
1.  Introduction
Traditionally, seismic imaging of the shallow subsurface is done with active sources. Seismic or acoustic sources 
from explosives or airguns excite downwards propagating waves, of which the reflections can be used to map 
geologic interfaces. Over the last decades, however, we have seen a shift toward passive imaging and monitoring. 
Seismic signals that were initially considered noise (e.g., microseisms) are now used to acquire subsurface data 
(e.g., Curtis et al., 2006).

Passive image interferometry (Sens-Schönfelder & Wegler, 2006) allows us to estimate seismic velocity changes 
using measurements of seismic ambient noise. This method consists of two steps. First, approximate Green's 
functions are estimated using cross-correlations of seismic noise measured at two receivers. This is referred to 
as seismic interferometry (Wapenaar, Draganov, et al., 2010). Second, velocity changes as a function of time are 
retrieved by comparing the coda of time-lapse cross-correlations to a reference. This step is referred to as coda 
wave interferometry (Lobkis & Weaver, 2003; Snieder, 2006). With passive image interferometry, a single lapse 
cross-correlation is generally constructed from noise measurements with a duration of a few hours to a few weeks, 
while the reference cross-correlation is often an average over one to a few years. The relative difference in arrival 
times dt/t then represents the relative velocity change dv/v = −dt/t with respect to the average reference velocity.

Seismic velocity variations have been empirically linked to many physical processes or observations, including 
temperature variations (e.g., Bièvre et al., 2018; Colombero et al., 2018; Richter et al., 2014), earthquake stress 
release (e.g., Brenguier et al., 2008; Sleeman & De Zeeuw-van Dalfsen, 2020; Wegler & Sens-Schönfelder, 2007), 
and hydrological stress fluctuations (e.g., Andajani et al., 2020; Clements & Denolle, 2018). For instance, Illien 
et al. (2022) used seismic velocity change and an empirical link with a hydrological model to find short-term 
permeability increases directly after earthquakes. Such empirical relationships can give very useful insights in the 
processes causing velocity changes, provided the empirical relationship reflect the physical processes involved. 
Therefore, we prefer a more physics-based approach.
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Recently, Fokker et  al.  (2021) provided a physical model for pore pressure monitoring using surface-wave 
phase-velocity changes. Building on the theory of Tromp and Trampert (2018), they showed that pore pressure 
changes induce shear-wave velocity variations through changes in effective stress. Using surface-wave dispersion 
modeling (Hawkins, 2018), they showed that pore pressure changes explain the measured phase-velocity changes 
both in phase and amplitude.

In the current study, we demonstrate that measured velocity changes can be inverted for pore pressure variations 
as a function of time and space. We introduce pore pressure sensitivity kernels for surface-wave phase-velocity 
changes, and compute velocity variations by applying passive image interferometry to seismic ambient noise 
measurements in Groningen, The Netherlands. An inversion of these velocity changes results in models of pore 
pressure variation as a function of time, depth and region. Different regions of Groningen show a different tempo-
ral behavior that coincide with the jurisdictions of two independent water boards.

2.  Groningen Setting, Data and Models
The Groningen region in the Netherlands has been studied extensively in the context of induced seismicity (e.g., 
Bourne et  al.,  2018; Hettema et  al.,  2017; Nepveu et  al.,  2016; Trampert et  al.,  2022) and subsidence (e.g., 
Van der Wal & Van Eijs,  2016; Van Thienen-Visser & Fokker,  2017; Van Thienen-Visser et  al.,  2015). The 
installation of a large dense network of borehole geophones (Dost et al., 2017) enabled intensive research activ-
ity. Seismic measurements on multiple depth levels were used to estimate shallow 1D velocity and attenuation 
profiles (Hofman et al., 2017; Ruigrok et al., 2022) and to estimate soil amplifications (Van Ginkel et al., 2019), 
while the large azimuthal coverage of the network was used to test different quality assessment parameters for 
passive image interferometry (Fokker & Ruigrok, 2019). The great amount of geological and geophysical models, 
provided by previous studies, and the presence of the large seismic network make Groningen an ideal region to 
test our approach of physics-based pore pressure monitoring.

The Groningen region can be divided into water board Noorderzijlvest in the northwest and water board Hunze 
en Aa's in the southeast. The borders between different water boards are shown in Figure 1 in light blue. Different 
water boards in the Netherlands can have different policies regarding groundwater management, and thus the 
pore pressure variations may be region dependent. In the southeastern region, at the location shown in Figure 1 
as the blue dot, a deep borehole piezometer (Dinoloket, 2022) takes direct continuous measurements of the pore 
pressure at multiple depth levels up to 170 m. Shallow direct measurements of pore pressure variation can be 
found throughout the whole region (Grondwatertools, 2022).

Figure 1.  Map view of the locations of the measurement equipment employed in this study. The black triangles indicate 
borehole geophones at a depth of 200 m (KNMI, 1993) and the blue point indicates a borehole piezometer (Dinoloket, 2022). 
Different regions are indicated by circles. The color coding is used in Figure 4, Figures S2, S4–S7 in Supporting 
Information S1 to distinguish regional results. The outline of the Netherlands and the Groningen gas field are shown as black 
and red lines, while the borders between different water boards are shown in light blue.
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Hydrologically, we can classify the shallow subsurface in the Groningen area roughly into three layers (Figure S1 
in Supporting Information S1). In the first 25 m we find an unconfined aquifer. Pore pressure variations within 
this layer are a direct result of changes in the groundwater table. From 25 m to roughly 75–100 m, we find an 
aquitard, spanning the entire region with only sparse openings. Due to the low permeability of this clay layer, pore 
pressure diffusion cannot fully penetrate this layer and hence we do not expect large seasonal pore pressure vari-
ations. A confined aquifer can be found below the clay from 75–100 m to 200–300 m depth. The pore pressure 
in this layer is determined by the groundwater table at the recharge locations. Therefore, the spatial pore pressure 
variability is expected to be small within this layer.

From the seismic network in Groningen (Dost et al., 2017) we use data from the 4.5 Hz borehole geophones 
at 200  m depth at the locations shown in Figure  1 by the black triangles. We chose the deepest geophones 
from the borehole network, because they register the highest power of coherent noise from distant sources, 
compared to the power of incoherent noise from close sources. Each colored circle indicates a subregion that we 
inves tigate. For each subregion we gather shear-wave velocity and density models from Kruiver et al. (2017) and 
a compressional-wave velocity model from Romijn (2017). From these models we compute all elastic parameters 
needed in this study (Figure S2 in Supporting Information S1).

The models for compressional-wave velocity, shear-wave velocity and density (Figures S2a–S2c in Supporting 
Information S1) allow us to compute the bulk modulus, the shear modulus and the confining pressure (Figures 
S2d–S2f in Supporting Information S1). The pressure derivative of the shear modulus, needed for the sensitivity 
kernel, can be computed by a pointwise derivative of the shear modulus with respect to the confining pressure. 
At layer interfaces, however, the shear modulus can change abruptly due to a change in material from one layer to 
another. This will result in an unrealistic estimate for its pressure derivative. A smoothing operation with a robust 
weighing function and positivity constraint removes outliers that occur at such a layer intersection. Figure S2g in 
Supporting Information S1 shows our model for the pressure derivative of the shear modulus dμ/dp at the center 
of the corresponding region.

3.  Passive Image Interferometry
To compute seismic velocity changes we apply passive image interferometry (Sens-Schönfelder & 
Wegler, 2006) to seismic ambient noise measured in Groningen, The Netherlands. This method consists of two 
processes. First, the Green's function between two seismic receivers is estimated using cross-correlations of 
ambient seismic noise. Second, time-lapse variations in arrival times are identified, corresponding to velocity 
variations.

To estimate the Green's function for one lapse period, we compute the cross-coherence of seismic noise, 
recorded by seismic receivers at locations xA and xB. The cross-coherence represents the spectrally normalized 
cross-correlation, and can be computed in the frequency domain (Wapenaar, Slob, et al., 2010):

𝐻̂𝐻(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐴𝐴, 𝜔𝜔) =
𝑢̂𝑢(𝑥𝑥𝐵𝐵, 𝜔𝜔)𝑢̂𝑢

∗(𝑥𝑥𝐴𝐴, 𝜔𝜔)

|𝑢̂𝑢(𝑥𝑥𝐵𝐵, 𝜔𝜔)||𝑢̂𝑢(𝑥𝑥𝐴𝐴, 𝜔𝜔)|
.� (1)

where u is ground velocity. The frequency domain is indicated by a hat and the star denotes a complex conju-
gation. We stack cross-coherences calculated from 50% overlapping time windows of 20 min duration, where 
the first time window ranges from 0:00 to 0:20 UTC, the second from 0:10 to 0:30 UTC, etc., for a lapse period 
of 21  days. We repeat this procedure for lapse periods between 01 January 2017 and 01 January 2020. The 
cross-coherences are computed for vertical components. Figure S3 in Supporting Information S1 shows an exam-
ple of cross-coherences in the time domain as a function of date, for receiver combination G014-G104 in the 
orange region (Figure 1) and frequency range [1.3 1.6] Hz.

We then determine velocity changes using the stretching method in the time domain (Lobkis & Weaver, 2003). 
Relative velocity changes dv/v  =  ϵ are found at the maximum correlation coefficient CC(ϵ) between lapse 
cross-coherence Hlapse, stretched in time with factor (1 − ϵ), and reference cross-coherence Href,

𝐶𝐶𝐶𝐶(𝜖𝜖) =
∫

𝑡𝑡2

𝑡𝑡1
𝐻𝐻lapse[𝑡𝑡(1 − 𝜖𝜖)]𝐻𝐻ref[𝑡𝑡]𝑑𝑑𝑑𝑑

√

∫
𝑡𝑡2

𝑡𝑡1

(
𝐻𝐻lapse

)2
[𝑡𝑡(1 − 𝜖𝜖)]𝑑𝑑𝑑𝑑

√

∫
𝑡𝑡2

𝑡𝑡1
(𝐻𝐻ref)

2
[𝑡𝑡]𝑑𝑑𝑑𝑑

.� (2)
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The reference cross-coherence is defined as the 3-year average from 01 January 2017 0:00 UTC to 01 January 
2020 0:00 UTC, hence the retrieved velocity change is relative to the average within this period.

The coda of the cross-correlation is more likely to contain stable parts of the Green's function, because this 
only requires a stable background noise structure (Hadziioannou et al., 2009), while direct waves also require 
well-illuminated Fresnel zones (Wapenaar, Draganov, et  al.,  2010). For this reason, we omit all arrivals of 
direct waves, and choose our time windows (integration boundaries in Equation 2) for the cross-coherence as 
τ < |t| < 2τ, where τ = (x/vlow + 5) s. vlow is the fundamental-mode Rayleigh wave phase velocity in the model of 
Figures S2a–S2c in Supporting Information S1. An additional 5 s is added to exclude the direct Rayleigh waves 
with more certainty. This narrow window excludes most body waves in the coda and should mainly leave closely 
scattered surface waves.

We filter the cross-coherences with a bandpass filter before we estimate the velocity change for the chosen 
frequency range. To obtain velocity variations as a function of frequency range, we repeat this process for multi-
ple frequency ranges. We compute an average velocity change for the regions indicated by the circles in Figure 1, 
using all receivers pairs within the indicated circles. This also allows us to compute the standard deviation of the 
sampling distribution of velocity change 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑∕𝑣𝑣 = 𝜎𝜎∕

√
𝑛𝑛 , as an indication of the measurement uncertainty on the 

one hand, and the intrinsic variability over a region on the other hand.

We use the coda of the cross-coherence evaluated for the vertical components to estimate velocity changes. 
Likely, the velocity changes are caused by fundamental-mode Rayleigh waves, but contributions from higher 
modes, Love and body waves cannot a-priori be excluded. We repeat the approach of Fokker et al. (2021) to find 
what type of waves is the main contributor to the observed velocity change by making a forward calculation for 
the region containing the piezometer. Figure S4 in Supporting Information S1 shows velocity changes for five 
frequency ranges, retrieved using passive image interferometry (purple), and fundamental-mode phase-velocity 
changes for Rayleigh (red dashed) and Love (blue dashed) waves, modeled from the pore pressure variations 
measured by Dinoloket (2022). The velocity variations closely resemble fundamental-mode Rayleigh-wave veloc-
ity changes. Therefore, we treat the velocity changes measured on the vertical components as fundamental-mode 
Rayleigh-wave phase-velocity changes. We tried the same modeling with a Voigt average of Love and Rayleigh 
(Fokker et al., 2021), but this degraded the fit to the piezometer data.

4.  Pore Pressure Sensitivity Kernels
To connect Rayleigh-wave phase-velocity change to pore pressure variation, we combine the physics-based rela-
tionship derived by Fokker et al. (2021) with shear-wave sensitivity kernels to construct pore pressure sensitivity 
kernels. Building on Tromp and Trampert (2018), Fokker et al. (2021) derived that a change in pore pressure u 0 
via effective stress induces shear-wave velocity change

𝑑𝑑𝑑𝑑

𝛽𝛽
= −

𝜇𝜇′

2𝜇𝜇
𝑢𝑢
0
,� (3)

with shear-wave velocity β, shear modulus μ, and pressure derivative of the shear modulus μ′ = dμ/dp. A positive 
change in pore pressure thus results in a negative change in shear-wave velocity.

Changes in the shear-wave velocity directly induce Rayleigh-wave phase-velocity changes

𝑑𝑑𝑑𝑑

𝑣𝑣
(𝜔𝜔) =

∫

∞

0

𝐾𝐾𝛽𝛽(𝜔𝜔𝜔 𝜔𝜔)
𝑑𝑑𝑑𝑑

𝛽𝛽
(𝑧𝑧)𝑑𝑑𝑑𝑑𝑑� (4)

with Rayleigh-wave phase velocity v, and shear-wave sensitivity kernel Kβ. We can now substitute Equations 3 
in 4, resulting in

𝑑𝑑𝑑𝑑

𝑣𝑣
(𝜔𝜔) =

∫

∞

0

𝐾𝐾𝑢𝑢0 (𝜔𝜔𝜔 𝜔𝜔)𝑢𝑢
0(𝑧𝑧)𝑑𝑑𝑑𝑑𝑑� (5)

where

𝐾𝐾𝑢𝑢0 (𝜔𝜔𝜔 𝜔𝜔) = −
𝜇𝜇′(𝑧𝑧)

2𝜇𝜇(𝑧𝑧)
𝐾𝐾𝛽𝛽(𝜔𝜔𝜔 𝜔𝜔)� (6)
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represents the pore pressure sensitivity kernel for Rayleigh-wave phase velocity.

Shear-wave sensitivity kernels for Rayleigh-wave phase velocity can be calculated using the adjoint method 
(Hawkins, 2018) together with one-dimensional models for compressional-wave velocity vp, shear-wave velocity 
vs, and density ρ. Figure 2a shows the shear-wave sensitivity kernel for the region centered at receiver G424 
(purple region in Figure 1), constructed from the elastic model shown in Figures S2a–S2c in Supporting Informa-
tion S1. The fraction −μ′/2μ shown in Figure 2b is calculated using the shear modulus and its pressure derivative 
(Figures S2e and S2g in Supporting Information S1). In accordance with Equation 6, we multiply Figures 2a 
and 2b to obtain the pore pressure sensitivity kernel shown in Figure 2c.

5.  Inversion for Pore Pressure Variation
To invert surface-wave velocity change for pore pressure variation as a function of depth and time, we need to 
discretize the linear relation described by Equation 5. We expand pore pressure change u 0 as

𝑢𝑢
0(𝑧𝑧𝑧 𝑧𝑧𝑘𝑘) =

∑

𝑗𝑗

𝑆𝑆𝑗𝑗(𝑧𝑧)𝑚𝑚𝑗𝑗(𝑡𝑡𝑘𝑘),� (7)

where function Sj(z) is chosen to be a cubic natural spline function, and mj(tk) its coefficients at time tk, which is 
the center of the 21 day lapse period (Section 3). We then rewrite Equation 5 as

𝑑𝑑𝑑𝑑

𝑣𝑣
(𝜔𝜔𝑖𝑖, 𝑡𝑡𝑘𝑘) =

∑

𝑗𝑗
∫

∞

0

𝐾𝐾𝑢𝑢0 (𝜔𝜔𝑖𝑖, 𝑧𝑧)𝑆𝑆𝑗𝑗(𝑧𝑧)𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗(𝑡𝑡𝑘𝑘).� (8)

For each lapse time tk, this can be written as a linear forward problem,

𝐝𝐝(𝑡𝑡𝑘𝑘) = 𝐆𝐆𝐆𝐆(𝑡𝑡𝑘𝑘),� (9)

where

𝑑𝑑𝑖𝑖(𝑡𝑡𝑘𝑘) =
𝑑𝑑𝑑𝑑

𝑣𝑣
(𝜔𝜔𝑖𝑖, 𝑡𝑡𝑘𝑘)� (10)

represents the data,

𝐺𝐺𝑖𝑖𝑖𝑖 = ∫

∞

0

𝐾𝐾𝑢𝑢0 (𝜔𝜔𝑖𝑖, 𝑧𝑧)𝑆𝑆𝑗𝑗(𝑧𝑧)𝑑𝑑𝑑𝑑� (11)

the forward operator, and mj(tk) the model coefficients of the pore pressure change.

Figure 2.  Visualization of Equation 6: (a) shear-wave sensitivity kernel Kβ(ω, z) for Rayleigh-wave phase velocity, computed using the adjoint method (Hawkins, 2018) 
on models for compressional-wave velocity, shear-wave velocity and density (Figures S2a–S2c in Supporting Information S1; purple), (b) fraction −μ′(z)/2μ(z) where μ 
is the shear modulus and μ′ is the pressure derivative of the shear modulus (Figures S2e and S2g in Supporting Information S1; purple), and (c) pore pressure sensitivity 
kernel 𝐴𝐴 𝐴𝐴𝑢𝑢0 (𝜔𝜔𝜔 𝜔𝜔) , which is a multiplication of figures (a) and (b). Note that the amplitude axes show logarithmic scales.

 19448007, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101254 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

FOKKER ET AL.

10.1029/2022GL101254

6 of 12

Model coefficients mj(tk) can be retrieved using the explicit least-squares formulation (Tarantola, 2005),

𝐦̃𝐦(𝑡𝑡𝑘𝑘) =
(
𝐆𝐆

𝑇𝑇
𝐂𝐂

−1

𝐝𝐝
(𝑡𝑡𝑘𝑘)𝐆𝐆 + 𝐂𝐂

−1
𝐦𝐦

)−1
𝐆𝐆

𝑇𝑇
𝐂𝐂

−1

𝐝𝐝
(𝑡𝑡𝑘𝑘)𝐝𝐝(𝑡𝑡𝑘𝑘),� (12)

with data covariance Cd and prior model covariance Cm. Based on the pressure head measurements in the south-
eastern region we expect a variance in pore pressure of 10 6  Pa 2, hence we choose the model covariance as 
Cm = 10 6I, where I represents the identity matrix. Since we are interested in the mean velocity change dv/v(ωi, tk) 
per region, we define the data covariance as the variance in the set of cross-coherences per region (see Figure 3a, 
error bars). We note that this variance can reflect the cross-coherence variability per region and/or direct obser-
vational uncertainty. We therefore use

𝐂𝐂𝐝𝐝(𝑡𝑡𝑘𝑘) = diag
(
𝝈𝝈𝐝𝐝𝐝𝐝∕𝐯𝐯(𝑡𝑡𝑘𝑘)

)2
.� (13)

The resolution R(tk) of the inverted model representation 𝐴𝐴 𝐦̃𝐦(𝑡𝑡𝑘𝑘) can be obtained by substituting the data d in 
Equation 12 for the forward operator G,

𝐑𝐑(𝑡𝑡𝑘𝑘) =
(
𝐆𝐆

𝑇𝑇
𝐂𝐂

−1

𝐝𝐝
(𝑡𝑡𝑘𝑘)𝐆𝐆 + 𝐂𝐂

−1
𝐦𝐦

)−1
𝐆𝐆

𝑇𝑇
𝐂𝐂

−1

𝐝𝐝
(𝑡𝑡𝑘𝑘)𝐆𝐆,� (14)

and the posterior model covariance can be found by

𝐂𝐂𝐦̃𝐦(𝑡𝑡𝑘𝑘) =
(
𝐆𝐆

𝑇𝑇
𝐂𝐂

−1

𝐝𝐝
(𝑡𝑡𝑘𝑘)𝐆𝐆 + 𝐂𝐂

−1
𝐦𝐦

)−1
.� (15)

After inversion for model representation mj(tk), we repeat the process for all lapse times tk, and compute our final 
model for pore pressure variation using Equation 7.

Figure 3 shows the steps in the inversion scheme for the region centered at receiver G424 (purple region in 
Figure 1). Velocity changes retrieved using passive image interferometry form the data of this inversion (Figure 3a, 
error bars; two example frequency ranges). We use velocity variations of multiple frequency ranges with varying 
center frequency and frequency span (Figure 3b), and we define 10 spline functions Sj (Figure 3c). Following 
Equation 11, we construct forward operator Gij (Figure 3d). Figure 3e shows pore pressure variations as retrieved 
using Equations 7 and 12, and Figure 3f shows the posterior model covariance as computed using Equation 15. 
The uncertainty of the retrieved model can then be computed using the square root of the diagonal of the poste-
rior model covariance. Pore pressure changes smaller than this uncertainty are colored gray in Figure 3e. The 
resolution matrix is computed using Equation 14 (Figure 3g), indicating that we only have sufficient resolution to 
confidently infer the model coefficients corresponding to the first six splines. Therefore, pore pressure variations 
can only be retrieved at depths smaller than about 200 m. The resolution matrix shows that deeper pore pressure 
models have contributions from splines 2 and 6–10, and are thus smeared out over a large depth range. To show 
how well the pore pressure model explains the velocity variations, we use Equation 9, the forward operator G, and 
the inferred pore pressure model 𝐴𝐴 𝐦̃𝐦 to predict the data. Figure 3a (solid lines) shows the result.

We construct a four-dimensional pore pressure model by repeating the inversion procedure for all regions shown 
in Figure 1. We compute velocity changes (Figure 4a shows five example frequencies) and construct pore pres-
sure sensitivity kernels based on the elastic parameters shown in Supporting Information S1 (Figure S2). The 
inversion leads to pore pressure models as a function of time, depth and region. Figure  4b shows in purple 
the inferred model in the region centered at receiver G424 for five depths, compared to the independent direct 
measurements of pore pressure variation in black (Figure 1, blue point; Dinoloket, 2022). The four-dimensional 
model of pore pressure variations is illustrated in Figure 4c, where for five depth levels and seven dates the pore 
pressure is shown in a colored map view. Detailed comparisons between pore pressure models and comparisons 
with shallow independent piezometric measurements are shown in Supporting Information S1 (Figures S5 and 
S6). The comparison of shallow pore pressure models in the northwest and the southeast shows significant spatial 
variations, while lateral variations of deeper pore pressure models could not be classified as significant. The shal-
low pore pressure models also compare well in phase and amplitude to the direct independent measurements of 
pore pressure change. The relative misfit between velocity change measured using passive image interferometry 
and predicted based on the inferred pore pressure model is shown in Supporting Information S1 (Figure S7), indi-
cating that measured velocity variations between 0.7 and 1.8 Hz are well explained by our pore pressure model. 
In the lower frequency ranges, that is, larger depths, the model does not explain the data, in agreement with the 
information displayed on the posterior covariance and resolution matrix.

 19448007, 2023, 5, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101254 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [09/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

FOKKER ET AL.

10.1029/2022GL101254

7 of 12

Figure 3.  Inversion scheme for retrieving pore pressure variations: (a) seismic velocity changes as a function of time for two example frequency ranges, obtained 
using passive image interferometry (error bars), and predicted based on the inferred pore pressure model and the forward operator (solid lines), (b) all frequency ranges 
between 0.3 and 2 Hz for which velocity changes are computed, the frequencies in the pink band are excluded (see text), (c) 10 spline functions used to discretize pore 
pressure variations, (d) discretized pore pressure sensitivity kernel (i.e., forward operator Gij in Equation 11, with spline functions as in (c), for the frequency ranges 
shown in (b)), (e) final model for pore pressure change as function of time and depth in accordance with Equations 7 and 12, (f) the posterior model covariance in 
accordance with Equation 15, and (g) resolution matrix in accordance with Equation 14.
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Figure 4.  Four-dimensional variations in seismic velocity and pore pressure. The different colors indicate different regions, corresponding to the colors in Figure 1. 
(a) Seismic velocity change for five frequency ranges estimated using passive image interferometry (Sens-Schönfelder & Wegler, 2006) on the vertical components. 
(b) Inferred model for pore pressure variation in the region centered at receiver G424 for five depths. The black curves correspond to pore pressure measurements by 
the borehole piezometer indicated in Figure 1 as blue dot. (c) Map view of pore pressure models, as a function of time and depth. Each subplot corresponds to a certain 
time and depth, showing the pore pressure change as color for the seven different subregions presented in Figure 1.
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6.  Hydrologic Interpretation
The inferred pore pressure models reveal the characteristics of the hydrologic classification (Section 2, Figure S1 
in Supporting Information S1).

Within the confined aquifer, pore pressure models compare well to the direct measurement in the southeast 
(Figure 4b) and models for the different regions are very similar to each other (Figures S5d–S5f in Supporting 
Information  S1). The seasonal trends show lower pore pressures during summers and higher pore pressures 
during winters. The source for pore pressure change in this lower layer is due to locations where the clay layer is 
absent or very thin and pore pressure diffusion can reach this aquifer. Therefore, the pore pressure in this aquifer 
represents groundwater fluctuations at the recharge locations.

Within the aquitard, we observe small pore pressure variations that show neither a clear seasonal pattern, nor 
consistency over the different regions. Within this layer we expect much smaller pore pressure variations, because 
the hydraulic conductivity in the order of 1 mm per day is too low for pore pressure diffusion to reach the core of 
this layer. In the inversion process, pore pressure variations must therefore have leaked from depths correspond-
ing to neighboring splines. The resolution in Figure 3g shows that this is possible.

Within the unconfined aquifer, pore pressure variations are a direct result of the changing groundwater table. 
Changes in the groundwater table are very site dependent, since their sources (i.e., precipitation, topography, 
groundwater extraction, and groundwater management) can vary from region to region. Interestingly, there is 
a significant (Figure S5 in Supporting Information S1) difference in amplitude between shallow pore pressure 
variations in the southeast (purple and blue areas) and the northwest (red and orange areas). Independent shal-
low piezometric measurements of the pore pressure (Grondwatertools, 2022) show for this aquifer an ampli-
tude increase in seasonal variations from the southeast to the northwest. The amplitude differences between the 
regions coincide with the jurisdictions of two different water boards that may have different policies for ground-
water management. The mismatch between shallow pore pressure models and the direct measurements shown in 
Figure 4b can potentially be explained by local topography or the presence of clay, since the direct measurements 
are taken at a point location, while the models represent an average over a lateral area of 250 km 2. The spatial 
variability shown by other pore pressure measurements from this region (purple area in Figure S6 in Supporting 
Information S1) supports this hypothesis. Other shallow pore pressure measurements (Grondwatertools, 2022) 
show closer agreement with the shallow models (Figure S6 in Supporting Information S1).

7.  Discussion
In this study we obtained seismic velocity changes using the stretching method (Lobkis & Weaver,  2003). 
However, Zhan et al. (2013) showed that varying amplitudes in the noise can lead to spurious velocity changes. 
This is what we observe at frequency ranges containing the frequencies of 0.63 or 1.24 Hz, which are eigenfre-
quencies of nearby wind turbines (Van der Vleut, 2019). With varying wind direction, the swinging direction of 
the wind-turbine masts changes and therefore the directions, into which Rayleigh and Love waves are excited, 
will change. This causes substantial amplitude variations and hence spurious velocity changes. For this reason we 
excluded all frequency ranges containing these eigenfrequencies.

The advantage of the stretching method mostly lays in the ability to detect weak velocity changes using low 
signal-to-noise ratios. However, it makes use of the assumption of homogeneous velocity change. Using this 
method we can therefore only retrieve an average velocity change over a relatively large region. Alternatively, 
one could estimate velocity change using the moving window cross-spectral method (Clarke et al., 2011; James 
et al., 2017), dynamic time warping (Mikesell et al., 2015), or the wavelet method (Mao et al., 2020). These meth-
ods can be used for a higher-resolution spatial inversion of velocity change, taking into account the sensitivities 
of different wave types at different arrival times and frequencies (James et al., 2019; Mao et al., 2022; Margerin 
et al., 2016; Obermann et al., 2013).

By using the coda of the cross-correlations of vertical components close after the arrival of the fundamental-mode 
Rayleigh wave, we excluded most Love-wave energy. If the ratio of Love to Rayleigh energy were known in the 
Groningen area, one would be able to add velocity change measured on the horizontal components (i.e., RR, RT, 
TR, TT). The pore pressure sensitivity kernels for Rayleigh and Love would need to be averaged accordingly. A 
Voigt average between Rayleigh and Love as used by Fokker et al. (2021) would be too rough an approximation 
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for pore pressure inversion, since the ratio of Love to Rayleigh energy varies as a function of frequency (Juretzek 
& Hadziioannou, 2016).

Velocity changes are linked to pore pressure variations through pore pressure sensitivity kernels. To compute 
these kernels for Rayleigh-wave velocity change, we determined pressure derivatives of the shear modulus by a 
point-wise comparison between the shear modulus and the confining pressure. While this is a reliable method to 
determine the pressure derivative within a layer of one material, at interfaces this can lead to spurious values. A 
smoothing operation with a weighing function can remove such outliers at the cost of resolution. Alternatively, 
one could conduct a lab experiment to determine the pressure derivative of the shear modulus as a function of 
depth and hence maintain a better vertical resolution.

There are unexplained low-frequency data (Figure S7 in Supporting Information  S1). For frequencies below 
0.5 Hz we are pushing the 4.5 Hz geophones to their limits. With much instrumental noise at these frequencies, 
the retrieved velocity variations are of low quality. However, for the inversion part the quality of the low-frequency 
velocity variations does not really matter, since the resolution shows that the pore pressure models below 200 m 
cannot be interpreted anyway.

In this study we showed that the velocity variations between 0.7 and 1.8  Hz can be attributed to pore pres-
sure changes. While in Groningen pore pressure change is the main source for velocity variation, other sources 
also need to be addressed. Locally, earthquakes can cause subsurface damage, resulting in a velocity drop (e.g., 
Brenguier et al., 2008; Wegler et al., 2009). However, this local effect has only been reported for much larger 
earthquakes than the ones observed in the Groningen area. Also temperature variations can induce seismic veloc-
ity changes (e.g., Colombero et al., 2018; Richter et al., 2014). Seasonal temperature variations by thermal diffu-
sion through quartz, however, are naturally restricted to 0.1°C for depths below 20 m, and thermal energy storage 
systems only induce local temperature changes that cannot be resolved with our spatial resolution. Moisture 
variations within the vadose zone cause changes in density that can affect surface-wave velocities (e.g., Knight 
et al., 1998). In Groningen, however, the groundwater table can be found at approximately 1 m depth, which 
leaves a very small vadose zone and therefore a limited sensitivity to changes therein. For these reasons, we do not 
expect that other mechanisms should notably affect the seismic velocity, and therewith the pore pressure models 
at depths below 20 m.

Within the inversion procedure for depth variations of pore pressure, we used well-defined data and model covar-
iances, enabling the use of the explicit Bayesian formulation. When data or model covariances are not available, 
it is still possible to carry out a damped least squares inversion. One can search for an optimum weight for the 
residual norm minimization and the solution norm minimization. Additionally, one could use the correlation 
coefficient CCmax(ω, t) (Equation 2) as proxy for the quality of the retrieved velocity changes, since Fokker and 
Ruigrok  (2019) showed that the standard deviation of retrieved velocity changes σ(ωi, tk) correlates strongly 
with 1 − CCmax(ωi, tk). Therefore, this can be used as an alternative to the data covariance presented in this study 
(Equation 13).

8.  Conclusions
This study introduces a new technique for pore pressure monitoring using passive image interferometry. We 
derived that pore pressure sensitivity kernels can be used to link surface-wave velocity change as function of 
frequency directly to pore pressure change as function of depth. In Groningen, The Netherlands, most sensitivity 
to pore pressure changes lays in the very shallow subsurface (i.e., top 200 m), much shallower than the sensitivity 
to shear-wave velocity change. We showed that pore pressure sensitivity kernels can be used to invert surface-
wave velocity changes for pore pressure variations as a function of depth, resulting in four-dimensional pore 
pressure models, agreeing with independent measurements of pore pressure variation and showing hydrological 
features.

Data Availability Statement
Seismic continuous data from the KNMI archive with Federation of Digital Seismograph Networks (FDSN) 
network identifier NL (KNMI, 1993, http://rdsa.knmi.nl/network/NL/) were used in the creation of this manuscript. 
Pressure head measurements are available through Dinoloket (2022, https://www.dinoloket.nl/en/subsurface-data) 
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and Grondwatertools  (2022, https://www.grondwatertools.nl/gwsinbeeld/). Models for shear-wave velocity, 
compressional-wave velocity and density were retrieved from Kruiver et al. (2017) and Romijn (2017). These 
models are available through https://osf.io/s3zxa/ (last accessed: 8 December 2022) and https://nam-onderzoeks-
rapporten.data-app.nl/reports/download/groningen/en/3b4f8b0d-0277-40e0-8ff5-9a385c08327d (last accessed: 
8 December 2022).
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