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A B S T R A C T   

Top-down CGE models are used to assess the economic impacts of climate change policies. However, these 
models do not represent the technologies and sources of greenhouse gas emissions as detailed as bottom-up 
energy system models. Linking a top-down CGE model with a bottom-up energy system model assures macro-
economic consistency while accounting for a detailed representation of energy and emission flows. While there is 
ample literature regarding the linking process, the corresponding details and underlying assumptions are barely 
described in detail. The present paper describes a step-by-step soft-linking process and its underlying assump-
tions, using the Netherlands as a case study. This soft-linking process increases the Dutch energy demand levels in 
2050 by 19.5% on average compared to assumed exogenous levels. Moreover, the GDP in 2050 reduces by 5.5% 
compared to the baseline economic scenario. Furthermore, we identified high energy prices as the primary cause 
of this GDP reduction in the soft-linking process.   

1. Introduction 

Providing an effective climate mitigation policy advice requires in-
sights that take both top-down (TD) and bottom-up (BU) effects of such 
policies (and their interactions) into account. Such an approach has been 
used to present an in-depth analysis of global decarbonization scenarios 
in several studies, such as the climate change report of IPCC AR6 (Shukla 
et al., 2022), the global energy and climate outlook of JRC (Keramidas 
et al., 2021), and the world energy outlook of IEA (International Energy 
Agency, 2021). 

Computable general equilibrium (CGE) models are used to assess 
top-down effects of climate polices. However, these models oversimplify 
the energy system and are unable to represent the technological char-
acteristics of the greenhouse gas emission sources. For instance, in CGE 
models (CGEMs), household energy consumption and emitted emission 
are often directly related to the household income, whereas in reality, 

they highly depend on the energy carrier, technology choices, and 
insulation levels. 

CGEMs often represent energy consumption through a simplified and 
abstract production function where substitution possibilities between 
energy and capital, as well as between individual energy sources, are 
modeled assuming a Constant Elasticity of Substitution (CES). Tech-
nology is often included in these macroeconomic models as a separate 
coefficient in the production function. Examples of these models are 
MERGE (Manne et al., 1995), CETA (Peck and Teisberg, 1992), DICE 
(Nordhaus, 1993), and RICE (Nordhaus, 2010). Some models represent 
technologies in higher detail by incorporating endogenous technological 
progress (e.g., DEMETER (Van Der Zwaan et al., 2002)). Some others 
reformulated the equilibrium problem as a mixed complementarity 
problem to represent technologies with higher details (Böhringer and 
Rutherford, 2009). Some integrated assessment models (e.g., FUND 
(Link et al., 2010)) account for energy consumption through economic 
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and environmental parameters such as income, population, and tem-
perature. However, current CGEMs represent far lower technological 
detail than state-of-the-art BU energy system models. 

In contrast, BU energy system models (ESM) provide higher tech-
nological, temporal, and spatial details. They include many technolog-
ical options (e.g., >1000) with the corresponding costs, emissions, and 
physical attributes (e.g., potentials and constraints). Additionally, ESMs 
can compute on hourly temporal resolution across several regions. 
However, since ESMs merely compute the partial equilibrium, they are 
highly dependent on the exogenous general equilibrium state of the 
system (e.g., energy demand drivers). Consequently, BU models are not 
capable of performing economy-wide analyses. 

Hybrid models can combine the technological explicitness of BU 
models with the economic richness of TD models through model linking 
(Böhringer and Rutherford, 2008). Various efforts have been made on 
different energy-economy model linking methods after it was first 
demonstrated by Hoffman and Jorgenson in 1977 (Hoffman and Jor-
genson, 1977). This allows for improving the analysis: (1) it assures the 
macroeconomic consistency of the system regarding the aggregate en-
ergy demand, inflation, and revenue of agents, (2) it accounts for the 
indirect effects of the energy transition on the rest of the economy by 
ensuring the general equilibrium. 

Hybrid models are classified in several manners. Wene (Wene, 1996) 
classifies model linking as soft-linking (user controlled) versus hard- 
linking (computer controlled). Holz et al. (Holz et al., 2016) divide 
model linking into three subcategories: 1) soft-linking in which the 
processing and transfer of information is controlled by the user. 2) hard- 
linking in which all information processing and transfer is handled by a 
computer program. 3) integrated modeling in which a unified mathe-
matical approach is used (e.g., applying mixed complementarity prob-
lems (Böhringer and Rutherford, 2009)). Böhringer and Rutherford 
(Böhringer and Rutherford, 2008) define three categories: 1) coupling of 
existing large-scale models (i.e., soft-linking), 2) having one main model 
complemented with a reduced form of the other, and 3) combining the 
formulation of the models as mixed complementarity problems. The 
present paper adopts the term “soft-linking” as defined by Fragkos and 
Fragkiadakis (Fragkos and Fragkiadakis, 2022), where large-scale 
independently developed TD and BU models are linked through spe-
cific variables and an iterative process to ensure convergence. Subse-
quently, the term “hard-linking” refers to the approach where the TD 
model (e.g., CGE) is extended to include detailed BU representation (of 
the energy system). 

Each linking approach has its own advantages. Soft-linking requires 
minimum change to the models. Therefore, the high level of detail of 
both models can be maintained. However, soft-linking raises several 
issues, such as the consistency of both models (e.g., data calibration: 
physical versus monetary flows) and the risk of overlap (e.g., both 
models define endogenous emissions, energy consumption, and prices). 
Hard-linking eliminates the consistency problem of soft-linking. How-
ever, the level of detail of models is considerably lower than in the soft- 
linking approach. Since we aim to keep the high level of detail of both 
models, the present paper focuses on the soft-linking approach. 

The gap between the TD and BU modeling approaches has already 
discussed three decades ago (Wilson and Swisher, 1993). Since then, 
several efforts have combined both approaches in climate mitigation 
analyses (Hourcade et al., 2006); however, they hardly describe the 
details and underlying assumptions regarding the linking process. 
Manne and Wene (Manne and Wene, 1992) demonstrate a generic soft- 
linking approach for the MARKAL and ETA-MACRO models. Wene 
(Wene, 1996) links the MESSAGE III and ETA-MACRO models by further 
elaborating connection points. Messner and Schrattenholzer (Messner 
and Schrattenholzer, 2000) automate the link between MESSAGE and 
MACRO models. Labriet et al. (Labriet et al., 2010) describe the linking 
algorithm and convergence criteria in soft-linking two global models, 
GEMINI-E3 and TIAM. Glynn et al. (Glynn et al., 2015) summarize 
several model linking efforts for different case studies at national levels. 

Fortes et al. (Fortes et al., 2013) link the TIMES-PT and GEM-E3 (Capros 
et al., 2013) models for the case study of Portugal. Bulavskaya and 
Reynès (Bulavskaya and Reynès, 2018) investigate the impact of the 
energy transition on job creation by soft-linking the ETM and ThreeME 
models. JRC soft-links POLES-JRC (Keramidas et al., 2023) and JRC- 
GEM-E3 (Garaffa et al., 2022); however, since the models have a 
global perspective, they offer lower detail level compared to national 
models. 

The study by Krook-Riekkola et al. (Krook-Riekkola et al., 2017a) is 
one of a few that emphasize on soft-linking transparency by describing 
their linking process and the simulation procedure in detail. They soft- 
link the TIMES-Sweden (Krook-Riekkola et al., 2017b) and EMEC 
(Östblom and Berg, 2006) models and demonstrate the importance of 
soft-linking in assessing national energy and climate policies. 

Due to the growing national policy-driven demand for analyzing 
socially optimal energy transition pathways (Kragt et al., 2013) and the 
lack of scientific literature on linking details, there is a need for a 
transparent national model linking process and its underlying assump-
tions. Moreover, the detail level of soft-linked models can be improved 
by using state-of-the-art TD and BU models. However, only a few studies 
provide transparency on their soft-linking approach. 

After identifying several energy system modeling challenges, Fattahi 
et al. propose the IESA framework (Fattahi et al., 2020) to better analyze 
the transition towards a low-carbon energy system. This framework 
employs highly detailed models to assess net-zero greenhouse gas (GHG) 
emission scenarios with high shares of variable renewable energy 
sources (VRES). For this purpose, the highly detailed and open-source 
IESA-Opt energy system model is developed (Sánchez Diéguez et al., 
2022), calibrated to the Netherlands (Sánchez Diéguez et al., 2021), and 
its capabilities are tested (Fattahi et al., 2021). Moreover, to address the 
impact of these scenarios on the economy, the IESA framework suggests 
soft-linking the core ESM (i.e., IESA-Opt) with a CGEM. 

The present paper aims to provide a transparent soft-linking 
approach for a highly disaggregated ESM and CGEM at a national 
scale; and subsequently analyze and demonstrate the relevance of 
various linking parameters on results, such as energy demand drivers 
and GDP. In this regard, we choose the IESA-Opt and ThreeME models 
for their high level of detail in the energy system and economy, 
respectively. Then, firstly, we demonstrate the soft-linking process of 
IESA-Opt and ThreeME, its steps, and underlying assumptions. Sec-
ondly, we show the impact of soft-linking on model results, particularly 
energy demand drivers and GDP. Lastly, we quantify the relevance of 
each soft-linking feedback parameter on the modeling results. 

2. Methodology 

The different underlying methodology of CGEMs and ESMs results in 
specific advantages and disadvantages for each model. CGEMs describe 
the whole economy (i.e., general equilibrium) and emphasize the pos-
sibility of substituting different production factors in order to maximize 
the profits of economic agents (e.g., firms, households, and govern-
ment). However, they considerably lack BU details as they simplify the 
substitution possibilities between energy and other factors (e.g., capital, 
labor, and material) using merely the CES production function. Instead, 
ESMs provide high BU details consisting of many technologies, related 
costs, physical constraints, potentials, and load profiles, all described in 
hourly temporal resolution across long-term time horizon and for 
several regions. However, a weakness of ESMs is that they do not ac-
count for general equilibrium effects. 

Soft-linking aims to take advantage of both modeling methodologies: 
the whole economy equilibrium of CGEMs and high BU details of ESMs. 

For the soft-linking, we choose ThreeME and IESA-Opt due to their 
high granularity and state-of-the-art capabilities. ThreeME follows a 
neoKeynesian formulation based on a highly disaggregated (65 sectors) 
economy description. Moreover, its recursive dynamic formulation al-
lows for analyzing the short, mid, and long-term economic shocks as 
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opposed to other CGEMs (e.g., EMEC (Östblom and Berg, 2006)) that 
only calculate the initial and last periods. IESA-Opt is a highly detailed 
energy system model (Sánchez Diéguez et al., 2022) with >860 tech-
nologies and the corresponding cost and technical data. As opposed to 
other ESMs (such as TIMES), IESA-Opt features an hourly temporal 
resolution (in chronological order), which is crucial in modeling sce-
narios with high shares of VRES. 

In the following, we describe further the methodology and level of 
details of both models. Then, we explain the soft-linking steps and un-
derlying assumptions. 

Moreover, in this section, we use specific terms that might have a 
different definition in each model. In order to increase the clarity, we 
provide the definition here:  

• Sector (s) is defined in both the energy and macroeconomic models. 
It refers to a group of activities that share the same or related busi-
ness activity, product, or service. In Section 2.3.2, we modify the 
sectoral definition of the macroeconomic model to be consistent with 
the energy model. Each sector is composed of several energy 
activities.  

• Activity (a) (or activity demand driver) is defined in the energy 
model. It refers to the energy demand driver, which is an exogenous 
input to the energy system model. For instance, the steel production 
industry is considered an activity, which is part of the Basic Metal 
sector.  

• Commodity (c) is defined in the macroeconomic model. It refers to a 
basic good that can be interchangeable with other goods in the 
macroeconomic model. Each commodity can be produced by one or 
several sectors or be imported. Examples: basic metal, paper, elec-
tricity, and oil. 

• Energy carrier (e) is defined in both the energy system and mac-
roeconomic models. It refers to different substances or commodities 
that are used to carry the energy across the supply-demand chain. 

2.1. A brief introduction to the ThreeME model 

Reynès et al. describe the ThreeME model, including all underlying 
formulations (Reynès et al., 2021). In short, this CGEM is specifically 
developed to analyze the impacts of the energy transition on the econ-
omy. ThreeME is an open-source country model specially designed to 
evaluate the medium- and long-term impact of environmental and en-
ergy policies at the macroeconomic and sector levels. To do so, ThreeME 
combines two essential features. Firstly, it has the main characteristics of 
neoKeynesian models by assuming a slow adjustment of effective 
quantities and prices to their notional level, the Taylor rule, and the 
Phillips curve. Notional level refers to the optimal values that maximize 
the utility function of each agent (i.e., sectors, household, and govern-
ment). The Taylor rule is an equation relating the interest rate value to 
inflation and economic growth levels. The Phillips curve refers to the 
economic relationship between the rate of unemployment and the rate 
of change in money wages. Therefore, compared to standard multi- 

sector CGEMs, ThreeME has the advantage of allowing for under- 
optimum equilibria, such as the presence of involuntary unemploy-
ment. Secondly, ThreeME combines the top-down CGE approach with 
bottom-up energy models by including several electricity generation 
technologies. 

Fig. 1 demonstrates the methodological framework of ThreeME. This 
model maximizes the utility of each agent in period t subject to several 
constraints, such as market clearing (e.g., demand is equal to supply). 
The model is recursive dynamic (i.e., myopic), which means it first op-
timizes period t and then uses the endogenous results (e.g., prices, 
wages, and production levels) for optimizing the next period (i.e., t + 1). 
After the model optimizes the last period (determined by the user), it 
provides the projection of the endogenous parameters, such as prices, 
household income, GDP, and employment rate, over the whole horizon. 
Moreover, ThreeME requires several exogenous parameters: the social 
accounting matrix (SAM) of the base year, population growth forecast, 
economic growth forecast, and substitution elasticities. SAM is a 
comprehensive and economy-wide database recording data about all 
transactions between economic agents in a specific economy for a spe-
cific period (Ferrari et al., 2023). The population and economic growth 
forecasts determine labor availability and productivity projection. 
Elasticities define the substitution proportion of production factors in 
production functions. 

In a CES function, the substitution between production factors can 
either follow the linear, fixed-proportion (i.e., Leontief) or Cobb- 
Douglas production functions. The linear production function repre-
sents a production process in which the inputs are perfect substitutes (e. 
g., labor can be substituted completely with capital). The fixed- 
proportion production function reflects a production process in which 
the inputs are required in fixed proportions. In the Cobb-Douglas pro-
duction function, the inputs can be substituted, if not perfectly. ThreeME 
assumes a nested CES function (Reynès, 2019) to describe the substi-
tution between production factors (Fig. 2). This CES production function 
requires four inputs, KLEM, capital (K), labor (L), energy (E), and ma-
terial (M). The production factors (KLEM) can be substituted with each 
other. The Elasticity of Substitution (ES) parameters determines the 
substitution level between each input. Each pair (i.e., K-E, KE-L, KEL-M) 
has its own ES, which is explained further in the description of the model 
(Reynès et al., 2021). 

An essential characteristic of a standard neoKeynesian macroeco-
nomic AS-AD (aggregated supply and demand) model is that demand 
determines supply. The demand comprises (intermediate and final) 
consumption, investment and export whereas the supply comes from 
imports and domestic production (see Fig. 3). As feedback with even-
tually some lags, supply affects demand through several mechanisms. 
The level of production determines the quantity of inputs used by the 
firms and thus the quantity of their intermediate consumption and in-
vestment which are two components of the demand. It determines the 
level of employment as well and consequently the household final 
consumption. Another effect of employment on demand goes through 
the wage setting via the unemployment rate which is also determined by 
the active population. The active population is mainly determined by 

Fig. 1. The basic representation of ThreeME and the corresponding inputs and outputs.  
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exogenous factors such as demography but also by endogenous factors: 
because of discouraged worker effects, the unemployment rate may 
affect the labor participation rate and thus the active population. 

2.2. A brief introduction to the IESA-Opt model 

IESA-Opt is a detailed open-source optimization ESM at the national 

Fig. 2. Nested CES production function in ThreeME.  

Fig. 3. Schematic of the ThreeME model.  
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level (Sánchez Diéguez et al., 2022). It optimizes energy system in-
vestments over the horizon from 2020 to 2060 in 5-year time steps while 
simultaneously accounting for hourly and daily operational constraints 
(Sánchez Diéguez et al., 2021) (see Fig. 4). The objective function of the 
model minimizes the net present value of energy system costs to achieve 
total energy needs under certain techno-economic and policy constraints 
(e.g., a specific GHG reduction target in a particular year) (Fattahi et al., 
2021). 

The IESA-Opt model includes a complete sectoral representation of 
the energy system technologies and infrastructure that account for all 
greenhouse gas emissions considered in the targets. In addition, it takes 
into consideration a detailed description of the cross-sectoral flexibility, 
namely, flexible heat and power cogeneration, demand shedding from 
power-to-X and electrified industrial processes, short- and long-term 
storage of diverse energy carriers, smart charging and vehicle-to-grid 
for electric vehicles, and passive storage of ambiance heat for the built 
environment. Overall, the model includes >860 technologies, with the 
corresponding capital, variable, and fixed operational cost projections, 
operational constraints (e.g., availability profile and ramping rate), 
flexibility constraints (e.g., CHP parameters, demand shedding capacity, 
pumping loss, demand shifting range), and minimum and maximum 
deployment potential. Moreover, the energy infrastructure is modeled in 
nine networks: three different voltage levels of electricity, two different 
pressures of natural gas, two different pressures of hydrogen, one carbon 
capture, utilization, and storage (CCUS), and one heat network. While 
the electricity and heat networks are balanced hourly, the gaseous 
networks are balanced daily due to their relatively low intraday 
variation. 

Furthermore, the IESA-Opt model reflects the emission constraints in 
the EU Emissions Trading System (ETS), the non-ETS sectors, and the 
international navigation and aviation sectors (Martínez-Gordón et al., 
2022). Since ETS sector emissions are traded in the EU ETS market, we 
assume an exogenous ETS emission price projection as a scenario 
parameter. Because the national emission reduction policy targets both 
ETS and non-ETS sectors, we set the aggregate national emission 
constraint on both sectors. If the constraint is binding, the model gen-
erates an aggregated national emission shadow price, equal to the 
marginal increase in the system cost if the aggregated emission 
constraint gets one unit tighter, e.g., by 1 t of CO2. 

The model simultaneously solves multi-year planning of in-
vestments, retrofitting, and economical decommissioning with intra- 
year operational, flexible, and dispatch decisions at hourly temporal 
resolution. In the present study, the model is applied to the case study of 
the Netherlands under the current climate policy (which is explained in 
Section 3.1) and conservative projections for the economy and avail-
ability of resources. 

2.3. Soft-linking the IESA-Opt and ThreeME models 

In this section, we describe the soft-linking procedure in three steps. 
First, we identify the connection points between two models, i.e., which 
parameters should be linked between two models. Then, we modify the 
ThreeME model by aligning its sectoral definitions with IESA-Opt defi-
nitions and demonstrating the challenges regarding specific connection 
points of IESA-Opt and ThreeME. Finally, we demonstrate the soft- 
linking steps and underlying assumptions on feedback parameters be-
tween the two models. 

2.3.1. Identifying connection points 
Connection points refer to the shared parameters between two 

models that can get linked. To identify these points, we review each 
model's input and output parameters. Fig. 1 demonstrates the exogenous 
inputs of ThreeME as SAM, population and economic growth forecast, 
and elasticities. Subsequently, ThreeME can provide outputs such as the 
projection of prices, sectoral production, GDP, and other derived eco-
nomic indicators (e.g., trade and employment rate). Moreover, the 
exogenous input of IESA-Opt is described in Fig. 4 as the demand drivers 
for energy consumption (e.g., number of houses, km of transport, tons of 
steel, and other sectorial activities), technological data, (i.e., costs, po-
tentials, and energy balance), resource potentials and prices, demand 
and VRES profiles, electricity trade potential, and energy policy land-
scape. Consequently, IESA-Opt can provide the technological mix, en-
ergy mix, energy prices, cross-border energy trade, and other derived 
energy system parameters. 

Linking the outputs and inputs of two models directly can be chal-
lenging as the outputs of ThreeME do not exactly match the inputs of 
IESA-Opt (and vice versa). Moreover, the endogenous parameters of 
ThreeME are frequently described in monetary units, while IESA-Opt 

Fig. 4. The methodological framework of the IESA-Opt model. 
Source: (Fattahi et al., 2022). 
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uses both physical and monetary units. Therefore, we need ‘translation’ 
models to convert the parameters from one model to the other. 

Moreover, all the converted parameters are defined over the period 
2020 to 2050. IESA-Opt provides a perfect foresight cost optimized so-
lution over the period 2020 to 2050 with 5-years increments. In contrast, 
ThreeME myopically simulates the economic general equilibrium with 
yearly increments from the base year (e.g., 2020) to 2050. Therefore, the 
exchanged parameters are inherently defined from 2020 to 2050. For 
instance, by exchanging imported gas prices between two models, we 
refer to the evolution of the yearly gas price from 2020 until 2050. Since 
the IESA-Opt model operates in 5-year intervals, we use linear inter-
polation to estimate the yearly value of parameters. 

The proposed method and connection points for soft-linking 
ThreeME and IESA-Opt are demonstrated in Fig. 5. First, we modify 
the sectoral aggregation level of ThreeME to match IESA-Opt (described 
further in Section 2.3.2), since both models have different levels of detail 
and aggregation. For instance, ThreeME describes more than thirty 
different service sectors, while IESA-Opt assumes merely four technol-
ogies to satisfy the aggregated energy demand of the service sector. 
Then, a demand conversion model links the exogenous energy demand 
driver parameter of IESA-Opt to the endogenous sectoral production 
parameter of ThreeME (explained further in Section 2.3.3). Linking 
ThreeME to IESA-Opt parameters is more challenging as both models 
endogenously calculate the energy related parameters. Therefore, we 
need to modify ThreeME by making the energy related parameters 
exogenous (i.e., energy and capital productivity, energy mix, energy 
prices, and cross-border energy trade). Afterwards, an energy mix con-
version model links the endogenous energy related parameters of IESA- 
Opt (i.e., technological mix, energy mix, energy prices, and cross-border 
energy trade) to corresponding parameters of ThreeME (explained 
further in Section 2.3.4). Furthermore, the conversion models should 
take care of the unit conversion as some of the exchanged parameters 
have different units. 

The exchange of parameters can continue until their values reach the 
convergence criteria (described in Section 2.4). In the case of conver-
gence, the outcome of both models consistently describes both the en-
ergy system and economy. 

The activity demand projections used in energy models generally 
come from energy outlooks or statistical projections (e.g., Dutch energy 
outlook (Overveld et al., 2021)). However, the conversion procedure of 
economic assumptions to energy activities is often not transparent (the 
gray box in Fig. 5). By soft-linking we can improve the consistency of the 
energy and economic scenarios by aligning the shared input parameters 
of both models. 

2.3.2. Modifying ThreeME to IESA-Opt sectoral definition 
Often, CGEMs and ESMs represent different definitions of sectors. A 

CGEM is typically framed around economic sectors. It is calibrated on a 
Supply Use Table (SUT) as this contains the economic transactions be-
tween agents, including firms (i.e., sectors), government, and house-
hold. The ThreeME model is calibrated using Eurostat's NACE system of 
economic activity classifications with 65 economic sectors. Moreover, 
the energy sector is further disaggregated into 17 energy sectors using 
the energy balance data. NACE is the acronym2 used to designate the 
various statistical classifications of economic activities developed since 
1970 in the European Union. NACE provides the framework for col-
lecting and presenting an extensive range of statistical data according to 
economic activity in the fields of economic statistics (e.g., production, 
employment, national accounts) and in other statistical domains 
(Eurostat, 2008). 

Instead, an ESM is usually framed around energy supply and demand 

sources, and it is calibrated on energy balance statistics. For example, 
the IESA-Opt model divides the national energy use into five main sec-
tors: built environment (i.e., residential and services), agriculture, in-
dustry, transport, and energy conversion sectors. The Dutch database of 
this model is calibrated using the Dutch 2020 CBS (Central Bureau of 
Statistics) energy balance reports. 

We start the soft-linking procedure by aligning the sectoral definition 
of two models. In this regard, we aggregate the sectoral definition of 
ThreeME to match with IESA-Opt. We group the 65 macroeconomic 
activity sectors into 32 sectors, as shown in Table 1. The left column 
demonstrates IESA-Opt sectors, while the right column lists modified 
ThreeME sectors based on the NACE standard. 

We were able to connect agriculture, industry, and transport to one 
another by either directly assigning NACE codes to IESA-Opt sectors or 
by grouping multiple NACE codes under one sector. For energy con-
version, however, we had to use the additional 17 energy sectors in 
ThreeME, which do not have NACE codes but can still be associated with 
a NACE sector (e.g. Manufactured gas by C19 relates to C19 - Manu-
facture of coke and refined petroleum products). Furthermore, the res-
idential and commercial sectors are not compatible as their definitions 
differ greatly between the two models. Additionally, as ThreeME offers 
more detailed descriptions of service sectors that are not applicable to 
IESA-Opt (e.g. J61 - Telecommunications), most of these service sectors 
have been grouped as the rest of the economy sector. 

2.3.3. Demand conversion (from ThreeME to IESA-Opt) 
Soft-linking practices often skip explaining their demand conversion 

procedure in detail. However, studies such as Krook-Riekkola et al. 
(Krook-Riekkola et al., 2017a) demonstrate their sectoral demand con-
version parameters and corresponding units. Inspired by their study, we 
demonstrate our method to convert ThreeME variables into IESA-Opt 
energy demand drivers. 

The sectoral demand conversion parameters for soft-linking IESA- 
Opt and ThreeME are demonstrated in Table 2. For most sectors, since 
we already aligned both models' sectoral definitions, we can directly 
connect the required energy demand drivers of IESA-Opt to the sectoral 
production growth out of ThreeME: 

Da,t* ,n+1 = Da,tb .

(
∏t*

tb

αs.PrGs,t,n

)

where Da, t*, n+1 is the demand of activity a, in time t*, iteration n + 1, 
exogenous input to IESA-Opt; Da, t is the demand of activity a, in the base 
year tb, in IESA-Opt calibration; αs is the demand conversion factor of 
sector s; and PrGs, t, n is the gross production growth of sector s, in time t, 
iteration n, and endogenous output from ThreeME. The demand con-
version factor (βs) determines the correlation between physical pro-
duction growth (used in the energy model) and the monetary sectoral 
growth (used in the economy model). The value of this parameter, which 
can be obtained by correlating historic data, hardly deviates from one in 
the case of Sweden (Krook-Riekkola et al., 2017a). Therefore, in this 
study we assume this factor to be equal to one to increase the clarity of 
the linking procedure. 

Not all activity demand drivers of IESA-Opt can be linked to ThreeME 
through the mentioned formula, namely, the number of houses and the 
amount of vehicle kilometers of passenger cars and motorcycles. For 
instance, the number of houses (exogenous input to IESA-Opt) depends 
more on the demography and housing policies of the country rather than 
economic growth or governmental income (output of ThreeME). 

The residential heat demand is determined endogenously in IESA- 
Opt. This model requires the number of houses and heat degree days 
as inputs to optimize the cost-effective insulation level of houses and 
corresponding heat supply technologies. For the number of houses, we 
assume the projection forecasts of CBS (Netherlands Statistics (CBS), 
2023), which is in line with the assumed demography projections of 
ThreeME. Similarly, the services heat demand is determined 

2 NACE is derived from the French title “Nomenclature générale des Activités 
économiques dans les Communautés Européennes” (Statistical classification of 
economic activities in the European Communities). 
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endogenously. IESA-Opt requires the amount of square meter service 
space and heat degree days as inputs to calculate the cost-effective 
insulation level and heat supply technologies. However, unlike the res-
idential sector, we can assume that the office space demand follows the 
economic growth of the services sector. 

Moreover, IESA-Opt requires the vehicle km demand as an exoge-
nous input. Estimating the transport demand projections is rather a 
complex task that depends on several factors such as household income, 
fuel price, population densities, public transport availability, and roads 
congestion levels (Breugem et al., 2002). However, transport projection 
can be estimated by the variations in income and fuel price (Ajanovic 
et al., 2012): 

TDt* ,n+1 = TDtb .

(
∏t*

tb

HIGt,n

)εHI

.

(
∏t*

tb

FPGt,n

)εFP  

where TDt*, n is the transport demand in time t*, iteration n + 1, and 
exogenous input to IESA-Opt; HIGt, n is the households' income growth in 
time t, iteration n, and endogenous output of ThreeME; εHI is the elas-
ticity of transport demand to households' income; FPGt, n is the fuel price 
growth in time t, iteration n, and endogenous output of ThreeME; and εFP 
is the elasticity of transport demand to fuel price. The choices of long- 
term εHI and εFP elasticities usually come from historic econometrics 
analyses that can vary significantly: 0.65 ≤ εHI ≤ 1.25 and − 0.55 ≤ εFP 
≤ − 0.05 (Litman, 2021). We choose the subjective values of εHI = 1.2 
and εFP = − 0.3 for the elasticities. Moreover, since passenger car fuel 
mix changes to electricity over time, we use a weighted average fuel cost 
based on the endogenous gasoline and electricity prices of IESA-Opt. For 
the aviation, we use the endogenous kerosene price calculated by IESA- 
Opt. 

2.3.4. Energy conversion (from IESA-Opt to ThreeME) 
This section describes the underlying assumptions of reflecting IESA- 

Opt outputs on the ThreeME model. Here we link four parameters, 
namely, technological mix, energy efficiency, energy mix, and energy 
prices. Moreover, in each subsection, we explain the required modifi-
cation in ThreeME to take the mentioned energy-related parameters as 
exogenous parameters. 

2.3.4.1. Technological mix. The optimal technological mix (from a cost 
perspective) to satisfy a specific energy activity might differ significantly 
under different scenarios. For instance, to satisfy a particular demand for 
electricity, the energy model optimally invests in, e.g., coal power plants 
or wind turbines. Since the cost of these technological options can vary 
greatly, it can greatly affect the monetary flow of the economy. Under 
tight environmental policies, some monetary flows (e.g., coal power 
plants) might disappear, and new substitutes (e.g., wind turbines) 
appear. This variation can affect the rest of the economy, such as 
employment and trade levels. We can trace this effect on different parts 
of the economy (e.g., sectoral employment and trade levels) by con-
verting the technological mix into an appropriate input for the CGEM. 

The variation in the technological mix required to satisfy a specific 
sectoral activity affects the capital productivity of the corresponding 
sector. An increase in the technological cost of a specific sector can be 
interpreted as a decrease in the capital (K) productivity in the corre-
sponding sector. Therefore, compared to the base year, variations in 
technological costs in IESA-Opt translate into variations in sectoral 
capital productivity in the ThreeME model: 

ProdK
s,t,n+1 = ProdK

s,tb .βs.

(
WACa,tb

WACa,t,n

)

where Prods, t, n+1
K is the capital (K) productivity of sector s, in time t, 

iteration n + 1, and exogenous input to ThreeME; Prods, tb
K is the capital 

productivity of sector s, in the base year tb, and exogenous input to 
ThreeME; βs is the ratio of energy capital costs over sectoral capital costs 

Fig. 5. Schematic of soft-linking ThreeME and IESA-Opt. 
Soft-linking aims to remove the black box between economic and energy scenarios. 
Dashed lines refer to the required data exchange for the soft-linking process. 
Solid lines refer to the required data exchange for stand-alone model runs. 
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of sector s, and exogenous from historic data; WACa, t, n is the weighted 
average cost of activity a, in time t, iteration n, and endogenous output of 
IESA-Opt; and WACa, tb is the weighted average cost of activity a, in the 
base year tb, in IESA-Opt calibration. In ThreeME, Prods, t, n

K is an exog-
enous value, which usually is assumed equal to its value in the base year 
(i.e., Prods, tb

K). However, we modify ThreeME to take this parameter as 
an exogenous value with the mentioned formulation. Moreover, in this 
study we assume βs = 1; thus, any variation in energy capital costs im-
plies changes in the sectoral capital costs. 

2.3.4.2. Energy efficiency. The change in the technological mix and 
energy efficiency from IESA-Opt affects the sectoral energy productivity 
factor in ThreeME. From the energy model perspective, energy effi-
ciency occurs in two ways: (1) exogenous increased efficiency of single 
technology due to technological development, and (2) endogenous 
substitution of technologies resulting in lower energy demand to satisfy 
the same activity. Similarly, in ThreeME, (1) the exogenous energy 
productivity factors determine the production levels based on consumed 
energy, and (2) the exogenous substitution elasticities together with 
endogenous prices determine the substitutions in the energy mix. In this 
section, we suggest a link for the first measure of efficiency, while in the 
next sub-section (i.e., energy mix) we connect the second energy effi-
ciency measure. 

With an increase in energy efficiency, the energy productivity should 

increase, meaning that less energy is required to reach the same amount 
of production. The variations in energy efficiency can translate into 
energy productivity by: 

ProdE
s,t,n+1 = ProdE

s,tb .

(
EUa,tb

ALa,tb

/
EUa,t,n

ALa,t,n

)

where Prods, t, n+1
E is the energy (E) productivity of sector s, in time t, 

iteration n + 1, and exogenous input to ThreeME; Prods, tb
E is the energy 

productivity of sector s, in the base year tb, and exogenous input of 
ThreeME; EUa, t, n is the energy use of activity a, in time t, iteration n, and 
endogenous output of IESA-Opt; ALa, t, n is the activity level of activity a, 
in time t, iteration n, and exogenous input to IESA-Opt (which is based 
on an endogenous output of ThreeME in iteration n); EUa, tb is the energy 
use of activity a, in the base year t, and endogenous output of IESA-Opt 
calibration; and ALa, tb is the activity level of activity a, in the base year t, 
and exogenous input to IESA-Opt. Similar to Prods, t, n+1

K parameter, in 
ThreeME, Prods, t, n+1

E is an exogenous value, which is usually equal to 
Prods, tb

E. However, we modify ThreeME to take this parameter as an 
exogenous value with the mentioned formulation. 

2.3.4.3. Energy mix. ThreeME assumes exogenous elasticities of import, 
export, and energy use to endogenously determine the share of import, 
export, and energy mix based on the price difference. However, these 
shares can be replaced by the energy trade and energy mix outcomes 

Table 1 
Modified ThreeME sectors based on IESA-Opt sectoral definition row colors refer to the IESA-Opt energy sector definition: agriculture, industry, 
transport, energy conversion sectors. 
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from the IESA-Opt model. Therefore, we modify the energy production 
factor of ThreeME by assuming substitution elasticity of zero (i.e., the so- 
called Leontief production function). Thus, modified ThreeME takes 
energy shares exogenously: 

φe,c,s,t,n+1 = EUe,a,t,n

/
∑

e
EUe,a,t,n  

where φe, c, s, t, n+1 is the share (
∑

eφe, c, s, t, n = 1) of energy carrier e in 
producing commodity c, in sector s, in time t, iteration n, in the ThreeME 
model; EUe, a, t, n is the energy use of activity a, from energy carrier e, in 
time t, iteration n, from IESA-Opt; and 

∑
eEUe, a, t, n is the summation of 

all energy use of activity a, in time t, iteration n, from IESA-Opt. 

2.3.4.4. Energy prices. Except for the price of imported energy carriers 
(that is exogenously equal for both models), other energy prices are 
endogenously determined in both models. However, IESA-Opt provides 

more accurate energy prices (i.e., shadow prices) as it includes rich 
details of the energy system's interactions and constraints. For example, 
the hourly shadow prices of electricity network are used to determine 
the average yearly price, which is then imposed into ThreeME. 

Originally, ThreeME calculates the price mark-up based on the price 
elasticity of demand, which is an exogenous parameter. Since the prices 
in ThreeME are endogenous variables, we modify them to be equal to 
energy price values from IESA-Opt. Therefore, we alter the energy 
commodity price formula by removing the mark-up: 

Pe,t,n+1 = PGDP,t,n.YAPe,t,n  

where Pe, t, n+1 is the energy price of energy carrier e, in time t, iteration 
n + 1, and exogenous input to ThreeME; PGDP, t, n is the GDP price (i.e., 
inflation correction factor), in time t, iteration n, and endogenous output 
of ThreeME; and YAPe, t, n is the yearly average price of energy carrier e, 
in time t, iteration n, and endogenous output of IESA-Opt. 

Table 2 
Sectoral demand conversion between CGEM and ESM row colors refer to the IESA-Opt energy sector definition: the built environment, agri-
culture, industry, transport, energy conversion sectors. 
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2.4. Execution 

The applied steps of the soft-linking process are summarized in 
Fig. 6. Since the activity demands are the required inputs of IESA-Opt, 
we choose ThreeME as the starting point. First, the sectoral produc-
tion output of ThreeME is converted into energy demand drivers 
through the demand conversion model (explained in Section 2.3.3). 
Then, we run IESA-Opt based on the acquired energy demand drivers. 
Next, the energy-related outputs of IESA-Opt are converted into required 
inputs of ThreeME through the energy conversion model (explained in 
Section 2.3.4). At this point, we increase the iteration index by one and 
repeat the iteration. Finally, the process stops when the energy demand 
drivers are converged according to the convergence criterion. Once the 
process is converged, we can report the outcomes of both models with 
the highest iteration index as the final results. 

Depending on the linking level and iteration index, we define several 
stages: First, the stand-alone (SA) stage, which refers to the activity 
values obtained exogenously as described in the reference scenario 
Section 3.1. At this stage, there is no link between the two models. 
Second, the no-feedback (NF) stage is the one-way linking of ThreeME 
outputs into IESA-Opt. In this stage, the energy activity demands are 
reported at iteration 0 just before the red diamond in Fig. 6. Third, the 
feedback loop (FL) stage in which the soft-linked ThreeME and IESA-Opt 
exchange data in iterations (i) until reaching the convergence criterion. 
Table 3 summarizes the soft-linking stages. 

Moreover, there is a need to determine convergence or stop criteria 
that determine when the iterations should stop. Some studies set pre-
defined convergence criteria (e.g., the differences in energy consump-
tion per energy carrier and calibrated sector are <10% (Fortes et al., 
2013)), and some others set no convergence criteria and decide when to 
stop after analyzing the outcome of each iteration (Krook-Riekkola et al., 
2017a). Since the only impact of ThreeME on IESA-Opt in this soft- 
linking process is through the variation in energy demand drivers, we 
set the convergence criterion as: 

⃒
⃒
⃒
⃒
Da,t* ,n − Da,t* ,n− 1

Da,t* ,n− 1

⃒
⃒
⃒
⃒ ≤ 1%∀s, t and n > 1  

where the absolute variations in demand drivers for all sectors and times 
between two iterations are <1%. 

3. Applying the soft-linking procedure 

This section primarily has two goals: First, analyzing the impact of 
soft-linking on the modeling results, and second, quantifying the rele-
vance of feedback parameters between two models. Therefore, the 
choice of the scenario parameters is of secondary importance. However, 
we summarize the main characteristics of this scenario. 

3.1. Reference scenario 

For the IESA-Opt model, except the number of houses that is ob-
tained from CBS, the projected development of other activities and part 
of the resource costs are extracted from the Dutch national energy 
outlook (KEV) (Overveld et al., 2021) and JRC's POTEnCIA central 
scenario for the Netherlands (Mantzos et al., 2019), which is based on 
GDP growth rates presented in the 2018 aging report (European Com-
mission Directorate-General for Economic and Financial Affairs, 2018). s 
scenario leans towards business-as-usual economic development, which 

Fig. 6. The execution flowchart of the iterative soft-linking process. 
Dashed lines refer to the iterative soft-linking process. 

Table 3 
The soft-linking stages and the corresponding execution steps.  

Stages n- 
value 

Description 

SA NA Exogenous input to the stand-alone IESA-Opt model 
NF 0 ThreeME → Demand conversion 

FL-1 1 
ThreeME → Demand conversion → IESA-Opt → Energy 
conversion → ThreeME → Demand conversion 

FL- i i Repeating the iterations i times  
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would fall within the second shared socioeconomic pathway (SSP2) 
(Riahi et al., 2017). Moreover, the environmental policy landscape of 
the Netherlands follows the EU Green Deal (European Commission, 
2019), where the Netherlands steps up its ambition to reduce its 
greenhouse gas (GHG) emissions by 55% compared to 1990 levels in 
2030, and becomes GHG neutral in 2050. 

For the ThreeME model, the SAM of the Netherlands in 2015 is ob-
tained from the National Accounts datasets of Eurostat (Eurostat, 2015). 
Moreover, the population and GDP growth forecasts are obtained from 
the Dutch statistical agency (CBS). 

Although both models use a separate source of GDP and population 
forecasts, the assumed values are not considerably different (see 
Table 4). IESA-Opt data sources assume a GDP growth of 1.45% (from 
2020 to 2050), while ThreeME assumes a constant 1.5% growth. 

3.2. Impact of soft-linking on the outcomes 

3.2.1. Sectoral development 
Fig. 7 demonstrates the activity demand levels of main Dutch in-

dustrial sectors in 2050 during different linking stages. The soft-linking 
approach increases the activity demand levels by 30.4% on average 
compared to the stand-alone IESA-Opt assumptions. The first increase in 
the NF stage is primarily due to the economic growth assumptions of 
ThreeME. Thus, it does not reflect any feedback from IESA-Opt. How-
ever, considering the first feedback from IESA-Opt (i.e., FL1), the ac-
tivity demand levels reduce by 10.8% on average compared to the NF 
stage. The reason for this decrease is described further in Section 3.3. 
After FL1, the average reduction in activity demand levels is negligible 
(2.7% from FL1 to FL2 and 0.03% from FL2 to FL3). In total, compared 
to the SA stage (i.e., stand-alone IESA-Opt without linking), soft-linking 
increases the activity demand levels by 19.5% on average. 

The presence of a significant gap demonstrates the discrepancy be-
tween exogenous sources and the ThreeME outcome, due to the varying 
assumptions made. Utilizing exogenous demand levels makes the results 
heavily reliant on a number of assumptions that are challenging to 
evaluate. Soft-linking enhances the transparency and traceability of 
demand side assumptions, guaranteeing a general economic equilibrium 
that is in line with the energy-climate policy. 

The increase in activity demand levels varies across different sectors: 
from approximately 40% in basic metals to roughly 5% in food products. 
Due to the lack of information on the assumptions of exogenous sources, 
we can hardly trace the reasoning behind this variation. 

In this case study, the soft-linking procedure meets the convergence 
criterion after three iterations. However, the activity demands of 2050 
already reach significant convergence in the first iteration (i.e., FL1 
stage). In a similar study, the soft-linking procedure reached significant 
convergence after the first iteration (Krook-Riekkola et al., 2017a). 
Moreover, other sectors behave similarly through the iterations except 
for the passenger car and aviation sectors. The reason is that these 
sectors follow a different energy demand conversion formulation 
dependent on household income and fuel prices. 

The projection of activities in the last iteration (i.e., the FL3 step) 
does not grow linearly as assumed in the reference economic scenario 
(see the NF stage in Fig. 8). Compared to the assumed linear production 
growth in ThreeME, the soft-linked production growth hampers in 2030, 
mainly due to lower export levels that can be explained by higher energy 

costs. In the reference scenario, ThreeME assumes a constant 2% in-
crease in prices (both domestic and international commodities) to ac-
count for the inflation. However, the energy prices of IESA-Opt (i.e., 
shadow prices) are calculated as the marginal cost of the technologies 
that satisfy the energy demand in each period. Therefore, enforcing 
ThreeME to use IESA-Opt energy prices causes considerable price 
disparity between energy-intensive products and the rest of the 
products. 

For instance, for the steel production sector in 2030, IESA-Opt de-
commissions the current blast furnace technology and instead invests in 
the direct reduction from hydrogen technology. While blast furnace 
technology mainly requires coal, the latter primarily relies on hydrogen 
and electricity. Moreover, as the output of IESA-Opt, the price of elec-
tricity and hydrogen should increase considerably in 2030 to reach the 
55% GHG emission reduction policy. As a result, the weighted average 
energy price for steel production increases by 270% from 2020 (coal- 
based) to 2030 (hydrogen and electricity-based). This price upsurge 
increases the price of steel commodity by 44% from 2020 to 2030. In 
contrast, in the same period, the international price of steel increases 
merely by 22% (i.e., 2% growth per year). Fig. 9 demonstrates that the 
steel price surges from 2030 to 2035, resulting in the lower competi-
tiveness of domestic steel compared to the international market. 
Accordingly, ThreeME lowers the growth of exported steel between 
2030 and 2035 (see Fig. 10), consequently decreasing the need for do-
mestic steel production. 

Not all sectors experience a production reduction in the energy 
transition. For example, Fig. 11 demonstrates the projections of pas-
senger car and aviation sectors before and after soft-linking (i.e., in the 
NF and FL3 stages). As we assumed in Section 2.3.3, the passenger car 
and aviation transport demands are correlated positively with house-
hold income and negatively with fuel prices. Thus, both sectors grow 
steadily in the NF stage as part of the reference economic scenario. 
However, after soft-linking, the demand of each sector follows a 
different pathway. 

The passenger car demand curve follows an s-curve that decreases in 
2025 and increases considerably after 2035 compared to the NF line. 
The main driver for this behavior is the variation in household income 
(see Fig. 12) that follows an s-curve. Additionally, the passenger car fuel 
price (i.e., electricity) stays almost steady from 2030 to 2045. In 2050, 
the electricity price reduces by 9% compared to 2045, which further 
boosts the 2050 passenger car demand (see Fig. 11). 

The aviation demand follows a similar pattern until 2035 but falls 
considerably until 2050. From 2035 onwards, household income con-
tinues to increase; however, as shown in Fig. 12, the kerosene price 
increases at a noticeably faster rate (e.g., 80% increase from 2040 to 
2050) due to the stringent net-zero climate policy in 2050. Therefore, 
the projected aviation demand reduces by 11% from 2040 to 2050 (see 
Fig. 11). 

3.2.2. The economy 
Fig. 13 shows the variations in GDP during the different stages of the 

soft-linking. GDP is an aggregate measure of production equal to the sum 
of the gross added values of all resident institutional units engaged in 
production (plus any taxes and minus any subsidies) (Lequiller and 
Blades, 2014). 

In the FL3 stage, considering the feedback of IESA-Opt (i.e., capital 
and energy productivity, energy mix, energy prices, and cross-border 
energy trade), the GDP decreases by an average of 5.5% compared to 
the NF stage (i.e., baseline economic scenario). Since the assumed GDP 
growth of both models are similar (see Section 3.1), the main part of this 
decrease is due to the considerable impact of the IESA-Opt feedback 
parameters in the first iteration. After the FL1 stage, the variation in the 
GDP trend is hardly affected by the number of iterations between the 
two models. 

The decrease in economic activity is mainly driven by the decrease in 
exports (− 12.3% in 2050, see Fig. 14), whereas the decreases in 

Table 4 
The assumed GDP growth and population forecasts of the reference scenario in 
both models.    

2020 2030 2040 2050 

GDP growth [%] 
IESA-Opt 1.4 1.1 1.5 1.8 
ThreeME 1.5 1.5 1.5 1.5 

Population [million] 
IESA-Opt 17.5 18.4 19.1 19.2 
ThreeME 17.4 18.5 19.0 19.3  
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investment and consumption are relatively small compared to the NF 
stage. This trade balance deterioration is driven by the increase in the 
domestic price of energy commodities and thus sectoral commodities (as 
explained in Section 3.2.1). The increase in prices leads to the lower 
international competitiveness of domestic products starting from 2030 
to 2040 (assuming a business-as-usual scenario in the rest of the world). 
After 2040, the IESA-Opt energy prices do not change considerably, and 
international commodity prices continue to increase at the constant rate 
of 2% (as assumed in the reference scenario). Therefore, the reduction in 
exports remains and starts to decrease slightly as the difference between 
domestic and international prices decreases. 

3.3. The relevance of feedback parameters 

The presented soft-linking approach consists of two directions: de-
mand conversion and energy mix conversion. While the demand 

Fig. 7. Energy demand activities of IESA-Opt normalized to the SA stage. SA: Stand-Alone IESA-Opt, NF: No Feedback from IESA-Opt to ThreeME, FLi: Feedback 
Loop between two models (i.e., two-way soft-linking) at the iteration i. 

Fig. 8. Energy activity demand projections of the primary industrial sectors of 
the Netherlands in the third iteration (i.e., the FL3 step). 

Fig. 9. Steel commodity price normalized to 2020. This price is endogenously 
calculated in ThreeME based on the imported energy prices from IESA-Opt. 

Fig. 10. The export projection of the steel commodity according to ThreeME 
and normalized to 2020. 
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conversion contains only the energy demand parameter, the energy mix 
conversion involves four parameters: productivity factors, energy mix, 
energy prices, and energy trade. 

This section demonstrates the impact of soft-linking these parame-
ters on the energy demand drivers. This impact is compared at six levels: 
no feedback from IESA-Opt to ThreeME, feeding back only productivity 
factors, only energy mix, only energy prices, only energy trade, and 
complete feedback (i.e., soft-linked). 

The impact of feedback parameters on the primary Dutch industrial 
demands in 2050 is presented in Fig. 15. First, the energy mix feedback 
increases the demand levels by 1% on average in all sectors compared to 
the no-feedback stage. The higher endogenous electrification rate (the 
output of IESA-Opt) stimulates sectoral production as there will be less 
demand for fossil energy commodity imports. 

Second, feeding back the capital and energy productivity factors 
reduces energy demand drivers by merely 0.4% compared to the NF 
stage. While the energy productivity increases in all sectors (due to 

higher efficiency), the capital productivity increases in some sectors (e. 
g., basic metals) and reduces in others (e.g., paper and paperboard). For 
instance, in the basic metals sector, IESA-Opt invests in the hydrogen 
direct reduction process, which is assumed to be slightly cheaper and 
more efficient than blast furnaces. This leads to an increase in capital 
and energy productivity, resulting in lower demand for capital and en-
ergy - consequently, 0.8% higher steel production. 

Third, the energy trade feedback reduces the sectoral demand by 
0.9% compared to the NF stage. The primary reason for this minimal 
impact is the assumption of constant energy commodity exports (except 
electricity) from 2020 onwards. Consequently, the energy import vol-
umes that IESA-Opt determines endogenously do not change consider-
ably compared to the base year. Therefore, by assuming drastic changes 
in energy trade volumes in the long term, we expect that the impact of 
this feedback parameter will become more prominent. 

Fourth, the energy commodity prices are the primary feedback 
parameter with a 15% average decrease in the energy activity drivers 
compared to the NF stage. The higher energy prices increase the pro-
duction costs and thus domestic commodity prices (as explained in 
Section 3.2.1). Since domestic commodities become more expensive 

Fig. 11. Passenger car and aviation demand projections in the NF and FL3 
stages. The values are normalized to 2020 levels. 

Fig. 12. The household income and fuel price projections in the NF and FL3 
stages. The values are normalized to 2020 levels. 

Fig. 13. Variations in the GDP during different steps of soft-linking. NF: No 
Feedback from IESA-Opt to ThreeME, FLi: Feedback Loop between two models 
(i.e., two-way soft-linking) at iteration i. 

Fig. 14. The projection of exports in the NF and FL3 stages (i.e., before and 
after soft-linking). 
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compared to the NF stage, and ThreeME assumes a constant growth of 
international prices from the base year, the competitiveness of domestic 
products reduces (depending on the assumed export elasticity). As a 
result of reduced exports, the production levels reduce drastically. 
Therefore, the impact of this parameter on the final results depends 
primarily on the IESA-Opt energy prices and assumed growth of inter-
national prices and trade elasticity. 

In summary, the energy commodity price feedback has the highest 
impact on the final results compared to other feedback parameters. 
However, the magnitude of this feedback depends on specific modeling 
assumptions both in the economy and energy models. 

4. Discussion 

Although the demonstrated soft-linking approach ensures the eco-
nomic equilibrium of the energy system, it comes with several as-
sumptions that can affect the results (summarized in Table 5). Here we 
briefly discuss the key assumptions and their potential impact on the 
outcomes. 

4.1. Sectoral definition matching 

Tables 1 and 2 clearly show how the sectoral definition matching 
between the two models is established. However, this is can be highly 
critical and difficult to carry out since it either may interrupt the logic of 
one of the models or disturb the relation between data sources and 
models sectors. In this study, we used energy and economy models with 
high sectoral resolution and with the ability of grouping sectors. For 
example, sectors can get merged in ThreeME to match IESA-Opt sectors. 
Therefore, matching their sectoral definitions raised minimal 
challenges. 

In the proposed soft-linking process, the IESA-Opt energy demand 
drivers are calculated based on endogenous ThreeME sectoral growth. 
Although we aligned the sectoral definition of ThreeME to IESA-Opt, 
still the linking can be improved. For instance, the growth in the land 
transport sector determines the growth in the light and heavy-duty ve-
hicles, busses, and trains in IESA-Opt. However, the demand for busses 
and trains is not necessarily determined by the land transport sector 
growth. Increasing the sectoral disaggregation of ThreeME could resolve 
this issue. For instance, EMEC (Krook-Riekkola et al., 2017a) provides 
greater sectoral detail by distinguishing between public transport, road 
freight, and rail transport sectors. 

4.2. Novel value chains 

In this study, a CGE model based on historic data, such as SAM and 
elasticities, was utilized. However, due to its reliance on existing data, it 
is unable to accurately reflect novel production value chains like green 
hydrogen, synthetic fuels, DAC, and BECCS that do not yet have a sig-
nificant impact on the economy. One approach would be assuming these 
value chains behave similar to current economic commodities (e.g., 
green hydrogen can be treated as natural gas). However, in order to be 
more accurate, these production value chains and their associated 
elasticities must be added to the CGE model. 

4.3. Linking investment costs 

In the present study we linked the investment costs of two models 
because an investment in a capital-intensive technology resulting from 
ESM can affect the capital intensity of the corresponding sector in 
CGEM, and hence, the economic equilibrium. Although some other 

Fig. 15. The variations of primary Dutch industrial demands in 2050 with respect to soft-linking feedback stages. NF: No feedback from IESA-Opt to ThreeME, 
feeding back only energy mix, only productivity factors, only energy prices, only energy trade, and full feedback (i.e., soft-linked). 

Table 5 
The list of main soft-linking assumptions and issues to be resolved.  

Assumption/issue Resolution 

Sectoral definition matching Is challenging. A more detailed CGEM 
is required 

Novel value chains Need for forward-looking CGEM 
Linking investment costs Soft-link capital costs where necessary 
Differences between the energy and 

economic capital costs 
The impact on results is not 
considerable 

Perfect foresight as opposed to the myopic 
methodology 

Proposing a modification in ThreeME 

Convergence criterion We should monitor the process, not 
only the criterion 

Demand-elasticity in ESMs Can be used when soft-linking is out of 
reach 

Importance of elasticities and the base 
year choice 

Sensitivity analyses are required 

Relevance of international trade Global CGEM or sensitivity analyses 
are required 

Price linking method Further investigation is required 
Assumed energy price projections Alternative scenario analysis is 

required 
Further analyzing the economic results In-depth economic analysis is required  
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studies such as Krook-Riekkola et al. (Krook-Riekkola et al., 2017a) did 
not include linking investment costs in their soft-linking approach, they 
mentioned this issue as a shortcoming of their approach. 

Even though we showed that the impact of this linking parameter is 
not considerable on the results, we advise including this linking 
parameter for sectors in which the ratio of capital over variable costs can 
shift considerably during the course of energy transition. An example is 
the transport sector where the ratio of capital over variable costs for 
electric cars is noticeably higher than conventional cars. 

4.4. Differences between the energy and economic capital costs 

We are assuming the energy model capital costs represent the whole 
capital costs of the sector (βs = 1). However, this is not the case in reality, 
as an energy-related capital cost of a specific sector only represents a 
share of its total investment costs. We can analyze the historical data to 
identify the energy-related capital cost-share of each sector. This share 
can be used as a sectoral elasticity in Section 2.3.4 to calculate the Prods, 

t, n
K more accurately. Although we have demonstrated that the impact of 

linking the capital factor on the results is not significant, we suggest 
calibrating the βs values from the base year. Moreover, in a similar study 
(Krook-Riekkola et al., 2017a), βs values for the Swedish economy are 
extracted; however, the reported values do not differ considerably from 
1, which was used in this study. Therefore, we do not expect consider-
able change in the results if real βs values are used. 

4.5. Perfect foresight as opposed to the myopic methodology 

Although the underlying methodologies of both models are different, 
there is one major difference that can cause inconsistency between two 
models. On the one hand, in the IESA-Opt model, the objective function 
(i.e., energy system costs) is minimized with perfect foresight to provide 
a socially optimal energy transition pathway. On the other hand, the 
ThreeME model simulates a general equilibrium between several eco-
nomic agents (e.g., households and government) with myopic foresight. 
Thus, these economic agents only apply adaptive expectations with 
backward-looking under bounded rationality. As a result, the invest-
ment decisions in IESA-Opt look ahead, while their effect in ThreeME 
has a myopic impact. Similarly, this inconsistency between the two 
models is briefly recognized by Fortes et al. (Fortes et al., 2013) as GEM- 
E3 (Capros et al., 2013) is a recursive dynamic model while TIMES 
(Loulou et al., 2016) has perfect foresight. 

To diminish this inconsistency, we propose defining a social objec-
tive function in ThreeME that optimizes a specific variable over the 
trajectory. In this way, the model can employ future information to 
reach a perfect foresight equilibrium iteratively. 

4.6. Convergence criterion 

There are other candidates for the convergence criteria. Fortes et al. 
(Fortes et al., 2013) use the criterion that the variation in energy con-
sumption per energy carrier between iterations should be lower than 
10% or 1 PJ. Another criterion is used by Labriet et al. (Labriet et al., 
2010) in which the average relative difference between the energy de-
mand driver values obtained at two successive iterations should be 
smaller than a sufficiently small threshold. The present paper uses the 
energy demand driver as the primary convergence criterion because it is 
essential for the IESA-Opt results. However, we should not merely rely 
on a convergence criterion; besides, we need to administer the linked 
parameters at each stage to ensure meaningful linking as Krook- 
Riekkola et al. (Krook-Riekkola et al., 2017a) suggested. 

4.7. Demand-elasticity in ESMs 

ESMs such as the TIMES model family have the capability of 
implementing demand-elasticities, which allow for changes in demand 

due to endogenous commodity prices or substitution elasticities. This 
approach can help with demand adjustments in response to changes in 
prices, but is not an adequate substitution for soft-linking. Soft-linking 
ensures that economic equilibrium is kept in line with the energy policy 
set by the ESM, which demand-elasticities are not capable of doing. On 
the other hand, demand-elasticities have the advantage of not requiring 
the time and effort that soft-linking does, thus the choice between the 
two depends on the objectives and capabilities of the research team. 

4.8. Importance of elasticities and the base year choice 

CGEM results highly depend on the assumed elasticities. The varia-
tion in economic behavior can lead to variations in elasticities, which 
can highly affect the results. For instance, a robust national willingness 
to reduce energy imports can lower substitution elasticity between do-
mestic and imported energy commodities. In this study, we merely used 
default elasticities. However, there is room to investigate the role of 
variations in elasticities in the final results. For instance, as was shown in 
the results section, trade elasticity plays a crucial role in determining the 
competitiveness of domestic products and thus economic growth. 
Moreover, the energy system transition can considerably impact these 
elasticities in long-term (e.g., 2050). 

Moreover, the choice of the base year determines the starting point of 
the economy. Therefore, we suggest choosing a “good” starting year that 
represents the economy the best. For instance, choosing 2020 as the base 
year might underestimate the economic growth as it was under the 
temporary impact of the covid-19 pandemic. Moreover, the chosen base 
year should be near enough to represent the most recent state of the 
economy. Therefore, we choose 2015 as the base year in the present 
study. However, we suggest using the more recent “good” base year 
given the corresponding SAM is available. 

4.9. Relevance of international trade 

ThreeME assumes a steady-state increase in international energy and 
commodity prices. However, this assumption is far from reality as the 
international price of commodities can change considerably based on 
different national policies, notably climate policies. For instance, do-
mestic climate policies increase energy prices and, consequently, sec-
toral commodity prices. Thus, domestic commodities become less 
competitive in the international market, which results in lower exports 
and consequently lower domestic GDP growth. Therefore, the assumed 
growth of international commodity prices can drastically affect the 
impact of energy policies on economic growth. 

This issue can be addressed in two ways: first, performing a sensi-
tivity analysis of the results by assuming several exogenous international 
commodity price projections. Second, use a global CGEM to account for 
international trade. The second method, however, comes at the cost of 
reduced domestic modeling details as global CGEMs are considerably 
more aggregated than national ones. 

4.10. Price linking method 

In ThreeME, the commodity price is endogenously defined as a mark- 
up over costs. In the present paper, we assumed that the IESA-Opt en-
ergy commodity prices (i.e., shadow prices) are passed directly to 
ThreeME. Therefore, a higher energy price simulated by IESA-Opt cor-
responds implicitly to a higher mark-up. However, it could also have 
been modeled through an increase in input cost, in particular the one of 
capital. Similarly, Krook-Riekkola et al. (Krook-Riekkola et al., 2017a) 
faced challenges in linking prices. 

The price linking assumption impacts the generated incomes, their 
beneficiaries, and thus, the overall economic impact. Therefore, 
different methods of price linking and their impact on the results need 
further investigation. 
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4.11. Assumed energy price projections 

The reference scenario used in the present study does not consider 
the recent high levels of fossil fuel prices, particularly in Europe, which 
are caused by the disrupted supply of natural gas and oil. However, the 
assumed energy price projections play an essential role in the results, as 
it was shown in the results. 

With higher fossil fuel prices, low-carbon energy sources become 
more cost-effective. Therefore, the commodities made using low-carbon 
energy become cheaper than fossil fuel-based commodities. Therefore, 
with higher international fossil fuel prices, we expect the relative 
competitiveness of domestic commodities to increase since the share of 
low-carbon energy is expected to increase considerably in the 
Netherlands. This effect can be quantified with the proposed method in 
the present paper; however, it falls out of the scope of this study. 

4.12. Further analyzing the economic results 

The present study merely analyzes the aggregated economic in-
dicators such as the export and GDP levels. However, the relevance of 
soft-linking on more detailed economic indicators was not discussed. 
Therefore, there is a need for an in-depth analysis of the results that 
would require looking at additional economic indicators, decomposing 
economic impacts (in particular between substitution effects and income 
effects), and sensitivity analysis of critical parameters (e.g., elasticities) 
of the model. Since these in-depth economic analyses falls out of the 
scope of this study, we keep that for further research. 

5. Conclusion 

The present study aims at providing a transparent soft-linking 
approach for highly disaggregated computable general equilibrium 
model (CGEM) and energy system model (ESM) at the national scale; 
and subsequently analyze and demonstrate the relevance of various 
linking parameters on results, such as energy demand drivers and GDP. 

Compared to the stand-alone IESA-Opt (without linking), the soft- 
linking increases the activity demand levels of 2050 by 19.5% on 
average. This outcome is particularly significant for ESM modelers, as 
they often use the exogenous energy demand drivers from external 
sources. Furthermore, this outcome shows that the assumed exogenous 
energy demand drivers of ESMs are not necessarily consistent with the 
expected economic growth. Therefore, soft-linking can bridge this gap 
by ensuring general economic equilibrium instead of partial equilibrium 
in ESMs. However, we should ensure that novel production value chains 
(resulting from ESMs) are captured properly in CGEs. For instance, green 
hydrogen is expected to play a major role in achieving net-zero emission 
targets; however, its production value chain is not properly modeled in 
CGE models that rely on historic SAM and elasticities. 

Moreover, in the first soft-linking iteration, the energy demand 
drivers in 2050 reduced by 10.8% on average compared to the no- 
feedback (NF) stage, in which IESA-Opt outputs are not fed into 
ThreeME. We showed that this reduction in energy demand drivers led 
to a 5.5% reduction in GDP. This outcome is particularly relevant to CGE 
modelers as they often oversimplify the energy system and its impact on 
the economy. Therefore, soft-linking can improve the CGEM results by 
accounting for ESM feedbacks that emerge from analyzing climate pol-
icies with rich bottom-up details. 

Furthermore, we demonstrated that in this case study, the energy 
prices parameter is the primary feedback among four feedback param-
eters: productivity factors, energy mix, energy prices, and energy trade. 
The energy prices parameter reduces the energy activity drivers in 2050 
by 15% on average compared to the NF stage. We illustrated that the 
energy prices of IESA-Opt increase the production cost of ThreeME 
commodities and consequently reduce the international competitiveness 
of domestic products. Therefore, high energy prices (resulting from 
IESA-Opt) decrease the exports, and thus, GDP and energy demand 

drivers. This outcome elevates the significance of international trade 
assumptions or the need for a global economy model while modeling a 
national energy-economy linked system. 

In addition, as explained in the discussion section, the proposed soft- 
linking method and analyses can be improved in several ways, such as 
performing sensitivity analyses on primary scenario parameters (e.g., 
elasticities), using a global CGEM or an international scenario frame-
work, increasing the sectoral detail of ThreeME, improving the price 
linking between models, providing in-depth economic analyses, and 
analyze the results considering high fossil fuel price projections. 

Although there exist other studies that provide a transparent soft- 
linking methods for national models, the present study improves the 
literature by increasing the transparency level and quantifying the 
relevance of the feedback parameters in the utilized approach. Each soft- 
linking effort requires making particular assumptions depending on the 
underlying methodology and resolution of the used models. Therefore, 
comparing the results of soft-linking approaches would be challenging. 
However, readers can benefit from the higher transparency and diversity 
of approaches, and employ a mixed approach that is best suited for their 
study. 
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