations of xi such as polynomials and splines.

The predicted individualized treatment effect follows directly after estimation
of the model parameters 1:

δ̂(xi) =
1

1 + e−(η̂i+β̂t)
− 1

1 + e−η̂i
(4.6)

where η̂i = β̂0 + x⊤
i β̂. Strict additivity of the treatment effect on the log odds

scale may provide a parsimonious model for the analysis and is easily translated
to the more interpretable scale of δ(xi) where this additivity does not hold.
Note that in case of such a homogeneous treatment effect on the log odds scale,
variability in xi is the driving force behind any differentiation on the level
of δ̂(xi). This variability in xi corresponds to variability in prognosis across
individuals under control treatment (i.e. variability in Y a=0

i ).

4.4.2 Heterogeneous or differential treatment effect
As an extension of homogeneous treatment effect models, the relative treatment
effect can also be allowed to depend on the other covariates. We will refer to
such non-additivity of the treatment effect on the relative scale as heterogeneity

1For our current goal and scope, inferring individualized treatment effect from predictions
under the relevant potential outcomes is the end-point. However, it is interesting to note that
this type of conditional potential outcome predictions can also serve as input for substitution
estimators aiming for more marginal estimates, such as the parametric g-formula [22] and
estimators of marginal risk difference and marginal risk ratio based on logistic models [100].
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of treatment effect (HTE) or differential treatment effect. We note that there
is no single accepted definition of the term HTE in the literature, and that it is
sometimes used in a broader sense to also include the variability in δ(xi) that
may result from a homogeneous treatment effect model [89]. We use HTE in its
narrow sense (i.e. restricted to non-additive relative effects), since this allows
one to distinguish between possible variability in the way treatment affects dif-
ferent individuals (homogeneous versus heterogeneous) and variability amongst
individuals that does not relate to treatment effect (i.e. variability in expected
prognosis under control treatment P (Yi = 1|A = 0,X = xi)).

The homogeneous treatment effect model in equation (4.5) can easily be ex-
tended to allow for HTE by inclusion of treatment-covariate interactions. The
model then becomes

logit(P (Yi = 1|A = ai,X = xi)) = β0 + βtai + β⊤
mxi + β⊤

z ziai (4.7)

where zi is a subset of xi, βm includes the coefficients for the main effects of xi,
and βz includes the coefficients for treatment-covariate interactions. As before,
the space of the measured xi can be expanded using global or local transforma-
tions. These transformations need not be the same in zi: the functional form
of the effect of a covariate may depend on treatment status. Also, note that
when zi equals xi (i.e. all covariates are involved in treatment-covariate inter-
actions), an exactly equivalent parametrization can be obtained by specification
of separate models for the treated group and the control group with just an
intercept and main covariate effects, which separates the models for both po-
tential outcomes. Additional details are provided in the supplementary material
(Part S4.1).

Based on the model in equation (4.7), the predicted individualized treatment
effect again follows easily from the parameter estimates. In analogy to equation
(4.6), the prediction of δ(xi) can be derived according to

δ̂(xi) =
1

1 + e−(η̂i+β̂t+β̂⊤
z zi)

− 1

1 + e−η̂i
(4.8)

While this prediction comes nice and easy in theory, the challenge lies in pre-
cise model specification and the estimation of the model parameters of these
relatively complex models.
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4.5 Model estimation

The preferred method for estimation of the prediction models of interest depends
on the relation between model complexity and the amount of signal in the
data. In medical statistics, the amount of variability in the outcome of interest
that can be explained is often low to moderate, which is the main reason for
the need for large sample sizes. In case of insufficient sample size, models are
prone to overfitting, which describes the situation where the model captures
part of the noise in the data. Overfitting is an important concern since it limits
generalizability of the model. In this section we discuss the need for methods
that mitigate the susceptibility to overfitting.

4.5.1 Maximum likelihood

Estimates for the proposed logistic regression models can be derived with stan-
dard maximum likelihood estimation for generalized linear models [101, 102].
However, even after taking all content knowledge into account, models are often
still overly complex with respect to the available sample size. This may already
hold for a logistic model of homogeneous treatment effect when the number of
covariates is large, or their functional form allowed to be complex and the sample
size is relatively small [103]. It has long been recognized that standard maxi-
mum likelihood estimation of logistic models is problematic in these settings due
to finite sample bias, perfect separation, collinearity, and overfitting [99, 104].
Models including many non-additive effects such as treatment-covariates inter-
actions are even more prone and necessitate either strong prior assumptions or
restrictions during model estimation.

4.5.2 Penalized maximum likelihood

Regression based on penalized maximum likelihood estimation (pML) has emerged
as a method that can, at least to some degree, cope with relatively complex mod-
els [62, 64, 105]. These methods penalize the log-likelihood for the magnitude
of regression coefficients other than the intercept. This penalty introduces bias
towards zero on the estimated (non-intercept) coefficients, and thus towards
the overall outcome incidence for predictions. In other words, it introduces a
bias that reduces variability at the level of the predictions. This balance is
also known as the bias-variance trade-off. Well-known penalized maximum like-
lihood methods include ridge regression, lasso regression, and the elastic net
which includes the first two as special cases [65]. The ridge penalty is a smooth
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penalty on squared size of the regression parameters and leads to shrinkage of
the estimated coefficients. It was originally developed to deal with collinearity
and tends to distribute the weight amongst collinear variables [62]. The lasso
penalty is on the absolute value of the coefficients and leads to both shrinkage
and selection [64]. It has a tendency to select amongst collinear variables. The
elastic net penalty is a weighted balance of the ridge and lasso penalty. The
required degree of penalization is a tuning parameter that needs to be estimated
from the data, which is most commonly done by means of cross-validation. Im-
portantly, this estimation involves uncertainty that is most problematic when
accurate penalization is needed the most (i.e. small data sets and/or low signal
relative to noise) [106, 107]. With respect to the equivalence of a model includ-
ing all treatment-covariate interactions on the one hand and separate modeling
in the treated and control group on the other hand (section 4.4.2), note that this
equivalence no longer holds in case of penalized maximum likelihood. Details
are provided in the supplementary material (Part S4.1).

Shrinkage and/or selection

Penalization in clinical prediction modeling
In some settings, the underlying process to be modelled is fairly well know, and
therefore, the same holds for the elements that should be included in a model.
While such a setting does not require selection of parameters, shrinkage may
still be beneficial in terms of prediction accuracy when sample size is limited
with respect to model complexity. In contrast, the available data may be very
rich while the underlying process not well understood, but thought to be sparse.
Penalization approaches that provide selection (i.e. sparse solutions) have been
successfully applied to prediction problems with many covariates (possibly more
than cases, i.e. p >> n) where selection of variables is key and there is insuf-
ficient content knowledge to do so, such as the selection of possibly important
signals from microarray data [61].

In the typical context of clinical prediction modeling, the properties of the prob-
lem are somewhere in-between these two extremes. In the best-case scenario,
clear pre-specification of a model might be possible. Often however, even though
the data are typically low-dimensional, some further variable selection may still
be required. The choice of penalty, and hence the need for selection, there-
fore heavily depends on the state of content knowledge and the amount of data
available. An issue that may guide the selection of a penalty function is the
need for an honest representation of the relative weights of model parameters.
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Ridge regression tends to share the regression weights between parameters that
are correlated with the outcome and with each other [63], while lasso tends to
select amongst such variables [61, Chapter 4]. As an example, if two highly
correlated covariates are equally predictive of the outcome, ridge will keep both
in the model with approximately equal weight. Lasso will remove the one vari-
able that happens to have a slightly weaker association with the outcome in the
current sample. Both representations can be useful, but they serve a different
purpose.

Penalization and modeling of heterogeneous treatment effect
Models of heterogeneous treatment effect include treatment-covariate interac-
tions. Such interactions are always harder to estimate than the overall (main)
treatment effect. In terms of selection, heterogeneous treatment effect models
encounter the variable selection issue twice: for the main effects and for the
treatment-covariate interactions. Usually, lower order (main) effects are kept in
the model for each component of an interaction. However, both lasso regression
and elastic net regression do not respect this hierarchical nature. To that effect,
a hierarchical group lasso algorithm has been developed that does respect the
hierarchy between main effects and interaction effects [108]. In short, variable
selection is achieved on a group level that is allowed to be hierarchical, such that
main effect groups will be in the model when they are part of any interaction.
For problems with non-overlapping groups, regular group lasso algorithms are
also widely available [109].

4.6 Model complexity

The current state of subject matter or content knowledge, the type of process
under study, the strength of the associations in the data, and the final purpose
of the model, all weigh into the decision on the best balance between prior
model specification and more data-driven modeling methods. We have described
both specification and estimation of logistic models that can be used to predict
treatment effect. In this section, we will shortly touch upon the complementary
roles of content knowledge and penalization, the concern of overfitting when
aiming for out-of-sample prediction, and the degree to which model complexity
can be left to the data-drive methods.
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4.6.1 Content knowledge and penalization

Content knowledge, general statistical knowledge, and data-driven methods such
as penalization should work synergistically to arrive at the most parsimonious
model that reflects current content knowledge as updated by the data. Ideally,
content knowledge includes knowledge on non-linear covariate contributions,
interactions amongst covariates, and especially knowledge on covariates that
might interact with treatment. Unfortunately, such knowledge is often very
limited. Consequently, the number of parameters that one wants to estimate
may still be relatively large even after all content knowledge is exhausted. While
data driven approaches can help to nudge such models in the right direction,
they provide no panacea or substitution of content knowledge.

4.6.2 Overfitting and prediction accuracy

For our aim to predict individualized treatment effect, the conditional model
of treatment effect is intended to generalize and therefore overfitting is a key
concern. The primary challenge is to balance model complexity with respect
to the amount of available data in a way that generalizes beyond the original
sample. The preferred way to do so is to limit model complexity based on
content knowledge, supplemented by use of penalization. The relation between
prediction accuracy, model complexity, effective sample size, and the strength of
the associations in the data is well known and has been described in the context
of risk prediction (e.g. [104, 103]). However, estimation of δ(xi) requires the
difference between two outcome risk predictions (under the two to be compared
treatments) to be accurate. While these two predictions will be highly correlated
since they arise from the same individual, the expected error will invariably be
larger than for a single prediction. To our knowledge, there is no guidance
available on the necessary conditions with respect to effective sample size and
expected explained variation for accurate prediction of risk differences within
individuals. Our simulation study below provides some first insights.

4.6.3 ’Risk modeling’ versus ’effect modeling’

The use of treatment-covariate interactions to model heterogeneous treatment
effect (e.g. as in equation (4.7)) has also been referred to as ’effect modeling’
and has been distinguished from ’risk modeling’ [89, 90, 110, 111, 112]. In risk
modeling, treatment effect variability is evaluated as a function of outcome risk,
where outcome risk is a function of the covariates. Therefore, it can be seen
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as a data reduction method. For example, in risk modeling the linear predictor
scores η̂i resulting from a model for P (Yi = 1|A = 0,X = xi) can be interacted
with treatment instead of the full multi-dimensional representation of xi. That
is,

logit(P (Yi = 1|A = ai, η̂i) = βtai + η̂i + f(η̂i)ai (4.9)

where f(·) denotes a possibly flexible function and η̂i is used as an offset. The
general idea is that f(η̂i) is a much simpler structure to estimate than many in-
dividual treatment-covariate interactions. Therefore, it is supposed to fill a gap
in situations where content knowledge is insufficient to limit model complexity
to something that can be reliably estimated in the data.

From a statistical point of view, ’risk modeling’ does of course reduce the risk
of overfitting, since it restricts the modeled treatment effect heterogeneity to
be a function of a scalar. However, the price to pay is that HTE is thereby
forced to be proportional to the main effects of xi. This implies i) that all
covariates that have a main effect also modify the relative treatment effect,
and ii) that the effect of each element of xi on HTE has the same direction
as its effect on outcome risk. These are strong assumptions that have no clear
biological substrate and no clear statistical preference over other data reduction
methods such as principal component analysis 2. Nonetheless, the idea behind
risk modeling does reflect recognition of the danger of overfitting when modeling
many treatment-covariate interactions, which remains an important issue when
modeling heterogeneous treatment effect.

4.6.4 Tree-based methods

Many different modeling techniques are available under the machine learning
umbrella. While we have limited our scope to regression-based methods, there
are other methods that could be used instead. In particular, several tree-based

2The preference to model HTE as a function of outcome risk was originally motivated as
"outcome risk is a mathematical determinant of treatment effect" [89], along with a reference
to the fact that the [marginal] odds ratio [of exposure to treatment] equals EER/(1−EER)÷
CER/(1−CER) [where EER is the experimental outcome prevalence and CER is the control
outcome prevalence]. However, the same equation can be used to show that independence is a
possibility: i) only the CER/(1−CER) part depends on control outcome risk and is positive
and finite for any control prevalence in the (0, 1) interval, and ii) combined with any valid
odds ratio, EER/(1−EER) is also positive and finite and therefore maps back to a prevalence
amongst the treated in the (0, 1) interval. This also holds for the conditional treatment effect
and was in fact one of the reasons to prefer logistic regression as explained in section 4.4.1.
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methods have been developed for the specific purpose of individualized treat-
ment effect prediction. While an in-depth discussion is beyond our scope, we
here provide several key references. Wager et al. [113] extend the well-known
random forest algorithm by Breiman [114] to enable individualized treatment
effect prediction and provide a very thorough overview of the required condi-
tions for causal inference, including asymptotic theory. Also, they provide an
overview of the literature on forest-based algorithms for estimating heteroge-
neous treatment effect. Lu et al. [115] provide a clear exposition of individual-
ized treatment effect prediction and the potential outcome framework, and pro-
vide empirical and simulation results on a wide variety of random forest methods
for causal inference, including virtual twins, counterfactual random forests, the
aforementioned causal forests and Bayesian adaptive regression trees. General-
ized random forests [116] constitute a more recent addition to the literature and
form a much broader method that can also be used for causal individualized
treatment effect estimation (and effectively encompass the work by Wager et al.
[113]). Lastly, model-based recursive partitioning is a somewhat different tree-
based approach that incorporates parametric models into the tree [117]. Such
a parametric model can for instance describe control outcome risk and relative
treatment effect. Node-splitting then occurs on the variable that generates most
instability in the parameters for this model. Seibold et al. [118] have developed
a model-based recursive partitioning random forest to identify treatment effect
heterogeneity. Model-based recursive partitioning is most closely related to the
methods discussed in this tutorial since it can differentiate between heterogene-
ity of treatment effect on the relative scale and differential outcome risk that
may be related to a homogeneous treatment effect (i.e. constant log odds of
treatment).

Beyond the predictions of individualized treatment effect, there have been ef-
forts to find subgroups that might need different treatment based on a fitted
causal forest [119], and efforts to further explain random forest-based treatment
effect predictions based on covariate data [115]. Both papers go through consid-
erable lengths to disentangle and interpret predicted individualized treatment
effect differences. While this may lead to interesting hypotheses, this should
be a careful undertaking. An illustration of the things that could go wrong is
available in Rigdon et al. [120], showing high false discovery rates if such care
is not taken.

To the best of our knowledge, direct comparisons of regression-based and other
methods for the prediction of individualized treatment effect have not been per-
formed yet. In general, it can be expected that more flexible models are more
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prone to overfitting and require more data [121]. A challenge in the comparison
of different methods in simulation studies is that specific data generating mech-
anisms favor specific methods. For instance, a data generating mechanism with
linear and additive effects will favor regression methods; a mechanism generat-
ing subgroups based on cut-offs will favor tree-based algorithms. An interesting
method to acknowledge these effects and check robustness is provided by Austin
et al [122], and could also be applied in the context of individualized treatment
effect prediction in future work comparing a wider set of methods.

4.7 Learning from simulations

We conducted a simulation study to illustrate the consequences of the choice
of model and estimation method when predicting individualized treatment ef-
fect. Such simulations are especially helpful when predicting potential outcomes,
since they can never be observed directly in practice. Also, the ability to ma-
nipulate the data generating mechanism into several interesting settings has a
clear illustrative advantage. In the design of our simulation study, we adhered
to the general guidelines proposed by Burton et al. [123] and Morris et al. [124].

4.7.1 Data generating mechanisms

The data generating mechanism was parametric and was based on a logistic
model (equation (4.7)). Settings varied across the full factorial combination of
varying total sample size (400, 1200, 3600), presence/absence of a main treat-
ment effect (βt = ln(0.6) or βt = ln(1)), and presence/absence of heterogeneity
of treatment effect. The treatment indicators ai were independent samples from
a Bernoulli distribution with probability 0.5. Twelve covariates were drawn
from a multivariate standard normal distribution with a compound symmetric
covariance matrix (ρ = 0.1). Main effect coefficients βm were of exponentially
decreasing size (βm,1, . . . , βm,12 = 2−

0
2 , 2−

1
2 , 2−

2
2 , . . . , 2−

11
2 ) to reflect i) decreas-

ing added value of consecutive variables, and ii) that it is unlikely for variables
that are included in a risk model to have truly zero coefficients. In settings with
a homogeneous treatment effect, there were no treatment-covariate interactions
(i.e. βz = 0). In settings with a heterogeneous treatment effect, βz was equal
to − 1

2 ,−
1
4 and − 1

8 for βz,10, βz,11 and βz,12 respectively, and included a small
random perturbation that was generated once for all simulations (≤ |0.05|) for
βz,1, . . . , βz,9. In each simulation setting, the intercept was chosen such that
the true underlying outcome prevalence in the control arm was 25% (details
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provided in the supplementary material, Part S4.2). Nagelkerke R2, as mea-
sured between the true conditional probabilities for the assigned treatment (i.e.
P (Y A=ai

i = 1|X = xi) and the observed events Yi in a large sample, was ap-
proximately 0.4 for all settings.

To get more insight into the different simulation settings, the distribution of
δ(xi) for each of the data generating mechanisms is shown in Figure 4.2. Note
that i) there is no variability at all in the upper right figure (due to absence of
any treatment effect); ii) variability in the upper left figure is due to variability
in control risk across patients, and iii) variability in the lower two figures is due
to heterogeneity in both control risk and treatment effect.

4.7.2 Model development
Within each simulation run, both a development and a validation data set were
simulated for each of the simulation settings. That is, both data sets were always
generated according to the same data generating mechanism. The size of the
model development sets matched the simulation settings (i.e. 400, 1200 or 3600),
and the size of the validation sets was always equal to 10,000 observations.

Table 4.1 provides an overview of the evaluated methods. The overall abso-
lute treatment effect is just the marginal version of δ(xi) as marginalized over
all covariates. Its estimate of δ(xi) is just the δ̂, the difference in mean out-
come incidence between treatment arms. For the homogeneous treatment effect
models, all covariates entered the model only as main effects. In case of het-
erogeneous treatment effect models, all covariates entered the model as both
main effects and interactions with treatment. The selected penalty parameter
for ridge, lasso, and hierarchical group lasso (HGL) was the one with the small-
est deviance in 10-fold cross-validation. Note that both lasso and HGL may
set coefficients to exactly zero (i.e. perform selection). Also, while HGL can
search the entire interaction space, the current implementation was limited to
treatment-covariate interactions in parallel to the other methods. A final vari-
ation of the HTE methods was a ’content knowledge’ (CK) setting, where we
assumed that content knowledge suggests that only the first eight variables have
important main effects, and only covariates nine to twelve are likely treatment
interaction candidates. Ridge regression was used to estimate such a CK-based
model. The ’risk modeling’ implementation included a risk model estimated in
the control group based on main effects for all covariates and a linear treat-
ment with risk-score interaction. Both standard maximum likelihood and ridge
regression were performed for the risk model. A significance-based approach
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Figure 4.2: Distribution of δ(xi) according to the data generating mechanism
for each of the simulation settings. The quadrants correspond to settings with a
homogeneous main treatment effect (upper left), absence of any treatment effect
(upper right), heterogeneous treatment effect in presence of a main treatment
effect (lower left), and heterogeneous treatment effect in absence of a main
treatment effect (lower right). The red dotted lines provide the mean of δ(xi)
per setting. Note that all of the mass in the upper right figure is on a spike at
δ(xi) = 0.

was implemented as a final comparison. Starting from a homogeneous treat-
ment effect model including all covariates, a likelihood ratio test was performed
for the treatment effect coefficient. When non-significant, the treatment coeffi-
cient was removed from the model (leaving only main covariate effects). When
significant, all treatment-covariate interactions were added to the model and a
second likelihood ratio test was performed to evaluate their joint significance.
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Treatment-covariate interactions were kept in the model when this joint test
was significant and removed otherwise. All tests used an α level of 0.05. In ad-
dition to the methods in Table 4.1, HTE was modeled using separate prediction
models per treatment arm, and thus per potential outcome, as described in the
supplementary material (Part S4.1).

Regression model Equations Estimation
method

Overall absolute treatment effect
(Overall)

– ML

Homogeneous treatment effect
(HOM)

(4.5) (4.6) ML, ridge

Heterogeneous treatment effect
(HTE, HTE-CK)*

(4.7) (4.8) ML, ridge†, lasso,
HGL

’Risk modeling’ (RM) (4.9) ML, ridge
Significance-based (SB) – ML

Table 4.1: Implemented methods towards the prediction of individualized treat-
ment effect (δ̂(xi)).
* Model specification differs between the default case (HTE) modeling all main
effects and treatment-covariate interactions, and the content knowledge case
(HTE-CK) modeling a selection of main effects and an treatment-covariate ef-
fects (details are described in Section 4.7.2).
† Only ridge was used for the HTE-CK model.
Abbreviations: ML (Maximum Likelihood), HGL (Hierarchical group lasso).

4.7.3 Model evaluation
Each of the methods provides a prediction vector δ̂ with elements δ̂i (short for
δ̂(xi)) as derived in the validation sample. These predictions can be compared to
the known δ based on the data generating mechanism. The root mean squared
prediction error (rMSPE) between the elements of these two vectors was used
to quantify the prediction errors according to

rMSPE =

√
n−1(δ̂ − δ)⊤(δ̂ − δ). (4.10)

The root was taken to arrive at an expression of the error on the risk difference
scale. In addition, the 0.9-quantile of absolute prediction errors was derived
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for both δ̂ and predicted risk. Supplementing these single figure summaries,
calibration plots were derived for both δ̂ and predicted risk, where predictions
were cut into twenty equal-size quantiles groups and compared to the true values
based on the data-generating mechanism.

4.7.4 Statistical software

All analyses were performed in R statistical software version 3.5.0 [125]. The
R script for exact replication of the simulation study is available as online sup-
plementary material. Logistic regression models based on maximum likelihood
estimation were fitted using glm(). Ridge and lasso implementations were based
on the glmnet package [65]. Hierarchical group lasso was implemented using
the glinternet package [108].

4.7.5 Simulation study results

We here synthesize the results of 250 simulation runs in terms of root mean
squared prediction error and calibration of the predicted individualized treat-
ment effect.

Average root mean squared prediction error

The main simulation results with respect to root mean squared prediction er-
ror (rMSPE) are shown in Figure 4.3, which provides a summary of the error
that can be expected in the long run across settings and methods. Five key
observations can be made across all settings. First, conditioning on main ef-
fects of the available covariates as in a homogeneous treatment effect model
was always beneficial when compared to the fully marginal δ̂. This confirms
the idea that a conditional estimand (δ(xi)) requires a conditional estimator.
Second, HTE model accuracy was especially sensitive to sample size, which is
in line with expectation due to the amount of parameters that needs to be
estimated. Third, penalization is key and improved estimation of both homo-
geneous and heterogeneous treatment effect models up to large sample sizes.
Fourth, penalization does not remove the risk of overfitting for complex models
in small sample size settings. Heterogeneous treatment effect models could not
be reliably fitted in small samples regardless of the estimation method. Fifth,
utilization of content knowledge was the most effective way to reduce HTE
model complexity. Lasso and HGL did not catch up, even though the content
knowledge simulated here was not entirely correct and the lasso models did start
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from the correct set of variables given the data generating mechanism. The re-
duction in the potential set of treatment-covariate interaction variables in the
content knowledge-based model was very effective, even though this missed out
on small interaction effects. Nonetheless, apparent content knowledge could of
course not help out when it was wrong, such as in the complete null setting
(no main treatment effect, no heterogeneity). Lastly, risk modeling was not the
preferred method in any of the simulation settings. This of course depends on
the data generating mechanism where HTE was not fully explained by a risk
model, but this would also not be expected in practice and serves the purpose
of showing that risk modeling may miss important treatment effect heterogene-
ity. Additional rMSPE results for comparing treatment-covariate interaction
modeling with separate prediction models per treatment arm, and thus per po-
tential outcome, are described in the supplementary material (Part S4.1). In
short, treatment-covariate interaction modeling by means of lasso regression was
best across all settings when compared to per arm modeling. The differences
between treatment-covariate interaction modeling and per arm modeling were
more nuanced for ridge regression.

Calibration

The online supplementary material (Part S4.3) provides calibration plots of
δ̂(xi) across methods and settings. It provides further insight into the distri-
bution of the errors and the degree of variability across replications. Several
important observations can be made that supplement the conclusions based on
rMSPE. First, calibration curves at least pass the (0, 0) point, and the size of
the errors increases as predictions move away from zero. Therefore, prediction
errors were much smaller around the harm-benefit boundary (i.e. δ(xi) = 0).
Second, calibration in individual small samples could be far off even if average
performance across simulations was good. For instance, fitting a ridge regres-
sion homogeneous treatment effect model in accordance with the data generating
mechanism could still lead to substantial overfitting or underfitting in any indi-
vidual data set. These findings on the risk difference scale are in line with earlier
results on direct prediction [106, 107]. Third, in small and even medium sample
sizes, even penalized heterogeneous treatment effect models overfitted to such an
extent that they falsely predicted harm for a subpopulation when in fact there
was none (as in the homogeneous treatment effect settings). Fourth, when the
data generating mechanism was heterogeneous, calibration of predicted treat-
ment effect was quite reasonable for penalized HTE models in medium and large
sample sizes. Note that, while useful for illustrative purposes in this simulation
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Figure 4.3: Simulation study results: average root mean squared prediction er-
ror (rMSPE) of the predicted treatment effects (over 250 simulations) with ±2
SE error bars for all simulation settings. The quadrants correspond to settings
with a homogeneous main treatment effect (upper left), absence of any treat-
ment effect (upper right), heterogeneous treatment effect in presence of a main
treatment effect (lower left), and heterogeneous treatment effect in absence of a
main treatment effect (lower right). Note that the standard errors are often so
small that they are obscured by the mean estimates. Abbreviations: homoge-
neous treatment effect models (HOM), heterogeneous treatment effect models
with treatment-covariate interactions (HTE), and heterogeneous treatment ef-
fect models based on risk modeling (RM), as estimated by means of maximum
likelihood (ML), ridge or lasso regression, or hierarchical group lasso (HGL),
with CK standing for content knowledge.
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setting, these calibration plots are not available in practice since they compare
predictions against the true individual treatment benefits (which do not even
have an observed individual level equivalent).

4.8 Applied examples

4.8.1 Acute otitis media

For illustrative purposes, we analyzed data from a randomized, double-blind,
placebo-controlled trial of amoxicillin for clinically diagnosed acute otitis media
(AOM) in children 6 months to 5 years of age [126]. This trial included 512
children and collected baseline data on antibiotic treatment received, sex, pres-
ence of recurrent AOM, fever, bilateral occurrence, ear pain, presence of a runny
nose, cough, tympanic membrane abnormality, and age. All variables but the
latter were dichotomous. The endpoint analyzed here is the same as reported
by Rovers et al. [127]: positive when either fever or ear pain was present after 3
days of follow-up. While not truly binary, composite endpoints occur frequently
in practice. Thus, data were available on a total of 9 patient characteristics,
treatment, and on a composite dichotomous endpoint. All in all, there were 147
events.

We first fitted a logistic regression model on the full data set with main effects
for treatment and the 9 patient characteristics. The estimated log odds of
treatment was statistically insignificant, but in the expected direction (β̂t =
−0.34, se=0.20). The apparent Nagelkerke R2 for this model was only 8.8%,
and a larger sample size would be generally be required for prediction model
development in such low signal settings [12]. Considering the simulation study
results, the sample size, and the low amount of signal with respect to predicted
risk, the starting point for any prediction of individualized treatment effect
in these data is very weak. Nonetheless, it is interesting to see whether the
proposed methods indeed show a lack of predictive ability. To that effect, we
internally validated all of the methods evaluated in the simulation study (except
for the use of content knowledge) in 100 bootstrap samples. The lowest out-of-
sample Brier score (0.202) was obtained with the homogeneous treatment effect
model fitted by means of ridge regression. However, the accompanying out-of-
sample Nagelkerke R2 was near-zero and even negative for more flexible models.
Together, these findings show a lack of strong support for a non-zero average
treatment effect and for any ability to personalize treatment effect.
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4.8.2 International Stroke Trial

The International Stroke Trial (IST) was a large randomized open trial compar-
ing no antithrombotic treatment, aspirin treatment, and subcutaneous heparin
treatment in a total of 19,435 patients with acute ischaemic stroke [128]. The
individual patient data from the IST trial are available for public use and can be
downloaded from the web [129]. For the current applied example, we used data
from patients randomized between no treatment (n = 4, 860) and aspirin treat-
ment (n = 4, 858). Interestingly, the effect of aspirin treatment on the combined
endpoint of death or dependency at 6 months was evaluated conditional on a
prognostic score in the original article (and found to be effective on average).
The prognostic score was based on age, sex, state of consciousness, and 8 other
neurological symptoms evaluated at baseline. All variables except for age (con-
tinuous) and sex (dichotomous) are categorical variables with three levels. The
total number of events was 6,043. Ninety-nine patients with a missing outcome
were omitted; covariates were complete.

We first fitted a logistic regression model on the full data set with a main effect
for treatment and main effects for the sex, state of consciousness and the eight
neurological signs. Categorical variables were dummy coded. The estimated log
odds of treatment in this model was −0.11 (se 0.048), corresponding to an odds
ratio of 0.90, and the apparent C-statistic and Nagelkerke R2 were 0.79 and 0.31
respectively. Even though the relative treatment effect is small, the presence
of an average effect, the ability to explain a substantial part of the risk of an
event, and the amount of available data provide a good starting position when
aiming to individualize treatment effect prediction. In terms of the simulation
study results, the expectancy is that a HTE model would pick up heterogeneity
if it is present and that a homogeneous model would be preferred otherwise.

For illustrative purposes, we therefore examine the predictions from a ridge
homogeneous treatment effect model (HOM-ridge) and a hierarchical group
lasso HTE (HGL-HTE) model as fitted in the entire sample. In both cases,
the penalty parameter with the lowest 10-fold cross-validation deviance was
selected. Figure 4.4 shows the very high correlation (0.996) between risks pre-
dicted from either model (upper left panel). Nonetheless, the distribution of
δ̂(xi) is quite different for both models (upper right and lower left panel). The
HOM-ridge model hardly discriminates w.r.t. treatment effect, whereas the
HTE-HGL model predicts harm for a substantial part of the population. The
lower right panel shows the relation between δ̂(xi) as predicted from both mod-
els.
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Figure 4.4: International Stroke Trial (IST) data. The upper left panel shows
the relation between predicted risks based on the ridge homogeneous treatment
effect model (HOM-ridge) and the hierarchical group lasso HTE (HTE-HGL).
The histograms show the distribution of predicted individualized treatment ef-
fect for the same models. The lower right panel shows their mutual relation.

The main question is whether any, and if so, which of the predictions of δ(xi)

can be expected to generalize. A key limitation is that δ̂(xi) cannot be val-
idated directly in real data. A possible approximation is to check whether
groups based on quantiles of δ̂(xi) relate to observed treatment effect within
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these same groups. This is essentially a group level effort to approximate cal-
ibration at the level of δ̂(xi). The idea is to make use of the fact that the
potential outcomes, and thus δ(xi), are independent of treatment assignment
(exchangeability). Figure 4.5 shows apparent and bootstrap results. As can
be seen, the apparent calibration of predicted δ̂(xi) is not good for HOM-ridge
and reasonable for HTE-HGL. However, in both cases, bootstrap results show
such a high degree of variation and lack of trend that the prediction of δ̂(xi)
cannot be trusted. In case of the HOM-ridge model, this may relate to the fact
that such small variations in δ̂(xi) cannot just not be retrieved from limited
out-of-sample cases. In case of the HTE-HGL model, it implies that even in
such a large sample, penalized models may still overfit.

To further illustrate this, we again applied all methods evaluated in the main
simulation study (except for the application of content knowledge). We eval-
uated model fit by means of out-of-sample Brier score and Nagelkerke R2 in
100 bootstrap replications. The best Brier score was achieved for the homoge-
neous treatment effect model fitted with standard maximum likelihood, closely
followed by the equivalent ridge version and the hierarchical group lasso (HGL)
and ridge HTE model (0.17910, 0.17915, 0.17921, and 0.17933 respectively). The
same group of methods had the highest Nagelkerke R2 values (0.3055, 0.3059,
0.3062, and 0.3066 respectively), with little difference between them. All in all,
the differences in bootstrap-corrected estimates of overall fit were very small
even though the number of model parameters differed substantially across mod-
els. Such results, and the extremely high correlation between risk predictions
from different models (as in the left upper panel of Figure 4.4), may already be
interpreted as red flags with respect to overfitting of the HTE models.

4.9 Practical considerations

In general, as with regular prediction modeling, overfitting is an important
concern and sample size and penalization are key. We refer to recent guidance
papers on sample size [104, 12, 103] and the use of penalization in clinical predic-
tion modeling [106, 107]. These guidelines provide a lower bound for the sample
size when developing models to predict individualized treatment effects. The
required sample size will further increase when including treatment-covariate
interactions.

With respect to the choice of modeling approach, the hierarchical group lasso
(HGL) performed well across settings. HGL best captured treatment effect het-
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Figure 4.5: International Stroke Trial (IST) data. The upper panels show ap-
parent calibration of treatment effect for the ridge homogeneous treatment effect
model (HOM-ridge) and the hierarchical group lasso HTE (HTE-HGL). Dots
describe mean δ̂(xi) within quintiles of δ̂(xi) (x-axis) versus the marginal treat-
ment effect within those same groups (y-axis). Bars provide ±1 SE. The lower
panels show the out-of-sample estimates obtained from 100 bootstrap replica-
tions with red representing the lowest quintile δ̂(xi), followed by orange, yellow,
green, and blue for the highest quintile of δ̂(xi).
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erogeneity when present and had acceptable overfitting otherwise. It clearly
outperformed HTE models based on ridge, lasso, or unpenalized maximum like-
lihood. In practice, a penalized homogeneous treatment effect model provides
an important alternative model that is less prone to overfitting, but also less
capable of capturing HTE. This modelling approach therefore appears partic-
ularly promising when RCTs are relatively small, or when there is (almost) no
treatment-effect modification. Cross-validation or bootstrapping may be used
to choose between HGL and homogeneous treatment effect models. The In-
ternational Stroke Trial applied example provided an example of such a boot-
strapping approach, showing the evaluation of well-known measures of overall
fit (Brier score and Nagelkerke R2) [51, 8], and a proposal to visually evaluate
performance on the level of aggregated individualized treatment effect.

Nonetheless, samples that are very small with respect to the number of model
parameters of interest should raise caution [104, 12, 103]. While penalization is
clearly beneficial on average, accurate estimation of the penalization parameter
itself cannot be expected in small sample size settings and there is no way to
know whether this affects any particular model in practice [106, 107]. Also, the
empirical evaluation of individualized treatment effect models is still in its in-
fancy. Both group level evaluation of predicted individualized treatment effects
and individual level evaluation of outcome risk predictions are only indirect ap-
proximations of the performance of individualized treatment effect prediction.
Due to the insensitivity of the available measures, we expect model comparisons
to be conservative in the sense that they will only prefer a heterogeneous model
if the evidence is quite strong. For instance, HTE needs to be large enough to
substantially affect overall outcome predictions, or sample size needs to be large
enough to reliably assess aggregate predicted versus observed treatment effect.
Also, complex models suffer more from the decreased variability in bootstrap
samples.

Importantly, any measure based on observed data can only be an approximation
of the performance of a potential outcome prediction model, with the remainder
resting on assumptions [130]. The plausibility of the identifiability assumptions
is an important part of model evaluation, including thoughts about their trans-
portability, and requires thinking instead of measuring. To the knowledge of the
authors, there is no specific guidance on the validation of the potential outcome
type of individualized treatment effect prediction models beyond the guidance
provided in this tutorial. This remains an important open area of research that
needs further study.
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Lastly, a note on the interpretation of any identified treatment effect heterogene-
ity. Randomization of treatment (or unconfoundedness after appropriate mod-
eling of confounders in observational settings) supports causal inference with
respect to treatment in a subgroup (some covariate status). This is subtly, but
importantly, different from the assumption that subgroup membership causes
or explains a change in treatment effect. For instance, subgroup membership
might just be correlated with an unobserved underlying cause of treatment effect
heterogeneity. Such implicit inversing of the causal relation underlies the explo-
ration of subgroups as identified by individualized treatment effect prediction
to i) inform treatment decisions, or ii) ’explain’ treatment effect heterogene-
ity. However, such conclusions require randomization or unconfoundedness of
subgroup membership. Care should be taken to emphasize that the estimated
treatment effect describes the causal effect of treatment within a given subgroup,
and not necessarily the other way around (i.e. it does not warrant the interpre-
tation that the characteristics defining a subgroup cause differential treatment
effect). Therefore, while predicted treatment effect heterogeneity may provide
interesting hypotheses about its causal structure, it does not provide answers
without further thinking about, and analysis of, the causal pathways involved.

4.10 Discussion

We have provided an overview of the process of individualized treatment effect
prediction in the context of a randomized trial with a binary endpoint. To
that effect, we have described the integration of key elements from the fields of
causal inference and clinical prediction research. These methods can be used to
expand on the mainstay analysis of randomized trials, and may help to uncover
between-subject heterogeneity in terms of predicted outcome risk and treatment
effect.

With respect to causal inference, we focused on the causal nature of the ques-
tion of interest and a clear definition of individualized treatment effect based on
the potential outcomes framework. From there, we explained the necessary as-
sumptions to identify the individualized treatment effect based on the observed
data. While such effects can in principle be estimated nonparametrically, fur-
ther modeling is beneficial and allows straightforward comparison of treatment
effect conditional on many covariates. Even though the prediction problem it-
self could be solved without any reference to causal inference, going through
the motions increases clarity of the research question and gains understanding
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of the requirements for a causal interpretation of the final model.

With respect to prediction modeling, we focused on the need for a parsimo-
nious model with validity across the risk scale (log odds), while maintaining
an interpretable scale for the final result (the risk difference scale). Specifica-
tion of models for a homogeneous treatment effect (constant relative effect) and
differential or heterogeneous treatment effect were described in detail. Subse-
quently, the relation between prior knowledge and data-driven methodology was
examined, revealing the need for both. In line with general sample size guid-
ance when developing a multivariable prediction model [12], sufficient sample
size was important for accurate individualized treatment effects predictions and
model stability.

While all of the required ingredients for individualized treatment effect pre-
diction are well-known, their successful combination constitutes a challenging
problem that is on the boundary of what can be observed in empirical data.
Our simulation study, with a known data generating mechanism, provided clear
insight into methods that are able to pick up heterogeneity in sufficiently large
samples, while limiting the amount of overfitting in absence of heterogeneity.
While very informative, actual analysis of observed data will have to rely on di-
chotomous outcomes from subjects observed under a single treatment condition
that are only incompletely matched across treatment groups. The best way to
evaluate the performance of individualized treatment effect prediction models is
an open question. We described a bootstrap-based internal validation approach
that decreases the risk of overfitting. A very recent contribution to the literature
on potential outcome prediction and individualized treatment effect describes a
very similar split sample approach [131]. Also, a novel type of c-index has been
suggested to measure discriminative performance of individualized treatment
effect predictions [132]. Nguyen et al. provide some cautionary notes on its
interpretation and estimated standard error in their appendix [131].

The prediction of individualized or personalized treatment effect is an active field
of research. Recent broad overviews on predictive approaches towards hetero-
geneity of treatment effect are available elsewhere and include a comprehensive
overview of applied papers [133, 134]. Related work approaches the problem
from the missing data perspective [135, 17]. Also, work has been done on indi-
vidualized treatment effect prediction for optimal treatment selection [136, 137]
and selection of patients for future studies [138, 139]. All in all, the literature
on personalized medicine approaches that use prediction modeling is vast and
too extensive to cite here. What we add is a clear, principled and from the
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ground-up overview that integrates prediction modeling with causal inference
and accentuates the importance of study design features.

To limit the scope, we did not venture into the incorporation of post-randomization
measurements, dropout and selection bias, and observational data. Such topics
require careful attention to the exchangeability assumption, which is no longer
fulfilled by the study design and needs further assumptions and careful model-
ing with respect to all possible confounders. A recent scoping review provides
an overview of the literature with respect to methods for causal prediction that
extend to observational data [24]. Also, where we have focused on intention
to treat estimates of point exposure treatment, different settings and questions
require further thought on the relevant definition of the estimand [140]. As
a second limitation, we provided a small simulation study covering a limited
number of settings that was designed for illustrative purposes. The setup was
such that development and test sets were generated from the same data gen-
erating mechanism. In practice, there may be differences between these two
settings that are not captured by the models, and the uncertainty that accom-
panies these unknowns may overshadow relatively small gains realized by more
complex models [141].

More general limitations pertain to the typical randomized trial design that pro-
vides the data to be used for individualized treatment effect prediction. Other
designs, such as N × 1 trials and cross-over designs may provide more direct
within-person comparability, and thereby also provide information on the sta-
bility of treatment response for an individual [142]. However, these designs are
infeasible for many conditions and have their own set of challenges [143]. More
importantly, randomized trials are typically designed to be of sufficient sample
size to reveal an anticipated average relative treatment effect. Therefore, ran-
domized trials are not designed for complex prediction modeling. Hence, if we
want to walk down the avenue of individualized treatment effect modelling, we
will either have to design trials with this purpose in mind, or have to find more
creative ways to amplify our data. This could include the analysis of individual
patient data from multiple randomized trials, or even the use of non-randomized
studies for the estimation of outcome risk under a control condition [24]. Besides
clear opportunities, such approaches also bring about many new challenges. For
instance, typical challenges that occur in clustered data settings (e.g. between-
study heterogeneity) have been comprehensively illustrated in a recent tutorial
on the examination of heterogeneous (relative) treatment effect in patient-level
data from multiple randomized trials [144]. The implications of such challenges
in the context of causal prediction research require further study.
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4.11 Concluding remarks

We hope that our overview on the basics underlying individualized treatment
effect prediction in binary endpoint settings is a useful guide and starting point
for statisticians interested in this area. The successful implementation of in-
dividualized treatment effect prediction requires careful thought on the exact
nature of the question and estimand(s) of interest, the causal and modeling as-
sumptions relied on, and the ever-present bias-variance trade-off that requires
even greater care than usual when working with potential outcomes. Sample
size considerations are important in all areas of research and there is increasing
awareness on the need for larger sample sizes when developing prediction mod-
els and examining treatment-covariates interaction. Future work is needed on
the validation of models for predicted individualized treatment effect, their role
in uncovering sources of heterogeneity, and ways to account for the clustered
nature of many data sets. Also, beyond the frequentist framework, the basis
for a fully Bayesian approach has long been recognized [145] and could combine
the advantage of penalization with a more thorough view on the posterior dis-
tribution of the model parameters. A summary of key recommendations and
findings is provided in Box 2.

Box 2: Key points and recommendations

• It is important to clearly define the individualized treatment effect of
interest and to be aware of the identifiability assumptions underlying
its causal interpretation.

• Analogous to causal inference with respect to average treatment ef-
fect, randomization of treatment greatly facilitates causal inference
with respect to predicted individualized treatment effects.

• Logistic regression provides a parsimonious model to predict
absolute individualized treatment effect (i.e., treatment effect on
the risk difference scale) in new patients. Even in absence of
treatment-covariate interaction (i.e., homogeneous patient-level
treatment effect on odds ratio scale), a logistic model accounting
for individual patient characteristics (prognostic factors) can lead
to meaningful differentiation in terms of absolute treatment effect.

(continues on the next page)
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Box 3: Key points and recommendations (Cont.)

• Sample size and penalized estimation are of key importance for ac-
curate individualized treatment effect prediction; penalization alone
does not guarantee accurate predictions in new individuals when
sample size is insufficient with respect to model complexity. Exist-
ing guidelines on clinical prediction modeling provide a lower bound
for the sample size needed in case of individualized treatment effect
prediction [12, 104, 103].

• In practice, bootstrap internal validation of likelihood-based mea-
sures of overall fit (e.g. R2, AIC), mean squared prediction error
(e.g. Brier score), and aggregate observed versus expected measures
of treatment effect variability (as in Section 4.8.2) help to choose
amongst competing models. It is recommended to include a homo-
geneous treatment effect model as a starting point (reference model)
and to consider more complex models based on biological, clinical
and statistical evidence.

• Future work is needed to further delineate best practices for the
evaluation of individualized treatment effect predictions and models,
hence also improving model comparison and validation procedures.

• Purely explorative indications of heterogeneous treatment effect pro-
vide an interesting starting point for further research (e.g. into the
causal structure of the heterogeneity) and require external valida-
tion.

• This tutorial handles causal prediction of treatment effect on a binary
outcome, conditional on individual level patient characteristics. This
should not be confused with a causal interpretation of the effect of
individual level patient characteristics on the effect of treatment.
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Data Availability
Data for the International Stroke Trial applied example are publicly available
[129]. Data for the otitis media applied example not available for sharing since
they contain privacy sensitive data according to the General Data Protection
Regulation. R scripts to perform the simulation study, including data generation
and analysis, are available for sharing.

Supplementary Material
The supplementary material consists of further information on separate predic-
tion modeling per potential outcome (Part S4.1), the generation of data for a
given outcome prevalence (Part S4.2), and calibration results for the simulation
study (Part S4.3).

S4.1 Separate modeling of each potential outcome
This supplementary material describes the equivalence between a special case of
the heterogeneous treatment effect model and models fitted separately in each
arm of the trial (section S4.1.1), the loss of this equivalence when introduc-
ing penalization (section S4.1.2), and simulation results comparing treatment-
interaction models with models fitted per treatment arm (section S4.1.3).

S4.1.1 Equivalent model specifications
A logistic heterogeneous treatment effect model as introduced in section 4.4.2
includes both main covariate effects and treatment-covariate interactions. When
all covariates (or expansions thereof) in such a model interact with treatment,
an exactly equivalent set of 2 models can be specified within the control group
and the treated group separately. For instance, a heterogeneous treatment effect
model of the form

logit(P (Yi = 1|A = ai,X = xi)) = β0 + βtai + β⊤
mxi + β⊤

z xiai (S4.1.1)

has a corresponding set of within-treatment group models given by

logit(P (Yi = 1|A = 0,X = xi)) = β0 + β⊤
mxi

logit(P (Yi = 1|A = 1,X = xi)) = (β0 + βt) + (βm + βz)
⊤xi

(S4.1.2)
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Note that these two models are separate models for the potential outcomes of
interest (i.e. P (Y a=0 = 1|X = xi) and P (Y a=1 = 1|X = xi) respectively).
The other way around, starting from two separate models for both potential
outcomes as fitted within each treatment group separately, the models

logit(P (Yi = 1|A = 0,X = xi)) = β00 + β⊤
m0xi

logit(P (Yi = 1|A = 1,X = xi)) = β01 + β⊤
m1zi

(S4.1.3)

are equivalent to

logit(P (Yi = 1|A = ai,X = xi)) =β00 + (β01 − β00)ai+

β⊤
m0xi + (βm1 − βm0)

⊤xiai
(S4.1.4)

The equivalence between these model specifications holds for the maximum
likelihood estimates of the β parameter vector, but no longer holds when intro-
ducing a penalty into the estimation process.

S4.1.2 Penalized maximum likelihood

In case of penalized maximum likelihood, estimates for the separate within
treatment-group models will no longer be equivalent to those from a full sample
interaction model. For instance, let us consider the case of a ridge or lasso
penalty (i.e. λ 1

2∥β∥
2
2 or λ∥β∥1 respectively [65]). First, each of the models

will have its own estimate of λ, allowing for differences between the within-
treatment group models. Second, intercepts are not penalized, and in case
of separate models (e.g. equation (S4.1.2) and (S4.1.3)), the main treatment
effect is retrieved as the different between the two model intercepts (equation
(S4.1.4)). Hence, the main treatment effect is penalized by default in the full
sample interaction model and is not penalized when using two separate models.
Third, in case of ridge regression, the degree of penalization depends on the size
of the model coefficients, with larger coefficients being penalized more heavily
(due to the square in the penalty term). This is of importance for the treatment-
covariate interaction models as specified in equation (S4.1.1) and (S4.1.4), since
the expression of the covariate effects under treatment and control conditions
is not symmetric in that case (i.e. with βm in equation (S4.1.1) reflecting
covariate effects under the control condition and βz reflecting changes from βm

under the treated condition).
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S4.1.3 Simulation results

The simulation settings were exactly the same as in the main text. Full sam-
ple HTE models including all treatment-covariate interactions were compared
to within-treatment group models including only main effects of the covariates.
Models were estimated by means of maximum likelihood, ridge regression, and
lasso regression. Figure S4.1 shows the simulation study results with respect
to root mean squared prediction error (rMPSE) of the individualized treatment
effects. In case of maximum likelihood estimation, the results are of course
exactly the same for the different model specifications and are only shown in
twofold as a reminder. Lasso treatment-covariate interaction models performed
best across all settings. Also, the rMSPE of predicted individualized treatment
effects based on ridge treatment-covariate interaction models was generally bet-
ter than the prediction error for ridge models fitted separately per arm. One
exception was ridge regression in large sample size (N = 3600), where the per
arm models resulted in a better rMSPE. In our simulation settings, which all had
variability in coefficient size in the data generating mechanism, the ridge penalty
induced clear overshrinkage on large coefficients for all models. This is to be ex-
pected due to the square in the penalty and happened in both within-treatment
group models and treatment-interaction models. However, in case of treatment-
interaction modeling, underfitting of large main effects led to overfitting of the
corresponding treatment-covariate interactions 3. While this happened in all
settings and thus across all sample sizes, we hypothesize that the negative ef-
fect of this bias on the predictions δ was offset by more accurate estimation of
λ in the full sample treatment-interaction models, except in large sample size
settings. Therefore, different model specifications that affect to expected size of
the estimated coefficients require careful thought in presence of a ridge penalty.
These issues do no affect the lasso penalty. In case of lasso regression, the ben-
efit of having a larger sample size to estimate the penalty parameter λ (i.e. as
in the treatment-interaction model) led to better performance in all simulation

3Note that the square in the ridge penalty means that large estimated coefficients have
a larger contribution to the penalty, and are thus more heavily penalized towards zero. An
inadvertent characteristic of the treatment-interaction model in case of ridge regression is that
the cost of increasing a large main effect parameter (i.e. in this context an increase in the effect
of the covariate under the control condition), is larger than the cost of the same increase in
the smaller corresponding treatment-covariate interaction (i.e. the same increase in the effect
of the covariate but now under the treatment condition). As a numerical example, assume
a main effect coefficient is actually 1 and the corresponding treatment-covariate interaction
coefficient is actually 0.5. Shrinking 1 to 0.9 reduces ∥β∥22 by 0.19, and overfitting 0.5 by the
same amount increases ∥β∥22 by only 0.11
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Figure S4.1: Simulation study results: average root mean squared prediction
error of the predicted treatment effects (over 250 simulations) with ±2 SE error
bars for all simulation settings. Note that the standard errors are often so small
that they are obscured by the mean estimates. Abbreviations for the methods
are: HTE (heterogeneous treatment effect model), ML (maximum likelihood)
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S4.2 Simulating data for a given outcome preva-
lence

The goal was to simulate data with a prespecified outcome prevalence for the
control group. The model underlying the simulations was given in equation
(4.7) and is restated here for ease of reference:

logit(P (Yi = 1|A = ai,X = xi)) = β0 + βtai + β⊤
mxi + β⊤

z ziai (S4.2.1)

For any given treatment condition, this reduces to

logit(P (Yi = 1|A = ai,X = xi)) = β0∗ + β⊤
∗ xi (S4.2.2)

where β0∗ combines β0 and βt and β∗ combines βm and βz. Therefore, condi-
tional on treatment condition, the log odds of an event is a linear combination of
just the p covariates. Since these had a standard normal distribution by design,
their linear combination is also normal with mean equal to β0∗ and variance
equal to

Var(β0∗ + β⊤
∗ xi) = βΣβ⊤ = σ2 (S4.2.3)

where β = {β0∗,β∗} and Σ is the covariance matrix of the covariates.

Then using

Pr(Y = 1) =
1

1 + e−β0∗−σZ
(S4.2.4)

where Z is a standard normally distribute random variable, the outcome preva-
lence or expected probability of Pr(Y = 1) equals

E(Pr(Y = 1|X)) =

∫ +∞

−∞

(
1√
2π

e−z2/2 1

1 + e−β0∗−σZ

)
dz

=
1√
2π

∫ +∞

−∞

(
e−z2/2

1 + e−β0∗−σz

)
dz

(S4.2.5)
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Since σ =
√
βΣβ⊤ only depends on known simulation parameters, the equation

can be solved numerically for β0∗ to get the desired outcome prevalence in a
given treatment group.

S4.3 Simulation study calibration results
The CalibrationFigures.pdf file (available online as a supplement to DOI:
10.1002/sim.9154) contains calibration plots for δ̂(xi), as predicted by each
method, versus the true δ(xi). Simulation settings with a main treatment effect
are denoted as βt < 0, settings with a homogeneous treatment effect are denoted
as HOM, and settings with a heterogeneous treatment effect as HTE. Each
individual plot shows the ideal diagonal in red (with an exception of the absolute
null settings where the ideal is δ̂(xi) ≡ 0). Each black calibration line is the
result of a single simulation run and connects the mean predicted δ̂(xi) and
mean δ(xi) in 20 equal-size quantile groups of δ̂(xi). The histograms on the
x-axis gives an indication of the density of quantile groups over all simulation
(the groups vary due to sampling variability).
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Abstract
Personalized medicine constitutes a growing area of research that benefits from
the many new developments in statistical learning. A key domain concerns
the prediction of individualized treatment effects, and models for this purpose
are increasingly common in the published literature. Aiming to facilitate the
validation of prediction models for individualized treatment effects, we extend
the classical concepts of discrimination and calibration performance to assess
causal (rather than associative) prediction models. Working within the potential
outcomes framework, we first evaluate properties of existing statistics (including
the c-for-benefit) and subsequently propose novel model-based statistics. The
main focus is on randomized trials with binary endpoints. We use simulated
data to provide insight into the characteristics of discrimination and calibration
statistics, and further illustrate all methods in a trial in acute ischemic stroke
treatment. Results demonstrate that the proposed model-based statistics had
the best characteristics in terms of bias and variance. While resampling methods
to adjust for optimism of performance estimates in the development data were
effective on average, they had a high variance across replications that limits their
accuracy in any particular applied analysis. Thereto, individualized treatment
effect models are best validated in external data rather than in the original
development sample.
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5.1 Introduction

The prediction of individualized treatment effect conditional on patient char-
acteristics has received much interest recently [89, 90, 142, 134, 24, 146]. Such
models typically predict a clinically relevant outcome under two different treat-
ment conditions, and the difference between these predictions is attributed to
the effect of treatment. This information is of clear interest in the context of
clinical decision-making if the underlying model is of sufficient quality. How-
ever, the evaluation of individualized treatment effect (ITE) models is still a
key methodological challenge and little guidance is currently available on how
to quantify their performance [146].

In this paper, we focus on ITE models that contrast the effect of two treatment
conditions on the risk of a binary endpoint. More specifically, we focus on assess-
ment of their performance; guidance on their development is available elsewhere
(e.g., [90, 146, 113]). Typical measures of prediction model performance with
respect to outcome risk predictions include measures of calibration and discrim-
ination [9, 8, 147]. However, our specific interest here is in predictions of risk
difference attributed to the effect of treatment (i.e., in absolute individualized
treatment effect predictions). Although calibration and discrimination perfor-
mance can also be assessed at the risk difference (treatment effect) level, existing
measures (e.g., calibration intercept, calibration slope, c-statistic) do not apply
without modification because individual treatment effects (in contrast to regular
outcomes) are unobservable [146]. For this reason, a new c-statistic was recently
proposed that applies to absolute treatment effect predictions in settings with
a binary endpoint, along with a quantile-based assessment of calibration [132].

We expand on this previous work by casting the entire prediction and evalu-
ation process in the potential outcomes framework [94, 93] and by developing
model-based measures of discrimination and calibration performance with re-
spect to individualized treatment effect predictions. Herein, the potential out-
comes framework provides a way to deepen understanding of what is actually
being measured. The model-based measures make more efficient use of the data
without relying on matching on arbitrary cut-offs.

Section 5.2 sets the scene and describes the challenge of individualized causal
prediction in terms of the potential outcomes framework. Subsequently, Section
5.3 and Section 5.4 describe existing and novel measures of discrimination and
calibration with respect to absolute treatment effect respectively. Simulation
results are provided for illustrative purposes. An applied example using data
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from the third International Stroke Trial (IST-3) [148] is described in Section
5.6. Lastly, Section 5.8 provides a general discussion.

5.2 Individualized treatment effect prediction
Most outcome prediction research focuses on capturing statistical association in
absence of interventions. Individualized treatment effect (ITE) prediction is a
different type of prediction since it has a causal interpretation: the quantity to
be predicted is the effect caused by the treatment (or intervention, in a larger
sense) on the outcome. Therefore, before moving to the performance measures
of interest, this section shortly outlines causal prediction. Subsequently, issues
surrounding the use of binomial outcome data for ITE modeling are shortly
discussed (further details are available as online supplementary material S5.1).

5.2.1 Causal prediction
To emphasize the causal nature of the predictions, it is helpful to write the
individualized treatment effect of interest in terms of the potential outcomes
framework [94, 93]. For treatment taking values a ∈ A, Y A=a denotes the
potential outcome under treatment a. When comparing two treatments, the
ITE for individual i, . . . , n can be defined as

δ(xi) = E(Y a=1
i |X = xi)− E(Y a=0

i |Xi = xi) (5.2.1)

where xi is a row vector of individual-level characteristics in matrix X. The de-
gree of granularity or individualization reflected by δ(xi) relates to the number
of predictors included in X, to the strength and shape of their association with
the potential outcomes, and especially to the degree to which they have a dif-
ferential effect across potential outcomes (i.e., modify the effect of treatment).
Ideally, the set of measured individual-level characteristics includes all relevant
characteristics with respect to individualized treatment effect. In practice how-
ever, this set of all relevant characteristics is often unknown and the best way
forward is to aim for conditioning on the most important characteristics. Cor-
respondingly, equation (5.2.1) reflects ITE as a conditional treatment effect for
some set of characteristics.

Since in practice only one potential outcome is observed per individual [23],
assumptions are required to estimate δ(xi) based on the observed data. These
assumptions are discussed in detail elsewhere [146, 22]. In short, the key as-
sumptions are exchangeability (the potential outcomes do not depend on the
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assigned treatment), consistency (the observed outcome under treatment a ∈ A
corresponds to the potential outcomes Y A=a), and positivity (each individual
has a non-zero probability of each treatment assignment. An additional assump-
tion that eases inference is no interference (the potential outcomes for individual
i do not depend on treatment assignment to other individuals). Based on these
assumptions, the individualized treatment effect can be identified given the ob-
served data:

δ(xi) = E(Y a=1
i |X = xi)− E(Y a=0

i |X = xi)

= E(Y a=1
i |A = 1,X = xi)− E(Y a=0

i |A = 0,X = xi)

(by exchangeability)
= E(Yi|A = 1,X = xi)− E(Yi|A = 0,X = xi)

(by consistency) (5.2.2)

Equation (5.2.2) shows that ITE predictions (δ̂(xi)) can be estimated using a
prediction model for outcome risk E(Yi|A = ai,X = xi). Many modeling tools
can be used for this endeavor and the details are beyond the scope of this paper
and are given elsewhere (e.g., [146, 135]).

5.2.2 Binary outcome data

Focusing on binary outcomes, we observe outcome Yi ∈ {0, 1} and covariate
status xi for each individual i. In this context, the ITE estimate δ(xi) is a
difference between two risk predictions (P (Yi = 1|A = 1,X = xi) − P (Yi =

1|A = 0,X = xi)). The range of δ̂(xi) includes all values in the [−1, 1] inter-
val, while the observed difference between any two outcomes can only be one of
{−1, 0, 1}. Therefore, in addition to the challenge that each individual only has
an observed outcome for one treatment condition, the observations come with
large and irreducible binomial error and hence provide only limited informa-
tion. A further consideration with predictions for binary outcome data is that
they are commonly non-linear functions of the covariates, and hence the effects
of treatment and the covariates are usually not additive on the risk difference
scale of interest here. Consequently, the resulting ITE predictions conflate vari-
ability from different sources: between-subject variability in P (Y a=0|X = x)
and genuine treatment effect heterogeneity on the scale used for modeling. This
is the price to pay for the benefit in terms of interpretation of measures on the
scale of δ(x) [92].
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5.2.3 The challenge

In practice, the fundamentally limited nature of observed data when it comes
to causal inference (i.e., with only one potential outcome being observed), the
irreducible binomial error affecting the risk difference twice, and the challenge
of model specification and estimation are all present at the same time. This
evidently poses a challenge at the time of model development, but within the
scope of this paper, it certainly also poses challenges during evaluation of mod-
els predicting individualized treatment effects. Most notably, and in contrast
with regular prediction modeling, a direct comparison between predictions and
observed outcomes is not feasible.

In this paper, we evaluate discrimination and calibration at the level of pre-
dicted individualized treatment effects. To this end, we first evaluate a recently
introduced metric to assess discriminative performance [132] and subsequently
propose alternative procedures that aim to alleviate some of the shortcomings.
Thereafter, we address calibration of predicted treatment effect. With respect to
the detection of overfitting (i.e., overly complex models that fail to generalize),
we examine performance in both internal and external validation settings.

5.3 Discrimination for individualized treatment
effects

Discriminative model performance reflects the degree to which model predictions
are correctly rank-ordered and is a common performance measure in regular pre-
diction modeling [8, 9]. In the context of outcome risk prediction, the observed
outcomes provide an immediate reference to check rank-ordering at the level
of the predictions. However, such a direct reference is not available for ITE
models since individual treatment effects cannot be observed directly, which
necessitates approximations. One of the possibilities is to use matching and is
used in a recent proposal, the c-for-benefit, for a measure of discriminative per-
formance on the ITE level [132]. The section shortly outlines the c-for-benefit
and subsequently discusses its properties, limitations, and possible extensions.

5.3.1 C-for-benefit definition

In the setting of a two-arm study measuring a binary outcome of interest, the
c-for-benefit aims to assess discrimination at the level of ITE predictions (re-
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ferred to as ’predicted [treatment] benefit’ in the original paper).1 The problem
of unobserved individual treatment effects is approached from a matching per-
spective. One-to-one matching is used to match treated individuals to control
individuals based on their predicted treatment effects. The subsequent data
pairs hence consist of a treated individual and a control individual with similar
predicted treatment effect. Observed treatment effect in the pair is defined as
the difference in outcomes between these two individuals. Of note, observed
(within-pair) treatment effect can only be {-1,0,1}. Subsequently, c-for-benefit
has been defined as "the proportion of all possible pairs of matched individual
pairs with unequal observed benefit in which the individual pair receiving greater
treatment benefit was predicted to do so" [132]. The predicted treatment effect
within each pair used in this definition is taken to be the (within-pair) average
of predicted treatment effects. That is, for a pair comprising control individual
i out of 1, . . . , ni and treated individual j out of 1, . . . , nj , predicted treatment
effects are taken to be

δ̂ij(xi,xj) = {(P̂ (Yi|Ai = 1,X = xi)− P̂ (Yi|Ai = 0,X = xi))+

(P̂ (Yj |Aj = 1,X = xj)− P̂ (Yj |Aj = 0,X = xj))}/2 (5.3.1)

The ’observed’ treatment effect is subsequently taken to be Oij = Yi − Yj .
Therefore, the c-for-benefit is a regular concordance statistic (c-statistic) as
commonly applied in survival data [149, 8], but applied to pairs of individuals
that underwent different treatments. If the two (binary) outcomes in such a pair
are discordant, then there supposedly is some evidence of a treatment effect (i.e.,
benefit or harm); conversely, there is no such evidence when the outcomes are
concordant (i.e., the predicted treatment effect did not manifest as a difference
in outcomes). The implicit assumption is that individual i and j are similar
enough to serve as pseudo-observations of the unobserved potential outcomes.
In the ideal case where xi = xj this is indeed the case, but such perfect matches
are unlikely to be available for multivariable prediction models.2 An alternative
(unsupervised) matching procedure that was proposed in the same paper is to

1The original paper did not focus on the required conditions for causal interpretation of
the predicted individualized treatment effects; here we assume that these assumptions, as
described in Section 5.2.1, are met.

2Note that we here forgo the notion of including all relevant covariates, since xi = xj is
sufficient for the degree of individualization reflected by the model.
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match on covariates in terms of Mahalanobis distance.3 For the remainder of
this paper, we will use cben-δ̂ to refer to the original c-for-benefit using 1:1
matching on predicted treatment effect.

5.3.2 C-for-benefit challenges
Although the c-for-benefit has been applied on several occasions (e.g., [150,
151, 152]), its properties have not been fully elucidated. Van Klaveren et al.
[132] recommended further work on its theoretical basis and simulations studies,
which we here present. Evidently, many issues that apply to the regular concor-
dance statistic also apply to the c-for-benefit. However, since the c-for-benefit
relates to risk differences and depends on outcomes that cannot be observed
directly, additional challenges arise which we outline below.

Difficult interpretation

As described, the c-for-benefit uses 1:1 matching and averages ITEs within each
pair of matched individuals (i.e., δ̂ij(xi,xj) in equation (5.3.1)). As we will see
below (section 5.3.3), this average of two ITEs does not generally correspond to
the treatment effect induced by the study design even if the model is correctly
specified. Also, the observed outcome difference Oij reflects more than just
δ̂ij(xi,xj) unless both control outcome risk and treated outcome risk are the
same for matched individuals. These two issues obfuscate the interpretation of
the index.

Sensitivity to matching procedure

Two matching procedures were proposed for the c-for-benefit: i) based on δ̂ (i.e.,
minimize the distance between pairs δ̂i and δ̂j), and ii) based on the Mahalanobis
distance between covariate vectors3 [132]. In theory, matching on covariates X
leads to appropriate matches on predicted treatment effects since the latter is a
function of the covariates. However, the reverse is not true: matching on δ̂ does
not necessarily lead to appropriate matches on X. The reason is that multiple
configurations of X can give rise to the same value of δ̂, which does not satisfy
equation (5.2.2). Importantly, this is even the case for a correctly specified
model. The only setting in which matching on predicted ITEs is guaranteed to
generate appropriate matches on X is when δ̂ is a bijective function of X (i.e.,

3 where the distance between xi and xj is defined as d(xi,xj) =
√

(xi − xj)′S−1(xi − xj)
with S the covariance matrix of the covariates in X
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δ̂ and X have a one-to-one correspondence). However, this is highly atypical in
prediction modeling (e.g., a model with only one covariate that has a functional
form with a strictly positive or negative first derivative). Also, both matching
procedures were proposed for 1 : 1 matching, which requires either equal groups
size for both study arms or loss of data. A simple remedy that stays close to the
original idea is to perform repeated analysis with random sub-samples of the
larger arm. Alternatively, the implementation of many-to-one matching (e.g.,
full matching) or many-to-many matching [153, 154, 155] might be implemented,
but none of these has been studied in the context of the c-for-benefit.

5.3.3 Towards a more principled concordance statistic for
benefit

The c-for-benefit compares concordance between differences in i) average pre-
dicted treatment effect within matched control-treated pairs δ̂ij(xi,xj) and ii)
observed outcome differences within those same pairs Oij . However, in gen-
eral δij(xi,xj) ̸= E(Oij |xi,xj) unless xi = xj . This section decomposes
E(Oij |xi,xj) to find conditions under which unbiased comparison to ITE pre-
dictions is available. Thereto, for controls i ∈ 1, . . . , ni and treated individuals
j ∈ 1, . . . , nj and writing g0(x) for P (Yi = 1|A = 0,X = x) and g1(x) for
P (Yi = 1|A = 1,X = x),

E(Oij |xi,xj) =E(Yj |xj − Yi|xi)

=E(Yj |xj)− E(Yi|xi)

=g1(xj)− g0(xi) (5.3.2)
=[g0(xj) + δ(xj)]− g0(xi) (5.3.3)
=g1(xj)− [g1(xi)− δ(xi)] (5.3.4)

Hence, from equation (5.3.3) and given g0(·), the expected observed outcome
difference between individual j receiving treatment and individual i receiving
control equals the true equals the true individualized treatment effect for indi-
viduals sharing the same characteristics x as j

E(Oij |g0(xi), g0(xj)) = E(Yj − g0(xj))− E(Yi − g0(xi))︸ ︷︷ ︸
0

= δ(xj), (5.3.5)

and analogously, from equation (5.3.4) and given g1(·), the expected observed
outcome difference between individual j receiving treatment and individual i
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receiving control equals the true individualized treatment effect for individuals
sharing the same characteristics x as i

E(Oij |g1(xi), g1(xj)) = E(Yj − g1(xj))︸ ︷︷ ︸
0

−E(Yi − g1(xi)) = δ(xi) (5.3.6)

Conditioning on g0(·) in equation (5.3.5) aims to achieve prognostic balance,
which bears resemblance to prognostic score analysis [156, 157]. Conditioning
on g1(·) in equation (5.3.6) is just the mirror image for g1(·). In practice,
g0(·) and/or g1(·) will of course have to be estimated and the exact equalities
will become approximations. For continuous outcomes, equation (5.3.5) allows
evaluation of predictions δ̂(xj) against residuals Yj − ĝ0(xj) for j = 1 . . . , nj ,
and equation (5.3.6) allows evaluation of predictions −δ̂(xi) against residuals
Yi − ĝ1(xi) for i = 1 . . . , ni.4 A key benefit of this approach is that matching is
not required. However, extension of such a residual-based approach to binary
outcome data is not clear. Hence, we implemented a 1:1 matching procedure
similar to cben-δ̂, but with two important differences. First, matching was
performed based on ĝ0(x) as opposed to predicted treatment effect. Thereby,
whenever ĝ0(xi) = ĝ0(xj), the expected difference between Yi and Yj does equal
δ̂(xj) if the models for g0 and g1 are correct. Second, and following from the
previous, this implementation evaluated concordance between δ̂(xj) (as opposed
to δ̂ij) and the corresponding Oij ’s. We will further refer to this implementation
as cben-ŷ0. Note that a mirror image alternative could be performed when
matching on ĝ1(x); the choice between the two might be guided by the expected
quality in terms of prediction accuracy of ĝ0(·) and ĝ1(·), and the size of the
group in which ITE predictions will be evaluated.

5.3.4 Model-based c-statistics for individualized treatment
effect

Extending earlier work on model-based concordance assessment in the context
of risk prediction [158], we propose model-based concordance assessment on the
level of absolute individualized treatment effect prediction. The concordance
probability that we aim for is the probability that any randomly selected pair of
patients (regardless of treatment assignment) has concordant ITE predictions

4Either way, one arm can be used to estimate the relevant ĝ(·) and the other arm to
evaluate δ̂(·). Alternatively, an external model ĝ(·) might be used, but, as demonstrated in
the simulation study, bias will be introduced if this external model does not fit the data well.
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and outcomes, divided by the probability that their outcomes are different.
While the ITE predictions are clearly defined (equation (5.2.2)), the outcomes
(individualized treatment effects) are never observed directly and can be ap-
proximated in multiple ways. The model-based approach is to use the model’s
predictions of the potential outcomes when deriving the concordance statistic.
Therefore, it reflects the concordance statistic that would be expected under the
assumption that the model is correct and given a specific set of data. Note that
all information required for a model-based estimate is in the model, so there is
no problem with respect to unobserved potential outcomes.

Let us first define concordance between ITE predictions and potential outcome
patterns in line with the c-for-benefit. As above, take an event Y=1 to be
harmful. For a randomly selected individual k with a lower predicted ITE than
another individual l (δ̂k < δ̂l, where k, l ∈ 1, . . . , n and k ̸= l), treatment is
predicted to be more beneficial (or less harmful) for individual k as compared
to individual l. The potential outcome patterns that are concordant with δ̂k < δ̂l
are

1. Y a=1
k = 0, Y a=0

k = 1, Y a=1
l = 0, Y a=0

l = 0 (benefit for k, no benefit for l)

2. Y a=1
k = 0, Y a=0

k = 1, Y a=1
l = 1, Y a=0

l = 1 (benefit for k, no benefit for l)

3. Y a=1
k = 0, Y a=0

k = 1, Y a=1
l = 1, Y a=0

l = 0 (benefit for k, harm for l)

4. Y a=1
k = 0, Y a=0

k = 0, Y a=1
l = 1, Y a=0

l = 0 (no benefit for k, harm for l)

5. Y a=1
k = 1, Y a=0

k = 1, Y a=1
l = 1, Y a=0

l = 0 (no benefit for k, harm for l).

The corresponding estimated probabilities of these patterns follow easily from
the model(s) for both potential outcomes. For instance, for the first pattern:
[1 − P̂ (Y a=1

k = 1)] · P̂ (Y a=0
k = 1) · [1 − P̂ (Y a=1

l = 1)] · [1 − P̂ (Y a=0
l = 1)].

The sum of the five patterns is further referred to as Pbenefit,k,l. Likewise, let
Pharm,k,l denote the total probability of observing relative harm for case k with
respect to case l, which can be obtained in a similar manner. Returning to our
definition of concordance probability, the estimated probability of concordant
ITE predictions and potential outcomes for two randomly chosen patients k and
l for any given model can be written as

P̂ (concordant) =
1

n(n− 1)

∑
k

∑
l ̸=k

[
I(δ̂k < δ̂l)P̂benefit,k,l + I(δ̂k > δ̂l)P̂harm,k,l

]
(5.3.7)
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Subsequently, the model-based probability estimate of a potential outcome pat-
tern reflecting either relative benefit or relative harm for a randomly selected
pair of patients is

1

n(n− 1)

∑
k

∑
l ̸=k

[
P̂benefit,k,l + P̂harm,k,l

]
, (5.3.8)

and hence the concordance probability is∑
k

∑
l ̸=k

[
I(δ̂k < δ̂l)P̂benefit,k,l + I(δ̂k > δ̂l)P̂harm,k,l

]
∑

k

∑
l ̸=k

[
P̂benefit,k,l + P̂harm,k,l

] (5.3.9)

A formulation that allows for ties δ̂k = δ̂l and avoids the need to derive P̂harm,k,l

is, in line with the Harrell’s c-statistic [149, 8],

mbcb =

∑
k

∑
l ̸=k

[
I(δ̂k < δ̂l)P̂benefit,k,l +

1
2I(δ̂k = δ̂l)P̂benefit,k,l

]
∑

k

∑
l ̸=k

[
P̂benefit,k,l

] (5.3.10)

We propose the model-based c-for-benefit (mbcb) as a model-based alternative
to the c-for-benefit, hence the name. Estimating both δ̂(x) and P̂benefit,k,l from
the same model, the mbcb provides the theoretical concordance probability
between ITE predictions and potential outcomes that would be achieved if the
model is correct. Important to note, such a model-based statistic only depends
on the observed outcomes in the development data through the model, and
hence does not provide any insight into model fit. For instance, estimating
both δ̂(x) and P̂benefit,k,l from some ITE model δ̂m in new data D, the mbcb
would return the expected concordance probability for δ̂m at the ITE-level as
based on the distribution of X in D, and assuming δ̂m is correct; it does not
depend on the outcomes measured in D. In other words, it provides a case-
mix adjusted (i.e., adjusted for the sampled X) expected mbcb for new data
[158]. This is of interest since concordance statistics are known to be sensitive
to case-mix. For instance, discriminative performance in terms of a concordance
statistic for a new sample that is truncated in terms of X (e.g., due to inclusion
criteria) will be lower, even if the model is perfectly adequate, just because it is
harder to discriminate in the new sample [159]. Hence, the case-mix adjusted
expected mbcb is a better reference than the mbcb in the development data when
validating a model. To obtain a validation estimate of ITE-level concordance
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probability (i.e., without assuming that the ITE model is correct), the estimator
for P̂benefit,k,l should be based on independent validation data that were not used
for ITE model development. The main goal is to obtain estimates of P̂benefit,k,l as
accurate as possible for the new data, since these take the role of the ’observed’
outcomes for the model-based c-for-benefit. A way to do so it by refitting the
original ITE model in the independent data and using the resulting outcome
risk predictions to calculate P̂benefit,k,l.

5.4 Calibration of individualized treatment effect
predictions

A calibration measure reflects the degree to which predictions (predicted treat-
ment effect) agree with observations (observed treatment effect). Several routes
can be taken when interest is in predicted individualized treatment effect.

(A) Classical calibration: compare predicted outcome risk under the assigned
treatment conditions versus observed outcomes.

(B) Within-arm classical calibration: classical calibration within treatment
arms.

(C) Quantile-group calibration of average individualized versus observed treat-
ment effect.

(D) Model-based calibration of individualized versus observed treatment effect.

Method (A) has been described at length in the literature (e.g., [9, 8, 147])
and method (B) is a straightforward extension. Both have the disadvantage
that they do not directly assess absolute treatment effect: overall calibration of
outcome risk may look good when prognostic factors are well modeled and ex-
plain most of the outcome risk, even though a comparatively small (but possibly
important) treatment effect is not well represented.

A common way to proceed in the direction of direct predicted treatment effect
evaluation is to form quantile groups of the predictions and to compare (average)
predicted and observed treatment effect within these groups [132, 146] (method
((C))). However, the cut-off points to form these groups are always arbitrary
and smooth model-based calibration plots have become the preferred method
of choice in regular (outcome risk) calibration assessment [147]. This leaves
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method (D) which, in theory, provides the desired direct ITE assessment while
avoiding the disadvantages associated with cut-offs. However, to our knowledge,
such a method has not been described yet. We propose a model-based approach
that isolates the calibration of δ̂ based on equation (5.3.5).

According to equation (5.3.5), E(Yj − ĝ0(xj)) can be directly compared against
predictions δ̂(xj) for treated individuals j ∈ 1, . . . , nj . In case of dichotomous
Yj , a natural way to do so is to model Yj with offset ĝ0(xj). For instance, for a
logistic model, a calibration model could be formulated as

logit(Yj) = β0 + β1δ̂lp(xj) + ĝlp,0(xj) (5.4.1)

where δ̂lp(xj) = logit(ĝ1(xj))− logit(ĝ0(xj)) and ĝlp,0(xj) = logit(ĝ0(xj)). The
anticipated intercept β0 and slope β1 in case of a perfect prediction are 0 and
1 respectively, as for regular prognostic model calibration [9, 8]. Assuming
that ĝ0(xj) is correct, the estimated slope β̂1 directly reflects ITE overfitting
(slope below 1) or underfitting (slope above 1), and the estimated intercept
β̂0 reflects average error in the ITE predictions. When ĝ0(xj) is misspeci-
fied, β̂0 and β̂0 amalgamate ITE calibration and errors in ĝlp,0(xj). Given
the importance of ĝ0(xj), which essentially anchors the ITE predictions, it
might be preferable to derive predictions ĝ0 based on a new model fitted in
the external control arm data to reduce bias in the assessment of ITE calibra-
tion. A more direct way to assess average error in predicted ITEs is to ex-
amine the difference between observed and expected average treatment effect:
[ 1
nj

∑
j Yj − 1

ni

∑
i Yi]− [ 1

nj

∑
j ĝ1(xj)− 1

ni

∑
i ĝ0(xi)].

As a side note, continuous outcomes Yj allow for direct analysis of residuals
Yj − ĝ0(xj) by means of a linear regression model.

Yj − ĝ0(xj) = β0 + β1δ̂(xj) + ϵj (5.4.2)

for individuals j ∈ 1, . . . , nj and with ϵj ∼ N(0, σ2). The anticipated intercept,
slope, and procedure to derive calibration in the large are the same as for (5.4.1).
In addition to model-based evaluation, a smooth curve such as a loess (locally
estimated scatterplot smoothing) estimate can be drawn through a scatterplot
of Yj − ĝ0(xj)) versus δ(xj) to provide a visual evaluation of ITE calibration
for continuous outcomes.

146



55555

Chapter 5

5.5 Simulation study

A simulation study was performed with the aim to compare performance of the
different discrimination and calibration measures for ITE predictions discussed
across varying sample sizes. The simulation study was performed and reported
in line with recommendations by Morris et al. [124] and using R statistical
software version 4.2 [160].

5.5.1 Simulation study procedures

Data generating mechanisms: Synthetic trial data were simulated for a
trial comparing two treatments on a binary outcome. Covariates x1 and x2

were generated from independent standard normal distributions and treatment
assignment was 1:1 and independent of X. Data were simulated for both poten-
tial outcomes based on a logistic data generating mechanism (DGM) according
to model

logit(P (Y A=a
i = 1)) =− 1− 0.75ai + xi1 + 0.5aixi2 (5.5.1)

for a population of size 100,000, and will be further referred to as DGM-1.
DGM-1 includes main effects of treatment and X1 and an interaction between
treatment and X2. For each of nsim = 500 simulation runs, development (D)
and validation data (V1) sets of size 500, 750, and 1000 were randomly drawn
from the population. Marginal event probabilities were P (Y a=0) ≈ 0.31 and
P (Y a=1) ≈ 0.20. Additionally, independent validation sets of 1000 cases (V2)
were sampled from a population of size 100,000 generated from a second DGM
(DGM-2) with changes in the coefficients to reflect a different population

logit(P (Y A=a
i = 1)) =− 0.5− 0.5ai + 0.75xi1 + 0.25xi2 + 0.25aixi1 + 0.25aixi2,

(5.5.2)

Marginal event probabilities for the second DGM were P (Y a=0) ≈ 0.39 and
P (Y a=1) ≈ 0.31. With differences in both average treatment effect and hetero-
geneity of treatment effect between DGM-1 and DGM-2, a model developed in
a sample from DGM-1 should not perform well in individuals from DGM-2.

Estimands: For discrimination, our estimand θd is the concordance statistic
between ITE predictions and the true probabilities to observe benefit. For a
fixed ITE model, a given data generating mechanism, and a fixed matrix of ob-
served covariates, this is exactly the definition of the mbcb in equation (5.3.10)
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when substituting true the value of Pbenefit,k,l (know from the DGM) for the
estimated P̂benefit,k,l. This provides the expected ITE concordance statistic with
the expectation taken over repeated samples of the potential outcomes. Due to
its dependence on the matrix of observed covariates in a sample, it is further
referred to as the ’sample reference’. For the estimand in the population, the
mbcb is a considerable computational burden due to the fast-growing number
of observation pairs with increasing sample size. Instead, the ’population ref-
erence’ was not based on the expectation over potential outcomes given the
covariates, but on a single sample of the potential outcomes. Hence it is still
unbiased with respect to the true estimand in the population. Further details
are provided in online supplementary material S5.2) and also show the relation
between the mbcb and Harrell’s c-statistics [149, 8] applied to ITE predictions
and simulations of both potential outcomes for each individual.

For calibration performance, our estimands were the calibration intercept β0

and calibration slope β1 as defined in equation (5.4.1). The true values follow
directly from equation (5.4.1) when taking, for j ∈ 1, . . . , nj , the known prob-
abilities P (Y a=1

j ) based on the appropriate DGM, δ̂lp(xj) as the sample-based
ITE predictions under evaluation, and ĝlp,0(xj) based on known probabilities
P (Y a=0

j ). Both a sample reference (the value of the estimand for the distri-
bution of X in the given sample) and a population reference (the value of the
estimand for the distribution of X in the given population) were derived.

Methods: The ITE model fitted to the development data was a logistic regres-
sion model estimated by means of maximum likelihood of the form

logit(P (Yi = 1)) =β0 + β1ai + β2xi1 + β3xi2 + β4aixi1 + β5aixi2 (5.5.3)

Discrimination performance was assessed by means of the c-for-benefit using
1:1 benefit matching (cben-δ̂), the c-for-benefit using 1:1 matching on predicted
outcome risk under the control treatment (cben-ŷ0), and the mbcb. Calibration
performance was assessed according to equation (5.4.1). Each of the perfor-
mance measures was evaluated (1) without correction in the same samples as
in which the ITE model was developed (sample D, apparent performance[8]),
(2) in interval validation using bootstrap 0.632+ adjustment (3) in interval val-
idation using bootstrap optimism correction, (4) in external validation samples
V1, (5) in external validation data samples V2, (6) in the external population
from DGM-1, and (7) in the external population from DGM-2. A more detailed
account of the procedures in available in online supplementary material S5.3.

Performance measures: Writing θs for the reference value in simulation run
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s, and θ̂s for the corresponding estimate, performance measures were averaged
across simulations s ∈ 1, . . . , nsim in terms of bias 1

nsim

∑nsim

s=1 (θs− θ̂s) and root

mean squared prediction error
√

1
nsim

∑nsim

s=1 (θs − θ̂s)2.

Additional reference: For calibration evaluation only, a ’naive’ population
reference value was derived for each ITE model to demonstrate that ITE cali-
bration heavily relies on the accuracy of control outcome risk predictions (ĝ0).
This reference does not correspond to an estimand of interest, but instead cor-
responds to ’naive’ adjustment for ĝ0 as predicted by the evaluated ITE model
(i.e., instead of ĝ0 as predicted from a local model in data independent from the
development data). Thereby, it serves to illustrate the large-sample error that
occurs under misspecification of the model for ĝ0.

5.5.2 Discrimination results
Figure 5.1 and Table 5.1 show the main simulation results with respect to the dis-
crimination statistics. Tabulated results corresponding to Figure 5.1 are avail-
able as online supplementary Table S5.1. First, note that the sample reference
and population reference show near perfect agreement across all panels. This
shows that the estimand in a validation sample generalized well to entire popu-
lation (i.e., did not greatly depend on the specific sample of covariate values in
a given validation sample).

With respect to the estimates, and starting with apparent evaluations (top
left), all statistics showed optimism with respect to the reference standards,
which decreased with increasing sample size. As expected, direct evaluation in
new data from the same DGM (top-middle) removes optimism for cben-δ̂ and
cben-ŷ0, and did not remove optimism in the model-based c-for-benefit. The
latter preserves overfitting since it only estimates the c-statistic that would be
obtained for the new data if the model were correct. Note that the estimated
cben-δ̂ in V1 was actually too low, indicating bias in the estimator.

As shown in the bootstrap panels in Figure 5.1, both types of bootstrap eval-
uations adjusted for optimism in apparent evaluations. On average, bias was
almost eliminated from cben-ŷ0 and the mbcb. For cben-δ̂ the bootstrap ad-
justed estimates were too low, which is in line the findings in V1. Nonetheless,
bootstrap procedures were generally not able to decease the root mean squared
prediction error between the estimated statistic and population reference statis-
tic (Table 5.1). The 0.632+ procedure for the cben-ŷ0 forms an exception,
decreasing both bias and rmse for all sample sizes.
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Figure 5.1: Simulation results for the discrimination statistics in terms of mean
c-statistic ± 1 SD. Top row: apparent evaluations in the original data (left),
new data from the same DGM (middle), and new data from a different DGM
(right). Bottom row, left to right: adjusted evaluations in the original data
(bootstrap corrected 0.632+ and optimism correction), adjusted evaluations in
new data from the same DGM, and adjusted evaluations in new data from a
different DGM.

With respect to evaluation in new data from a different DGM (top-right), the
large systematic error for cben-ŷ0 and mbcb is apparent. For the cben-ŷ0, this
is because it relies on predictions ĝ0 for 1:1 matching that are not suitable
for the data at hand. Consequently, the observed outcome difference within
matched pairs cannot be fully attributed to treatment, resulting in biased es-
timates. For the mbcb, this actually a feature, showing the expected model
performance adjusted to the case-mix in V2 assuming the ITE model is cor-
rect. Local estimates of P̂benefit,k,l are required for actual external validation.
Lastly, the original cben-δ̂ was a little too low (as in V1), but still quite close to
the reference standards, with 1:1 matching on δ̂ apparently reasonable for this
DGM.

Sub-figures and rows indicated with a star (in Figure 5.1 and Table 5.1) show
the results after local estimation of control outcome risk (for the cben-ŷ0) and
P̂benefit,k,l (for the mbcb). For the cben-ŷ0, this is required for accurate matching
in new data.5 For the mbcb, local estimates of P̂benefit,k,l are always required
for validation purposes. For both V1 and V2, this results in essentially unbiased
estimates for both the cben-ŷ0 and the mbcb. However, rmse of the cben-ŷ0
was still large and the mbcb is clearly to be preferred in terms of error when
compared against the population reference estimates.

Summarizing, the cben-δ̂ showed some bias in all settings but was very sta-
ble throughout. Both the cben-ŷ0 and mbcb were essentially unbiased when
evaluated in external data, but only the latter was sufficiently precise to also
outperform the cben-δ̂ in terms of rmse. Lastly, bootstrap procedures removed
optimism across the board, but also increased variability.

5External data set V1 is an exception, since the DGM was exactly the same as for the
development set, but this is never known in practice
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5.5.3 Calibration results
Simulation results for the calibration estimates are shown in Figure 5.2 (slopes),
online supplementary material Figure S5.1 (intercepts) and Table 5.2. Tabu-
lated results corresponding to these figures is in online supplementary Tables
S5.2 and S5.3. As expected, the apparent intercept and slope evaluations were
uniformly 0 and 1 respectively. While this is a useful check of procedures, it
also illustrates a challenge in calibration procedures: the apparent assessment
is not just optimistic, but wholly uninformative.

Naive calibration assessment in V1 (i.e., with offset ĝlp,0(xj) based on the ITE
model under evaluation) showed optimistic slope estimates. Performing the
same assessment in the whole population for DGM-1 (’population naive’) gave
similarly biased estimates. These findings are exaggerated when assessing cali-
bration in V2, with the naive findings for all sample sizes seemingly very good,
yet with large deviation from the true slopes for either the sample reference
(i.e., given the distribution of covariates in the validation data) or the popu-
lation reference. Both bootstrap procedures removed optimism from apparent
estimates, but the 0.632+ estimate was on average 0.062 too low for all sample
sizes. Optimism correction performed better and was on average 0.036 below the
population reference. Nonetheless, in terms of rmse, bootstrap estimates were
all worse than the non-informative apparent evaluation. This implies that there
does not seem to be enough information in a single sample to obtain reliable
ITE calibration estimates.

The only consistently unbiased estimates were obtained in external data V1
and V2 after locally estimating a model for ĝlp,0(xj) in the control arm. Note
that this approach does not use data twice, since the ITE calibration model
is fitted in the treated arm only. Regardless of sample size or data generating
mechanism, these estimates were almost unbiased and had the best rmse as
compared to any of the other estimates. The only exception was for n1000 in
V1, which had a similar rmse based on the original model for ĝlp,0(xj). Since
D and V1 are both from DGM-1, re-estimation of ĝlp,0(xj) is only beneficial if
V1 has a larger control arm, which was the case for n500 and n750 for D.
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Nonetheless, since rmse is on the scale of the estimates, the absolute size of the
errors was still large, casting doubt on the practical utility of ITE calibration.

Summarizing, relying on the ITE model for predictions ĝlp,0(xj) (control out-
come risk) can induce large bias and local estimation of ĝlp,0(xj) in independent
data is preferable. Bootstrap estimates removed optimism and performed well
in terms of bias, but were highly variable for particular data sets, which lim-
its practical applicability. In external validation data, performance of the ITE
calibration metrics provided a large improvement over apparent and bootstrap
estimated in terms of both bias and root mean squared prediction error.

Statistic β̂0 β̂1

Development data
Apparent 0.563, 0.378, 0.319 0.724, 0.491, 0.409
0.632+ na 0.893, 0.679, 0.573
Opt. corrected 0.627, 0.450, 0.384 0.817, 0.600, 0.506

External
DGM-1 0.367, 0.336, 0.315 0.473, 0.413, 0.386
DGM-2 0.924, 0.911, 0.898 0.730, 0.701, 0.665
DGM-1* 0.337, 0.322, 0.319 0.412, 0.375, 0.393
DGM-2* 0.373, 0.284, 0.269 0.455, 0.316, 0.332

Table 5.2: Root mean squared error against population reference as averaged
over simulation runs for calibration intercept and slope estimates for each of the
sample sizes (500, 750, and 1000; left to right). * after local estimation of control
outcome risk. Bold numbers denote the best performance for each sample size
in the following groups: development data, external data from DGM-1, and
external data from DGM-2.

Figure 5.2: Simulation results for the ITE calibration slope estimates (mean ±
1 SD). Top row: apparent evaluations in the original data (left), new data from
the same DGM (middle), and new data from a different DGM (right). Bottom
row, left to right: adjusted evaluations in the original data (bootstrap corrected
0.632+ and optimism correction), adjusted evaluations in new data from the
same DGM, and adjusted evaluations in new data from a different DGM.
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5.6 Applied example: the third International
Stroke Trial

Patients with an ischemic stroke have sudden onset of neurological symptoms
due to a blood clot that narrows or blocks an artery that supplies the brain. A
key component in the emergency medical treatment of these patients includes
clot-busting drug alteplase (intravenous thrombolysis recombinant tissue-type
plasminogen activator) [161].

The third International Stroke Trial (IST-3) was a randomized trial and inves-
tigated the benefits and harms of intravenous thrombolysis with alteplase in
acute ischemic stroke [148]. This large trial included 3035 patients receiving
either alteplase or placebo in a 1:1 ratio. The primary outcome was propor-
tion of patients that was alive and independent at 6-month follow-up, which
we used as outcome of interest here. Primary analyses of the treatment effect
were performed by with logistic regression adjusted for linear effects of age, Na-
tional Institutes of Health stroke scale (NIHSS) score, time from onset of stroke
symptoms to randomization, and presence (vs absence) of ischemic change on
the pre-randomization brain scan according to expert assessment. This analysis
showed weak evidence of an effect (OR 1.13, 95% CI 0.95-1.35), but subgroup
analyses suggested possibly heterogeneous treatment effect by age, NIHSS score,
and predicted probability of a poor outcome.

For illustrative purposes, we here compare a main effects logistic regression
model similar to the original adjusted analysis (model 1) with a model where
all covariate-treatment interactions were included (model 2). The outcome was
coded as 0 for those independent and alive after 6 months and 1 otherwise.
The included variables were treatment, age, NIHSS, time (from onset of stroke
symptoms to randomization), and imaging status (presence vs absence of is-
chemic change on the pre-randomization brain scan). Continuous variables age,
NIHSS, and time, were modeled using smoothing splines. We also included
covariate-treatment interactions for these variables. Continuous variables age,
NIHSS, and time, were modeled using smoothing splines with shrinkage. We
also included covariate-treatment interactions for these variables. Models were
fitted using the mgcv package in R with defaults smoothing parameter selection
based on generalized cross-validation [83]. All in all, this applied example il-
lustrates different ways to assess the quality of individualized treatment effect
predictions. The evaluated models were emphatically chosen for this purpose
and were not developed in collaboration with clinical experts in the field. Hence,
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they are not meant to me applied in practice.

The exact parameter estimates for both models are not of key interest, but
the apparent performance with respect to outcome risk prediction was good for
both: c-statistics were 0.826 and 0.831 for model 1 and 2 respectively, with
accompanying Brier scores of 0.160 and 0.158 and Nagelkerke R2 of 0.389 and
0.402. The Spearman correlation between outcome risk predictions for both
models, conditional on the assigned treatments, was 0.99.

Model cben-δ̂ cben-ŷ0 mbcb β̂0 β̂1

Apparent
M1 0.488 0.489 0.510 -0.117
M2 0.562 0.570 0.567 0.011 1.071

bootstrap 0.632+
M1 0.489 0.499 0.505
M2 0.535 0.559 0.536 0.522

Optimism corrected
M1 0.485 0.475 0.507 -0.068
M2 0.534 0.544 0.518 -0.022 0.895

Table 5.3: Applied example discrimination and calibration statistics for pre-
dicted individualized treatment effect.

Nonetheless, the range of predicted ITEs (i.e., on the risk difference scale) was
very different. Model 1 predicted ITEs with median -0.020 (IQR -0.027, -0.011
and range -0.029, 0.000), while model 2 predicted ITEs with median -0.026
(IQR -0.059, 0.027 and range -0.811, 0.213). That is, the predicted treatment
effect was very similar across individuals when predicted by model 1 (assuming
a constant treatment effect on the log odds scale), but not when predicted by
model 2 (assuming a heterogeneous treatment effect on the log odds scale).
Table 5.3 shows the apparent and bootstrap corrected results for discrimination
and calibration assessment at the ITE level for the applied example as averaged
over 1000 bootstrap samples.

With respect to ITE discrimination, both apparent and bootstrap-corrected
discrimination estimates favored model 2 over model 1, with model 1 estimates
around the no discriminative ability value of 0.5. If model 2 were entirely correct,
the expected c for benefit for samples with similar characteristics was estimated
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to be 0.567 (apparent mbcb). While we know that model 2 is just a model
and not exactly correct, this value is relevant since it provides the upper bound
of ITE concordance for the combination of model and data. Subsequently, the
bootstrap procedures uncovered evidence of overfitting of ITE’s and provided
downward adjusted estimates.

Calibration slope estimates suggested that model 2 ITE estimates are more
heterogeneous than justified by the data, and require shrinkage. The amount
of shrinkage suggested varies considerably between the 0.632+ and optimism
corrected estimates. Based on the simulation study, optimism correction was
already conservative and was to be preferred over the 0.632+ slope which were
yet more conservative. Note that the calibration slope for model 1 is not es-
timable (since the ITEs have no variability on the logit scale) and the intercept
estimate for model 1 clearly show that the degree of predicted benefit is under-
estimated.

In summary, the results indicate that model 1 did not provide useful differentia-
tion in terms of ITEs. While the discriminative ability of model 2 seems modest,
clear benchmarks are lacking. After updating based on the optimism corrected
calibration estimates, model 2 ITE predictions may still be meaningful, hav-
ing a median of -0.02 (IQR -0.52, 0.02 and range -0.58, 0.19). Comparing the
1969 patients predicted to have benefit (δ̂model2 < 0) with the remaining 1066
patients (δ̂model2 ≥ 0), the first were older [median(IQR) age 83 (78-87) vs 73
(63-82)], had worse symptoms [median(IQR) nihss 15(10-20) vs 6(4-9)], were
treated earlier [median(IQR) time in hours 3.5 (2.5-4.9) vs 4.2 (3.6-4.8)], were
more likely to have visual infarction on imaging (43% vs 36%), and had a less
favorable outcome on average (alive and independent after 6 months in 23% vs
58% respectively).

5.7 Software

R package iteval (https://github.com/jeroenhoogland/iteval) provides a
free software implementation on the freely available R software environment
for statistical computing [160] for the cben-δ̂, cben-ŷ0, mbcb, and calibration
measures as defined in this paper.
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5.8 Discussion

Measures of calibration and discrimination have a long history in the context of
prediction models for observed outcome data, especially of the binary type.
However, the evaluation of individualized treatment effect (ITE) prediction
models is more challenging, first and foremost because of the causal nature
of the predictions and the ensuing unobservable nature of individualized treat-
ment effects. In this paper, we utilized the potential outcomes framework [93]
to obtain insight into existing performance measures [132] and to develop novel
measures of discrimination and calibration for ITE prediction models. We pro-
posed model-based statistics to address challenges of existing methods. Impor-
tantly, these statistics are applicable regardless of the modeling approach used to
generate ITE predictions, as long as predictions for each potential outcome are
available. This means that our methods are usable for both statistical, as well as
machine learning methods. Also, while the primary focus was on dichotomous
outcomes, we also provided residual-based approaches for continuous outcome
models. As such, our work provides generally applicable tools for the endeavor
of ITE prediction model evaluation [146].

With respect to discriminative ability, the model-based c-for-benefit (mbcb)
provides both a normal performance measure and an expected (case-mix ad-
justed) reference level for new data. The latter is relevant since concordance
probabilities are known to be sensitive to case-mix [159]. Also, bootstrap pro-
cedures are available to adjust for optimism during model development. In the
simulation study, the mbcb estimates were best in terms of both bias and root
mean squared error across simulation settings. Both matching-based measures
of discriminative performance had specific downsides. The original cben-δ̂ has
a difficult interpretation and was downward biased in the simulation study, but
was very stable throughout. The adaptations implemented in the cben-ŷ0 did
remove the bias, but at the cost of much larger variability. We hypothesize that
the stability of the mbcb is due to the lack of a need for a matching algorithm.
The large variability of cben-ŷ0 likely relates to strong reliance of the matching
procedure on the accuracy of predicted control outcome risk.

With respect to calibration, the potential outcomes framework provided a model-
based method that evaluates ITE prediction in the treated individuals, against
an offset of prediction outcome risk under control treatment. Compared to tra-
ditional calibration measures at the level of the outcome of interest, calibration
of ITE predictions has the additional challenge that ITEs are in fact relative
effects. As such, correct calibration of ITEs depends on correct calibration of
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outcome risk under control treatment. In line, local updating of the model
predicting control outcome risk proved paramount for valid assessment of ITE
calibration.

A key finding for both ITE discrimination and calibration measures was that
bootstrap procedures were able to remove optimism (i.e. reduce bias), but
that the increase in variance of the estimator generally led to increased root
mean squared error. This implies that external data is required to accurately
assess ITE predictions. The underlying reason is the need for local estimates
(i.e., independent of the ITE model under evaluation) of control and treated
outcome risk. While these steps were incorporated in the bootstrap procedures,
they are necessarily noisy since they have to rely on only 36,8% of the data for
any particular bootstrap run.

While this paper focused on measures specifically targeting ITE predictions, in
practice we recommend assessing prediction performance with respect to the ob-
served outcomes first [8, 9]. For instance, performance with respect to outcome
risk can be evaluated in the control arm and in the treated arm separately. If
performance is good, one can move on to ITE evaluation. The motivation for
this hierarchy is that ITEs reflect differences and that they hence compound
errors in both potential outcome predictions.

Limitations of the current work include the limited nature of the simulation
study which was mainly performed for illustrative purposes. While both discrim-
ination and calibration are well researched in classical settings, their application
to ITE predictions is relatively novel. While we did elucidate several aspects
of ITE prediction model evaluation in terms of discrimination and calibration,
important questions remain. These include questions with respect to the best
strategy for model comparison, the uncertainty of the estimated statistics, the
relation between discrimination and calibration on the outcome risk level and
the ITE level, and the relation between discrimination and calibration statistics
and clinical usefulness of the models. With respect to uncertainty estimates,
bootstrap procedures provide a good option, but many of the challenges are
still open.

In terms of future research, it would be interesting to evaluate whether some level
of grouping is beneficial for the evaluation of model performance. Paradoxically,
the aim for precision underlying the development of ITE models may hamper
the possibility to evaluate them, since individual level treatment effects are
inherently unobservable, and their evaluation hence involves approximations
based on the very model under evaluation. Also, especially in the binary event
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case, even if individual-level treatment effects would be observable, they would
still be very noisy. This is the underlying reason that the c-statistics for benefit
are so much lower than c-statistics on the outcome level.

Summarizing, we used the potential outcomes framework to obtain insight into
measures of discrimination and calibration at the level of individualized treat-
ment effect predictions. This allowed for a principled examination of existing
measures and a proposal of new measures that may enrich the toolbox for ITE
model evaluation. Further research is necessary to improve understanding of the
exact characteristics of these measures under varying conditions with respect to
sample size, degree of treatment effect heterogeneity, and explained variation.
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Supplementary Material

S5.1 Binomial outcome data

S5.1.1 Absolute risk, risk difference, and binomial error

Focusing on binary outcomes, assume we observe outcome Yi ∈ {0, 1} and co-
variate status xi for each individual i. Using data on n individuals, we can
model the outcome risk P (Yi = 1|A = ai,X = xi). There are two sources of er-
ror when using such a model to predict binary outcomes. There is the reducible
error in modeling the risk (i.e., how well the modelled probability approximates
the actual probability of an event), and there is the irreducible error in the
difference between the actual probability of an event and its manifestation as a
{0, 1} outcome (binomial error).

Adding to this, actual interest is in the difference in outcome risk under different
treatment assignment a ∈ {0, 1}. That is, interest is in p(Yi = 1|A = 1,X =
xi) − p(Yi = 1|A = 0,X = xi). The range of possible true (and estimated)
treatment effects (risk differences) includes all values in the [−1, 1] interval, but
the observed difference between any two outcomes can only be one of {−1, 0, 1}.
An example may be helpful to appreciate the large influence of irreducible error
in this setting. For instance, regardless of any modeling, assume that an active
treatment (as compared to a control condition) reduces outcome risk from 25%
to 20% for a certain individual. Moreover, assume that these probabilities are
known exactly and that this individual can be observed under both treatment
conditions. A simple probabilistic exercise6 shows that the different outcome
probabilities are P (Y 0 = 0, Y 1 = 0) = 0.6, P (Y 0 = 0, Y 1 = 1) = 0.15, P (Y 0 =
1, Y 1 = 0) = 0.2, and P (Y 0 = 1, Y 1 = 1) = 0.05. That is, the probability that
the active treatment induces any observed outcome difference is 35%, and only
20% is in the expected direction (i.e. in the direction of the treatment effect).
This is just due to the irreducible error, apart from any modeling issues, and
ignoring the fact that in practice only one potential outcome is observed of each
individual. The insensitivity of binary endpoints is of course well known in the
context of trials, where a larger number of replications can provide a solution
when the average treatment effect is of interest. In the case of individualized
treatment effect estimation however, the required number of replications is more
challenging to control due to its complex dependence on all individual-level

6For instance, P (Y 0 = 0, Y 1 = 0) = (1−P (Y 0 = 0))(1−P (Y 1 = 0)) = (1−0.25)(1−0.2) =
0.6
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characteristics of interest.

S5.1.2 Scale matters
Models that predict the risk of a binary event commonly make use of a link
function in order to map a function of the covariates in R onto the proba-
bility scale [163]. Such link functions, such as the logit or inverse Gaussian,
are inherently non-linear and hence do not preserve additivity. Consequently,
a treatment effect that is constant (i.e., does not vary with other covariates)
before applying the link function shall vary with other covariates on the risk
scale and vice versa. As an example, we write h−1 for an inverse link function
and take control risk to be a function f(·) of only one random variable X (i.e.,
P (Y a=0|X = x) = h−1(f(X))). Subsequently, assume a constant (homoge-
neous) relative treatment effect d such that P (Y a=1|X = x) = h−1(f(X) + d),
then the absolute treatment effect necessarily depends on X, since

δ(x) = P (Y a=1|X = x)− P (Y a=0|X = x) (S5.1.1)

= h−1[f(X) + d]− h−1[f(X)] ̸= h−1[f(X) + d− f(X)] = h−1(d)

unless h−1(·) is linear. Consequently, between-individual variability (i.e., vari-
ability in terms of X) directly changes control outcome risk and affects the
absolute effect of d on the probability scale even if d is constant. For instance,
a constant treatment effect on the log-odds scale translates into heterogeneous
treatment effect on the risk difference scale. Thereby, relatively simple treat-
ment effect structures may lead to meaningful between-individual treatment ef-
fect variability at the risk difference level if there is large variability in h−1[f(X)]
[146, 164]. In addition, treatment effect may interact with X in the domain of
h−1(·), i.e., we may directly model treatment effect heterogeneity. These two
sources of variability in δ(x) can no longer be discerned when evaluating just
the estimates δ̂(x). Hence, the benefit in terms of interpretation of measures
on the scale of δ(x) [92], as of interest in this paper, has a price in that they
conflate variability in δ̂(x) from different sources: between-subject variability in
P (Y a=0|X = x) and genuine treatment effect heterogeneity on the scale used
for modeling.

S5.2 Discrimination estimand
Harrell’s c-statistic [149, 8] can be applied to ordered predictions and (possibly
censored) ordered outcomes. Applying Harrell’s c-statistic with ITE predictions
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and within-individual differences in potential outcomes Y a=1
k − Y a=0

k as simu-
lated from some data generating mechanism, the equation for the concordance
probability can be written as

cδ̂,ben =

∑
k

∑
l ̸=k

[
I(δ̂k < δ̂l)benkl +

1
2I(δ̂k = δ̂l)benkl

]
∑

k

∑
l ̸=k [benkl]

(S5.2.1)

with

benkl = I([Y a=1
k − Y a=0

k ] < [Y a=1
l − Y a=0

l ]) (S5.2.2)

However, the within-individual differences in sampled potential outcomes Y a=1
k −

Y a=0
k are just a single manifestation of treatment effect for covariate matrix X,

and interest is in the expected value over repeated samples of potential out-
comes given X. Taking this expectation EY a=A|X over equation (S5.2.1) does
not affect ITE predictions, since these are invariant conditional on a fixed ITE
model and fixed X. For benkl,

EY a=A|X(benkl) = EY a=A|X(I([Y a=1
k − Y a=0

k ] < [Y a=1
l − Y a=0

l ]))

= P ([Y a=1
k − Y a=0

k ] < [Y a=1
l − Y a=0

l ])

= Pbenefit,k,l (as defined in Section 5.3.4) (S5.2.3)

In turn, substituting an estimate of Pbenefit,k,l for benkl in equation (S5.2.1)
gives the equation for the mbcb (equation (5.3.10)). Instead substituting the
true probabilities Pbenefit,k,l, as known in a simulation context given the data
generating mechanism, provides the expected value for the ITE concordance
statistic for a given data generating mechanism, a fixed matrix of observed
covariate values X, and a fixed ITE model. Therefore, it was used as the
estimand value of the ITE concordance statistic for a given sample (denoted
’sample reference’).

When the sample size is very large, such as for the simulated populations of
size 100,000, calculation of the mbcb is computationally very intensive and an
approximation based on cδ̂,ben (equation (S5.2.1)) is accurate. Note that cδ̂,ben
is still unbiased, but of course more variable.
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S5.3 Performance evaluation details

S5.3.1 Apparent performance

Apparent ITE model performance was evaluated, without any adjustment, in
the development sample D in which the ITE model was fitted. Consequently,
apparent estimates can be expected to be optimistic. For apparent calibration
performance of a logistic ITE model based on maximum likelihood estimation,
note that the estimates will invariably be β̂0 = 0 and β̂1 = 1 since the calibration
model is of the exact same type. All in all, apparent performance was primarily
assessed to show the need for internal validation procedures that correct for
optimism or, better yet, new data.

S5.3.2 Internal validation

Discrimination
Internal validation was performed based on a non-parametric bootstrapping
procedure based on 100 bootstrap samples. Performance estimates were based
on either a 0.632+ method [165] adapted for application in the context of c-
statistics or on optimism correction [8].

The adapted 0.632+ method provides a weighted average of apparent perfor-
mance and average out-of-sample performance as based on predictions from
bootstrap models for the cases not in the bootstrap sample. Writing ĉapp
(scalar) for the apparent c-statistic and ĉoos (scalar) for the average out-of-
sample c-statistic across bootstrap replications,

ĉoos =

{
min(γ, ĉoos), ĉapp ≥ γ
max(γ, ĉoos), ĉapp < γ

(S5.3.1)

R =

{
|ĉapp−ĉoos|
|ĉapp−γ| , |ĉoos − γ| < |ĉapp − γ|

0, otherwise
(S5.3.2)

w =
0.632

1− 0.368R
(S5.3.3)

ĉ0.632+ = ĉapp(1− w) + wĉoos (S5.3.4)

where γ is the value of the statistic for an uninformative model (so γ = 0.5
for c-statistics), and w is a weight that depends on the discrepancy between
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apparent and out-of-sample performance. To prevent that R falls outside of the
(0, 1), we avoid the possibility of bootstrap correction towards a point beyond
the no information threshold by replacement of ĉoos with ĉ′oos throughout, with

ĉ′oos =

{
min(γ, ĉoos), ĉapp ≥ γ
max(γ, ĉoos), ĉapp < γ

(S5.3.5)

Subsequently, R reflect the degree of overfitting and ranges from zero to one,
with w depending only on R and ranging from 0.632 and 1. Thereby, ĉ0.632+
moves towards ĉ′oos when the amount of overfitting (|ĉapp − ĉ′oos|) is large with
respect to the models gain relative to no information (|ĉapp − γ|). The choice
to use ĉ′oos instead of ĉ′oos in (S5.3.5) was to avoid correction of an apparent
estimate beyond the no information threshold.

Alternatively, optimism correction estimates optimism as the average difference
between performance of bootstrap models as evaluated in a) the original full data
set D and b) within the bootstrap sample. In case of overfitting, the discrepancy
between the two will increase. The apparent estimate is subsequently corrected
for this bootstrap estimate of optimism.

Obtaining either the 0.632+ or optimism corrected estimates for cben-δ̂ and
cben-ŷ0 is straightforward. One subtlety is that in case of unequal group sizes
(treated vs control), the average over 1000 repeated analyses of subsamples of
the larger arm was taken to accommodate for 1:1 matching. For the model-
based estimates, a choice with respect to the estimation of P̂benefit,k,l has to
be made with respect to out-of-sample evaluation. To avoid bias, the out-of-
sample evaluation of P̂benefit,k,l for the 0.632+ estimate was based on a model
for ĝ0 and ĝ1 is the out-of-sample cases (with the same specification as the
model under evaluation). For the optimism correction, P̂benefit,k,l for the whole
of D was based on the ITE model as developed in the full sample D. That
is, the 0.632+ model-based c-statistic estimates were obtained from (1) out-of-
sample predictions δ̂(xi∈oos) from bootstrap models and (2) P̂benefit,k,l based on
an out-of-sample model. Optimism corrected model-based c-statistic estimates
were obtained from (1) predictions δ̂(xi) from bootstrap models and P̂benefit,k,l
based on the development model.

Calibration
Bootstrap evaluation of the calibration parameters was also performed. A
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0.632+ estimate was derived for the slope estimates in analogy to the derivation
for c-statistics, but using γ = 0 for the value that slope β1 takes for an unin-
formative model. Out-of-sample estimates of ĝ0(·) were based on a model fitted
in just the out-of-sample controls to serve as an offset in the calibration model
fitted in the out-of-sample treated arm. A 0.632+ estimate for the calibration
intercept parameter is not readily available since a γ value for a non-informative
intercept cannot be defined. Optimism corrected bootstrap estimates were ob-
tained for both intercepts and slopes. Estimates of ĝ0(·) in the bootstrap sample
were based on the bootstrap model and estimates ĝ0(·) in the original data were
based on the original ITE model fitted in development data D.

S5.3.3 External validation

Discrimination
External validation was performed in both V1 (DGM-1) and V2 (DGM-2). ITE
predictions can be evaluated directly using cben-δ̂. For cben-ŷ0, which matches
based on predicted control outcome risk ĝ0(·), a key question is whether ĝ0(·)
may best be based on the ITE model or on a new model fitted in the control arm
of the external data. In practice, the accuracy of ĝ0(·) based on the ITE model
can be assessed in the control arm of the external data. If not satisfactory, a
new model for ĝ0(·) can be derived in the external data for use with the cben-ŷ0.
The latter option was taken for the simulation study based on a refitting of the
relevant parts of model (5.5.3) in the control arm (i.e., omitting parameters
relating to a which equal 0 for controls) of the external data. Note that fitting
a new model will in general remove bias, but may have a high cost in terms
of variance if the external data set is small. For the model-based c-for-benefit
(mbcb), the accuracy of P̂benefit,k,l, and hence the underlying ĝ0(·) and ĝ1(·), is
paramount. In the mbcb, P̂benefit,k,l is the sole carrier of information from the
external data and acts as the reference for ITE predictions under evaluation. In
line with the procedure for the cben-ŷ0, performance with respect ĝ0(·) and ĝ1(·)
can be examined in the external data (control arm and treated arm respectively)
and may indicate the need for a new model. Again, the latter option was chosen
for the simulation study. Note that D, V1 and V2 were always of equal size, such
that there was the benefit of possibly reducing bias while avoiding the possible
harm of increased variance. Finally, note that while cben-δ̂, cben-ŷ0, and the
mbcb focus on δ̂(xi), inadequate prediction performance with respect to ĝ0(·)
and/or ĝ1(·) is an ominous sign for ITE model performance, and its evaluation
should in practice be part of any performance evaluation with respect to ITEs.
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Calibration
Direct calibration assessment in external data exactly followed the lines of ap-
parent calibration assessment with all predictions (both δ̂lp(xj) and ĝlp,0(xj))
based on the ITE model as derived in D and applied in V1 and V2. Adjusted
estimates were obtained based on local predictions ĝlp,0(xj) after refitting of
the relevant parts of model (5.5.3) in the control arm (i.e., omitting parameters
relating to a which equal 0 for controls) of the external data.

As for discrimination, the estimands as defined in Section 5.5 reflect the target
reference parameter values for a specific ITE model as evaluated in a specific
sample (D, V1 or V2). To remove dependence of the performance measure on
a (small) sample, population reference values were derived per data generating
mechanism as for the discrimination measures. Derivation was exactly analo-
gous to the description under ’estimands’ in Section 5.5. In addition, a naive
population reference was derived for calibration assessment that mirrored as-
sessment in D (i.e., naive referring to adjustment based on ĝ0(·) based on the
ITE model instead of independent data). Therein, this naive population refer-
ence helps to remove the influence of sample size from the assessment of bias
due to misspecification of ĝ0(·).

S5.4 Additional simulation study results
(Continues on the next page)

Figure S5.1: Simulation results for the ITE calibration intercept estimates
(mean ± 1 SD). Top row: apparent evaluations in the original data (left), new
data from the same DGM (middle), and new data from a different DGM (right).
Bottom row, left to right: adjusted evaluations in the original data (bootstrap
corrected 0.632+ and optimism correction), adjusted evaluations in new data
from the same DGM (middle), and adjusted evaluations in new data from a
different DGM (right)
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Statistic cben-δ̂ cben-ŷ0 mbcb sample population
ref. ref.

n=500
Development data
Apparent 0.587 0.599 0.598 0.578 0.580
0.632+ 0.568 0.583 0.576 0.578 0.580
Opt. corrected 0.569 0.581 0.578 0.578 0.580
External, n=500
DGM-1 0.569 0.581 0.598 0.578 0.580
DGM-2 0.518 0.551 0.598 0.520 0.520
DGM-1* 0.580 0.578 0.578 0.580
DGM-2* 0.521 0.520 0.520 0.520

n=750
Development data
Apparent 0.584 0.595 0.594 0.582 0.584
0.632+ 0.572 0.585 0.580 0.582 0.584
Opt. corrected 0.572 0.583 0.580 0.582 0.584
External
DGM-1 0.574 0.584 0.594 0.582 0.584
DGM-2 0.520 0.553 0.594 0.520 0.520
DGM-1* 0.581 0.582 0.582 0.584
DGM-2* 0.523 0.523 0.520 0.520

n=1000
Development data
Apparent 0.581 0.594 0.592 0.584 0.586
0.632+ 0.573 0.585 0.582 0.584 0.586
Opt. corrected 0.573 0.584 0.582 0.584 0.586
External
DGM-1 0.575 0.584 0.592 0.584 0.586
DGM-2 0.518 0.552 0.592 0.521 0.521
DGM-1* 0.584 0.585 0.584 0.586
DGM-2* 0.521 0.520 0.521 0.521

Table S5.1: Mean over simulation runs for each discrimination measure and
for each of the sample sizes (500, 750, and 1000; left to right). *) After local
estimation of control outcome risk (for cben-ŷ0) and P̂benefit,k,l (for mbcb).
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Statistic β̂0 population sample population
naive ref. ref.

Development data, n=500
Apparent 0.000 -0.046 -0.105 -0.107
0.632+ -0.046 -0.105 -0.107
Opt. corrected -0.108 -0.046 -0.105 -0.107
External, n=500
DGM-1 -0.052 -0.046 -0.108 -0.107
DGM-2 0.687 0.694 -0.140 -0.140
DGM-1* -0.109 -0.103 -0.108 -0.107
DGM-2* -0.162 -0.154 -0.140 -0.140

Development data, n=750
Apparent 0.000 -0.011 -0.034 -0.037
0.632+ -0.011 -0.034 -0.037
Opt. corrected -0.063 -0.011 -0.034 -0.037
External
DGM-1 -0.031 -0.011 -0.038 -0.037
DGM-2 0.746 0.727 -0.100 -0.100
DGM-1* -0.064 -0.043 -0.038 -0.037
DGM-2* -0.088 -0.105 -0.100 -0.100

Development data, n=1000
Apparent 0.000 0.007 -0.011 -0.010
0.632+ 0.007 -0.011 -0.010
Opt. corrected -0.036 0.007 -0.011 -0.010
External
DGM-1 -0.006 0.007 -0.009 -0.010
DGM-2 0.748 0.745 -0.102 -0.101
DGM-1* -0.003 0.009 -0.009 -0.010
DGM-2* -0.094 -0.096 -0.102 -0.101

Table S5.2: Mean over simulation runs for calibration intercept estimates each
of the sample sizes (500, 750, and 1000; left to right). *) after local estimation
of control outcome risk.

171



Chapter 5

Statistic β̂1 population sample population
naive ref. ref.

Development data, n=500
Apparent 1.000 0.907 0.856 0.853
0.632+ 0.785 0.907 0.856 0.853
Opt. corrected 0.831 0.907 0.856 0.853
External, n=500
DGM-1 0.932 0.907 0.852 0.853
DGM-2 0.908 0.913 0.384 0.383
DGM-1* 0.868 0.843 0.852 0.853
DGM-2* 0.374 0.379 0.384 0.383

Development data, n=750
Apparent 1.000 0.942 0.939 0.935
0.632+ 0.878 0.942 0.939 0.935
Opt. corrected 0.901 0.942 0.939 0.935
External
DGM-1 0.956 0.942 0.935 0.935
DGM-2 0.989 0.948 0.426 0.425
DGM-1* 0.920 0.907 0.935 0.935
DGM-2* 0.455 0.416 0.426 0.425

Development data, n=1000
Apparent 1.000 0.981 0.990 0.991
0.632+ 0.930 0.981 0.990 0.991
Opt. corrected 0.939 0.981 0.990 0.991
External
DGM-1 0.992 0.981 0.992 0.991
DGM-2 0.993 0.985 0.439 0.439
DGM-1* 1.004 0.991 0.992 0.991
DGM-2* 0.443 0.435 0.439 0.439

Table S5.3: Mean over simulation runs for calibration slope estimates each of
the sample sizes (500, 750, and 1000; left to right). *) after local estimation of
control outcome risk.
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Prognosis and prediction of
antibiotic benefit in adults
with clinically diagnosed
acute rhinosinusitis: an
individual participant data
meta-analysis

Hoogland J, Takada T, Smeden M, Rovers MM, de Sutter AI, Merenstein D,
van Essen GA, Kaiser L, Liira H, Little P, Bucher HC, Moons KGM, Reitsma
JB, Venekamp RP. Prognosis and prediction of antibiotic benefit in adults with
clinically diagnosed acute rhinosinusitis: an individual participant data meta-
analysis. (under revision)
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Abstract
A previous individual participant data meta-analysis (IPD-MA) of antibiotics
for adults with clinically diagnosed acute rhinosinusitis (ARS) showed average
effectiveness of antibiotics, but was unable to identify patients that are most
likely to benefit from antibiotics when applying conventional (i.e., univariable
or one-variable-at-a-time) subgroup analysis. We investigated whether multi-
variable prediction of patient-level prognosis and antibiotic treatment effect may
lead to more tailored treatment assignment in adults presenting to primary care
with ARS. An IPD-MA of nine double-blind placebo-controlled trials of antibi-
otic treatment (n=2,539) was conducted, with the probability of being cured at
8-15 days as the primary outcome. A logistic mixed effects model was developed
to predict the probability of being cured based on demographic characteristics,
signs and symptoms, and antibiotic treatment assignment. Predictive perfor-
mance was quantified based on internal-external cross-validation in terms of
calibration and discrimination performance, overall model fit, and the accuracy
of individual predictions. Results indicates that the prognosis with respect to
risk of cure could not be reliably predicted (c-statistic 0.58 and Brier score 0.24).
Similarly, patient-level treatment effect predictions did not reliably distinguish
between those that did and did not benefit from antibiotics (c-for-benefit 0.50).
In conclusion, multivariable prediction based on patient demographics and com-
mon signs and symptoms did not reliably predict the patient-level probability of
cure and antibiotic effect in this IPD-MA. Therefore, these characteristics can-
not be expected to reliably distinguish those that do and do not benefit from
antibiotics in adults presenting to primary care with ARS.
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6.1 Introduction

Acute rhinosinusitis (ARS) is one of the conditions with highest antibiotic over-
prescription rates in adults [166, 167]. With antimicrobial resistance posing a
serious threat to global public health [168], continuous efforts are needed to
reduce inappropriate antibiotic prescription in primary care [169]. One of the
reasons for the persistent habit of general practitioners (GPs) to prescribe antibi-
otics might be attributed to their clinical impression that there is a subgroup of
patients with clinically diagnosed ARS that actually do benefit from antibiotics
[170]. There is also some evidence to substantiate this impression; antibiotics
seem to have larger effects in those with radiologically confirmed ARS, in par-
ticular those with a fluid level or total opacification in any sinus on computed
tomography [171]. Previous attempts to identify these subgroups based on com-
mon signs and symptoms were not successful, including an individual patient
data meta-analysis (IPD-MA) of randomized controlled trials (RCTs) comparing
antibiotics with placebo in adults with clinically diagnosed ARS [172]. This pre-
ceding IPD-MA applied conventional (univariable) subgroup analysis in which
potential effect modification of single signs and symptoms was assessed one at
the time. This approach does not focus on the absolute risk scale that is of
most interest for clinical decision making (instead focusing on relative effects),
likely under-represents underlying clinical heterogeneity (individuals may vary
in more than one relevant aspect) [89, 173], and is known to be statistically inef-
ficient [174]. Multivariable risk prediction modelling allowing for simultaneous
analysis of multiple baseline variables that may influence treatment effect has
the potential to overcome these problems [173, 175, 90, 133, 146]. Such a model
provides patient-level outcome risk predictions for both treatment assignments
and hence also predicts the patient-level absolute benefit of antibiotic treatment
of interest. Due to the required sample size, IPD from multiple studies provide
a good source for model development [176, 177]. Subsequently if accurate pre-
dictions can be made, they can inform treatment decisions in clinical practice,
informing on the probability of fast spontaneous resolution of symptoms and the
anticipated benefit of antibiotic treatment at the patient-level. With this aim,
we applied multivariable prediction modelling methods to IPD of multiple RCTs
comparing antibiotics with placebo in adults with clinically diagnosed ARS.
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6.2 Methods

The protocol of this IPD-MA has been registered in PROSPERO (registra-
tion number CRD 42020220108) and published [178]. A detailed description of
the rationale and methodology can be found in the protocol publication [178].
We followed recommendations provided in the Predictive Approaches to Treat-
ment effect Heterogeneity (PATH) statement [90], guidance on the individual-
ized treatment effect prediction [146], and guidance on the use of IPD-MA of
diagnostic and prognostic modelling studies [177], and reported according to the
TRIPOD [179, 180] and PRISMA-IPD statement [181].

6.2.1 Study identification and selection

We conducted a systematic search to identify eligible studies. First, the ref-
erence list of the 2018 Cochrane review on antibiotics for ARS in adults [171]
was reviewed for any relevant studies published since the 2008 IPD-MA [172].
Next, we updated the systematic electronic searches of the Cochrane review
(online supplementary Table S1) from January 18, 2018 (date of last search)
to September 1, 2020 to increase the yield of potentially relevant trials. No
language restrictions were applied.

Titles and abstracts of the unique records retrieved from these electronic data-
bases were screened and the full text of all potentially eligible articles was re-
viewed against the following predefined criteria: (i) RCT comparing antibiotics
with placebo, and (ii) enrolled adults (≥ 16 years) presenting to primary care
with uncomplicated ARS based on clinical signs and symptoms. Studies in-
volving children (< 16 years), referred patients, hospitalized patients as well
as those involving highly specialized populations (e.g., those with immunod-
eficiency, odontogenic sinusitis, or malignancy) were excluded. In addition,
reference lists of all eligible studies as well as those from relevant systematic
reviews were screened for any further potential studies and contributing review
authors were asked if they knew any additional (published or unpublished) stud-
ies. Study authors of eligible trials were contacted and invited to provide the
de-identified, complete dataset of their original trial.

6.2.2 Quality assessment of included studies

Methodological quality of the included studies was assessed using the Cochrane
Risk of Bias 2 tool [182]. If information regarding study quality was unclear or
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undisclosed, individual trial authors were contacted to provide further clarifica-
tion.

6.2.3 Outcome assessment

All retrieved IPD were assembled in a single dataset. The predefined outcome
of interest was cure at 8-15 days (yes vs no) [178], which was available in all
studies.

6.2.4 Candidate predictors

Candidate predictors were selected based on clinical reasoning, knowledge from
existing literature and availability in the IPD set. Next to (i) treatment assign-
ment (oral antibiotics vs placebo) which was available in all trials, the following
pre-specified candidate predictors of treatment effect were available in at least
50% of studies: (ii) sex, (iii) age (in years), (iv) preceding upper respiratory
tract infection (URTI), (v) symptom duration prior to enrolment (in days),
(vi) pain on bending, (vii) teeth pain, (viii) unilateral facial pain, (ix) self-
reported purulent nasal discharge (PNDsr), (x) symptom severity, (xi) presence
of fever (> 37.5 C; yes vs no), (xii) purulent nasal discharge upon examination
(PNDex), and (xiii) purulent pharyngeal discharge upon examination (PPDex).
For symptom severity, we used the standardized 0-100 severity as used in the
2008 IPD-MA [172] which was based on a (scaled) logistic transformation of the
severity measures applied in the individual trials. The following pre-specified
candidate predictors [178] could not be included in our analysis due to not being
measured in > 50% of trials: previous ARS, anosmia, cacosmia, double sick-
ening, overall clinical impression, C-reactive protein (CRP), and erythrocyte
sedimentation rate (ESR) values.

6.2.5 Sample size considerations

We calculated the maximum number of candidate predictors based on an an-
ticipated number of 2500 patients in the IPD set, with an average outcome
prevalence of 60% cure, and a desired 0.05 accuracy in terms of mean abso-
lute prediction error [103]. Since the available guidance does not yet extend to
clustered IPD, we conservatively estimated our effective sample size to be 1250
which allows for evaluation of 25 parameters in the model based on a presumed
Cox-Snell R2 of 0.175, which is also expected to keep shrinkage below 10% and
the expected Cox-Snell R2 within 5%.
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6.2.6 Statistical analysis

Handling of missing data

Missing data were imputed using a fully Bayesian joint modelling approach [18].
A total of 50 imputations were derived as compatible with a generalized linear
mixed effects analysis model with a logistic link function, random intercepts
per study, main effects for treatment and each of the candidate predictors, and
treatment-predictor interaction terms [17]. All effect were modelled to be linear
on the linear predictor scale since spline-based exploratory analysis based on the
complete cases did not indicate clear non-linear predictor-outcome relations.

Descriptive statistics

First, predictors and outcome distributions were summarized in each study.
Next, a multinomial membership model was used to evaluate multivariable
between-study heterogeneity in predictor and outcome distributions [183]. Such
a membership model predicts study membership based on the candidate pre-
dictors and outcome and hence illustrates the degree to which multivariable
differences between studies allow a model to predict to which study an individ-
ual belongs. Details are provided in the online supplementary material 1.

Main analysis: prediction model development

In the primary analysis, all available candidate predictors and treatment as-
signment were included as main effects in a logistic mixed effects regression
model with random intercepts per study [178]. Symptom duration was heavily
skewed to the right and therefore log-transformed. Due to between-study vari-
ability in outcome assessment, study level variables ’number of days between
baseline and outcome measurement’ and ’type of outcome measurement’ were
added to the model. In absence of strong evidence for pre-specification of certain
treatment-predictor interactions, we included treatment-predictor interactions
for all available predictors and performed a pooled likelihood ratio test (based on
the D3-statistic [17]) for their combined significance as a conservative approach
[178].

Secondary and exploratory analyses

As opposed to the study of individual treatment interactions, baseline risk-
modelling [90] was pre-specified as a secondary analysis [178]. This approach
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entails an evaluation of possible treatment effect heterogeneity as a function of
baseline risk-model, and has been recommended in settings where i) an overall
treatment effect is well established, ii) several large RCTs are available for anal-
ysis, and iii) when substantial identifiable heterogeneity of outcome risk in the
trial population(s) is anticipated [90]. In addition, in order to evaluate the pos-
sible benefit of model simplification in terms of generalizability, model reduction
was evaluated using a relaxed-lasso procedure in exploratory analysis [184, 185].
The relaxed-lasso was performed on stacked imputed data [186], with fixed and
unpenalized study intercepts, an unpenalized main treatment effect, and penal-
ized main effects for all candidate predictors, and penalized interactions between
all candidate predictors and treatment. Tuning parameters lambda (degree of
penalization selection) and gamma (degree of post-selection relaxation) selected
according to the 1 standard error rule based on 10-fold cross-validation.

Evaluation of prediction model performance

Prediction model performance with respect to the prediction of outcome risk
and absolute antibiotic treatment effect was evaluated by means of calibration
performance (extent of agreement between predicted risk and observed events),
discrimination performance (with the aim to quantify whether predicted risk
correctly rank-orders actual risk), Nagelkerke R2 (as a measure of overall model
fit) and Brier score (as a measure of prediction accuracy). Performance was
assessed using internal-external cross-validation (IECV) [33]. Standard errors
for each of the measures were derived based on 500 bootstrap samples. Meta-
analysis was used to summarise the main IECV results using restricted max-
imum likelihood-based estimates of between study variability, inverse variance
weighting, and Hartung and Knapp adjustment [187]. Prediction model per-
formance with respect to predicted absolute antibiotic treatment effect (i.e., on
the risk difference level) was evaluated in terms of discriminative performance
using the c-for-benefit [132] and in terms of calibration in the form of predicted
versus observed treatment effect in quartiles of predicted treatment effect.

6.3 Results

6.3.1 Study inclusion and study characteristics
The 2008 IPD-MA [172] included data from 9 trials [188, 189, 190, 191, 192, 193,
194, 195, 196]. An additional eligible study [197] was identified from reviewing
the reference list of the 2018 Cochrane review [171]. This study with 166 par-
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ticipants (online supplementary Table S2) was excluded since authors were not
able to provide IPD. No further eligible studies were found after screening the
303 unique records retrieved from the electronic database searches or through
additional routes (Figure 6.1). This left 9 trials with 2,539 participants aged
(≥ 16 years) for inclusion [188, 189, 190, 191, 192, 193, 194, 195, 196]. De-
tails on the design characteristics of the included studies are shown in online
supplementary Table S3. All studies were double-blind, placebo controlled ran-
domised trials and conducted in high-income countries in Europe and in the US.
One trial used a 2x2 factorial design [195], and data were split into two sub-
trials: antibiotics vs. placebo without concomitant nasal steroids in both groups
(Williamson1) or antibiotics vs. placebo with concomitant nasal steroids in
both groups (Williamson2). Participants from the intervention groups received
beta-lactam antibiotics (mainly amoxicillin, but also amoxicillin clavulanate or
phenoxymethylpenicillin), macrolides (azithromycin), or tetracyclines (doxycy-
cline). Sample size of the included trials ranged from 135 to 503.

6.3.2 Quality assessment of included studies
The quality assessment of included studies is summarised in online supplemen-
tary Figure S1. The risk of bias could not be assessed for the unpublished
Schering-Plough trial [196]. Overall risk of bias was judged low for the other
included studies.

6.3.3 Missing data
The percentage of missing data varied greatly across studies and variables (on-
line supplementary Table S4). Including both sporadic (i.e. partly, but not
completely missing in a certain study) and systematically missing data (i.e.
completely missing in a certain study), the percentage of missingness was be-
low 10% for all variables except for preceding URTI (66%, unavailable in 5/10
studies) pain on bending (62%, unavailable in 5/10 trials), pain in teeth (56%,
unavailable in 4/10 trials), unilateral facial pain (41%, unavailable in 2/10 tri-
als), and PPDex (52%, unavailable in 5/10 trials).

6.3.4 Descriptive statistics
Descriptive statistics for each of the trials after imputation of missing data are
shown in Table 6.1 and visually presented in online supplementary Figure S2.
Studies differed with respect to both outcome occurrence (range 35-77%) and
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Review of ref list of 2018 Cochrane review**  
for any relevant studies published since the  

2008 IPD meta-analysis* 

9 trials included in quantitative synthesis of the 2008 IPD meta-analysis* 

PubMed search:  
126 records 

Embase search:  
154 records 

Cochrane Library search:  
158 records 

Eligible studies: 1 
 

Garbutt et al. JAMA 2012  

Reviewing ref list of eligible 
study: no additional studies 

 
Garbutt et al. JAMA 2018[ref]  

1 eligible study  

Removing duplicates 
(n = 135) 

303 titles/abstracts screened 

2 full text articles screened for eligibility 

301 records 
excluded 

 
Garbutt et al. 

JAMA 2018[ref]  2 records 
excluded: 

wrong 
comparators 

no eligible studies 

1 eligible study  
 

1 study excluded: data unavailable 
 

Garbutt et al. JAMA 2012***  
 

Garbutt et al. JAMA 2018[ref]  
no additional study data available 

 

9 trials included in quantitative synthesis 
(similar to 2008 IPD meta-analysis*) 

Figure 6.1: Inclusion flowchart. * refers to Young et al. [172], ** refers to
Lemiengre et al. [171], and *** refers to Garbutt et al. [197].

the prevalence of predictors of interest. Most notably, symptom duration prior
to enrolment, and the prevalence of pain on bending, PNDsr, and PPDex varied
substantially across studies.
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Online supplementary Table S5 further illustrates the between-study hetero-
geneity. The membership model had high discriminative ability for all studies,
indicating substantial differences in predictor and outcome distributions across
studies. Based on a common intercept and common predictor-outcome associa-
tions, the observed outcome incidence deviated somewhat from the expectation
for four trials (Merenstein et al. [194], Kaiser et al. [189], de Sutter et al.
[190], and Varonen et al. [192]), indicating that the observed incidence of cure
could not be completely explained by the modeled effects of case-mix differences
(online supplementary Figure S3).

6.3.5 Main analysis results
Estimates for the pre-specified main effects model are shown in Table 6.2. Sig-
nificant patient-level associations with the risk of cure were found for antibiotic
treatment (OR 1.34 [1.13 to 1.59]), age (OR 0.91 per 10 years [0.85 to 0.97]),
log symptom duration prior to enrolment (OR 0.76 [0.65 to 0.89]), symptom
severity (OR 0.87 [0.82 to 0.91]). A significant study-level association with the
risk of cure was found for outcome assessment based on clinical examination or
a combination of methods vs. symptom diary (OR 0.40 [0.19 to 0.84]). Despite
these main effect estimates, there was still considerable unexplained between-
study variability in the outcome as shown in the random intercepts estimates
(online supplementary Figure S4). The estimated standard deviation of the ran-
dom intercept distribution was 0.33, with the largest deviations for study data
from Merenstein (-0.48), de Sutter (-0.43), Kaiser (0.44), and Varonen (0.48).
All treatment-predictor interactions were dropped from the model based on the
planned pooled likelihood ratio test of their combined contribution (D3 statistic
0.54, df1 12, df2 7497, p = 0.89).
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est β̂ se 95% CI OR (95% CI)
Intercept 0.83 0.88 (-0.89, 2.56) 2.30 (0.41, 12.98)
Antibiotics (yes) 0.29 0.09 (0.12, 0.46) 1.34 (1.13, 1.59)
Sex, female -0.09 0.09 (-0.27, 0.09) 0.92 (0.76, 1.10)
Age, per 10 years -0.10 0.03 (-0.16, -0.03) 0.91 (0.85, 0.97)
Preceding URTI 0.23 0.19 (-0.15, 0.61) 1.26 (0.86, 1.84)
Symptom duration -0.27 0.08 (-0.42, -0.12) 0.76 (0.65, 0.89)
in log(days))
Pain on bending 0.12 0.18 (-0.23, 0.47) 1.13 (0.80, 1.60)
Pain in teeth -0.12 0.15 (-0.42, 0.18) 0.89 (0.66, 1.20)
Unilateral facial pain 0.14 0.13 (-0.11, 0.40) 1.15 (0.89, 1.49)
PNDsr 0.17 0.11 (-0.05, 0.39) 1.19 (0.95, 1.48)
Symptom severity* -0.14 0.03 (-0.20, -0.09) 0.87 (0.82, 0.91)
Fever -0.25 0.19 (-0.63, 0.13) 0.78 (0.53, 1.14)
PNDex 0.07 0.10 (-0.12, 0.26) 1.07 (0.89, 1.29)
PPDex -0.19 0.15 (-0.48, 0.10) 0.82 (0.62, 1.10)
Time to outcome 0.03 0.08 (-0.12, 0.18) 1.03 (0.89, 1.20)
measurement (days)
Outcome type: -0.92 0.38 (-1.66, -0.18) 0.40 (0.19, 0.84)
other, (ref. diary)
Outcome type: -0.13 0.37 (-0.85, 0.59) 0.88 (0.43, 1.81)
telephone, (ref. diary)

Table 6.2: Main effect estimates for the random intercept model. Coefficients
(log(OR)), standard errors, odds ratios (OR) and 95% confidence intervals (CI)
as pooled across imputations. The mean standard deviation of the random in-
tercepts was 0.33.
*) per point on the inverse logit transformation of (severity score / 100).
Abbreviations: PNDex purulent nasal discharge upon examination; PNDsr pu-
rulent nasal discharge self-reported; PPDex purulent pharyngeal discharge upon
examination; URTI upper respiratory tract infection.
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IECV performance estimates indicated poor prediction performance and overall
model fit of the model main effects model (Table 6.3 and online supplementary
Figure S5). The pooled IECV c-statistic estimate (0.58) did indicate some
discriminative ability with a prediction interval (PI) of 0.56-0.62. However, while
R2 and Brier scores were heterogeneous across studies, their pooled estimates
clearly indicate poor performance with R2 -0.08 (PI -0.48, 0.32) and Brier score
0.24 (PI 0.15,0.34). Both measures indicate that the main effects model did not
provide accurate absolute risk predictions for the hold-out studies. This lack of
generalizability between studies was further illustrated by the large prediction
intervals for the estimated calibration intercepts [-1.06 and 1.11] and calibration
slopes [0.18 and 1.38]. While these intervals include the favourable values of 0
and 1, they also include a large range of unfavourable calibration estimates.

As a sensitivity analysis, all analyses were re-run after omitting data from the
Schering-Plough study [196], as the risk of bias could not be assessed for this
trial. This, however, did not substantially change model performance (online
supplementary Table S6). In summary, the absolute risk of cure could not be
reliably predicted based on the available predictors, and can hence not be used
to differentiate between low-risk and high-risk individuals to inform treatment
decisions.

C-statistic R2 Brier Intercept Slope
Bucher 0.59 0.02 0.21 0.08 0.79
De Sutter 0.55 -0.49 0.30 -0.82 0.38
Kaiser 0.55 -0.60 0.33 0.61 0.38
Meltzer 0.62 0.03 0.21 0.00 1.57
Merenstein 0.57 -0.26 0.29 -0.51 0.57
Schering-Plough 0.58 0.02 0.22 0.15 0.88
Stalman 0.59 0.04 0.22 -0.04 0.92
Varonen 0.62 -0.27 0.21 0.94 1.09
Williamson1 0.60 0.01 0.23 0.09 0.67
Williamson2 0.62 0.04 0.22 -0.10 1.04

Table 6.3: IECV results for risk (of cure) prediction based on the main effects
and random intercept model.
IECV: internal-external cross-validation.
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6.3.6 Secondary and exploratory analyses results

Given the lack of reliable risk predictions based on the main risk model, further
modelling using these predictions as inputs was not deemed relevant. Therefore,
baseline risk-modelling, which essentially evaluates outcome risk modification by
treatment, was not performed. As anticipated based on previous findings, the
exploratory relaxed-lasso procedure led to substantial model reduction: only a
main effect for symptom severity and unpenalized parameters (study intercepts
and treatment assignment) were left in the model.

Contrary to the large between-study heterogeneity in terms of model perfor-
mance as observed in the main analysis, evaluation of the marginal relative
treatment effect (OR 1.32; 95% CI 1.11-1.56) did not reveal any between-study
heterogeneity (not shown), confirming earlier results[172].

6.3.7 Evaluations of absolute treatment effect prediction

To supplement outcome risk evaluations, individual predictions of absolute treat-
ment effect were evaluated (online supplementary Figure S6). The IECV esti-
mate for discriminative performance (c-for-benefit) was 0.50 for the main effects
model, indicating absence of discriminative ability. Therefore, further examina-
tion of calibration performance was not deemed relevant.

6.4 Discussion

This large IPD-MA of high-quality antibiotic therapy trials in adults present-
ing to primary care with clinically diagnosed uncomplicated ARS evaluated
patient-level variability in prognosis and antibiotic treatment effect. Such vari-
ability could not be reliably predicted based on demographics and clinical signs
and symptoms, illustrating that these characteristics do not contribute to the
identification of patients that are most likely to benefit from antibiotics.

A strong aspect of this study was the large sample size derived from multiple
high-quality trials. This allowed for careful handling of missing data and con-
sistent multivariable prediction modelling of antibiotic treatment effect across
studies [177]. The lack of predictable between-subject heterogeneity of antibi-
otic benefit was robust, since our conservative primary analysis’ findings were
supported by those derived from exploratory relaxed-lasso modelling.

Several limitations deserve further attention. First, we observed a high degree
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of heterogeneity across studies, in particular with respect to the outcome def-
inition, outcome assessment, and studied populations. In terms of outcome
definition and assessment, this was alleviated by adjustment for study level in-
formation on time to outcome assessment and type of outcome assessment. With
respect to heterogeneity in study populations, internal-external cross-validation
revealed that a common model did not describe the data well. Second, we did
not have sufficient information to include time-to-cure instead of the available
dichotomous outcome data, which would likely be a more sensitive outcome.
Also, severely unwell individuals with prolonged illness duration may be un-
derrepresented in the included trials, and the modeled relationships between
predictors and outcome may not generalize to the wider population presenting
in primary care. Third, there was a substantial amount of systemically missing
data. Although carefully handled using multiple imputation, this still repre-
sents loss of information which likely has influenced our results (e.g. possibly
weakening predictor-outcome associations). Finally, potential important signs
(severe pain, double sickening), and laboratory findings (CRP, ESR) were not
available in a sufficient number of trials. It is, however, uncertain whether the
availability of these variables would have impacted our findings. For example,
CRP was found to be of value in a recent diagnostic IPD-MA for ruling out, but
not for ruling in target conditions associated with antibiotic benefit in adults
suspected of ARS [198]. A recent review of diagnostic accuracy studies of CRP,
ESR, white blood cell counts, procalcitonin, and nasal nitric oxide for detecting
acute bacterial rhinosinusitis (ABRS) found that especially elevated CRP and
ESR are associated with higher probability of ABRS. However, CRP and ESR
were still found insufficiently accurate for predicting ABRS [199]. Further re-
search in this field should focus on the added value of novel point-of-care tests
or novel devices such as those aimed at gaining specimens from draining sinuses
[200] over readily available signs and symptoms such as age, symptom duration
and severity. Early-stage investigations of biomarker combination tests as well
as host gene expression diagnostics suggest that these point-of-care tests have
the potential to discriminate between viral and bacterial aetiology of RTI, but
high-quality prospective clinical validation studies in primary care are needed
to confirm their potential [201, 202, 203].

In conclusion, this IPD-MA did not find evidence to support predictable het-
erogeneous antibiotic treatment effect based on demographics and signs and
symptoms in adults presenting to primary care with clinically diagnosed ARS.
While future research may reveal markers that aid the identification of adults
with clinically diagnosed ARS most likely to benefit from antibiotics, current
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evidence does not support individualized treatment selection in adults with un-
complicated ARS.
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Chapter 7

General discussion

"Prediction is very difficult, especially
about the future.”

Danish proverb, often attributed to
Niels Bohr [204]

The chapters of my dissertation have all focused on prediction modeling and are
part of a large body of literature on this topic. Nonetheless, the cited epigraph
goes back to at least the 1930’s [204], and remains telling today. This general
discussion aims to shortly touch upon two overarching themes that connect the
chapters of this dissertation, while shedding some light on remaining difficulties
and possible future directions for medical prediction modeling.



Chapter 7

Dealing with the unknown;
what are we missing?

"Your assumptions are your windows on
the world. Scrub them off every once in a
while, or the light won’t come in.”

Alan Alda

In a sense, all chapters revolved around incompletely observed data or incom-
pletely observable processes. Particular problems touched upon include partially
unobserved covariate data ( Chapter 2), partially observed or censored out-
come data (Chapter 3), and the unobserved nature of all but one potential
outcome per individual in intervention research (Chapters 4, 5 & 6). The
key question is whether we can find a way for the observed data to form a
plausible representation of the complete picture. The only way forward is to
formulate plausible assumptions about the relations between the observed and
the unobserved data or processes.

The degree to which the data provide information on the unknowns differs
greatly. In fact, many assumptions cannot be directly assessed based on the
data. For instance, in presence of missing data, the validity of the missing at
random assumption (with missing not at random being the alternative) cannot
be assessed based on the data (Chapter2). The same holds for the assumed
conditional independence between the event time distribution and censoring dis-
tribution in survival analysis (Chapter 3). Likewise, the identifiability assump-
tions supporting causal inference cannot be readily verified based on just data
(Chapters 4, 5 & 6). In some instances, the study design provides plausibil-
ity to the assumptions, such as for randomized studies and the exchangeability
assumption. Other times, conceptual knowledge of the underlying processes
being modeled is a major factor. These instances may require careful thought
regardless of the amount of data.

Other assumptions are more easily checked if a sufficient amount of data is avail-
able. For instance, data are a great help in presence of weak prior knowledge
with respect to model specification in terms of functional form or model sparsity.
The challenge here is that data are often available in limited amount, whether
for pragmatic or more insurmountable reasons. This particular problem was
approached using regularization in Chapter 3, but a wide range of methods
is available (e.g., as introduced in [20]). Even here though, careful thought on
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the method of choice is key and should match the specific research problem at
hand. For instance, one can try to choose between ridge and lasso penalization
purely based on the data, but it might be more fruitful to decide on an analysis
strategy based on the expected degree of sparsity for the particular problem
[61]. Similarly, one can try to choose between a tree-based algorithm and re-
gression based on a resampling algorithm, but careful thought on the expected
degree of non-linearity and interaction may be more revealing in settings with
limited data. The problem is that a particular sample of limited size often pro-
vides inconclusive evidence with respect to the best choice of modeling strategy.
Breiman referred to this problem as model instability: a small perturbation in
the data may lead to a rather different model with very similar performance
[205]. In practice, the combination of limited theoretical knowledge and limited
sample size is the rule rather than the exception in the medical domain and
leads to a high degree of uncertainty about the optimal modelling strategy that
best answers the research question. The ensuing models should only form a
starting point for an iterative scientific process that enables learning. However,
this may not always be sufficiently recognized. In addition, the process being
modeled may change over time, which necessitates monitoring and updating of
a model over time [206].

Lastly, a common argument in prediction research is that knowledge of the inner
workings of the prediction model are not very important as long as it predicts
well. That is, the prediction procedure might just as well be a black box. This
may hold in fields where generalizability or transportability of models is not of
major interest, and where the model of interest can easily be checked in the
situation in which it will be used. However, in the medical domain, models
will always be applied in settings that differ from the development setting. A
problem with black-box models is that it is more difficult to gauge the expected
performance in a novel but slightly different setting [207]. In contrast, if a
model’s structure is based on understanding, it is more likely to generalize well
in the first place, and its structure will provide clues on the to be expected
performance in a new domain with specific characteristics. Also, while the
black-box problem is more evident for machine learning methods, even simple
models may reflect spurious associations and likewise fail to generalize in unan-
ticipated ways. A better understanding of the causal roles of all variables in a
model would allow for improved reasoning with respect to generalizability, as is
possible for many models in physics. Vice versa, better causal model may help
to improve understanding of the underlying processes. However, as of yet, the
underlying biological processes in the medical domain are often too complex for
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such details understanding, and the subsequent reliance on association learning
is not without dangers. This is not to be taken as a problem per se, as long as
it is recognized as a starting point and not as an endpoint.

In summary, much progress has been made in terms of the statistical modeling
of data for the purpose of prediction, but data often do not tell the whole story.
Extrapolation from data often relies heavily on assumptions, and the validity
of these assumptions may be challenging to assess. While external data provide
a powerful means to independently assess many modeling assumptions, some
assumptions remain more elusive and require more fundamental understanding
of the process being modelled.

Association learning versus causal prediction

Classically, prediction models aim to model an outcome of interest as based on
its association with a certain set of measured variables. As already mentioned, it
may be useful to know more about the function of those measured variables, but
when the purpose is just to predict in a well-known setting, it may be sufficient
to accurately reflect the associations in the data. The first two chapters focused
on this type of prediction modeling. In contrast, when the model is used to
inform some intervention on one of more variables, interest is in the variability
in the outcome that is caused by these variables. This was the main topic of
the remaining chapters.

In the end, many research questions of interest are causal. Indeed, questions
about causation are as old as science itself and not only relate to interventions
but also to understanding. In statistics, early work was performed in the twen-
ties by Neyman and later in the eighties by Rubin [23]. Recent decades have
shown a revived interest in causal inference in the fields of statistics, economet-
rics, and machine learning (e.g. [208, 21, 22]).

The fundamental difference between pure prediction (e.g., weather forecast, nat-
ural course of disease) and causal prediction (e.g., about the effect of a certain
intervention) is increasingly acknowledged. In parallel, both fields have devel-
oped rapidly. While this dissertation has primarily focused on causal prediction
from randomized trial data, a large body of literature exists on causal infer-
ence in observational data (a recent overview is provided elsewhere [24]). The
key challenge in observational data is to achieve exchangeability with respect
to the causal variable of interest, which requires some form of adjustment for

194



777777 7

Chapter 7

confounders and selection processes. Also, causal inference work is being done
in the context of high-dimensional data (e.g. [209]).

In the context of medical statistics and medical practice, there are many ex-
amples of the limitations of associative prediction modeling that are not always
recognized. For instance, it is a lapse of judgement to check the influence associ-
ated with a change in an important covariate such as smoking in an associative
model predicting cardiovascular disease, and subsequently conclude that this
reflects the effect of intervening on smoking habits. The ’table 2 fallacy’ (i.e.,
the misconception that all effects in a table of multivariate-adjusted associations
with the outcome can be interpreted in a simular manner) is another example
of the same underlying confusion [210]. In similar fashion, as illustrated in
Chapter 3, observing that treatment effect varies with some marker does not
imply that the marker causes this variation. It has been argued that explicitly
modeling the causal effects of treatment policies may render prediction models
more robust to changing policies over time [130]. This includes the increasingly
recognized case of prognostic models being the ’victims of their own success’
[211]. Also, as alluded to above, work has been done on the conditions under
which model transportability could be expected [212].

While the promises of structural causal models [21, 22] are enticing, their suc-
cessful implementation again requires a substantial level of content knowledge
to feed into the modeling process with the right assumptions. In the medical do-
main, the knowledge of the processes being modeled is often limited, and data
are frequently used with the aim to increase understanding from the bottom
up. That is, modeling is not used to test scientific theories, but to generate new
ones. Likewise, prediction modeling is often approached as a bottom-up process
in the medical domain. Here, the aim is just to distill accurate predictions from
the data, and the test is whether the model performs well in external data.
While this may be sufficient for some purposes, it ultimately does not increase
understanding if not followed up by additional investigation of the underlying
processes. If anything, the structure required for causal inference necessitates
attention to the role that different variables play, and hence for explicit thoughts
about confounders, selection processes, possible mediators, and potential out-
come definitions. As content knowledge grows, classically associative prediction
models may be increasingly endowed with known structures and hence improve
accuracy, reduce spurious association, increase transportability, and ultimately
increase understanding. The paradox is that knowledge is required for more
efficient learning.
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Concluding remarks
The chapters in this dissertation presented recent developments and guidance
in the field of clinical prediction modeling, with a specific focus on missing data,
regularization, and causal inference. While these fields have largely developed
independently, many interesting research questions can be found on their in-
tersection, and the synergy between prediction methods and causal inference
techniques seems especially promising. The humble ambition with respect to
the impact of this work is to increases awareness of the issues surrounding these
topics and provides some guidance when encountering these topics during pre-
diction model development, implementation, and evaluation in practice.
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Recent decades have seen many new developments in prediction modeling, in-
cluding the rise of algorithmic or machine learning methods and a rapid increase
in the amount of data and the types of data that are becoming available. In this
respect, there is a clear synergy between developments in the fields of statistics
and computer science. At the same time, the sharing and interchanging of ideas
and methods that have been developed in neighboring research fields in increas-
ingly common. For instance, the causal inference frameworks that have classi-
cally been used for the estimation of population averaged effects prove fruitful
when interest is in causal prediction. Likewise, there is a synergy between de-
velopments in methods for high-dimensional data and for low-dimensional data.
For example, regularization methods are essential for high-dimensional data to
obtain any solution, stimulating their further development, and yet also con-
tinue to provide useful results for low-dimensional settings. Concurrently, there
has been a rapid increase in the ease with which complex models can be used in
medical practice, with easily available online tools allowing for detailed input of
covariate data and behind the scene handling of required transformations and
the handling of missing data. In light of these developments, this dissertation
focuses on recent advances in low-dimensional clinical prediction modeling in the
medical domain, with a special interest in the handling of missing data, regular-
ization methods, and the causal prediction of possibly heterogeneous treatment
effect.

After a general introduction in Chapter 1, Chapter 2 handles challenges
presented by missing data during clinical prediction model development and
real-world application. While these challenges have received considerable atten-
tion in the development setting, there is only sparse research on the handling
of missing data in applied settings. The main unique feature of handling miss-
ing data in these settings is that missing data methods have to be performed
for a single new individual, precluding direct application of mainstay methods
used during model development. A seemingly straightforward, but often ne-
glected, consequence of the use of missing data methods in clinical practice, is
that these methods should also be part of the validation process. This chapter
compares existing and new methods to account for missing data for a new indi-
vidual in the context of prediction. These methods are based on (i) submodels
based on observed data only, (ii) marginalization over the missing variables, or
(iii) imputation based on fully conditional specification (also known as chained
equations). They were compared in an internal validation setting to highlight
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the use of missing data methods that transfer to practice while validating a
model. As a reference, they were compared to the use of multiple imputation
by chained equations in a set of test patients, because this has been used in val-
idation studies in the past. The methods were evaluated in a simulation study
where performance was measured by means of optimism corrected C-statistic
and mean squared prediction error. Furthermore, they were applied in data
from a large Dutch cohort of prophylactic implantable cardioverter defibrillator
patients.

In the context of time-to-event data, Chapter 3 proposes to combine the ben-
efits of flexible parametric survival modeling and regularization to improve risk
prediction modeling. Thereto, ridge, lasso, elastic net, and group lasso penalties
were combined with both log hazard and log cumulative hazard models. The
log (cumulative) hazard in these models is represented by a flexible function
of time that may depend on the covariates (i.e., covariate effects may be time-
varying). It is shown that the optimization problem for the proposed models
can be formulated as a convex optimization problem. A user-friendly R imple-
mentation is provided for model fitting and penalty parameter selection based
on cross-validation in R package regsurv. Simulation study results show the ad-
vantage of regularization in terms of increased out-of-sample prediction accuracy
and improved calibration and discrimination of predicted survival probabilities,
especially when sample size was relatively small with respect to model complex-
ity. An applied example illustrates the proposed methods. In summary, this
chapter provides the required theoretical developments and an easily accessible
implementation of regularized parametric survival modeling, and suggest that
it improves out-of-sample prediction performance.

Chapter 4 focuses on the prediction of individual treatment effect from ran-
domized clinical trials. Randomized trials typically estimate average relative
treatment effects, but decisions on the benefit of a treatment are possibly better
informed by more individualized predictions of the absolute treatment effect. In
case of a binary outcome, these predictions of absolute individualized treatment
effect require knowledge of the individual’s risk without treatment and incor-
poration of a possibly differential treatment effect (i.e., varying with patient
characteristics). This chapter lays out the causal structure of individualized
treatment effect in terms of potential outcomes and describe the required as-
sumptions that underlie a causal interpretation of its prediction. Subsequently,
regression models and model estimation techniques are described that can be
used to move from average to more individualized treatment effect predictions.
The main focus is on logistic regression-based methods that are both well-known
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and naturally provide the required probabilistic estimates. Key components
from both causal inference and prediction research combine to arrive at in-
dividualized treatment effect predictions. While the separate components are
well-known, their successful incorporation is an ongoing field of research. This
chapter cuts the problem down to its essentials in the setting of a randomized
trial, discusses the importance of a clear definition of the estimand of interest,
provides insight into the required assumptions, and gives guidance with respect
to modeling and estimation options. Simulated data illustrate the potential of
different modeling options across scenarios that vary both average treatment
effect and treatment effect heterogeneity. Two applied examples illustrate indi-
vidualized treatment effect prediction in randomized trial data.

As a continuation of the work described in Chapter 4, Chapter 5 describes ex-
isting and novel methodology to evaluate individualized treatment effect models
in terms of discrimination and calibration performance. Models for this purpose
are increasingly common in the published literature. Aiming to facilitate the
validation of prediction models for individualized treatment effects, the classi-
cal concepts of discrimination and calibration are as used in regular (associa-
tive) prediction are extended to the class of causal prediction models. Working
within the potential outcomes framework, the statistical properties of existing
statistics (including the c-for-benefit) are described. Subsequently novel model-
based alternative are proposed. The main focus is on randomized trials with
binary endpoints. Simulated data provide insight into the characteristics of
discrimination and calibration statistics, and further illustrate all methods in a
trial in acute ischemic stroke treatment. Results demonstrate that the proposed
model-based statistics had the best characteristics in terms of bias and variance.
While resampling methods to adjust for optimism of performance estimates in
the development data were effective on average, they had a high variance across
replications, limiting their accuracy in any particular applied analysis. Thereto,
individualized treatment effect models are best validated in external data rather
than in the original development sample.

Lastly, Chapter 6 presents an applied study analyzing possible treatment ef-
fect heterogeneity in the antibiotic treatment of adults with clinically diagnosed
acute rhinosinusitis (ARS). In line with the developments in Chapter 4, this
chapters describes the joint prediction of prognosis with and without antibi-
otic treatment in terms of cure rate at 8-15 days. Nine double-blind placebo-
controlled trials (n=2,539) were available for this task, with concomitant chal-
lenges in terms of systematically missing data and the clustering of data within
individual studies. Congenial methods for imputation in mixed modeling con-
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text were used prior to the subsequent development of a logistic mixed effects
model to predict the probability of being cured at 8-15 days. Predictors included
individual level demographic characteristics, common signs and symptoms, an-
tibiotic treatment assignment, and study-level characteristics. Internal-external
cross-validation was used to estimate out-of-sample prediction performance. In
conclusion, a prediction model based on the measurements available in this IPD-
MA did not provide sufficient performance to adequately predict prognosis or
antibiotic treatment benefit in adults presenting to primary care with clinically
diagnosed ARS.

To conclude, this dissertation has provided methods for the handling of miss-
ing data during prediction model validation and prediction model application
in practice, has provided a flexible integration of parametric survival modeling
and several regularization techniques, and has explored the combination classi-
cal prediction modeling methods and causal inference methods for the purpose
of individualized treatment effect prediction. Free and open-source R code is
available for all of these endeavors. Together, the developments and guidance
in this dissertation may aid in the process of prediction model development,
validation, and implementation in practice.
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De afgelopen decennia zijn er veel nieuwe ontwikkelingen geweest op het ge-
bied van predictiemodellen, waaronder de opkomst van algoritmische of ma-
chine learning-methoden, en een snelle toename van de hoeveelheid en soorten
van data die beschikbaar komen. Er is wat dat betreft een duidelijke synergie
tussen ontwikkelingen op het gebied van statistiek en informatica. Tegelijker-
tijd komt het delen en uitwisselen van ideeën en methoden uit aangrenzende
onderzoeksgebieden steeds vaker voor. Als voorbeeld blijken veel aspecten van
methoden die klassiek gebruikt worden voor causale inferentie over (populatie)
gemiddelde effecten ook bruikbaar voor meer geïndividualiseerde causale pre-
dicties. Ook is er een synergie tussen ontwikkelingen in methoden voor hoog-
en laag-dimensionale data. Bij hoogdimensionale data zijn regularisatiemeth-
oden essentieel om überhaupt een oplossing te vinden, waardoor hun verdere
ontwikkeling wordt gestimuleerd. Dit levert weer belangrijk bijdragen in de
laagdimensionale context waar veelal de eerste methodologische stappen wer-
den gezet. Daarnaast is het gemak waarmee complexe modellen in de medische
praktijk kunnen worden gebruikt snel toegenomen. Gemakkelijk beschikbare
online tools maken gedetailleerde invoer van data eenvoudig, terwijl achter de
schermen de vereiste transformaties en de behandeling van ontbrekende data
afgehandeld worden. In het licht van deze ontwikkelingen richt dit proefschrift
zich op recente ontwikkelingen in laagdimensionale klinische predictiemodellen
in het medische domein, en in het bijzonder op het omgaan met ontbrekende
data, regularisatiemethoden, en de causale predictie van mogelijk heterogene
behandeling effecten.

Na een algemene inleiding in Hoofdstuk 1, behandelt Hoofdstuk 2 uitdagingen
die ontstaan door ontbrekende data tijdens de ontwikkeling en vooral toepassing
van klinische predictiemodellen in de praktijk. Hoewel deze uitdagingen veel
aandacht hebben gekregen in de context van modelontwikkeling, is er weinig
onderzoek gedaan naar het moment van toepassing. Het belangrijkste kenmerk
van deze laatste situatie is dat methoden voor ontbrekende data moeten worden
uitgevoerd voor een enkel nieuw individu, waardoor directe toepassing van veel
gangbare methoden niet mogelijk is. Een ogenschijnlijk voor de hand liggende,
maar vaak verwaarloosde consequentie van het gebruik van methoden voor ont-
brekende data in de praktijk, is dat deze methoden ook deel moeten uitmaken
van het validatieproces. Hoofdstuk 2 vergelijkt bestaande en nieuwe methoden
om rekening te houden met ontbrekende data voor een nieuw individu in de con-
text van predictie. Deze methoden zijn gebaseerd op (i) submodellen op basis
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van enkel de geobserveerde data, (ii) marginalisering over de ontbrekende data,
of (iii) imputatie op basis van full conditional specification (ook wel bekend als
chained equations). Ze worden vergeleken in een interne validatie setting om
te benadrukken dat methoden voor ontbrekende data die bedoeld zijn voor de
praktijk ook meegenomen moeten worden in de validatie. Ter referentie werden
ze vergeleken met het gebruik van meervoudige imputatie door chained equa-
tions bij een reeks testpatiënten, omdat dit in het verleden in validatiestudies
is gebruikt. De methoden werden geëvalueerd in een simulatiestudie waarbij
methoden werden vergeleken op basis van een voor optimisme gecorrigeerde
C-statistiek en gemiddelde kwadratische predictiefout. Bovendien werden ze
toegepast bij de ontwikkeling van een predictiemodel op basis van een groot
Nederlands cohort van patiënten met een defibrillator.

In de context van time-to-event data stelt Hoofdstuk 3 voor om de voordelen
van flexibele parametrische survival modellen en regularisatie te combineren om
risicopredictie te verbeteren. Daartoe werden ridge, lasso, elastic net, en groep-
slasso penalty’s gecombineerd met zowel log-hazard als log-cumulatieve-hazard
modellen. De log (cumulatieve) hazard in deze modellen wordt weergegeven
door een flexibele functie van de tijd die kan afhangen van de covariaten; d.w.z.
covariaat effecten kunnen in de tijd variëren. Er wordt aangetoond dat het
optimalisatieprobleem voor de voorgestelde modellen kan worden geformuleerd
als een convex optimalisatieprobleem. Ook is er in R package regsurv een ge-
bruiksvriendelijke software implementatie gemaakt voor het optimaliseren van
de modellen en voor de selectie van penalty parameters op basis van kruisval-
idatie. Resultaten van simulatiestudies tonen het voordeel van regularisatie in
termen van predictie-accuratesse en verbeterde calibratie en discriminatie van
de voorspelde overlevingskansen in nieuwe data. Dit was vooral te zien wanneer
de steekproefomvang relatief klein was met betrekking tot de modelcomplexiteit.
Een toegepast voorbeeld illustreert de voorgestelde methoden. Samenvattend
biedt dit hoofdstuk de vereiste theoretische ontwikkelingen en een toeganke-
lijke implementatie van geregulariseerde parametrische survival modellen, en
suggereert het dat het dat de predicties in nieuwe data verbetert.

Hoofdstuk 4 richt zich op de predictie van individuele behandeleffecten op basis
van gerandomiseerde klinische studies. Gerandomiseerde onderzoeken schatten
doorgaans gemiddelde relatieve behandeleffecten, maar beslissingen over het vo-
ordeel van een behandeling worden in de praktijk mogelijk beter geïnformeerd
door meer geïndividualiseerde schattingen van het absolute behandeleffect. In
het geval van een binaire uitkomst vereisen deze meer geïndividualiseerde pre-
dicties van behandelingseffect zowel kennis van het individuele risico zonder
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behandeling als van het mogelijk heterogene relatieve effect van de behandeling.
Dit hoofdstuk legt de causale structuur van geïndividualiseerd behandeleffect
uit in termen van potential outcomes en beschrijft de vereiste aannames die ten
grondslag liggen aan een causale interpretatie van de predictie ervan. Vervol-
gens worden regressiemodellen en schattingstechnieken beschreven die kunnen
worden gebruikt om van gemiddelde naar meer geïndividualiseerde behandelef-
fectpredicties te komen. De focus ligt hierbij op logistische regressietechnieken
die algemeen bekend zijn en van nature de vereiste probabilistische schattin-
gen geven. Hierbij worden sleutelcomponenten van zowel causale inferentie- als
predictiesonderzoek gecombineerd om te komen tot geïndividualiseerde predic-
ties van behandeleffecten. Hoewel de afzonderlijke componenten bekend zijn,
is hun integratie een actueel onderzoeksgebied. In dit hoofdstuk wordt het
probleem teruggebracht tot de essentie in de context van een gerandomiseerde
trial, wordt ingegaan op het belang van een duidelijke definitie van te schat-
ten grootheid (estimand), wordt inzicht gegeven in de benodigde aannames, en
worden adviezen gegeven met betrekking tot modellerings- en schattingsmogeli-
jkheden. Gesimuleerde data illustreren de eigenschappen van de verschillende
opties in scenario’s die zowel het gemiddelde behandelingseffect als de hetero-
geniteit van het behandelingseffect variëren. Twee toegepaste voorbeelden illus-
treren de geïndividualiseerde predictie van behandeleffecten in gerandomiseerde
onderzoeksdata.

Als voortzetting van het werk beschreven in Hoofdstuk 4, beschrijft Hoofd-
stuk 5 bestaande en nieuwe methoden om modellen voor geïndividualiseerde
predicties van behandeleffect te evalueren in termen van discriminatie en cali-
bratie. Zulke modellen komen steeds vaker voor in de literatuur. Om de validatie
van predictiemodellen voor geïndividualiseerde behandeleffecten te vergemakke-
lijken, worden de klassieke concepten van discriminatie en calibratie, zoals ge-
bruikt in reguliere (associatieve) predictie, uitgebreid naar de klasse van causale
predictiemodellen. Werkend binnen het potential outcomes raamwerk worden
de statistische eigenschappen van bestaande statistieken, zoals de c-for-benefit,
beschreven. Vervolgens worden nieuwe, op modellen gebaseerde alternatieven
voorgesteld. De focus ligt daarbij op gerandomiseerde studies met binaire eind-
punten. Gesimuleerde data geven inzicht in de kenmerken van de discriminatie-
en calibratiestatistieken, en alle methoden worden geïllustreerd in een studie
naar de behandeling van acute herseninfarcten. De resultaten tonen dat de
voorgestelde maten de beste kenmerken hadden in termen van bias en variantie.
Hoewel resampling-methoden om te corrigeren voor optimisme tijdens interne
validatie gemiddeld effectief waren, hadden ze een grote variantie tussen repli-
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caties. Dit limiteert hun waarde in een specifieke toepassing. Daartoe kunnen
modellen voor de predictie van geïndividualiseerde behandeleffecten het best
worden gevalideerd in externe data in plaats van in de oorspronkelijke ontwikke-
lingssteekproef.

Ten slotte presenteert Hoofdstuk 6 een toegepaste studie, waarin de mogeli-
jke heterogeniteit van het effect van antibioticabehandeling wordt geanalyseerd
bij volwassenen met klinisch gediagnosticeerde acute rhinosinusitis (ARS). In
overeenstemming met de ontwikkelingen in Hoofdstuk 4, beschrijft dit hoofd-
stuk de gezamenlijke predictie van de prognose met en zonder antibioticabehan-
deling in termen van het genezingspercentage na 8-15 dagen. Er waren ne-
gen dubbelblinde, placebogecontroleerde onderzoeken (n=2.539) beschikbaar,
waarbij rekening gehouden moest worden systematisch ontbrekende data en
de clustering van data binnen individuele onderzoeken. Bij imputatie werd
rekening gehouden met de uiteindelijk mixed effects structuur van het logistis-
che predictiemodel. Voorspellers waren onder meer demografische kenmerken
op individueel niveau, algemene tekenen en symptomen, toewijzing van an-
tibioticabehandeling en kenmerken op studieniveau. Interne-externe kruisval-
idatie werd gebruikt om de predictiesprestaties voor nieuwe data te schatten.
Samengevat, waren de predicties van zowel prognose als behandeleffect van on-
voldoende kwaliteit om de beslissing aangaande antibioticabehandeling bij vol-
wassenen met ARS te ondersteunen.

Concluderend heeft dit proefschrift methoden opgeleverd voor het omgaan met
ontbrekende data tijdens de validatie van een predictiemodel en de toepass-
ing van een predictiemodel in de praktijk, maakt het flexibele geregulariseerde
parametrische survival modellen beschikbaar, en heeft het de combinatie van
klassieke predictie methoden en causale methoden onderzocht ten behoeve van
geïndividualiseerde predicties van behandeleffecten. De open-source R-code is
vrijelijk beschikbaar. Samen kunnen de ontwikkelingen en praktische hand-
vatten in dit proefschrift helpen bij het proces van ontwikkeling, validatie en
implementatie van predictiemodellen in de praktijk.
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