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Abstract

The emergence and maintenance of tree species diversity in tropical forests is commonly at-
tributed to the Janzen-Connell (JC) hypothesis, which states that growth of seedlings is suppressed
in the proximity of conspecific adult trees. As a result, a JC distribution due to a density-dependent
negative feedback emerges in the form of a (transient) pattern where conspecific seedling density is
highest at intermediate distances away from parent trees. Several studies suggest that the required
density-dependent feedbacks behind this pattern could result from interactions between trees and
soil-borne pathogens. However, negative plant-soil feedback may involve additional mechanisms,
including the accumulation of autotoxic compounds generated through tree litter decomposition.
An essential task therefore consists in constructing mathematical models incorporating both effects
showing the ability to support the emergence of JC distributions.
In this work, we develop and analyse a novel reaction-diffusion-ODE model, describing the interac-
tions within tropical tree species across different life stages (seeds, seedlings, and adults) as driven
by negative plant-soil feedback. In particular, we show that under strong negative plant-soil feed-
back travelling wave solutions exist, creating transient distributions of adult trees and seedlings
that are in agreement with the Janzen-Connell hypothesis. Moreover, we show that these travel-
ling wave solutions are pulled fronts and a robust feature as they occur over a broad parameter
range. Finally, we calculate their linear spreading speed and show its (in)dependence on relevant
nondimensional parameters.

Keywords: reaction-diffusion-ODE, Janzen-Connell hypothesis, autotoxicity, travelling waves,
linear spreading speed, negative feedback.
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1. Introduction

A widely observed phenomenon in forest tree communities is that conspecific seedling density
is highest at intermediate distances from the parent tree, referred to as the Janzen-Connell (JC)
distribution. The emergence of JC distributions provide an explanation for the creation and main-
tenance of high species diversity in forest tree communities [7, 14]. This (transient) pattern is
particularly important in terms of biodiversity: the space between the parent tree and its seedlings
is a favourable area for other species to colonise and grow, enhancing coexistence (see e.g. [20, 27]).
From an ecological viewpoint, an increasing number of ecological studies is supporting the idea
that the emergence of this pattern (particularly prominent in tropical ecosystems) is strongly
linked to negative plant-soil feedbacks [1, 19, 32]. Among the main mechanisms responsible for
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such feedbacks, the accumulation of species-specific soil pathogens is indicated as prominent [1, 21].
Consequently, several models have been introduced in the last few decades to theoretically inves-
tigate this mechanism (see e.g. [25, 26, 31, 35] and references therein). In recent years, additional
mechanisms generating negative plant-soil feedback have been identified, including the accumula-
tion of conspecific extracellular DNA fragments leading to an autotoxic soil environment [4, 30].
Such negative feedback induced by autotoxicity could potentially explain species coexistence in
diverse communities [2, 28, 29] as well as plants spatial organisation by means of as clonal rings
[3, 6], fairy rings [15, 34], and more generally vegetation patterns [22, 23].
In this work, we construct a new model based on reaction-diffusion-ODEs in order to describe the
emergence of JC distributions including both growth inhibition (induced by extracellular self-DNA)
and increased mortality (mainly linked to the accumulation of soil-borne pathogens). Reaction-
diffusion-ODE systems are used to model a wide variety of phenomena in biology; however, only few
analytical results concerning their behaviour – which often strongly differs from classical reaction-
diffusion models – are available, see e.g. [11, 13, 16, 24, 37].
As both growth inhibition and increased mortality mechanisms act on different tree life-stages, we
consider a stage-structured framework. Our aim consists in introducing a theoretical tool which
may help assessing the relative contribution of both mechanisms to emergent spatial distributions
of adult trees and their seedlings. As JC distributions are experimentally observed as transient
patterns, we analytically investigate the existence of travelling wave solutions which exhibit the
typical JC feature of seedlings’ biomass being at a maximum at suitable distances from the par-
ent tree. Travelling wave solutions are widely found in mathematical models inspired by several
biological applications, including e.g. species competition [5], tumour growth [9], and bacterial
chemotaxis [10]. In particular, we show the existence of such solutions and derive corresponding
relevant properties. Moreover, we hypothesize that the constructed travelling wave solutions cor-
respond to pulled fronts, whose speed then coincides with the linear speed determined by a linear
analysis near the trivial steady state. We then analytically derive the linear speed and confirm our
prediction by comparing the analytical value with the one obtained by numerical simulations of
our model for a set of fixed parameter values and investigating their dependence with respect to
two relevant parameters.
The impact of the work presented here is twofold: from the ecological viewpoint, our work pro-
vides a valuable theoretical tool to further address relevant issues related to JC distributions (e.g.
understanding how the dispersal ability of tree species moderate the spatial patterns of adult and
seedlings and to what extent are plant strategies along the growth-defence trade-off reflected in
the spatial patterns of adult and seedlings). From the mathematical viewpoint, on the other hand,
the analytical strategy used here to investigate travelling waves in a system of 4 reaction-diffusion-
ODEs improves our understanding of such complex systems and offers a framework potentially
useful to investigate problems exhibiting a similar structure.

The paper is structured as follows: in Section 2 we introduce the model both in its dimen-
sional and nondimensional form, on which we focus for our subsequent analysis. The spatially
homogeneous steady states associated to this model are derived in Section 3. In Section 4 the
linear stability of these steady states with respect to both homogeneous and heterogeneous pertur-
bations is carried out, revealing the absence of Turing patterns for the parameter ranges defined
based on experimental findings (as expected). The existence and the main properties of travelling
wave solutions (in particular right-moving fronts) are then investigated in Section 5: numerical
simulations suggesting the existence of pulled fronts are corroborated analytically by deriving the
linear wave speed and comparing it with the numerical measured speed. We conclude our work
with a discussion of the results obtained and an outlook indicating further research perspectives
in Section 6.

2. The model

In our framework, negative plant-soil feedback (NF) manifests itself both during the seed-
to-seedling transition (in terms of growth inhibition) and at the seedlings life-stage (in terms of
increased mortality). The first effect can be often attributed to the presence of extracellular
self-DNA (also known as autotoxicity), whereas the second effect is mainly linked to soil-borne
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pathogens. As these factors act at different stages of a tree lifespan, vegetation is considered in
terms of biomass and is divided into three compartments corresponding to three different life-
stages, namely seeds Ŝ (kg/m2), seedlings N̂ (kg/m2) and adults Â (kg/m2). Moreover, the
general inhibitor variable Î (kg/m2) represents the density of inhibitor responsible both for growth
inhibition and increased mortality effects. The interaction of such variables at any spatial point
x̂ = (x̂, ŷ) and any time t̂ is based on the following assumptions: the increase of seed density is

influenced by adult tree production via the per capita seed production rate ĝS and seed dispersal d̂S ,
whereas their natural decay rate (including predation) is represented by k̂S . Seeds then germinate
and the seedlings might establish or not, depending also on the inhibitor due to the effect of

autotoxicity via the function ĝN Ŝ

1+γ er̂T Î
. Seedlings have a natural turnover rate k̂N , enhanced by

pathogens via the term r̂P Î. The seedlings which survive then grow into the next life stage

according to the function ĝA

(
1− Â

Âmax

)
. Adults’ density grows logistically because of seedlings

transitioning to the adult stage at rate ĝA, intrinsic growth rate ĉA, and constant per capita
mortality rate k̂A. The inhibitor density grows due to adult decomposition byproducts at a rate
ĉT , decays naturally at a rate k̂I , and diffuses in the soil at a rate determined by the coefficient the
coefficient d̂I . These ecological processes are described by the following reaction-diffusion-ODE
system:

∂Ŝ

∂t̂
= d̂S ∆Ŝ + ĝS Â− k̂S Ŝ,

∂N̂

∂t̂
=

ĝN Ŝ

1 + γ er̂T Î
−

(
k̂N + ĝA

(
1− Â

Âmax

)
+ r̂P Î

)
N̂ ,

∂Â

∂t̂
=
(
ĝA N̂ + ĉA Â

) (
1− Â

Âmax

)
− k̂A Â,

∂Î

∂t̂
= d̂I ∆Î + ĉI Â− k̂I Î .

(1)

Values and meaning of the non-negative model parameters in (1) are provided in Table 1. Based
on an ecological investigation, they have been calibrated in some cases and parametrised in all the
others [12].

In this framework, links to the Janzen-Connell hypothesis can be found in transient patterns
where a ring of seedlings emerges around the adult tree (whose density is concentrated in the
centre of the ring). Mathematically, this consists in travelling wave solutions, whose construction
we analyse in this work. From here on, we refer to this phenomenon as the Janzen-Connell
distribution.
In order to reduce the total number of parameters and to facilitate the analytical investigation of
our model, we introduce a non-dimensional version of System (1). Existence and stability (both
under homogeneous and heterogeneous perturbations) of the corresponding steady states are then
investigated in Section 3 and 4, respectively.

In order to facilitate the investigation of the existence and stability properties of our model, we
introduce the following nondimensional variables:

t = ĉA t̂, x =

√
ĉA

d̂S
x̂, y =

√
ĉA

d̂S
ŷ,

S =
ĉA

ĝS Âmax

Ŝ, N =
ĉA

ĝN Âmax

N̂ , A =
Â

Âmax

, I =
ĉA

ĉI Âmax

Î .

(2)

We choose ĉA, the growth rate of the adult biomass density, as the characteristic time scale; this
adult growth rate can often be experimentally and/or observationally determined in a manner (rel-
atively) independent from other process factors (see e.g. [8]). In addition, we choose the resulting
characteristic seed dispersal distance as the characteristic length scale. For every model variable,
the biomass density is scaled relative to the adult carrying capacity Âmax. Furthermore, for alge-
braic convenience, all nondimensionalised model variables are divided by ratio of that variable’s
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Table 1: Description, values, and units for model parameters in System (1), obtained through parametrisation and
calibration.

Parameter Description Value Units

ĝS Growth rate of Ŝ 6.67 · 10−8 − 0.033 y−1

k̂S Ŝ turnover rate 0.33− 0.5 y−1

ĝN Transition rate from Ŝ to N̂ 0.25− 25 y−1

γ Establishment sensitivity to toxicity parameter 10−5 -

r̂T Establishment sensitivity to toxicity parameter 0− 68 m2 kg−1

k̂N Death rate of N̂ 0.02− 0.74 y−1

r̂P Extra mortality of N̂ caused by Î 0− 2 m2 kg−1 y−1

ĝA Transition rate from N̂ to Â 0.02− 1 y−1

ĉA Growth rate in Â’s biomass density 0.25 y−1

Âmax Maximum capacity for Â 30 m−2 kg

k̂A Mortality rate of Â 0.01 y−1

ĉI Growth rate of Î due to Â 1 y−1

k̂I Inhibitor decay rate 0.7 y−1

d̂S Diffusion coefficient for Ŝ 3− 4 m2 y−1

d̂I Diffusion coefficient for Î 0− 10 m2 y−1

growth rate relative to the characteristic growth rate ĉA.
This leads to the following nondimensional reformulation of Equation (1)

∂S

∂t
= ∆S +A− kS S,

∂N

∂t
=

gS S

1 + γ erT I
−N (kN + rP I + gA (1−A)) ,

∂A

∂t
= A (1− kA −A) + gA gN N (1−A),

∂I

∂t
= d2 ∆I +A− kI I,

(3)

where ∆ = ∂2

∂x2 + ∂2

∂y2 and the nondimensional parameters are given by

kS =
k̂S
ĉA
, kN =

k̂N
ĉA
, rP =

r̂P ĉI Âmax

ĉ2A
, kA =

k̂A
ĉA
, kI =

k̂I
ĉA
,

gN =
ĝN
ĉA
, gA =

ĝA
ĉA
, gS =

ĝS
ĉA

rT =
ĉI r̂T Âmax

ĉA
, d =

√
d̂I

d̂S
.

(4)

We note that, due to the range of ecological feasibility for our parameters reported in Table 1, we
assume kS > 0, kN > 0, rP ≥ 0, 0 < kA, kI > 0, gN > 0, gA > 0, rT ≥ 0, and ε > 0. Moreover,
we assume that in the absence of seeds, seedlings and toxicity, the growth rate of adults is positive
for all Â > 0, which implies

0 < kA < 1. (5)
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Ecologically feasible ranges of the nondimensionalised parameters, based on the associated dimen-
sional values in Table 1, can be found in Table 2.

Table 2: Description and ranges of rescaled nondimensional parameters used in System (3), based on Table 1.

Parameter Description Value

kS S turnover rate 1.3− 2.0

gS Growth rate of S 2.7 · 10−7 − 1.3 · 10−1

γ Establishment sensitivity to toxicity parameter 1.0 · 10−5

rT Establishment sensitivity to toxicity parameter 0− 0.8 · 104

kN Death rate of N 0.8 · 10−1 − 3.0

rP Increased mortality of N caused by I 0− 1.0 · 103

gA Transition rate from N to A 0.8 · 10−3 − 4.0

kA Mortality rate of A 4.0 · 10−2

gN Transition rate from S to N 1.0− 1.0 · 102

kI Inhibitor decay rate 2.8

d Square root of diffusion ratio 0− 1.8

Mathematical analysis: aims and goals.. We determine the spatially homogeneous steady states
(Section 3) and their linear stability with respect to spatially homogeneous and heterogeneous
perturbations (Section 4). Furthermore, we investigate the presence of travelling waves (Section 5),
determine properties of the wave profile, and determine the wave speed. To facilitate presentation,
we organise the main results in Propositions and Theorems.

3. Spatially homogeneous steady states

For future reference and notational convenience, we introduce the establishment function

f(I) =
1

1 + γ erT I
. (6)

Proposition 1. System (3) admits two spatially homogeneous steady states,

E∗0 = (0, 0, 0, 0) (7)

and

E∗1 =

(
A∗
kS
,
A∗(A∗ + kA − 1)

gAgN (1−A∗)
, A∗,

A∗
kI

)
. (8)

Here, A∗ ∈ (1− kA, 1) is the unique solution to

f

(
A

kI

)
= g(A), (9)

where

g(X) := −
kS

(
kN + gA (1−X) + rP

kI
X
)

(1− kA −X)

gA gN gS (1−X)
. (10)

Proof. Spatially homogeneous steady states associated to system (3) are given by the solutions to

0 = A− kS S, (11a)

0 = gS S f (I)−N (kN + rP I + gA (1−A)) , (11b)

0 = A (1− kA −A) + gA gN N (1−A), (11c)

0 = A− kI I. (11d)
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First, we observe that system (11) admits a trivial solution where all components vanish (repre-
senting bare soil):

E∗0 = (S∗0 , N
∗
0 , A

∗
0, I
∗
0 ) = (0, 0, 0, 0) . (12)

In order to compute the nontrivial equilibria of System (3), we first solve Equation (11a) and (11d)
which lead to

S =
A

kS
, I =

A

kI
, (13)

respectively. Substituting Equation (13) into Equation (11b) we obtain

gS
kS

Af

(
A

kI

)
= N (kN + rP I + gA (1−A)) . (14)

Solving Equation (14) for N we obtain

N =
gS f

(
A
kI

)
kS

(
kN + rP

kI
A+ gA (1−A)

) A. (15)

Substituting Equation (15) into Equation (11c) yields

f

(
A

kI

)
A = g(A)A. (16)

Clearly, A = 0 is a solution to (16), leading to the trivial solution E∗0 (12); division by A leads to
(9).
It remains to show that Equation (9) has a unique nontrivial solution on the (ecologically feasible)
interval (0, 1). We observe that for X ∈ [0, 1), the function g(X) satisfies the following properties:

• g(0) < 0,

• limX→1 g(X) = +∞ (g has a vertical asymptote at X = 1),

• g′′(X) > 0 (g is convex),

• g(X) = 0 if and only if X = 1− kA (g has a unique root in the interval X ∈ (0, 1)).

Furthermore, the establishment function f(X) (6) satisfies the following properties:

• f(0) = 1
1+γ > 0,

• f ′(X) < 0 for all X ∈ R (f is strictly monotonically decreasing)

• f(X) > 0 for all X ∈ R

Consequently, there exists a unique A∗ ∈ (0, 1) that satisfies Equation 9. Moreover, since f(X) is
positive and g(X) is positive only if X > 1− kA, we find that A∗ > 1− kA; see also Figure 1.
Therefore, we have that the unique nontrivial spatially homogeneous steady state of System (3) is
given by

E∗1 = (S∗1 , N
∗
1 , A

∗
1, I
∗
1 ) =

A∗
kS
,

gS f
(
A∗
kI

)
kS

(
kN + rP

kI
A∗ + gA (1−A∗)

) A∗, A∗, A∗
kI

 . (17)

Using f
(
A∗
kI

)
= g(A∗) yields (8).
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0

1 A1− kA A∗

1
1+γ g(A)

f
(
A
kI

)

Figure 1: Schematic representation of the functions f
(
A
kI

)
(blue solid line) and g(A) (purple solid line) as defined

in Equation (6) and Equation (10), respectively, for γ = 10−5, rT = 48, kS = 1.3, kN = 0.08, gA = 1, rP = 0,
kI = 2.8, kA = 0.4, gN = 13, and gS = 0.13. The purple dot corresponds to the unique zero of g(A) in the interval

A ∈ [0, 1], whereas the gray dot corresponds to the unique A∗ where f
(
A
kI

)
= g(A), i.e. the A-component of the

unique nontrivial steady state of System (3).

For future reference, based on the results of Proposition 1, we write

A∗ = 1− δ kA, 0 < δmin < δ < 1, (18)

see also Figure 1. The lower bound δmin can be determined by observing that the establishment
function f(I) is bounded above by 1

1+γ and hence g(A∗) <
1

1+γ . Solving g(1 − δmin kA) = 1
1+γ

leads to

δmin =

(
1 +

1

1 + γ

gA gN gS
kS

kN + rP
kI

)−1
+O(kA). (19)

Moreover, according to the parameter values reported in Table 2, we have kA = 0.04 � 1. In
the upcoming analysis, we will occasionally use kA as a (regular) perturbation parameter, to gain
insight into the solutions of complicated algebraic equations.

4. Linear stability

4.1. Spatially homogeneous perturbations

In this section, we analyse the linear stability of spatially homogeneous steady states E∗0 (7)
and E∗1 (8) with respect to spatially homogeneous perturbations.

Proposition 2. The trivial steady state E∗0 (7) is unstable with respect to spatially homogeneous
perturbations. The nontrivial steady state E∗1 (8) is linearly stable with respect to spatially homo-
geneous perturbations, as long as

−gA gN gS
kS

f ′
(

1

kI

)
<

1

kA

1

δ3

(
kN + kI +

rP
kI

)
(1 + δkI)

(
1 + δ

(
kN +

rP
kI

))
+O (1) , (20)

assuming 0 < kA � 1.

Proof. The Jacobian matrix corresponding to System (3) reads

J =


−kS 0 1 0
gS f(I) −kN − gA (1−A)− rP I gAN gS S f

′(I)− rP N
0 gA gN (1−A) 1− 2A− kA − gA gN N 0
0 0 1 −kI

 . (21)

The characteristic polynomial associated to J evaluated at E∗0 is given by

p0(λ) = (−λ− kI)
(
λ3 + a02 λ

2 + a01 λ+ a00
)
, (22)
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where
a02 = −1 + gA + kS + kA + kN ,

a01 = kS (gA + kN )− (1− kA)(gA + kN + kS),

a00 = −gA gN gS
1 + γ

− kS (gA + kN )(1− kA).

(23)

The polynomial p0(λ) admits four roots λ0i , i = 1, . . . , 4. We identify λ01 = −kI < 0, whereas the
sign of the other three eigenvalues is investigated using the Routh-Hurwitz criterion. In particular,
E∗0 is asymptotically linearly stable if and only if the roots of the third order polynomial in (22)
have negative real part, i.e. if and only if

a02, a00 > 0 and a02 a01 − a00 > 0. (24)

Due to the non-negativity constraints on our parameters and the bound on kA (5), we have a00 < 0,
thereby violating the Routh-Hurwitz criterion. Consequently, at least one of the three eigenvalues
λ02,3,4 has positive real part, and the equilibrium E∗0 is unstable with respect to spatially homoge-
neous perturbations.
Concerning E∗1 , we define two new parameters η, ζ > 0 as

η :=
rP
kI
, ζ := −gA gN gS

kS
f ′
(

1

kI

)
. (25)

As long as η, ζ and all parameters in System (11) areO(1) with respect to kA � 1, the characteristic
polynomial associated to J evaluated at E∗1 is given by

p1(λ) = (kS + λ) (kI + λ)

(
kN +

rP
kI

+ λ

)
(1 + δ λ) +O(kA). (26)

Due to the non-negativity assumption on the model parameters, p(λ) admits four negative roots,
which in turn implies that E∗1 is a stable steady state w.r.t. homogeneous perturbations. The case
where η and/or ζ are much larger than O(1) is analysed in Appendix Appendix A. The outcome
of this analysis is that all eigenvalues have negative real part as long as ζ < 1

kA
ζH0 + O(1), with

the Hopf bifurcation threshold ζH0 given by (A.3). Substituting η and ζ (25) yields (20).

Corollary 1. The nontrivial steady state E∗1 (8) is stable with respect to spatially homogeneous
perturbations for the parameter ranges in Table 2.

Proof. From (6), we see that −f ′
(

1
kI

)
→ 0 as rT ↓ 0. Moreover, −f ′

(
1
kI

)
≈ rT

γ e
− rTkI → 0

as rT → ∞. The function rT 7→ −f ′
(

1
kI

)
has a unique maximum, attained at (rT )max =

kI

(
− log γ − 2

log γ +O
(
(log γ)−3

))
, with value− f ′

(
1
kI

)∣∣∣
rT=(rT )max

= kI
4

(
log γ + 1

log γ

)
+O

(
(log γ)−3

)
.

Implementing the values of Table 2, we combine the above with gAgNgS
kS

< 4 · 101 to obtain

−gA gN gS
kS

f ′
(

1

kI

)
< 3.2 · 102.

From the same Table, we infer

1

kA

1

δ3

(
kN + kI +

rP
kI

)
(1 + δkI)

(
1 + δ

(
kN +

rP
kI

))
> 3.0 · 102.

We see that straightforward estimates do not suffice to conclude that (20) is satisfied for the
parameter ranges in Table 2; however, the bounds are sufficiently close to conclude that the region
in parameter space for which E∗1 is unstable with respect to spatially homogeneous perturbations
is relatively small. Furthermore, the value of δ is determined by the other system parameters
through (9) and (18). Hence, we numerically determine the maximal real part of the eigenvalues
of E∗1 , by first determining the value of A∗ (cf. Proposition 1) and then calculating the eigenvalues
of the associated Jacobian. For the parameter ranges in Table 2, the maximum real part of the
eigenvalues is found to be −0.96 < 0. Hence, E∗1 is stable with respect to spatially homogeneous
perturbations for the parameter ranges in Table 2.
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4.2. Spatially heterogeneous perturbations

Since Turing patterns can emerge when steady states are stable with respect to spatially ho-
mogeneous perturbations but lose their stability when considering spatially heterogeneous pertur-
bations, in this section we focus our attention only on the steady state E∗1 (see Section 4.1).

Proposition 3. The spatially homogeneous steady state E∗1 (8) is linearly stable with respect to
spatially heterogeneous perturbations, as long as

−gA gN gS
kS + h2

f ′
(

1

kI + h2

)
<

1

kA

1

δ3

(
kN + kI + h2 +

rP
kI + h2

)(
1 + δ(kI + h2)

)(
1 + δ

(
kN +

rP
kI + h2

))
+O (1) ,

(27)
for all h ∈ R, assuming 0 < kA � 1.

Proof. We introduce the following non-uniform perturbations:

S(t, x, y) = S∗1 + S̃(0) eikx+ily+λt,

N(t, x, y) = N∗1 + Ñ(0) eikx+ily+λt,

A(t, x, y) = A∗1 + Ã(0) eikx+ily+λt,

I(t, x, y) = I∗1 + T̃ (0) eikx+ily+λt,

(28)

where the (spatial) wave number of the perturbation is defined as h =
√
k2 + l2 and λ represents

the temporal growth. Linearising System (3) around E∗1 , we obtain the following system for the
perturbations S̃, Ñ , Ã, T̃ defined in (28):

λS̃ = Ã−
(
kS + h2

)
S̃,

λÑ = gN f(I∗1 ) S̃ − Ñ (gA (1−A∗1) + kN + rP I
∗
1 ) + gAN

∗
1 Ã+ T̃

(
gS S

∗
1 f
′(I∗1 )− rP T̃

)
,

λÃ = Ã (1− 2A∗1 − kA − gA gN N∗1 ) + gA gN Ñ (1−A∗1) ,

λT̃ = Ã−
(
kI + d2 h2

)
T̃ .

(29)

System (29) can be written as an eigenvalue problem Jh Ũ = λ Ũ , where Ũ =
(
S̃, Ñ , Ã, T̃

)
and

Jh =


−kS − h2 0 1 0
gN f(I∗1 ) −gA (1−A∗1)− kN − rP I∗1 gAN

∗
1 gS S

∗
1 f
′(I∗1 )− rP N∗1

0 gA gN (1−A∗1) 1− 2A∗1 − kA − gA gN N∗1 0
0 0 1 −kI − d2 h2

 .

(30)
We observe that this eigenvalue problem can be made identical to the eigenvalue problem for
spatially homogeneous perturbations, as studied in the proof of Proposition 2, by replacing

kS → kS + h2, kI → kI + h2. (31)

Hence, the same stability criterion as in Proposition 2 applies, with the substitution (31).

Corollary 2. The nontrivial steady state E∗1 (8) cannot undergo a Turing bifurcation for the
parameter ranges in Table 2.

Proof. From the proof of Proposition 2, we see that −f ′(X) has a unique maximum at a fixed
value of rT

kI
for γ fixed. The right hand side of (27) is by construction independent of rT , since rT

only occurs in the derivative of f (encoded by ζ), and the right hand side of (27) is an expansion
of a bound on ζ.
From Proposition 2, we know that E∗1 is stable with respect to spatially homogeneous perturbations,
which is equivalent to setting h = 0 in (27). We infer from Proposition 2 that (27) is satisfied for
h = 0 for all admissible parameter ranges in Table 2. Therefore, for given kI and γ, we may assume

without loss of generality that rT is chosen such that −f ′
(

1
kI

)
is maximal, as (rT )max = 3.3 · 101

falls (well) within the admissible range of rT . When kI → kI + h2 is increased, this argument
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continues to hold until rT reaches its maximal admissible value; when h is increased beyond

this point, −f ′
(

1
kI

)
is smaller than its unique maximal value. Combining this argument with

gAgNgS
kS+h2 < gAgNgS

kS
, we see that

−gA gN gS
kS + h2

f ′
(

1

kI + h2

)
≤ −gA gN gS

kS
f ′
(

1

kI

)
for all h ∈ R.
The right hand side of (27) is non-monotonic in h. However, a lower bound is found analogously
to the proof of Corollary 1 by setting rP = 0 and minimising the other parameters. Since all
components of the right hand side of (27) are increasing functions of h2, the value of the right
hand side of (27) is bounded from below by its value for h = 0. The above arguments imply that
(27) therefore remains satisfied for h > 0.
We conclude that no Turing(-Hopf) bifurcation can take place for the parameter ranges in Table
2.

5. Travelling waves

As shown in Section 4, for the parameter ranges in Table 2, the nontrivial steady state E∗1
is spectrally stable (Corollary 1), whereas the trivial steady state E∗0 is unstable (Proposition 2).
Moreover, numerical simulations of System (1) (on a sufficiently large, one-dimensional domain,
with Neumann boundary conditions) show the emergence of travelling wave solutions invading
the unstable steady state E∗0 for a broad range of parameter values (see an example in Figure 2).
These simulations suggest the existence of a travelling wave with fixed wave speed in System (1)
on an unbounded one-dimensional spatial domain. In this section, we investigate the existence of
such a travelling wave, and provide arguments for its existence in a large part of parameter space.
Moreover, we show that the numerically measured wave speed coincides with the so-called linear
spreading speed, to a high degree of accuracy. This suggests that the numerically observed front
can be classified as a pulled front, that is, where the linear spreading of small perturbations pulls
the front into the linearly unstable bare soil steady state [36].

To prepare the analysis, we introduce a co-moving frame via the variable ξ = x − c t, where c
represents the wave speed. System (3) hence becomes

S′ = u, (32a)

u′ = −c u−A+ kS S, (32b)

N ′ = −1

c
(gS S f(I)−N (kN + rP I + gA (1−A))) , (32c)

A′ = −1

c
(A (1− kA −A) + gA gN N (1−A)) , (32d)

I ′ =
v

d
, (32e)

v′ =
1

d

(
− c
d
v −A+ kI I

)
, (32f)

which can also be expressed in the compact form z′ = F (z), where z = (S, u, N, A, I, v). System
(32) admits the two equilibria

z∗0 := (0, 0, 0, 0, 0, 0) , (33a)

z∗1 := (S∗1 , 0, N∗1 , A
∗
1, I
∗
1 , 0) , (33b)

where the components of z∗1 coincide with those defined in Equation (8). The equilibria z∗0 and z∗1
are the representation of the spatially homogeneous steady states E∗0 (7) and E∗1 (8) in the travelling
wave framework.

In this context, a right-moving front (with c > 0) invading the trivial steady state E∗0 coincides
with an heteroclinic connection from z∗1 to z∗0 . Such an orbit must therefore lie in the intersection

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.09.544359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544359
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

(c) (d)

Figure 2: Numerical profiles for (a) S, (b) N , (c) A, and (d) I obtained by simulating Equation (3) for t ∈ [0, 87.5].
Profiles are shown a t distance ∆t = 17.5 for gS = 0.132, kS = 1.32, gN = 20, rT = 4080, kN = 2, rP = 480,
gA = 0.8, d = 0.913, and other parameters values as in Table 2. The intensity of the shading (from light gray to
black) increases with t.

of the unstable manifold of z∗1 (denoted by Wu(z∗1)) and the stable manifold of z∗0 (denoted by
Ws(z∗0)). To investigate the potential existence of right-moving fronts we hence need to derive the
parametric conditions such that

Wu(z∗1) ∩Ws(z∗0) 6= ∅, (34)

which follow directly from the investigation of the dimensions of the stable and unstable manifolds
of z∗0 and z∗1 .

The main point of our analysis consists in studying the characteristic polynomial associated to
System (32), which can be expressed as

P (λ) = det (λ I−DF (z∗)) . (35)

The roots of P (λ) evaluated at z∗i , i = 0, 1 will provide information about the dimension of the
stable and unstable manifolds of these equilibria, indicating whether Equation (34) can hold.

5.1. Local analysis of z∗0
Theorem 1. The dimensions of the stable and unstable subspaces of z∗0 (denoted as Es(z∗0) and
Eu(z∗0), respectively) satisfy

dim (Es(z∗0)) = dim (Eu(z∗0)) = 3. (36)

Proof. The characteristic polynomial of System (32) at z∗0 is given by

P0(λ) =
1

c2d2
P̃1(λ) P̃2(λ), (37)

with
P̃1(λ) := λ (c+ d2λ)− kI (38)
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and
P̃2(λ) :=

gA gN gS
1 + γ

+ (1− kA + c λ) (gA + kN − c λ) (kS − λ(c+ λ)). (39)

The quadratic function P̃1(λ) is convex and negative at λ = 0; therefore it admits two real roots
of opposite sign, namely λ−1 < 0 < λ+1 . To study the roots of P̃2(λ), we write

P̃2(λ) = c2λ4 + c
(
c2 − α

)
λ3 −

(
β + c2 kS + c2 α

)
λ2 + c (αkS − β)λ+

gA gN gS
1 + β

+ β kS , (40)

where α = gA + kA + kN − 1 and β = (gA + kN ) (1− kA); note that β > 0.
The sign of the roots of P̃2(λ) can be investigated applying the Routh-Hurwitz criterion, by rewrit-
ing Equation (40) as

P̃2(λ) = c2
(
λ4 + a3 λ

3 + a2 λ
2 + a1 λ+ a0

)
, (41)

where

a3 =
1

c
(c2 − α),

a2 = − 1

c2
(β + c2α+ c2kS),

a1 =
1

c
(αkS − β),

a0 =
1

c2

(
gA gN gS

1 + β
+ β kS

)
.

(42)

Applying Descartes’ rule of signs, which states that the number of roots with negative (resp. pos-
itive) real part corresponds to the number of sign changes (resp. permanences) on the coefficients
of P̃2(λ), and taking into account the fact that a0 > 0, we observe that the conditions a3 > 0,
a2 > 0, and a1 > 0 cannot be verified simultaneously, i.e. there is at least one sign variation and
one permanence. Hence, the fourth order polynomial P̃2(λ) admits at least one root with positive
and one with negative real part, denoted by λ+2 and λ−2 .
Moreover, there are no purely imaginary roots of P̃2(λ) since P̃2(i ω) is a real polynomial if and

only if ω = ±
√

a1
a3

and a1, a3 have the same sign only for a2 < 0, which implies

P̃2(i ω) = c2
(
ω4 − a2 ω2 + a0

)
> 0.

Consequently, we have (considering P̃2(0) = c2a0 6= 0) that the centre eigenspace Ec(z∗0) = ∅, from
which it follows that the phase space can be decomposed into the direct sum of the stable and
unstable eigenspaces Es(z∗0) and Eu(z∗0) respectively, i.e. Es(z∗0)⊕ Eu(z∗0) = R6.
Besides the two roots with opposite real signs λ+2 and λ−2 derived above, we need to check the sign

of the other two roots of P̃2(λ), which we define as λ̂2 and λ̃2. We analyse all possible scenarios:

• If λ+2 , λ
−
2 ∈ C, then λ̂2 and λ̃2 must be equal to the complex conjugates of λ±2 , i.e. λ̂2 = λ+2

and λ̃2 = λ−2 .

• If λ+2 ∈ R, then λ̂2 must be positive and real. This is due to the fact that P̃2(0) = c2a0 > 0
and P̃2(λ) ∼ c2λ4 as λ → ∞; therefore, the graph of P̃2(λ) must have an even number of
crossings with the positive horizontal axis.

• Analogously, if λ−2 ∈ R, then λ̃2 must be negative and real. This is due to the fact that
P̃2(0) = c2a0 > 0 and P̃2(λ) ∼ c2λ4 as λ→ −∞; therefore, the graph of P̃2(λ) must have an
even amount of crossings with the negative real axis.

To summarize, we conclude that P0(λ) admits a total of three eigenvalues with positive real part

(namely λ+1 , λ+2 and λ̂2), and three with negative real part (namely λ−1 , λ−2 and λ̃2), which leads
to the claim of the theorem.
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5.2. Local analysis of z∗1

Theorem 2. Assume 0 < kA � 1 is sufficiently small. For c2 < d2
(
kN + η + 1

δ

)
, the dimensions

of the stable and unstable eigenspace of z∗1 (corresponding to Es(z∗1) and Eu(z∗1), respectively)
satisfy dim (Es(z∗1)) = 2 and dim (Eu(z∗1)) = 4. Only when c2 > d2

(
kN + η + 1

δ

)
there exists a

O(k−1A )-value of ζ = ζH such that, if ζ > ζH , dim (Es(z∗1)) = 4 and dim (Eu(z∗1)) = 2.

Proof. The characteristic polynomial of System (32) at z∗1 , in agreement with Equation (35), is
defined as

P1(λ) := det (λ I−DF (z∗1)) .

Our analysis is based on the observation made at the end of Section 3 that, since kA � 1, we can
treat kA as an asymptotically small perturbation parameter to investigate the roots of complicated
algebraic expressions such as (35).
We write A∗ = 1 − δ kA with 0 < δ < 1, cf. (18). Recalling the definition of η and ζ in (25), we
expand P1(λ) for small kA and consider the four regimes

I. η, ζ ∈ O(1),

II. η � 1, ζ ∈ O(1),

III. η ∈ O(1), ζ � 1,

IV. η, ζ � 1.

Regime I: η, ζ ∈ O(1).. In this regime, the characteristic polynomial can be expressed as

P I1 (λ) :=
1

c2d2

(
P̃1(λ) Q̃1(λ)

(
c λ− 1

δ

)
(c λ− kN − η)

)
+O(kA), (43)

where
Q̃1(λ) := λ (c+ λ)− kS (44)

and P̃1(λ) as defined in (38). In the proof of Theorem 2, it is shown that the roots of P̃1(λ) are real
and have opposite sign, i.e. λ−1 < 0 < λ+1 . The same statement holds for the roots of Q̃1(λ), since
Q̃1(λ) is convex and Q̃1(0) = −kS < 0; we denote the roots of Q̃1(λ) as µ−1 < 0 < µ+

1 . The two
remaining roots of the leading order expression of P I1 (λ) (43) are given by 1

c δ and kN+η
c , which are

both real and positive. All roots of the leading order expression of P I1 (λ) are nondegenerate and
bounded away from zero, and therefore perturb regularly for kA � 1. Therefore, dim (Es(z∗1)) = 2
and dim (Eu(z∗1)) = 4.

Regime II: η � 1, ζ ∈ O(1).. The O(kA) terms in the expansion of P I1 (43) do not depend on
η. Hence, the roots of P1 in regime II are equal to those in regime I. The only difference is that
now the eigenvalue kN+η

c = η
c + O(1), but this does not affect its sign, which remains positive.

Therefore, as in Regime I, we obtain dim (Es(z∗1)) = 2 and dim (Eu(z∗1)) = 4.

Regime III: η ∈ O(1), ζ � 1.. In this regime, the characteristic polynomial is to leading order
given by

P III1 (λ) :=
Q̃1(λ)

c2d2

(
Q̃2(λ)− δ ζ kA

)
+O(kA)O(ζ0), (45)

where

Q̃2(λ) := P̃1(λ)

(
c λ− 1

δ

)
(c λ− kN − η) (46)

and Q̃1(λ) as defined in (44). We therefore need to split our investigation into further subcases
depending on the magnitude of ζ kA.

(i) ζ kA � 1: here P III1 (λ) is a regular perturbation of P I1 (λ); we obtain same result on the sign
of the eigenvalues, that is, dim (Es(z∗1)) = 2 and dim (Eu(z∗1)) = 4.
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(ii) ζ kA = O(1): we write ζ = ζ1
kA

with ζ1 ≥ 0. Substituting this assumption into Equation (45)
leads to

P III1 (λ) =
Q̃1(λ)

c2d2

(
Q̃2(λ)− δ ζ1

)
+O(kA). (47)

When ζ1 = 0, we have that P III1 (λ) = P I1 (λ), hence the sign of the eigenvalues is identical.

When ζ1 > 0, since Q̃2(0) = −kI (kN+η)
δ < 0 and Q̃2(λ) ∼ c2d2λ4 as λ→ ±∞, we have that

Q̃2(λ)− δ ζ1 must admit at least one positive and one negative real root. For ζ1 sufficiently
small, the roots of P III1 (λ) are a regular perturbation of the roots of P I1 (λ), which implies
that the two remaining roots of Q̃2(λ) are real and positive. As ζ1 is increased, this root
pair undergoes a (stabilising) Hopf bifurcation for sufficiently large values of ζ1, namely for
ζ1 = ζH1 where

ζH1 =
(δ η + δ kN + 1)

(
d2 − c2δ (δ kI + 1)

) (
d2 (η + kN )2 − c2 (η + kN + kI)

)
δ2 (c2δ − d2 (δ η + δ kN + 1))

2 . (48)

In other words, the real part of the complex conjugate roots of Q̃2(λ) − δ ζ1 is positive for
ζ1 < ζH1 , vanishes for ζ1 = ζH1 , and is negative for ζ1 > ζH1 . The expression for ζH1 in
(48) is derived by solving Q̃2(i ω) − δ ζ1 = 0 and imposing that the imaginary part of the
resulting polynomial is zero. This gives an expression for ω which can be substituted back
into Q̃2(i ω) − δ ζ1 = 0; then we can subsequently solve this equation for ζ1 to obtain ζH1 .
Imposing the feasibility conditions ω2 > 0 and ζ1 > 0 we obtain that a Hopf bifurcation
occurs if and only if

c > d, 0 < η <
c2

d2
− 1, 0 < kN <

c2

d2
− 1− η, 1

c2

d2 − kN − η
< δ < 1. (49)

In particular, the above conditions hold if and only if c2 − d2
(
kN + η + 1

δ

)
> 0.

(iii) ζ kA � 1: In this case, the equation Q̃2(λ) − δ ζ kA = 0 implies that |λ| � 1. To leading
order, we thus have

c2d2λ4 = δ ζ kA, (50)

which is solved by two real and two purely complex roots, namely

λ = ±
(
δ ζ kA
c2d2

)1/4

, λ = ± i
(
δ ζ kA
c2d2

)1/4

.

Since the complex roots are purely imaginary to leading order, these need further unfolding
to determine the sign of their real part. Including higher order terms (O(λ3) and O(k2A),
respectively) in Equation (50) leads to the following refinement of the complex roots

λ =
−c2δ + d2 (1 + δ(kN + η))

4 c d2δ
± i

(
δ ζ kA
c2d2

)1/4

(1− kA)
1/4

. (51)

We have two possibilities:

• If c2 − d2
(
kN + η + 1

δ

)
< 0, the real part of the roots in (51) is positive. Therefore,

taking into account the sign of the other roots of PIII(λ), we find dim (Es(z∗1)) = 2 and
dim (Eu(z∗1)) = 4.

• If c2 − d2
(
kN + η + 1

δ

)
> 0, the real part of the roots in (51) is negative, and we find

dim (Es(z∗1)) = 4 and dim (Eu(z∗1)) = 2. Note that, comparing to the case ζkA � 1,
this implies that somewhere between ζkA � 1 and ζkA � 1, a sign change must have

occurred. This is precisely the Hopf bifurcation found at ζkA = O(1), to wit, at ζ =
ζH0
kA

(48).
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Regime IV: η, ζ � 1.. To leading order, the characteristic polynomial in this regime coincides
with the one in Regime III, i.e.

P IV1 (λ) :=
Q̃1(λ)

c2d2

(
Q̃2(λ)− δ ζ kA

)
+O(kA)O(ζ0) +O(kA)O(η). (52)

As in Regime III, we need to consider different relations between the orders of η and ζ kA to
determine the roots of P IV1 (λ).

(i) η � ζ kA: In this case, P IV1 (λ) is a regular perturbation of P I1 (λ); its roots are then given
by λ±1 , µ±1 , 1

c δ , and η
c +O(1).

(ii) η ∼ ζ kA: Here we can express ζ = ζ1
η
kA

, with ζ0 = O(1). To leading order, we obtain

P IV1 (λ) :=
Q̃1(λ)

c2d2

(
Q̃2(λ)− δ ζ1 η

)
+O(kA)O(η). (53)

The roots of (53) are studied by distinguishing two regimes. Focusing on |λ| � 1; in this
case, P IV1 (λ) ∼ λ6− η

c λ
5, we obtain that one root is, to leading order, given by η

c . The other
five roots are studied by investigating P IV1 (λ) to leading order in η for λ = O(1), i.e.

P IV1 (λ) = − Q̃1(λ)

c2d2

(
Q̃3(λ) + δ ζ1

)
η +O(kA)O(η), (54)

where

Q̃3(λ) := P̃1(λ)

(
c λ− 1

δ

)
. (55)

Two roots are to leading order given by the roots of Q̃1(λ). For the other three, we see
that, since Q̃3(0) = kI

δ > 0 and Q̃3(λ) ∼ c d2λ3 as λ → ±∞, the polynomial Q̃3(λ) + δ ζ1
always admits at least one negative real root. As for the other two, we observe that no Hopf
bifurcation occurs in this case (since the only solution to Q̃3(i ω)+δ ζ1 = 0 is given by ω = 0).
The sign of their real part hence remains the same as ζ1 is varied, and since we know that
for ζ1 = 0 the other two roots of Q̃3(i ω) + δ ζ1 are real and positive, they remain positive for
all ζ1.

(iii) η � ζ kA: In this case, the characteristic polynomial is given by

P IV1 (λ) := − Q̃1(λ)

c2d2

(
Q̃3(λ) η + δ ζ kA

)
+O(kA)O(η). (56)

Two roots are to leading order given by the roots of Q̃1(λ). Solving Q̃3(λ) η + δ ζ kA = 0
hence requires |λ| � 1. Expanding for large λ yields

Q̃3(λ) η + δ ζ kA = c2 d2λ4 − η c d2λ3 − δ ζ kA +O(λ2). (57)

Note that, as −δ ζ kA < 0 and c2 d2λ4 − η c d2λ3 − δ ζ kA ∼ c2d2λ4 as λ→ ±∞, the leading
order polynomial (57) has at least two real roots of opposite sign. To further determine the
roots of (57), we consider four possible balances:

• If c2 d2λ4 ∼ η c d2λ3 � δ ζ kA, Equation (57) reduces to leading order to c2 d2λ4 −
η c d2λ3 = 0; this equation admits one real positive root λ = η

c and one zero root with
multiplicity three, that needs further unfolding. For λ ∼ 0, Equation (57) admits the
three roots

ν1 = −
(
δ ζ kA
c d2η

)1/3

, ν2 = (−1)1/3
(
δ ζ kA
c d2η

)1/3

, ν3 = (−1)2/3
(
δ ζ kA
c d2η

)1/3

. (58)

The roots ν1 and ν3 have negative real part, whereas ν2 has positive real part.

• If η c d2λ3 ∼ δ ζ kA � c2 d2λ4, to leading order Equation (57) admits the roots in (58),
whose sign has been analysed in the previous balance point. The fourth root of (57) is
real and negative.
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• If c2 d2λ4 ∼ δ ζ kA � η c d2λ3, we have two real and two purely complex roots, namely

λ = ±
(
δ ζ kA
c2d2

)1/4

, λ = ± i
(
δ ζ kA
c2d2

)1/4

.

The sign of the real part of the complex roots is obtained by considering the higher
order term η c d2λ3, from which we get

λ =
η

4 c
± i

(
δ ζ kA
c2d2

)1/4

.

In this case we hence have one root with negative real part and three roots with positive
real part.

• If c2 d2λ4 ∼ η c d2λ3 ∼ δ ζ kA, we can define λ := λ0 η and ζ kA := ζ2 η
4. Equation (57)

thus becomes
Q̃4(λ)− δ ζ0 = 0, (59)

where Q̃4(λ) := c2 d2λ40 − c d2λ30. This function satisfies Q̃4(0) = 0 and Q̃4(λ) → ∞
as λ → ±∞, therefore Equation (59) admits two real roots of opposite sign for any

ζ2 > 0. The two other complex roots have positive real part equal to (−1)1/3
(
δ ζ2
c d2

)1/3
to leading order; since no Hopf bifurcations are possible, the sign of the real part of the
complex roots remains positive for any ζ2 > 0. Hence also in this case we have one root
with negative real part and three roots with positive real part.

Consequently, considering all possible balances we find for Regime IV that dim (Es(z∗1)) = 2 and
dim (Eu(z∗1)) = 4.

Conclusion.. We observe that c2 < d2
(
kN + η + 1

δ

)
is automatically satisfied when η � 1, that is,

in Regime II and Regime IV. Combining the results from Regimes I–IV, we see that dim (Es(z∗1)) =
2 and dim (Eu(z∗1)) = 4 when c2 < d2

(
kN + η + 1

δ

)
. Only when c2 − d2

(
kN + η + 1

δ

)
> 0 there

exists a O(k−1A )-value of ζ = ζH such that, if ζ > ζH , dim (Es(z∗1)) = 4 and dim (Eu(z∗1)) = 2.

5.3. Existence of a travelling wave

In phase space, a travelling wave solution corresponds to a heteroclinic orbit connecting z∗0
and z∗1 , thus lying in the intersection of the unstable manifold of one equilibrium and the stable
manifold of the other. We use the Local Stable Manifold Theorem to infer from Theorem 1 that
the dimensions of the stable and unstable manifolds of z∗0 are

dim (Ws(z∗0)) = dim (Wu(z∗0)) = 3.

Likewise, we infer from Theorem 2 that the dimensions of the stable and unstable manifolds of z∗1
are either

dim (Ws(z∗1)) = 2, dim (Wu(z∗1)) = 4,

provided c2 < d2
(
kN + η + 1

δ

)
, or

dim (Ws(z∗1)) = 4, dim (Wu(z∗1)) = 2,

provided c2 > d2
(
kN + η + 1

δ

)
and ζ (25) is sufficiently large, in particular ζ >

ζH1
kA

+O(1) (48).

Recall that the aim of this section is to obtain analytical insight into numerically observed trav-
elling fronts that invade the trivial steady state, which for a right-moving front with positive speed
c corresponds to a heteroclinic connection from z∗1 to z∗0 . Therefore, we take c2 < d2

(
kN + η + 1

δ

)
,

for reasons to be explained momentarily. Observing that codim (Wu(z∗0) ∩Ws(z∗1)) = 7, whereas
codim (Wu(z∗1) ∩Ws(z∗0)) = 5, and taking into account the fact that the phase space is six-dimensional,
we conclude that genericallyWu(z∗0)∩Ws(z∗1) = ∅ and dim (Wu(z∗1) ∩Ws(z∗0)) = 1 (if non-empty).
In the latter case, this intersection is generically transversal and hence persists when c is perturbed.
This leads us to the following Corollary:
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Corollary 3. We generically expect a one-parameter family of heteroclinic connections from z∗1
to z∗0 , parametrised by the wave speed c, with c2 < d2

(
kN + η + 1

δ

)
. Moreover, we expect this

family to exist in an open region of parameter space. Every member of this family corresponds to
a right-moving front invading the trivial steady state E∗0 (7).

Note that the above arguments do not constitute a proof of the existence of a heteroclinic
connection from z∗1 to z∗0 , as the intersection Wu(z∗1) ∩Ws(z∗0) might be empty. However, in the
upcoming section, we identify a parameter range for which such a heteroclinic connection exists
(Theorem 3).

Remark 1. The same reasoning can be applied to generically expect the existence of a heteroclinic

connection from z∗0 to z∗1 , for sufficiently large wave speeds c > d
√
kN + η + 1

δ and sufficiently

large values of ζ. However, for all c > d
√
kN + η + 1

δ , we have that ζH1 > ζH0 (A.3), and ζ does

not exceed ζH0 for the parameter ranges in Table 2, cf. Corollary 1. For this reason, we do not
investigate this anomalous wave any further in the current paper.

5.4. Properties of the wave profile

In this section, we derive generic properties satisfied by a right-moving travelling front solution
to System (3), which is equivalent to a heteroclinic connection from z∗1 to z∗0 in System (32).
These properties can be used to explore the connection between such a travelling wave and the
Janzen-Connell distribution.

Lemma 1 (Monotonicity of S and I). Let (S(ξ), u(ξ), N(ξ), A(ξ), I(ξ), v(ξ)) be a solution to
System (32) representing a right-moving front travelling with speed c > 0. If A′(ξ) < 0 for all ξ,
then S′(ξ) < 0 and I ′(ξ) < 0 for all ξ.

Proof. We first consider S′(ξ). The proof strategy is based on deriving an explicit solution for S(ξ)
by means of a Green’s function, which in turn allows us to obtain an explicit solution for S′(ξ) as
a function of A′(ξ) using integration by parts.
We write equations (32a)-(32b) as a single second order equation for S, yielding

S′′ + c S′ +A− kS S = 0.

The boundary conditions
lim

ξ→−∞
S(ξ) = S∗1 , lim

ξ→+∞
S(ξ) = 0,

uniquely determine the solution

S(ξ) = eµ
−
1 ξ

∫ ξ

−∞
A(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

dζ + eµ
+
1 ξ

∫ +∞

ξ

A(ζ)
e−µ

+
1 ζ

µ+
1 − µ

−
1

dζ, (60)

with

µ±1 =
1

2

(
−c±

√
c2 + 4 kS

)
(61)

the roots of Q̃1(λ) (44). Consequently, we have that

S′(ξ) =µ−1 e
µ−
1 ξ

∫ ξ

−∞
A(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

dζ + µ+
1 e

µ+
1 ξ

∫ ∞
ξ

A(ζ)
e−µ

+
1 ζ

µ+
1 − µ

−
1

dζ

= − eµ
−
1 ξ

[
A(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

]ξ
−∞

+ eµ
−
1 ξ

∫ ξ

−∞
A′(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

dζ

− eµ
+
1 ξ

[
A(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

]∞
ξ

+ eµ
+
1 ξ

∫ ∞
ξ

A′(ζ)
e−µ

+
1 ζ

µ+
1 − µ

−
1

dζ

= eµ
−
1 ξ

∫ ξ

−∞
A′(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

dζ + eµ
+
1 ξ

∫ ∞
ξ

A′(ζ)
e−µ

+
1 ζ

µ+
1 − µ

−
1

dζ,

(62)

which is negative if A′(ξ) < 0 for all ξ ∈ R. The proof of I ′(ξ) < 0 is analogous, with λ±1 , the roots
of P̃1(λ) (38), replacing µ±1 .
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Lemma 2 (Monotonicity of A). Let (S(ξ), u(ξ), N(ξ), A(ξ), I(ξ), v(ξ)) be a solution to System
(32) representing a right-moving front travelling with speed c > 0. Then A(ξ) < 1 for all ξ.
Moreover, there exists a ξ0 ∈ R such that

• A(ξ) > 1− kA for all ξ < ξ0, and

• A(ξ) < 1− kA and A′(ξ) < 0 for all ξ ≥ ξ0.

Proof. From Equation (32d) together with the positivity assumptions on N and the parameters
gA, gN , it follows that when A ≥ 1, then A′ > 0. Therefore, if solution crosses the threshold A = 1
for a certain ξ = ξ1, it will remain above A = 1 for all ξ > ξ1. This contradicts the assumption on
the travelling wave solution, that A(ξ)→ 0 as ξ →∞.
Again from Equation (32d) together with the positivity assumptions on N and the parameters gA,
gN , it follows that when A ≤ 1 − kA, then A′ < 0. Therefore, if solution crosses the threshold
A = 1−kA for a certain ξ = ξ0, it will remain below A = 1−kA for all ξ > ξ0. Since the travelling
wave solution has A(ξ) → 0 as ξ → ∞ and A(ξ) → A∗ > 1 − kA as ξ → −∞, it follows that the
solution crosses the threshold 1− kA for some ξ0. Once the solution has crossed this threshold, it
will continue to decrease (strictly monotonically) to zero.

Remark 2. When 1− kA < A < 1, no monotonicity of A is generically guaranteed. By redefining
A = 1 − kA a and linearising System (32) around the nontrivial equilibrium A∗ (corresponding to
a = δ), we have seen in Section 5.2 that in our travelling wave framework there are four unstable
eigenvalues, hence leading to four associated eigenvectors with a nonzero a-component as follows:

a(ξ) = δ + h1 e
1
c δ ξ + h2 e

kN+η

c ξ + h3 e
λ+
1 ξ + h4 e

µ+
1 ξ.

Therefore, depending on the signs of the constants hi, i = 1, . . . , 4, A can admit several local
minima and maxima in a neighbourhood of A∗.

Lemma’s 1 and 2 provide information on the monotonicity of S, I and A. However, for the
seedling component N , one cannot derive monotonicity properties in full generality, due to the
nature of the nonlinearity of Equation (32c).
To mitigate this problem, we consider the establishment function f (I) (6) for large values of rT .
We observe that, for sufficiently large rT , f (I) behaves like a switch function (see also Figure 3):

f(I) ≈

{
1

1+γ if rT > 0, I ≤ Is or rT = 0, any I

0 if rT > 0, I > Is,
(63)

where Is corresponds to the inflection point of f given by

Is =
1

rT
log

(
1

γ

)
. (64)

0 1 IIs

1
1+γ

Figure 3: Schematic representation of the establishment function f(I) as defined in Equation (6), for large values
of rT .
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Theorem 3 (JC for strong toxicity and slow seed growth). Let rT be sufficiently large and gS
sufficiently small. Then, there exists a heteroclinic orbit in (32) from z∗1 to z∗0 for which the
N -profile has a unique maximum, and the S-, A- and I-profiles are strictly monotonic.

Proof. For asymptotically large rT , the establishment function f(I) (6) is exponentially close to 0
for I > Is + I1 and exponentially close to 1 for I < Is − I1, with I1 = (rT )α−1, for any 0 < α < 1.
Moreover, both Is (64) and I1 are asymptotically close to zero.
For f(I) ≡ 0, the hyperplane {N = 0} is invariant under the flow of (32). Moreover, for this choice

of f , the nontrivial equilibrium z∗1 lies on {N = 0}, and is given by
(

1−kA
kS

, 0, 0, 1− kA, 1−kAkI

)
(8).

By Lemma’s 1 and 2, we see that S, I and A are strictly monotonically decreasing on the invariant
hyperplane {N = 0}. Since {N = 0} is normally hyperbolic and f(I) is asymptotically small for
all I > Is + I1, the half-hyperplane P0 := {N = 0, I > Is + I1} perturbs to a locally invariant
codimension-1 manifold P for the full system (32) [17]. The unstable manifold of z∗1 of the flow on
P , that we denote by Wu

P (z∗1), is 3-dimensional. Since P is normally repelling in the N -direction,
we can conclude that in a neighbourhood of P , the 4-dimensional unstable manifold of z∗1 in the
full system (32) is foliated as Wu(z∗1) =Wu (Wu

P (z∗1)).
The A-dynamics on P are to exponential order in 1

rT
given by A′ + 1

cA (1− kA −A) = 0, which

yield A(ξ) = A(0)(1 − kA)
[
A0 + (1− kA −A0)e

1−kA
c ξ

]−1
. From the (linear) S- and I-dynamics

on P , which depend linearly on A, we see that if I → Is + I1 = O
(

(rT )
α−1

)
, then both

S → S1 = O
(

(rT )
α−1

)
and A → A1 = O

(
(rT )

α−1
)

; the same holds for the derivatives u

and v. Moreover, in a sufficiently small neighbourhood of P , the normal N -dynamics are to lead-

ing order linear, and N(ξ) = N1e
kN+gA

c ξ for N1 sufficiently small.
We investigate the intersection of Wu(z∗1) and Ws(z∗0) in a neighbourhood of P , and in a neigh-
bourhood of I = Is. Close to both P and Is, the S-, u-, A-, I-, and v-components of orbits in

Wu(z∗1) are O
(

(rT )
α−1

)
, while N is sufficiently small by assumption. Hence, in order for Ws(z∗0)

to intersect Wu(z∗1) in this neighbourhood, all components of Ws(z∗0) must be close to zero. It
follows that the if intersection of Ws(z∗0) and Wu(z∗1) lies close to P and Is, it has to be close
to the origin z∗0 . Close to the origin, the dynamics on Ws(z∗0) are linear, and Ws(z∗0) is close to
Es(z∗0). Hence, for rT sufficiently large, transversal intersections of Es(z∗0) and Wu(z∗1) perturb
regularly to transversal intersections of Ws(z∗0) and Wu(z∗1).
Now, let gS � 1. For gS = 0, the flow of (32) is equal to the flow of (32) under the assumption
f(I) ≡ 0. Hence, the hyperplane {N = 0} is invariant when gS = 0. Moreover, the trivial equi-
librium z∗0 lies on {N = 0}. Solving the equations for A, S and I on {N = 0} yields the following
unique heteroclinic orbit from z∗1 to z∗0 on {N = 0}:

Ah(ξ) = A(0)(1− kA)
[
A0 + (1− kA −A0)e

1−kA
c ξ

]−1
,

Sh(ξ) = eµ
−
1 ξ

∫ ξ

−∞
A(ζ)

e−µ
−
1 ζ

µ+
1 − µ

−
1

dζ + eµ
+
1 ξ

∫ +∞

ξ

A(ζ)
e−µ

+
1 ζ

µ+
1 − µ

−
1

dζ,

Ih(ξ) = eλ
−
1 ξ

∫ ξ

−∞
A(ζ)

e−λ
−
1 ζ

λ+1 − λ
−
1

dζ + eλ
+
1 ξ

∫ +∞

ξ

A(ζ)
e−λ

+
1 ζ

λ+1 − λ
−
1

dζ,

cf. Lemma 1. Thus, for gS = 0, Ws(z∗0) and Wu(z∗1) intersect transversally in the hyperplane
{N = 0}, and this intersection is one-dimensional.
We investigate how this intersection perturbs for 0 < gS � 1. As the term gS S f(I) is a regular
perturbation of system (32), we know that both the hyperplane {N = 0} and the stable/unstable
manifolds of the equilibria z∗0,1 perturb regularly in gS . To determine the N -profile, we consider

the unstable eigenvalues λ−1 , λ−2 and λ̃2 of z∗0 (cf. the proof of Theorem 1), which for 0 < gs � 1
can be determined explicitly: we find λ−1 = − 1

2d2

(
−c−

√
c2 + 4d2kI

)
(38), λ−2 = µ−1 +O(gS) (61)

and λ̃2 = 1−kA
c +O(gS), cf. (??)-(39). The associated eigenvectors can be determined by an ex-

pansion in powers of gS . To leading order, the N -component of the eigenvectors is zero, due to the
fact that the intersection of Ws(z∗0) and Wu(z∗1) lies in the {N = 0} hyperplane for gS = 0. The
first order correction of the eigenvectors associated to λ−2 and λ̃2 yields a nonzero N -component,
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to wit gS
1+γ

1
gA+kN−cµ−

1

for the λ−2 -eigenvector and gS
1+γ

1
gA+kN+1−kA

1−kA+kI−d2
(1−kA)2

c2

1−kA+kS−
(1−kA)2

c2

for the λ̃2-

eigenvector. Hence, to first order in gS , the N -profile is exponentially decreasing as ξ →∞, along
these eigenvectors.
Now, define ξ∗ through Ih(ξ∗) = Is (64). Note that ξ∗ is well-defined since Ih is strictly mono-
tonically decreasing when Ih is sufficiently small (Lemma 1). I is to exponential accuracy in 1

rT
approximated by Ih on P , (at least) up to I = Is + I1. In addition, I is to leading order in gS
approximated by the linear dynamics on Es(z∗0), (at least) up to Is− I1. The change of I over the
interval (Is − I1, Is + I1) is small, and since system (32) is regularly perturbed for small gS and
large rT , this implies that the change in all other components over the ξ-interval associated to the
change from I = Is + I1 to I = Is − I1 is small as well. Hence, to leading order, we can match
the linear dynamics on Es(z∗0) to the dynamics of Wu (Wu

P (z∗1)) at ξ = ξ∗. The transversality of
the intersection of Ws(z∗0) and Wu(z∗1 ensures that this matching procedure can be carried out for
every component. The result for the N -profile is a single peak, to leading order in gS up to ξ = ξ∗
determined by the exponential increase with rate kN+gA

c along the unstable fibres ofWu (Wu
P (z∗1)),

and from ξ = ξ∗ onwards determined by the exponential decrease along Es(z∗0), with exponential
rates given by the stable eigenvalues λ−2 and λ̃2.

Remark 3. While the condition rT � 1 in Theorem 3 is natural (sufficiently strong toxicity
feedback induces a JC distribution), the second condition gS � 1 seems less so. Indeed, the
necessity for this condition is purely technical, as it allows us to obtain analytical expressions for
the stable eigenvalues and eigenvectors of z∗0 (39). However, considering the feasible parameter
ranges for gS, and in particular for the product gAgNgS, we infer from Table 2 that gAgNgS is
small for a significant subset of parameter space – that is, for most values of gA and gN , the
condition that gS is sufficiently small is not restrictive.

5.5. Wave speed

The analysis of front propagation in excitable media has been a topic of interest for several
decades. In his seminal review paper, Van Saarloos [36] used the characterisation pulled front for
those travelling fronts whose speed is determined by the instability of the spatially homogeneous
steady state that is being invaded.
In this section, we analytically determine this ‘linear’ speed a pulled front would have, by a linear
analysis near E∗0 . To determine whether the numerically observed fronts can indeed be classified as
‘pulled’, we then compare c∗ with the wave speed computed numerically for the emerging travelling
wave solutions.

Theorem 4. The linear wave speed c∗ of a pulled front solution to Equation (3) is given by

c∗ =
dω3

dκ
(κ∗) (65)

where ω3(κ) ∈ C is a purely imaginary solution to

gA gN gS
1 + γ

+ (1− kA + i ω) (i ω − gA − kN ) (i ω − kS − κ2) = 0 (66)

and κ∗ = i β+
∗ with β+

∗ > 0 solution to

dω3

dκ
(i β∗) =

Im(ω3(i β∗))

β∗
. (67)

Proof. In order to compute the linear wave speed, we analyse the dispersion relation of Fourier
modes of the linearisation of Equation (3) at E∗0 . Introducing the diffusion matrix

D :=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 d2

 , (68)
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the dispersion relation ω = ω(κ) is given by the solution to

det
(
i ω − κ2D + J |E∗0

)
= 0, (69)

where ω ∈ C represents the (generalised) frequency, κ ∈ C the (generalised) wave number, and
J |E∗0 is the Jacobian (21) evaluated at E∗0 . In our case, Equation (69) takes the form of the fourth
order polynomial in ω

(
i ω − d2 κ2 − kI

)(gA gN gS
1 + γ

+ (1− kA + i ω) (i ω − gA − kN ) (i ω − kS − κ2)

)
= 0. (70)

For sake of simplicity, Equation (70) can be equivalently expressed as ϕ(ω, κ) · ψ(ω, κ) = 0, where

ϕ(ω, κ) :=
(
i ω − d2 κ2 − kI

)
,

ψ(ω, κ) :=

(
gA gN gS

1 + γ
+ (1− kA + i ω) (i ω − gA − kN ) (i ω − kS − κ2)

)
.

(71)

Given a solution ω(κ) to Equation (70), the linear wave speed c∗ ∈ R and the linear spreading
point κ∗ associated to ω(κ) are given by the solutions to the equations

c∗ =
dω

dκ
(κ∗) =

Im(ω(κ∗))

Im(κ∗)
, (72)

see [18, 36].
Among the four roots ωi(κ), i = 1, . . . , 4 satisfying Equation (70) we define ω1(κ) as the unique
root of ϕ(ω, κ) and ωi(κ), i = 2, 3, 4 as the three roots of the cubic polynomial ψ(ω, κ). Since we
have that ω1 = −i (d2 κ2 + kI), we exclude this root from further analysis as ω1 does not admit
solutions to (72).
In our analysis of the other three roots ωi(κ), i = 2, 3, 4 we introduce the additional assumption
(based on our numerical findings, see below) that both ω and κ are purely imaginary, as the fronts
we observe are monotonic, i.e. non-oscillatory, both in space and time, near the trivial steady state
E∗0 . In particular, spatial oscillations around E∗0 would violate the fundamental model assumption
that all model components are non-negative. Hence, we write κ = i β with β ∈ R. We note that
in this case Equation (70) is explicitly solvable, however the analytical expression for c∗ (function
of gA gN gS , gA + kN , and kS) is a root of a fifth order polynomial, making it hardly accessible
(and hence is not provided here). As observed numerically, two out of three roots ω2(κ) and
ω4(κ) are not purely imaginary for every value of β, and are therefore further discarded from our
investigation. The unique root ω3(κ) is finally used to derive the value of κ∗ = i β∗ such that
Equation (67) holds, i.e.

dω3

dκ
(i β∗) =

Im(ω3(i β∗))

β∗
.

This equation admits two solutions β±∗ with opposite signs; however, as we are interested in right-
moving fronts, we only retain the positive solution β+

∗ > 0. We thus finally obtain the linear wave
speed as

c∗ =
dω3

dκ
(i β+
∗ ) =

Im(ω3(i β+
∗ ))

β+
∗

.

As we do not provide an explicit analytical expression for ω3(κ), in Figure 4 we illustrate

a typical plot of the functions dω3

dκ (i β) and Im(ω3(i β))
β with respect to β for the following fixed

parameter values (within the ranges reported in Table 2):

gA = 0.8, gN = 20, γ = 10−5, kA = 0.04, kN = 2, kS = 1.32. (73)
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Figure 4: Plot of the functions dω3
dκ

(i β) (blue curve) and
Im(ω3(i β))

β
(yellow curve) for parameter values as in

Equation (73) and gS = 0.132. The intersection points between these two curves occurring at β = β±
∗ are indicated

by the two black points P±. For these parameter values we observe that β±
∗ ≈ ±1.42 and therefore P± =

(±1.42,±1.08).

5.5.1. Numerical investigation

In order to further validate the existence of pulled front solutions travelling with speed c∗ as
described in Theorem 4, we perform numerical simulations of System (1) on a one-dimensional

domain of size L̂ discretized with a spatial grid of δ̂x = 0.1 meters including Neumann boundary
conditions and the following initial conditions

Ŝ(i, 0) = Ŝ0(i) = e−
(m−2 i)2

4m , N̂(i, 0) = Â(i, 0) = Î(i, 0) = 0, i = 1, . . . ,m, (74)

where the dimensional parameters correspond to the ones described in Table 1 and m = 3500
corresponds to the number of elements used in the grid. We hence have L̂ = m · δ̂x = 350 meters.
The total simulation time is T̂ = 500 years with timesteps of δ̂t = 0.001 years. Following [33],
the numerical scheme used in our simulations is based on a forward Euler integration of the finite-
difference equations obtained by discretising the diffusion operator with no-flux (i.e. Neumann)
boundary conditions.
The dimensional parameter values fixed in this simulation (other than the ones already fixed in
Table 1) are (for unit measures we refer to Table 1)

k̂S = 0.33, ĝN = 5, r̂T = 34, k̂N = 0.5, r̂P = 1, ĝA = 0.2, d̂I = 0.5. (75)

We then investigate two aspects, namely the dependency of the wave speed on the parameter ĝS
(fixing d̂S = 0.6) and the dependency of the wave speed on d̂S (fixing ĝS = 0.033).

A comparison between the values of the linear wave speed obtained from the analytical in-
vestigation described in Theorem 4 and the numerical speed computed by means of simulations
w.r.t. gS and d is given in Figure 5. To obtain it, we first calculate the dimensional wave speed

ĉ∗ as follows, and then derive the nondimensional wave speed as c∗ =
√

ĉA
d̂S
ĉ∗. The dimensional

numerical wave speed ĉ∗ in both scenarios described above – identified by ĉĝS∗ and ĉd̂S∗ , respectively

– is obtained by tracking at each time t̂j = j · δ̂t the location of the inflection point in the Â profile
– defined as x̂j – and subsequently calculating the mean of the difference quotient over a specific
range of iterations, namely

ĉĝS∗ :=
1

479

498∑
j=20

x̂j+1 − x̂j
t̂j+1 − t̂j

,

ĉd̂S∗ :=
1

n(d̂S)

f(d̂S)∑
j=50

x̂j+1 − x̂j
t̂j+1 − t̂j

,

(76)

where
f(d̂S) := −38.76 d̂3S + 266.946 d̂2S − 619.173 d̂S + 662.244. (77)
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The function f(d̂S) has been derived by interpolating end times in the simulations such that a wave

travels with constant shape for j = 50, . . . , f(d̂S). This is due to the fact that the range of d̂S over
which the simulation runs has a strong impact on the speed of the travelling wave, which reaches
the boundary of the spatial domain sooner for higher values of d̂S . The number of iterations n(d̂S)

over which the speed ĉd̂S∗ is calculated hence varies with d̂S . Since, on the other hand, variations
of gS (here intended in its dimensional version) do not exhibit the same properties, the interval
over which the numerical wave speed is calculated is here considered as constant.
By converting the numerical wave speed in Equation (76) in its nondimensional form cgS∗ and cd∗,
we finally compare it with the analytical values obtained in Theorem 4 (see Figure 5). We note

that the strong dependency of the dimensional wave speed ĉd̂S∗ on d̂S does not imply that the same
effect should be valid for the nondimensional speed, which in fact remains approximately constant
as d varies as shown in Figure 5(b).

(a) (b)

gS

c∗

d

c∗

Figure 5: Comparison between the nondimensional wave speed obtained analytically (solid line) and from numerical
simulations (dashed line) as a function of (a) gS with d = 0.913 and (b) d with gS = 0.132. The other parameter
values are set as in Equation (73) together with rT = 4080, rP = 480. We note that these values are obtained by
plugging the dimensional values in Equation (75) into Equation (4).

We finally observe that the numerical results confirm (up to O(10−2) due to numerical preci-
sion) the analytical predictions; such accuracy increases by increasing the size of the domain (by
considering larger values of m) and thus increasing simulation times as well (see Figure 6). In order

to achieve even higher accuracy, the size of the domain should increase with d̂S since (as discussed
above) for higher values of the seed dispersal coefficient the boundary of the spatial domain is

reached sooner by the travelling wave (we note that larger values of d̂S correspond to lower values
of its nondimentional counterpart d).
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d

c∗

Figure 6: Comparison between the wave speed obtained analytically (solid black line) and from numerical simulations

(dashed lined) with the same parameter values as in Figure 5 for different domain sizes L̂ = m · δ̂x with m = 3500
(blue), m = 4000 (orange), and m = 5000 (green). We note that the accuracy of the numerical wave speed increases
with m.

6. Conclusion

In this work, we have introduced a novel reaction-diffusion-ODE model for (ecologically rele-
vant) transient patterns observed in nature, known as Janzen-Connell distributions. The functional
responses adopted in the model, as well as the parameter ranges chosen for the analysis, are based
on theoretical assumptions supported by experimental findings. We have included two prominent
mechanisms in negative plant-soil feedback - namely growth inhibition and increased mortality -
in order to show their key role in the emergence of such transient patterns.
The analytical challenges provided by the complex structure of some functional responses - in
particular the germination function - were here overcome by exploiting the small scale of certain
parameters in the system. This feature has also played a key role in our thorough investigation
of travelling wave solutions, i.e. the theoretical representation of the JC distributions we aimed
to describe. Our linear stability analysis allowed us to rule our the existence of Turing(-Hopf)
bifurcations and infer the existence of travelling wave solutions for parameter values spanning
within ranges of ecological feasibility exhibiting the typical features of JC distributions. Moreover,
numerical simulations suggested that the travelling wave solutions admitted by our model in a
large area of parameter space correspond to pulled fronts, “pulled” by the linear spreading of small
perturbations into the linearly unstable bare soil steady state. The analytical expression for the
linear spreading speed was then compared with the numerical speed of one-dimensional waves trav-
elling on a sufficiently large spatial domain – mimicking the unbounded domain of the analytical
investigation; the high accuracy revealed by this comparison strongly supports our hypothesis on
the pulled nature of the constructed fronts.
As the presented model exhibits a rich and complex structure, several interesting research direc-
tions can be further considered. Few examples which we plan to undertake in the future include a
deeper investigation of different scenarios corresponding to different combinations of growth inhi-
bition/increased mortality intensity (represented by high/low values of rT and rP , respectively).
Moreover, in order to increase the impact of our model beyond the theoretical sphere, we aim to
focus on more realistic ecological scenarios where different trees interact in a limited space (i.e. a
bounded domain) and, as a further step, extend our model to a multi-species framework.

Appendix A. Linear stability of E∗
1 with respect to spatially homogeneous perturba-

tions for η, ζ 6= O(1)

Based on the values reported in Table 2, and observing that the maximum of

∣∣∣∣f ′ ( 1
kI

) ∣∣∣∣ is

realised at I = Is and

∣∣∣∣f ′ ( 1
kI

) ∣∣∣∣
max

= kI
4 log

(
1
γ

)
, we have that the parameters η and ζ in (25)
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can vary within the following ranges:

η ∈
(
0, 3.6 · 102

)
, ζ ∈

(
0, 3.2 · 102

)
.

The linear stability of the steady state E∗1 w.r.t. homogeneous perturbations in the case of η, ζ ∈
O(1) has been discussed in the proof of Proposition 2. Here, we look at the other possible regimes,
i.e.

I. η � 1, ζ ∈ O(1),

II. η ∈ O(1), ζ � 1,

III. η, ζ � 1.

Appendix A.1. Regime I: η � 1, ζ ∈ O(1)

In this case, the dominant term in the characteristic polynomial (26) becomes

p1(λ) = η (kS + λ) (kI + λ)

(
1

δ
+ λ

)
+O(1) +O(η kA)

when λ ∈ O(1), which implies that the eigenvalues −ks, −kI , and − 1
δ perturb regularly. On the

other hand, when |λ| � 1 dominant balance gives

η λ3 + λ4 +O(η kA λ
3) = 0

i.e. λ = −η at leading order. In conclusion, all eigenvalues perturb regularly and remain negative.

Appendix A.2. Regime II: η ∈ O(1), ζ � 1

Here, the characteristic polynomial is linear in ζ and is given by

p1(λ) = q(λ) + (kS + λ)
(
δ kA − δ2k2A

)
ζ, (A.1)

where q(λ) is a polynomial of degree four in λ. By writing ζ = ζ0 k
−y
A , we have that:

• if 0 ≤ y < 1, the eigenvalues −ks, −kI , − 1
δ , and − (kN + η) perturb regularly;

• if y = 1, a regular expansion in kA leads at leading order to the equation

(kS + λ)

(
δ ζ0 + (kI + λ) (kN + η + λ)

(
1

δ
+ λ

))
= 0, (A.2)

which implies that the eigenvalue −kS perturbs regularly, while the others shift above by
O(1). These three eigenvalues are negative as long as ζ0 remains below the Hopf bifurcation
value ζH0 , which is found by imposing that the third order polynomial in Equation (A.2)
admits a purely imaginary root:

ζH0 :=
1

δ3
(kN + kI + η) (1 + δkI) (1 + δ (kN + η)) . (A.3)

This implies that, for any ζ = ζ0
kA

<
ζH0
kA

, we have three negative eigenvalues.

• if y > 1, we have that −kS is the only eigenvalue which perturbs regularly (i.e. λ ∈ O(1)).
On the other hand, dominant balance for |λ| � 1 leads to λ3 = −δ ζ kA � 1, which implies
that here we have one real, negative eigenvalue and two complex conjugates eigenvalues with
positive real part for any ζ � 1.

In conclusion, in this case we have that all four roots of the polynomial in Equation (A.1) are
negative as long as ζ < 1

kA
ζH0 .
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Appendix A.3. Regime III: η, ζ � 1

The characteristic polynomial in this last regime is given by

p1(λ) = (kS + λ) (kI + λ)

(
1

δ
+ λ

)
(kN + η + λ) + kA

(
δ ζ (kS + λ) +O(η0)+

+η (kI (1− δ) (kS + λ)− (kI + λ) (kS (2 + δ λ) + λ (1 + δ + δ λ))) +O(η0)
)
.

(A.4)

As before, the eigenvalues λ = −kS < 0 perturbs regularly, providing one stable, O(1) eigenvalue.
In order to establish the nature of the other three eigenvalues we need to consider the following
scenarios:

1. If η � ζ kA, the eigenvalues λ = −kI λ = − 1
δ also perturb regularly, providing two negative

O(1) eigenvalues; an additional negative O(η) eigenvalue is given by λ = − (kN + η), so in
total we have here three stable eigenvalues.

2. If η ∼ ζ kA, we can write ζ kA = ζ0 η. Replacing this expression in Equation (A.4) leads to two
O(1) eigenvalues with negative real part obtained by solving δ λ2+(1 + δ kI)λ+

(
ki + δ2ζ0

)
=

0 (since (1 + δ kI) > 0) and one O(η) eigenvalue λ = −η < 0. Therefore, in this case we also
have three stable eigenvalues.

3. If η � ζ kA, we have that δ ζ kA (1− δ kA) (kS + λ) balances λ4+λ3
(
(1− δ kA) η +O(η0)

)
+

O(λ0) in Equation (A.4). This leads to further possible scenarios:

(a) If λ4 � λ3η, the characteristic polynomial at leading order becomes λ4 + δ ζ kA λ = 0,
whose nontrivial solutions consist in two complex roots with positive real part and one
negative real root. This implies λ3 ∼ ζ kA. At the same time, in this case we have
λ� η; these two considerations lead to ζ kA � η3.

(b) If λ4 ∼ λ3η, we can write λ = λ0 η; plugging this into the dominant terms of the
characteristic polynomial leads to ζ kA ∼ η3, hence we can write ζ kA = ζ0 η

3. Including
this further assumption, the roots of the characteristic polynomial are given by the
solutions to λ30 + λ20 + δ ζ0 + O(kA) = 0. In the case δ ζ0 = 0, this polynomial admits
the negative root λ = −1 and a double zero solution. Including the positive term δ ζ0
hence implies that the negative root perturbs to a root which remains real and negative,
whereas the double zero perturbs to a pair of complex conjugate roots with positive real
part given by δ ζ0

2 at leading order. In this case no Hopf bifurcation occurs, since the
polynomial does not admit purely imaginary roots for any value of δ ζ0. Therefore, here
we have two stable and one unstable eigenvalues.

(c) If λ4 � λ3η, the characteristic polynomial up to its dominant terms reduces to λ3 η +

δ ζ kA λ = 0 and is solved by λ = ±i
(
δ ζ kA
η

)1/2
, hence requires further unfolding. First,

however, we observe that here λ2 ∼ ζ kA
η , which implies ζ kA �

(
ζ kA
η

)3/2
and, in turn,

that this scenario corresponds to ζ kA � η3. Considering higher order terms leads to
the following subcases:

i. If η � ζ kA � η2, the characteristic polynomial admits two roots with negative real
part given by

λ = ±i
(
δ ζ kA
η

)1/2

−
√
δ

2

ζ kA
1− δ kA

1

η9/2
.

ii. If η2 � ζ kA � η3, the characteristic polynomial admits two roots with positive
real part given by

λ = ±i
(
δ ζ kA
η

)1/2

+
1

2 δ3/2
(
1 + δ kI − δ2kA

) 1

η5/2
.

iii. If η2 ∼ ζ kA, writing ζ kA = ζ0 η
2 leads to the following two roots of the character-

istic polynomial with positive real part, given by

λ = ±i (δ η ζ0)
1/2

+
(1− δ kA)

(
1− δ kI + δ2kA

)
+ δ2ζ0

2 δ3/2 η5/2 (1− δ kA)
.
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A Hopf bifurcation occurs at

ζ̂H0 =
1 + δ kI
δ2

+O(kA).

To summarise, in this case we have that the four eigenvalues of the characteristic polynomial

are negative – i.e. E∗1 is stable to homogeneous perturbations – as long as ζ < η2

kA
ζ̂H0 +O(1).

We observe that this value corresponds to the leading order term of 1
kA
ζH0 for large η, i.e.

regime II converges to regime III as η →∞ as expected.
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F. Giannino. Process Based Modelling of Plants-Fungus Interactions Explains Fairy Ring
Types and Dynamics. SSRN Electronic Journal, 2022.

[35] S. Thompson, P. Alvarez-Loayza, J. Terborgh, and G. Katul. The effects of plant pathogens
on tree recruitment in the western amazon under a projected future climate: a dynamical
systems analysis. Journal of Ecology, 98(6):1434–1446, 2010.

[36] W. van Saarloos. Front propagation into unstable states. Physics Reports, 386(2-6):29–222,
2003.

[37] F. Veerman, M. Mercker, and A. Marciniak-Czochra. Beyond Turing: far-from-equilibrium
patterns and mechano-chemical feedback. Philosophical Transactions of the Royal Society A,
379(2213):20200278, 2021.

29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.09.544359doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544359
http://creativecommons.org/licenses/by-nc-nd/4.0/

