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Chapter 1

(zeneral introduction

"One of the most common and important
uses for data is prediction."

Jerome H. Friedman [1]

Prediction modeling can be described as 'the process of applying a statistical or
data mining algorithm to data for the purpose of predicting new or future data’
[2]. Out of the vast field covered by this definition, this dissertation will focus
on the use of statistical methods for prediction purposes in healthcare settings.
This entails both 'regular’ prediction modeling reflecting the association between
a set of predictors and the outcome of interest, and causal prediction aiming to
predict the effect of a modification of one or more of the predicting variables.!

1To illustrate the difference, assume that, unknown to the statistician, variability in some
measure B causes variability in some measure A. Capturing the association by means of a
regression of A on B will provide meaningful predictions of B for different levels of A. However,
manipulating A will not change the distribution of B, and hence the model does not provide
meaningful causal predictions of the effect of A.
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Associative prediction modeling

Typical prediction models used in healthcare settings are of the associative
kind, modeling the association between a set of predicting variables and an
outcome of interest. For example, well-known clinical prediction models in-
clude the Framingham models for 10-year coronary heart disease risk [3] and
general cardiovascular risk [4], the QRISK3 model predicting 10-year risk of
a heart attack or stroke (https://qrisk.org/three/) [5], and the National
Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT) for 5-year
breast cancer risk predictions [6, 7]. Such risk predictions with respect to key
future clinical events have clear practical relevance and play an important role
in contemporary medicine. The can for instance be used to inform patients and
physicians and may help to inform treatment decisions. As an example of the
latter, it might be deemed desirable to restrict known effective treatment with
severe side effect to those who are at a high risk of adverse outcomes based on
their demographics and clinical presentation.

The road to successful implementation of such associative prediction models
is well-described and researched for the associative type of prediction models
[8, 9]. The general process consists of prediction model development including
internal validation, external validation in independent data, and assessment of
model impact in practice [10, 11]. During this process, conceptual knowledge
of the underlying processes being modeled is a major factor, since it limits the
amount of information that needs to be estimated from the data (e.g., in terms of
variables importance, interactions, and functional form) and may thereby help to
diminish model uncertainty to a practically feasible level. Moreover, conceptual
knowledge or study design may provide information that cannot be distilled from
the data (e.g., with respect to likely missing data processes, exchangeability, or
possibly informative censoring). Ideally, conceptual knowledge is combined with
a substantive amount of high-quality data [12, 13, 14]. As an example, this holds
for all of the successfully implemented models mentioned above.

While the general process of prediction model development has been well-descri-
bed, many challenges remain. One of the key challenges that arises in practical
situations is the occurrence of missing data. While dealing with missing data
during model development has received much attention [15, 16, 17, 18], the
problem of missing data at the time of model application in practice has received
only scarce attention [19]. In this dissertation, I will touch on this problem in
the context of individualized risk prediction with respect to key future clinical
events (Chapter 1). A second major challenge concerns the combination of
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limited prior knowledge on the proper specification of a prediction model and
limited availability of data. While novel sophisticated methods bring promising
results in areas with abundant data [20], settings with relatively low numbers of
observations/replications with respect to model complexity remain challenging.
I will touch on this problem in the context of time-to-event data (Chapter 2).
In addition to general prediction modeling problems, such as covariate selection
for main and interaction effects and functional form, models for this type of data
also have to deal with the additional challenges of censored data and possibly
time-varying covariate effects. Since the amount of prior knowledge on all these
modeling aspects is often limited, this is a setting in which the optimization of
data-driven modeling strategies may be fruitful.

Aside from the interesting challenges that remain to be solved within associa-
tive prediction modeling, such models also have a fundamental limitation in
that they do not necessarily convey the effect of interventions on the predicting
variables. For instance, natural variability in systolic blood pressure is known to
relate to long term risk of heart disease and therefore included in the QRISK3
model [5], but this model does not describe the effect of intervening on systolic
blood pressure. To endow predictions with this desired additional meaning, the
model should reflect the causal effect of systolic blood pressure on the outcome
of interest, and not just their association.

Causal prediction

Causal inference aims to describes the effect of a modification of one or more vari-
ables on the outcome, and is thereby able to answer 'what if’ type of questions
[21, 22]. For instance, "what if I were to start a certain treatment regimen?"
Within the medical domain, the preferred type of study design to answer such
questions is the randomized controlled trial (RCT), which attempts to isolate the
causal effect of an intervention. In such trials, patients are randomly allocated
to two or more treatment regimens and followed until measurement of a clini-
cal outcome of interest. The main goal of randomization is to ensure that the
treatment groups are theoretically comparable (i.e., exchangeable) with respect
to factors other than treatment. Typically, these trials aim to answer questions
with respect to the average effect of treatment: "Will the effect of treatment
A, on average, differ from the effect of treatment B?" While well-conducted
randomized controlled trials have brought about much progress, they do not
directly answer the physician’s most important question: "Should I administer
treatment A or treatment B to this particular individual?" That is, the aim is to
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provide individualized causal predictions of the outcome of interest under each
of the available treatment options, with causal here referring to the idea that
the differences between these predictions should be caused by differences in the
chosen treatment regimen.

As will be elaborated upon in Chapter 3, the answer to such more individ-
ualized causal questions requires a combination of typical prediction modeling
techniques and explanatory modeling techniques. The prediction modeling tech-
niques are required to build individualized and hence potentially complicated
multivariable models, while avoiding overfitting (i.e. still obtaining good per-
formance in independent test data). The explanatory or causal angle is required
to support the attribution of differences in predicted individualized treatment
to the treatment intervention, and hence to avoid spurious association with
treatment. In practice, a major challenge lies in the fact that causal effects can
never be directly observed on the individual level [23]. Hence, causal prediction
is a considerably more challenging task than associative prediction modeling.
Nonetheless, recent years have shown an increase in the development of such
methods for both randomized and observational data [24, 22]. The main focus
of Chapter 3 is on the development of prediction models for individualized
treatment effect within the context of randomized trials. Subsequently, Chap-
ter 4 focuses on measures for their evaluation, which is still very much an open
area of research. More specifically, it focuses on measures of calibration and
discrimination for predicted individualized treatment effects, hence extending
the typical use of calibration and discrimination measures on the level of the
outcome [9, §]. Lastly, (Chapter 5) describes an applied clinical study that
examines possible heterogeneity in prognosis and treatment effect using data
from different sources.

Outline

This dissertation describes statistical models for both typical (associative) pre-
diction and causal prediction, with the latter focusing on individualized treat-
ment effects in the context of randomized trial data. It touches upon modeling
assumptions, model development, and model assessment procedures. Out of
these, the modeling assumptions and the principles of model development are
relatively well understood, but understanding of the proper evaluation proce-
dures for causal prediction models is only just emerging.

The outline of my dissertation is as follows:
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Chapter 2: ‘Handling missing predictor values when validating and applying
a prediction model to new patients’ discusses the issue of missing data at the
time of model application. If missing data are to be expected in practice, this
also has implications for the handling of missing data during model validation.
Most notably, care is required during internal validation.

Chapter 3: ‘Regularized parametric survival modeling to improve prediction
models’ joins the strengths of parametric survival modeling and regularization,
with a specific focus on the analysis of non-proportional hazards.

Chapter 4: ‘A tutorial on individualized treatment effect prediction from ran-
domized trials with a binary endpoint’ introduces causal prediction in the con-
text of individualized treatment effect prediction, provides guidance for the de-
velopment of such models, and highlights pitfall and areas of future research.

Chapter 5: ‘Evaluating individualized treatment effect predictions: a new per-
spective on discrimination and calibration assessment’ picks up on the perfor-
mance assessment of individualized treatment effect prediction models. Model-
based approaches are introduced for both discrimination and calibration pur-
poses.

Chapter 6: ‘Prognosis and prediction of antibiotic benefit in adults with
clinically diagnosed acute rhinosinusitis: an individual participant data meta-
analysis’ is an applied study that evaluates the possible presence of treatment
effect heterogeneity in a set of randomized trials. Many of the considerations
encountered in earlier chapters return in this clustered data context.

Chapter 7: General discussion






Chapter 2

Handling missing predictor
values when validating and
applying a prediction model
to new patients

Hoogland J, van Barreveld M, Debray TPA, Reitsma JB, Verstraelen TE,
Dijkgraaf MGw, Zwinderman AH. Handling missing predictor values when vali-
dating and applying a prediction model to new patients. Statistics in Medicine,
2020; 39(25):3591-3607. DOI: 10.1002/sim.8682
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Abstract

Missing data present challenges for development and real-world application of
clinical prediction models. While these challenges have received considerable
attention in the development setting, there is only sparse research on the han-
dling of missing data in applied settings. The main unique feature of handling
missing data in these settings is that missing data methods have to be per-
formed for a single new individual, precluding direct application of mainstay
methods used during model development. Correspondingly, we propose that
it is desirable to perform model validation using missing data methods that
transfer to practice in single new patients. This article compares existing and
new methods to account for missing data for a new individual in the context of
prediction. These methods are based on (i) submodels based on observed data
only, (ii) marginalization over the missing variables, or (iii) imputation based
on fully conditional specification (also known as chained equations). They were
compared in an internal validation setting to highlight the use of missing data
methods that transfer to practice while validating a model. As a reference, they
were compared to the use of multiple imputation by chained equations in a set
of test patients, because this has been used in validation studies in the past.
The methods were evaluated in a simulation study where performance was mea-
sured by means of optimism corrected C-statistic and mean squared prediction
error. Furthermore, they were applied in data from a large Dutch cohort of
prophylactic implantable cardioverter defibrillator patients.
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2.1 Introduction

An increasing number of prediction models are published in support of clinical
decision making. Well-known examples in the cardiovascular domain are the
QRISK3 (predicting risk of heart attack and stroke) [5] and the Seattle Heart
Failure [25] models. Recently, several guidelines were published on how to per-
form and report prediction modeling [10, 11, 26|, generally involving (i) model
development, (ii) validation, and (iii) real world application. Missing data are
a key issue in each of these stages. Especially the handling of missing data at
the time of model development has been an active research area and multiple
imputation has arisen as a general-purpose tool to account for data [27, 28].
Assuming missingness at random, multiple imputation methods allow for the
use of all available data (avoiding selection bias and loss of statistical power)
and at the same time account for uncertainty with respect to the missing data
[27, 29, 30]. While missing data during the model development stage have at-
tracted much attention, there is a scarcity of research on how to account for
missing data during validation and real-world application of models. We pro-
pose that the methods by which missing data are handled should be an integral
part of prediction model development, and be transferable to any new data, be
it validation data of new individual cases.

Starting with the validation setting, prediction model validation has received
considerable attention [31, 32, 33]. Its main goal is to provide empirical evi-
dence of model performance beyond the data used for its development, ideally
across different (but related) settings and populations [34]. As for prediction
model development studies, validation data are usually affected by missing val-
ues. We propose that the correct way of handling missing values in validation
data depends on the intended use of the to be validated model. More specifi-
cally, it depends on whether one intends to allow for missing data during model
application in practice. To make the underlying rationale more clear, let’s con-
sider the use of imputation as applied independently in a set of validation data
[35, 36, 37]. Use of this this strategy requires estimation of the necessary im-
putation models in the validation set, and thereby uses information that is not
readily available in practice when a single new patient presents with missing
values. That is, it uses information from other new patients (in the validation
set) and in practice patients present individually. The main consequence is that
the validation study approximates model performance for those with complete
data. This could be in line with the intended use of the model, but the implied
performance estimate is expected to be optimistic when allowing for missing
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data in real life application. Also, validation performance becomes a mixture of
prediction model performance and a local procedure to handle missing data. If
the goal is to allow for missing data in practice, one ideally assesses prediction
model performance and a transferable missing data method at the same time.
Here we focus on this latter goal.

When applying previously developed prediction models in new, individual pa-
tients, accounting for missing values is not straightforward. As described above,
one ideally disposes of both a prediction model and a missing data method that
transfers to new individual patients. However, in practice most models do not
allow for missing data, or do so by means of methods that have been shown to be
problematic. Examples of prediction models enforce valid values for all predictor
include implementations of the classic Framingham model (e.g. on mdcalc.com
[38]) and the before mentioned Seattle Heart Failure model [25, 39]. Alterna-
tively, some models allow for missing data on a limited set of variables and use
simple imputation procedures. For example, the well-known QRISK3 model
uses the average value from the development study for a measure of deprivation
when geographical region is unknown (i.e. mean imputation), a conditional av-
erage based on ethnicity, age, and sex for missing values of Cholesterol/HDL
ratio, blood pressure and BMI (i.e. conditional mean imputation), and zero
imputation when the standard deviation of the last two blood pressure readings
is missing [40]. Each of these methods has been shown to have issues in the
context of model development [27], but there is no clear guidance on missing
data problems in the model application stage.

As an example of the possible mismatch between model validation and model
application in practice, QRISK3 validation removed all patients with unknown
geographical region and used multiple imputation by chained equations to han-
dle remaining missingness [5]. This validation does not contain any information
on those with missing region and reflects performance for otherwise complete
data, while the application allows for missing predictors. We have not been able
to find an example in which missing data were allowed in practice and where
missing data was handled consistently between validation and application.

In this paper, we propose that validation, whether internal or external, should
handle missing data in a way that only depends on the development data and is
applicable when making predictions for new individual patients.! This implies
the need for missing data methods that transfer to real-life application. We

1 As described above, when the intended use of the prediction model is to allow for missing
data in practice.
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consider six strategies to address missing values in individual patients when
calculating a risk prediction. We compare them with the before mentioned use
of (independent) multiple imputation in an internal validation setting. Our
work builds on methods developed and described by Marshall et al [41] and
Janssen et al [42]. We will describe their suggestions, present new methods, and
describe all methods in a realistic setting including missing data in the model
development data. The various methods will be illustrated with simulated data
and data from an ongoing project on the prediction of mortality for primary
therapy with an implantation cardioverter defibrillator (ICD) in heart failure
patients at risk for cardiac arrhythmia and death (the DO-IT Registry) [43].

2.2 Methods

We consider prediction models with expectation of the form E [y;|x;] = g~ (z:b),
where y; is the outcome of patient i, x; is the vector with values of the set of
prediction variables, b is the associated vector of regression weights, and g=1(-)
is an (inverse) link-function. We here focus on the binary case, and discuss
extensions to cope with censored outcomes in the applied example section.

When applying a prediction model in individual patients, several approaches can
be considered to account for missing predictor values. For ease of exposition
it helps to introduce some notation. First, define x; as the partition (z;, Zim)
where x;, is the vector of observed predictors, and x;,, is the vector of unob-
served predictors for individual i. Analogously, define b as the partition (b,, by,)
where b, and b,,, represent the vectors of weights of the observed and unobserved
predictor variables respectively. The model of interest can then be written as
E [yi|Tio, Zim] = 97 (Xiobo + Timbm )and cannot be evaluated directly due to the
missing x;,,. Several apporaches can be taken to arrive at predictions for a
new individual conditional on his or her observed data only. The approaches
described in the current paper can be separated into three groups based on the
underlying theory. These will be shortly summarized in order to give a quick
overview of the methods. To simplify notation, the subscripts will be omitted
in further equations.

The first group of methods aims to find a submodel of the original model based
on the observed covariates only. That is, the aim is to find

E [ylxo] = g_l(xobo)

11
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where b, represents the vector of weights for a model conditional on the observed
data only. Such a model is directly applicable for prediction purposes. The
challenge for these submodel methods is to estimate b,. The second group of
methods integrates over the unobserved data to arrive at the predictions of
interest. That is, the full model E [y|z,, x,,]) is integrated over the conditional
distribution g(z,|z,) as follows

E [yl = / E [y[0, 2] g(@m|20)0m

where g(z,,|x,) describes the uncertainty in the unobserved data given the ob-
served data. This marginalization over the unobserved data retains the original
full model coeflicients. The challenge for this group of methods is to estimate
9(Zm|x,). The third group of methods aims to impute the missing covariates to
enable use of the original full model, as in

E [y[zo, Tm] = gil(xobo + Zmbim)

where Z,, contains the imputed values for the unobserved covariates. Here,
the challenge lies in identification of the imputation models. All imputation
methods that we considered were based on chained equations, also known as
fully conditional specification [27, 16]. Imputation methods that have been
shown to have issues in previous research have not been evaluated, and will
not be covered in detail. These include zero imputation, mean imputation, and
conditional mean imputation [27].

The methods to be described in the following sections are submodels directly
estimated in the development data (method 1) and submodels based on the one-
step-sweep (method 2), marginalization over the unobserved predictors (method
3) and marginalization over both the unobserved predictors and the outcome
(method 4), single imputation based on chained equations (method 5) and mul-
tiple imputation based on chained equations (method 6). Each of these can
be applied to new individual patients and therefore apply to both validation
and application of prediction models. In addition, since it has been used in
practice for validation purposes, the independent use of multiple imputation in
the validation set (method 7) will be evaluated. Note however that this use of
multiple imputation does not extend to new individual patients, since in that
case there is not enough data to independently estimate the imputation mod-
els. Regarding terminology, development data is used to refer to the data on

12
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which the prediction model was originally developed. Training and test data
were reserved for the description of internal validation procedures to describe
splitting of the development data. Importantly, note that the outcome value
is always missing during model application. While it is commonly available in
internal and external validation settings, the information in the observed out-
comes should never be used when interest is in evaluation of model performance
in real-life settings.

2.2.1 Submodel methods

The submodel approaches described by Janssen et al [42] refer to the develop-
ments of Marshall et al [41]. As described above, the underlying idea is to find
the necessary submodels to cope with missing data in the application setting
(i.e. submodels based on the observed data only). The most straightforward
way to do so is to fit all necessary submodels in the development data. For
a two variables example, this implies that not only the full prediction model
E [y|x1, 2] = g~ 1 (2101 + @2be) is fitted and reported, but also the submodels
E [y|z1] = g~ Y(x1b1) and E [y|zs] = g~ (x2b2). The prediction for a new person
with a missing xo value is then calculated using the E [y|z1] = g_l(aclbl) sub-
model. It is not difficult to estimate the submodels in the development data,
but if the number of predictor variables (say, k) is large and all of them may
be missing, then the number of submodels may be very large: with & predictor
variables there are 2 submodels. If k = 15, the number of submodels is already
32,768 and this is not rare: both the before mentioned QRISK3 and Seattle
Heart Failure model have k& > 15. This direct estimation of the 2¥ submodels
was the first of the implemented methods.

To avoid estimation of a large number of submodels, Marshall et al [41] sug-
gested to approximate b based on the weights of the full prediction model only.
Note that b may include an intercept, and hence the design matrix a corre-
sponding unity column. The approximation starts from the assumption that
the full model estimate b has a multivariate normal distribution with true mean
b and covariance matrix S. Hence, by simply reporting the regression coeffi-
cients b of the full prediction model and its variance-covariance matrix S, pre-
dictions can be made for new patients, regardless of whether they are affected
by missing values. Note that the estimates of b and S may also be pooled es-
timates over multiply imputed development data. Either way, the predictions
are only based on the development data and do not require any imputation pro-
cedure for prediction for new individuals with missing data. Using the above
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described partition of b as (b,, by, ), and accordingly partitioning covariance ma-

. SOO Som
trix S as (Smo .
missing predictor variables given the weights of the missing predictor variables
is normal with approximate mean calculated with the sweeping operation as
by = b, — Somen}nbm. For instance, again using the two variable example of full
model E [y|z1,x2] = g7 (21b1 + 22b2), then for a patient with missing zo, their
prediction will be based on E [y|x;] = g_l(xll;l with b, = by — S12(1/S22)ba,
where the right-hand side contains full model parameter estimates and b; is the
estimated parameter for predictor x1, Si2 is the covariance between by and bo,
and Sy2 is the variance of byy. Interestingly, for the logistic model, predictions
based on these submodels correspond one-to-one to procedures that impute .,
with the best linear predictor based on x,, weighted by the binomial variance
in the development data [41].

), the conditional distribution of the weights of the non-

2.2.2 Marginalization methods: integrating over the un-
known values

As described above, an alternative approach arises when we partition the vector
of covariate values too, and estimate E [y|z,] as follows:

E [yl = / E [4[0, Zrm] (| 70) 01

All required conditional distributions can be estimated in the development data,
but with large numbers of predictor variables the number of conditional distri-
butions would again be extremely large. For this reason, we propose to estimate
the joint distribution of z = (x,,,,) in the development study, and to derive
the required conditional distributions from this joint distribution. This is espe-
cially attractive when z follows the multivariate normal distribution with mean
w1 and covariance matrix ¥. When we partition p as (to, tm) and X accord-
ingly as (goo Som ), then the conditional distribution g(z,|z,) has mean
mo mm
tom + ZmoXo (2o — 1) and covariance Xp,m — SimoXos Som.

In most situations, the vector x will consist of both categorical and quantita-
tive variables and the joint distribution will therefore almost certainly be non-
normal. We hypothesize however that the normal distribution is close enough
to the true joint distribution. If that is the case, then the following approach
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will approximate E[y|x,] to any desired degree of precision. Alternatives may
involve nonparametric distributions estimated with multivariate splines [44] or
copula models [45, 46].

The mean p and covariance matrix > can be estimated in the development
data. These i and 3 are then used for a new person i with missing data to
derive the conditional distribution §(x;m,|:,). We then draw a number of ran-
dom vectors Timi, - - -, Timj, - - - » Tim,naraws 1r0m this distribution. Concatenating
Zij = (Tio, Tim;) one may calculate E[y;|xio, Tim;] and average over the ngraws:

Ndraws a(x
- g(ﬁsz]|9Cw)
Ely;|zi0] = E Ely|Zio, Timj Py
[ il Zo] j=1 [ ‘ ” ZmJ]Z:irbe g(l‘imr|$io)

This Monte Carlo integration approximates the integral of interest over g(x,,|z,)
and was implemented as method 3 with ngraws = 100. It is based on available
predictor variables and the estimated normal approximation of the joint distri-
bution of predictors in the development data. Note that integration over is not
the same as evaluation of the full prediction model at (x,, E[g(zm|zo)])-

For use of multiple imputation during model development, it has been recognized
that imputation of missing x,, may also depend on y. Consequently, imputations
are derived from the conditional distribution g(x.,|T,,y) [27]. If the parameters
of this imputation model were known, the model could also be used to impute
missing z,, given (z,,y) in a new patient. This model is however depending on
the outcome variable which is in principal not available for a new patient. One
could use the entire chained-equations imputation-model from the development
data and impute y too, but here we examine the possibility to integrate out
y from the imputation model. This is essentially an extension of method 3
that also integrates over the outcome. In this method, we therefore use the
conditional distribution g(z,,|z,) that is obtained by integrating out y:

o(anlze) = [ genloy)h(ulzady
If y is a binary outcome this simplifies to

g(xmll‘o) = g(xmlxo,y = 1)h(y = 1|xo) + g(l‘m|33o,y = O)h(y = O‘xo)
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which nicely illustrates that g(x,,|x,) is obtained by averaging g(zm|z,,y) for
every possible value that y may have, but weighted with the probability that y
has that particular value.

Notice that h(y|z,) is a submodel of the full prediction model, and this suggests
an algorithm which is a combination of methods 2 and 3. Thus, we estimate
the joint distributions g(z|y = 0) and g(z|y = 1) in the development data and
we approximate h(y|z,) using Marshall et al’s [41] suggestion (as in method 2).
For a new person ¢ with missing values of covariates in the vector x;,,, we first
sample a number of OUtcomes Y1, . .., Yij, - - - » Yimgaw. from h(ylz,) and given
the sampled values y;;(j = 1,..., Ndraws), We sample Z;p,; from §(Tim|Tio,y =
¥ij), and j = 1,..., Ndraws. As with method 3 the joint distribution g(z|y = y)
will usually not be normal, but for the current application we approximate
g(z|y = y) with the multivariate normal distribution. As above, alternatives
may involve nonparametric distributions estimated with multivariate splines or
copula models.

2.2.3 Imputation methods

As described above, the main goal for imputations methods is to find imputa-
tions such that one can arrive at proper predictions based on the full original
model. That is, the original set of regression weights (b,, b,,) is applied to a
combination of the observed and imputed values (z,, Z.,) as in

E[?J'-rm -'i'm] = g_1<xobo + -i'mbm)

The mainstay method for multiple imputation during model development is
multiple imputation by chained equations, also known as fully conditional spec-
ification [27, 29, 16]. These names refer to the typical specification where each
variable has its own imputation model conditional on all the other variables (i.e.
for the outcome given all of the x variables, for z; given the outcome and all
other z variables, ...). That is, they are fully conditioned (on all other vari-
ables) and chained in the sense that all variables are used as both predictor and
outcome. The main advantage of imputation by chained equation resides in the
great flexibility that is available for the specification of each of these models,
which can take any form.

It has previously been suggested that these fully conditional imputation models
developed for missing data in the development dataset can also be used to
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impute missing data in new patients [42]. From a methodological viewpoint, it is
perfectly valid to use the previously fitted imputation model(s) in a new patient;
the prediction and imputation model are considered as a unit. Although it is
theoretically possible to extract the fully conditional imputation models from
the development data, common software packages do not store the estimated
parameters of the imputation models (e.g. packages like mice in R [29]; for
an overview of available free and commercial statistical software for multiple
imputation see Nguyen et al. [28]). To the best of our knowledge only the
Amelia package in R [47], which assumes multivariate normality on the complete
data, provides multiple imputation model parameters. This makes application
of the imputation models to data of new patients difficult. Moreover, if the
fully conditional models were available, they could not be used directly when
multiple missing values are present in the new individual. This is because a
fully conditional model can only be used for imputation when all predictors are
known.

Two separate approaches can be taken to overcome these technical aspects.
First, as proposed by Janssen et al. [42], one can simply stack the new patient
below the original development data, and impute all patients together. A second
possibility is to fit the required fully conditional models on the imputed develop-
ment data and use these models to impute missing values in the new individual.
These two methods were implemented as our method 5 and 6 respectively.

Use of the stacked imputation procedure (method 5) solves two problems. First,
it does not require the imputation model parameters to be available, and second,
it naturally copes with multiple missing values in the new individual. However,
is also poses two new problems. First, re-running the imputation process over
the combination of the entire development data and the new patient is a con-
siderable computational burden to arrive at a single prediction. Second, a more
theoretical issue is that simultaneous imputation of the development data and
the new case allows sharing of information between them, while one would pre-
fer to separate them for validation purposes. That is, the imputation model
is re-estimated while it should theoretically be fixed as part of the prediction
model. While this issue may only be theoretical for a single patient, the issue
more clear when predictions for an entire validation set are required: the im-
putation models will be highly influenced by the validation data. To cope with
these issues, we propose to derive the imputed development data before stack-
ing. In this way, the imputed sets can be stored for later use (thus avoid the
computational burden of the imputation process in the development data) and
the imputation models are not affected by the new individual. The latter relates
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to the fact that updating of the imputation models only makes use of cases with
observed outcomes [27], and the new patient is thus always omitted for the nec-
essary imputation models (i.e. those for which the new individual has missing
values). A further issue is that imputation models used at the time of model
development are based on all variables in the analysis including the outcome
variable y. The outcome variable y is however missing per definition for new
patients. Therefore, the chained equation approaches will automatically impute
y for the new patient. This value can simply be discarded. The most important
downside however, is that the original development data need to be available
for every new prediction (also see Box 1 for each method’s requirements). Be-
sides computational, storage, and network issues relating to online availability
of data, the most pressing issue is in limitations due to privacy regulation and
data sharing limitations for many data sets.

To avoid the need for availability of the development data, we propose to derive
the fully conditional model for each variable in the multiply imputed develop-
ment data (method 6). This summarizes all the required information from the
development data set for the future imputation process, and at the same time
copes with the computational burden occurring with straightforward stacked
imputation (since the imputation models are directly available and do not have
to be re-estimated). Additionally, no tricks are required to avoid sharing of
information between development data and new case(s). In case of missingness
in the model development data, note that these fully conditional models may be
pooled models over multiple imputations. Also, as for the stacked imputation,
there is great flexibility in the possible classes of models to be used. For the cur-
rent application, linear models were used for continuous variables and logistic
regression was used for dummy coded variables. However, many more classes
are conceivable and have been used successfully in multiple imputation (e.g.
Poisson regression, multinomial regression, multi-level models) [27]. Due to es-
timation of the full conditional models in multiply imputed development data,
the models adequately reflect the available information accounting for missing
data (assuming missingness at random). Imputations for a new case can be
derived iteratively in a small number of iterations. Starting from imputation of
the missing = variables with the marginal means as estimated in the develop-
ment data, one iterates over the full conditional models as in standard chained
equation procedures. A key difference though, is that the imputation models
remain fixed. First, the outcome is predicted based on the observed x variables
and initial imputations for missing x variables. Second, the imputation of the
first missing x variable is updated based on its fully conditional model and the
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current state of the data, and so on over all other missings and repeated until
convergence to the most likely imputations given the observed data (usually
in < 5 iterations). Note that predicted probabilities are used in the iterative
process and not the most likely binary class. Also, note that this method is
essentially a simplification of traditional imputation by chained equations with
the stochastic components removed. Therefore, it inherits the same theoretical
limitations with respect to the relatively weak theoretical underpinnings, and
assessment of its value will mainly have to come from empirical evidence [16].

2.2.4 Independent multiple imputation by chained equa-
tions for sets of patients

Lastly, while not applicable in a new patient, presence of an entire validation
set allows for standard multiple imputation by chained equations as commonly
used during model development. As described above, this was also the way in
which the QRISK3 model was validated. A key feature of this method is that
is does not allow the development data to influence validation data. However,
there are at least two issues. First, the imputation method applied during
validation cannot be applied in practice to new patients (hence explaining the
different practical solutions implemented in for instance the QRISK3). This is
only of interest when only the performance for complete cases is of interest,
and the model is not to be applied in cases with missing data. Second, the
imputation models are allowed to vary between development and validation
set, and consequently obscure performance evaluation in the validation when
transportability of the imputation procedure is of interest. Considering these
issues, this method was only evaluated as a reference since it is used in practice,
but it does not apply for our main goal under evaluation: application of a
prediction model in a new case with missing data. If the latter is the goal of
interest, we argue that it follows directly that this method should not be used
for validation purposes

2.2.5 Implementation requirements

The information that is required to be able to perform these different procedures
varies across the methods and ranges from just the prediction model and the
variance covariance matrix of its parameters to the entire development data set.
A summary of these requirements per method is available in Box 1.
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Box 1: Information that needs to be available for each of the
implementation missing data methods

Each of the methods to handle missing data when applying a prediction
model in new patients requires additional summary statistics and or data
beyond the prediction model itself. This box enlists these requirements in
addition to the full model parameter vector b.

Data requirements

Method

1. Estimation of all submodels: requires estimated regression coeffi-
cients for all (possibly 2¥) submodels of the prediction model of in-
terest.

2. Submodels by means of the one-step-sweep: only requires estimated
regression coefficients and the variance-covariance matrix of devel-
oped prediction model of interest.

3. Marginalize over missing x variables: requires estimated means, and
their variance-covariance matrix, for all variables in the development
dataset that are used in the prediction model of interest.

4. Marginalize over missing x variables and the outcome: requirements
are those for method 2 and 3 combined, where the latter are needed
conditional on the outcome.

5. Stacked multiple imputation: requires the entire development data-
set.

6. Imputation by fixed chained equations: requires the vector of param-
eter estimates for each of the fully conditional models as derived in
the development dataset, as well as the means of each variable in the
development data.

7. Independent imputation by chained equations: requires a set of test
cases and can therefore not be used in case of a single new patient.
This method was included for comparison in the validation setting
where a set of test cases is available.

Note

In case of missing data in the development data set, multiple imputation
can be used and pooled estimates can be derived for each of the required
pieces of information using Rubin’s rules (e.g. pooled model parameter
estimates, variable means and variance-covariance matrices).
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2.3 Simulation

2.3.1 Set-up

The set-up of the simulation study in summarized in Figure 2.1. To study the
performance of the six methods we simulated data of N = 1000 persons with
values on six predictor variables © = (z1,z9,...,2¢) and a binary outcome y.
Values for x were sampled from the multivariate normal distribution with mean
zero and variance 1 and a positive correlation of 0.3. Covariates x5 and x5 were
dichotomized equal or below versus above zero, and covariates x3 and xg were
log-squared transformed according to log(0.01 + 22) causing their distributions
to be (left) skewed. Covariates x; and x4 were not transformed. After these
transformations, all continuous covariates were standardized again to have mean
zero and variance 1. The binary outcome variable was modelled using a logit-
link function.

Given the sampled (transformed) values for x, the probability of outcome-value
y = 1 was calculated per person using the logit-function log(Odds(y = 1)) =
a+ xf, where 8 was chosen as (0.8,0.9,1.0,0,0,0) and « such that the relative
frequency of y = 1 was about 30%. Given the associated probabilities Pr(y =
1]x), values for y were sampled from corresponding Bernoulli distributions. For
this simulation design, a (logistic) prediction model with linear additive effects
of (z1,x2,...,26), estimated by means of maximum likelihood, leads to a c-
statistic of about 0.8.

Next, we created missing data using eight scenarios. Scenarios one, two, three,
and four use a completely random process with 1) 5% missing data for all
variables, 2) 20% missing data for all variables, 3) 20% missing data for all
variables except 1 which had 50% missing data, and 4) 50% missing data for all
variables. Scenarios five, six, seven, and eight use a missing at random process
where the missingness on variable z; depended on the observed values of y
and the other observed covariates. Percentages of missing data follow the same
sequence as for the missing completely at random settings. The missingness
models were logistic and details are given in table 2.1.
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Figure 2.1: The flow of both the simulation study and applied example are
shown. Parts relating only to the simulation study are shown with dashed lines.
The applied example included 100 bootstrap sample evaluations. *) note that
within each simulation iteration these are the same cases as the OOB samples
with missing data, but with fully observed information.
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Given the simulated data (including introduction of missingness), a bootstrap
sample was drawn with replacements and sample size equal to the full data set.
Standard multiple imputation by chained equations with m = 5 imputed data
sets was used within the bootstrap sample [30]. Both the pooled full (logistic)
prediction model and the necessary requirements for each missing data method
(see Box 1) were derived from the imputed bootstrap data. Where appropriate,
these required estimates were pooled using Rubin’s rules. For instance, the
estimated mean and variance-covariance matrix of the variables requires for the
one-step-sweep submodel method were pooled across imputations. Based on the
pooled prediction model of interest and the missing data method requirements,
all that needs to be estimated in the bootstrap sample is available and was
applied to the out-of-bag (OOB) cases one by one. That is, predictions were
derived for the OOB samples one-by-one by means of each of the missing data
methods for individuals under evaluation. This one-by-one application was in
line with the intended goal of the missing data methods: to provide methods
that apply in practice to new individuals.

Prediction performance for these OOB cases was summarized by means of the
C-statistic (as a measure of discriminative performance) and the root mean
squared prediction error (rMSPE). Prediction based on multiple imputation
methods were averaged. The C-statistic could be obtained directly based on
the predicted values and the observed outcomes. The rMSPE was obtained
based on the predicted values and the known simulated event probabilities for
the OOB cases. Also, we obtained ‘reference’ performance measures based on
complete OOB data (as illustrated in Figure 2.1). To do so, complete data was
obtained for those in the OOB sample (from earlier steps in the data simula-
tion), and the pooled prediction model was applied. This reference performance
therefore corresponds to model performance in absence of missing data during
model application, but already accounting for the decrease in prediction model
performance caused by incomplete development data. Note that this reference
is expected to be unachievable (some information is always unrecoverably lost
due to missing data).

As a further comparison, independent multiple imputation in the OOB cases
was evaluated (method 7). Performance measures were derived as for the meth-
ods applying to individual cases. Also, to illustrate the effect of including the
outcome when performing missing data methods during model application, both
stacked imputation (method 5) and independent multiple imputation (method
7) were evaluated without deleting the outcome in the OOB samples.
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2.3.2 Simulation results

Results for discriminative performance are presented in Figure 2.2 and Sup-
plemental Table S2.1. Mean reference performance in complete OOB samples
was a C-statistic around 0.78-0.79 across missing data settings. This illustrates
that standard multiple imputation by chained equations handled missing data
well in the model development part of the evaluation (i.e. there was only a
small decline in performance when the amount of missing data during model
development increased). With respect to the missing data methods under eval-
uation, Figure 2.2 shows that all methods came close to reference level model
performance under complete OOB data in settings with only 5% missing data.
However, discrepancies began to appear when the amount of missing data in-
creased. The one-step-sweep submodel method (method 2) was clearly less dis-
criminative then the others. On the contrary, the approaches failing to omit the
outcome information (5y and 7y) showed optimistic performance (i.e. higher
than reference performance under complete OOB data). This clearly illustrates
the need for omission of outcome information in the test set(s) of an interval
validation procedures. Of the remaining methods, the 2* submodels (method
1) and fixed chained equations (method 6) performed best and were closely
followed by stacked multiple imputation (method 5). In most runs, they even
performed better than independent multiple imputation in the test set (method
7). This is expected to relate to the relatively small sample size of the test data
(OOB samples) with respect to the training data (bootstrap sample), which
always had a ratio of approximately 1 to 1.7. Both marginalization methods
(method 3 and 4) had intermediate performance.

Root mean squared prediction error results are shown in F