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Advanced chemical and mineralogical techniques are necessary to further our understanding
of ore deposits and their genesis. Using X-ray micro-computed tomography (lCT) and an
automated mineralogy (AM) system based on scanning electron microscopy with an energy-
dispersive X-ray spectrometer (SEM–EDX), we investigated the internal mineralogy of Sn–
Nb–Ta pegmatites. This paper presents a comprehensive methodology to quantify and
visualize the mineral relationships of ore samples in three-dimensional space at the micro-
scopic scale. A list of all possible minerals present, a so-called mineral library, was deduced
with a SEM-based AM system and served as the ground truth for the interpretation of lCT
data. A reconstructed attenuation coefficient (lrec) was calculated for mineral phases that
have been identified and provided a most correct guidance to differentiate between minerals
for a given experimental lCT setup. Despite some limitation in sample size and mineral
identification, these complementary techniques enabled the differentiation of a Fe–Li mica
from biotite based on the chemical attribution of lithium to lrec. Using statistical descriptors,
we quantified the general orientation of individual mineral phases and their spatial corre-
lation to comply with the needs of processing large datasets at a low computational expense.
Applying this comprehensive methodology to a case study demonstrates the possibilities of
combining a SEM-based AM system with lCT analysis to investigate ore samples at the
microscopic scale.

KEY WORDS: X-ray computed tomography, Automated mineralogy, Mineral texture, Correlative
microscopy, Pegmatites.

INTRODUCTION

In this ever-changing world, we are more and
more confronted with the challenges of future min-
eral supply to an accelerating global population
growth (Ali et al., 2017). In addition, modern society
relies increasingly on the development of renewable
energy sources and other high technology applica-
tions that require not only a vast amount of common
commodities (e.g., copper, steel), but also a growing
number of critical low-volume elements (Hayes &
McCullough, 2018; Wellmer et al., 2019). Detailed
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characterization of the morphology, texture, miner-
alogy, and chemistry of different desirable minerals,
as well as the bulk minerals in which they are
embedded, plays an important role in the optimal
recovery of critical raw materials (Reuter et al.,
2019).

Mineralogical studies of ore deposits conven-
tionally rely on macroscopic observations of hand
specimens collected during fieldwork and on
microanalytical two-dimensional (2D) techniques to
characterize the chemical, mineralogical, and struc-
tural variations of millimeter- to centimeter-sized
samples, at a spatial resolution down to the micro-
scopic scale (Pearce et al., 2018). Microscopic
observations are often limited to optical microscopy
and different microbeam analytical techniques,
combined with integrated imaging techniques like
scanning electron microscopy (SEM). SEM is often
assisted by 2D elemental mapping using energy-
dispersive (EDX) or wavelength-dispersive (WDX)
X-ray spectrometers or complemented with data
from an electron probe microanalyzer (EPMA)
acting as an analytical tool to determine non-de-
structively the chemical composition of small vol-
umes of solid materials (Reed, 2005). SEM may also
be combined with a focused ion beam (FIB–SEM)
for serial FIB milling of the sample surface to ac-
quire a sequence of cross-sectional SEM images and
thus a three-dimensional (3D) visualization of a
sample (Gu et al., 2020). Often, additional structural
and analytical chemical methods, such as X-ray
diffraction (XRD) and X-ray fluorescence (XRF),
are used to determine the mineralogical and chem-
ical composition of samples.

Although the above-mentioned techniques are
well-known and commonly used for the characteri-
zation of geological samples, there is a need for non-
destructive characterization that provides in 3D the
structural, mineralogical, and chemical composition
of the interior of geological samples (Wang &
Miller, 2020). Accurate 3D mineralogical and geo-
chemical characterization is crucial for improving
the understanding of ore genesis (Godel, 2013), and
it is particularly applicable to petrological and ge-
netic investigations of low-grade fine-grained ore
deposits or nugget-type of mineralization (Kyle &
Ketcham, 2015). These motivate the need for the
development of new and innovative technologies for
adequate ore characterization (Becker et al., 2016;
Gessner et al., 2018) and associated data analysis
(Guntoro et al., 2019a).

X-ray micro-computed tomography (lCT) is a
non-destructive X-ray imaging technique that allows
for the analysis of the interior of geological samples
in 3D. This technique has the ability to eliminate
stereological errors from conventional 2D image
analysis and to leave samples intact for further
sample characterization (Guntoro et al., 2019a). This
offers the possibility to study mineral relationships
in 3D (e.g., Jardine et al., 2018) and to acquire
quantitative estimates of mineral shape, size, and
orientation (e.g., Ketcham & Mote, 2019). The
principle of lCT is based on the calculation of the X-
ray linear attenuation coefficient (llin), which de-
pends on material properties (effective atomic
number, density) and the incident energy of an X-
ray beam. Typical geological sample sizes for lCT
imaging measure between 1 mm and 5 cm (Cnudde
& Boone, 2013), where a trade-off has to be made
between the transmitted X-ray photon flux and
resolution. The application potential of this tech-
nique has been reviewed within geosciences
(Cnudde & Boone, 2013; Kyle & Ketcham, 2015;
Wang & Miller, 2020) and has established its con-
tribution to geological studies. Processed lCT data
provide images of mineral relationships in 3D to-
gether with statistical parameters that are of interest
for studies of ore-forming processes, extractive
metallurgy, and metal production engineering
(Pearce et al., 2018; Wang & Miller, 2020). Because
the main drawback of standard lCT is the absence
of chemical information, it is currently only possible
to segment various compounds based on different X-
ray attenuation and/or shape properties (Guntoro
et al., 2019a).

Despite continuous technological and compu-
tational advances (Wang & Miller, 2020), most
applications in mineral characterization are rather
limited to the 3D segmentation of major phases, i.e.,
pores, low-density phases, and high-density phases
(Guntoro et al., 2019a). Therefore, recent work in
lCT focuses on the development of image post-
processing procedures (Becker et al., 2016; Guntoro
et al., 2019b), whether or not together with com-
plementary microscopic techniques (De Boever
et al., 2015; Laforce et al., 2016; Reyes et al., 2017;
Warlo et al., 2021), to differentiate between complex
intergrown mineral phases. In future, the integration
of machine learning and artificial intelligence is
considered to be crucial for the generation of min-
eralogical information from standard lCT data
(Guntoro et al., 2019a). Various techniques have
been developed to extract mineral features from
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lCT datasets (Jardine et al., 2018). Existing tech-
niques are, however, currently limited to the com-
putational expense of processing large datasets
(Guntoro et al., 2019a) and are just now slowly
starting to emerge (e.g., Strzelecki et al., 2021).

This study aimed to develop a comprehensive
methodology by combining state-of-the-art lCT and
an SEM-based automated mineralogy (AM) system
to characterize the mineralogy of ore samples in 3D.
We present a test study on pegmatite-hosted Sn–
Nb–Ta mineralization in the Mesoproterozoic oro-
genic belts of Central Africa (Dewaele et al., 2011;
Melcher et al., 2015), where we overcame some of
the traditional issues to characterize the internal
geochemical and mineralogical composition in 3D at
the microscopic scale.

MATERIALS AND METHODS

Samples

Samples were selected from the intensively
studied Sn–Nb–Ta mineralization of the Gatumba
area in western Rwanda, Central Africa (Lehmann
et al., 2008; Dewaele et al., 2011; Hulsbosch et al.,
2013; Lehmann et al., 2014; Hulsbosch & Muchez,
2020). This mineralization consists of millimeter-
sized cassiterite and columbite–tantalite minerals
hosted within much less dense gangue minerals
(mainly quartz, feldspars, and muscovite) (Dewaele
et al. 2011). In an individual pegmatite, a miner-
alogical and geochemical zonal development is ob-
served from margin toward the center, with a
hydrothermal overprint completely altering the
original pegmatite composition at some locations
(Dewaele et al., 2011; Hulsbosch & Muchez, 2020).
The exact spatial relationship between the different
ore minerals is difficult to observe with standard
techniques, and thus not known.

In addition to representative polished sections
with higher concentration of ore minerals for re-
flected light microscopy and SEM-based AM anal-
yses, rock samples were prepared specifically for
lCT analysis. Because cylindrical samples have the
most efficient geometry for the cone-beam configu-
ration employed in most modern laboratory lCT
systems (Kyle & Ketcham, 2015), drilled core sam-
ples were made (2 cm in diameter). These drilled
core samples were afterward also prepared to be
suitable for further analyses with optical microscopy
and SEM-based AM (i.e., polishing of top and bot-

tom surfaces). Results are discussed by means of two
representative cylindrical samples A and B acquired
from one of the pegmatite samples from the Ga-
tumba area, of which sample A was used as an
example to discuss the process of 3D mineral phase
segmentation and feature extraction.

Optical and Scanning Electron Microscopy

Reflected light microscopy was carried out at
Ghent University, using a Nikon Eclipse LV100N
POL polarizing petrographic microscope, as a pre-
liminary step to identify Sn–Nb–Ta–(W)-bearing ore
minerals and their interrelationships (e.g., identifi-
cation of possible mineral inclusions). SEM–EDX
was performed at Ghent University using TESCAN
Integrated Mineral Analyzer (TIMA-X) equipped
with a field emission gun and one EDX detector.
TIMA-X is a system optimized to rapidly acquire
low-count spectra (Hrstka et al., 2018) and it com-
bines calibrated back-scattered electron (BSE)
imaging and EDX analysis for mineral classification
training using an AM system. The mineral distribu-
tion maps were based on the comparison of EDX
spectra obtained from each pixel with a classification
scheme, where a set of rules were designated to the
calibrated line intensities of the different elements
(see also Hrstka et al., 2018). The working condi-
tions were: an acceleration voltage of 25 kV, a
working distance of 15.0 mm, and a spatial resolu-
tion between 9 and 18 lm for both BSE images and
EDX spectra. The energy resolution of the EDX
spectra, as measured at Mn Ka, was ± 140 eV. The
acquired mineralogical information served as a
mineral library for the interpretation of the lCT
data.

X-ray Micro-Computed Tomography (lCT)

The lCT analyses were performed at the Ghent
University Centre for X-ray Tomography (www.ugc
t.ugent.be). The High-Energy CT system Optimized
for Research or HECTOR (Masschaele et al., 2013)
was used under the scanning conditions as summa-
rized in Table 1. Reconstructions of the projectional
radiographs, acquired using the traditional cone-
beam lCT setup, were performed with the Octopus
reconstruction software (Vlassenbroeck et al., 2007).
This software tool allows for pre-processing correc-
tions (e.g., flat field correction and ring filter) and
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corrections during the reconstruction (e.g., beam
hardening correction). Image analysis was executed
in the Fiji/ImageJ software (Schindelin et al., 2012)
using a 3D trainable Weka Segmentation plugin
(Arganda-Carreras et al., 2017) for the mineral
phase segmentation and by using executable scripts
to automate certain repetitive steps. The different
steps that were undertaken to investigate the dif-
ferent mineral phases in 3D are discussed below and
summarized in Figure 1.

Information about the mineralogical composi-
tion was obtained during optical microscopy and
TIMA-X analyses of the polished sections and was
supplemented by observations from previous re-
search (Lehmann et al., 2008; Dewaele et al., 2011;
Hulsbosch et al., 2013; Melcher et al., 2015; Hulsbosch
& Muchez, 2020). The mineralogical composition,
material density (q), and X-ray energy determine the
linear attenuation coefficient (llin) and provide in-
sight into the capability of lCT to segment minerals
with similar attenuation (Fig. 2a). However, in labo-
ratory-based lCT, a polychromatic source is used and
the energy dependency of llin needs to be taken into
account. Therefore, the theoretical llin was recalcu-
lated for the given experimental setup (Table 1) using
the in-house developed software Arion (Dhaene
et al., 2015). This value was hereafter referred to as
the reconstructed attenuation coefficient (lrec). The
calculations of lrec took into account the spectral
sensitivity of the detector and the effects (e.g., metal
artifacts and beam hardening) induced by the poly-
chromaticity of the X-ray source. Therefore, proper-
ties like sample size, shape, elemental composition
and density were taken into account in the simulation
tool. For a given setup, lrec serves as a more accurate
depiction of the possible segmentation between the
different mineral phases (e.g., lrec of schorl and apa-
tite was here too similar to be segmented using this
setup; Figure 2b) and the interpretation of the dif-
ferent mineral interrelationships.

Despite measures taken to prevent imaging
artifacts (e.g., Al filter, beam hardening corrections
during the reconstruction), and thus to eliminate lrec

variability, the final lCT image vertically still dis-
played variable grayscale values throughout the sli-
ces for the same mineral phase (see also Fig. 3 in
Guntoro et al., 2019b). A region of interest, includ-
ing more than 80% of the dataset, was selected to
avoid mineral phase segmentation issues.

Because lCT images contain numerous mineral
phases and, thus, numerous gray values (Fig. 3a),
prior noise filtering was not considered, as the vari-
ance was also taken into account during the seg-
mentation step (see below). As a first step of data
preparation, automatic thresholding of the data was
performed with Otsu�s method (Otsu, 1979) to sep-
arate the background from sample data. This was
followed by a four times 1-pixel erosion operation
(binary morphology) to avoid false segmentation at
the sample borders that could not be resolved with
beam hardening corrections (Fig. 3b). Segmentation
was then performed using Weka 3D segmentation
(Arganda-Carreras et al., 2017) within the Fiji
environment, where a set of 50 images was used to
train the following features: edges (canny edge
detection) and texture filters (mean, variance) in a
fast random forest classifier. The training of the
classifier was adopted iteratively by using input from
corresponding mineral distribution maps acquired
with TIMA-X until an accurate segmentation result
was achieved on the subset (Fig. 3c). The trained
classifier was then used to segment automatically
each corresponding dataset (over 1000 images each).
A tiling algorithm, reducing the memory require-
ments (Arganda-Carreras, 2018), was applied to
prevent running into out-of-memory exceptions
when processing large 3D datasets (> 3 GB) on a
regular desktop. Previously, this algorithm has al-
ready been successfully used in, e.g., Callow et al.
(2020). Post-processing steps were undertaken for
each individual segmented phase to avoid partial
volume effects at boundaries between two seg-
mented phases (Fig. 3d). A boundary between a
high-density phase and a low-density phase would be
incorrectly interpreted as an intermediate density
phase and was therefore removed from the data
using binary morphology operations (see detailed
excerpts in Fig. 3e–g).

Feature Extraction

Segmentation of the lCT images resulted in a
dataset of labeled images, where each label repre-
sented the 3D volume of a segmented phase. To

Table 1. Experimental setup of lCT scans

Voltage 120 kV

Power 10 W

Projections 2400

Filter Al 1 mm

Exposure time 1000 ms

Spatial resolution 18 lm
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represent the interrelationships between two differ-
ent segmented phases, the Pearson correlation
coefficient was calculated, thus:

q X;Yð Þ ¼ cov X;Yð Þ
r Xð Þr Yð Þ ð1Þ

This measure is the ratio of the covariance of two
variables to the product of their standard deviations.
For two phases X and Y (Eq. 1), metrics are calcu-
lated using the surface areas of two phases, which are
compared along a defined direction (see below) and
are normalized to the total area of a sample within
each 2D slice (which translates as a comparison of
area percentages). Values of the Pearson correlation
coefficient range between � 1 (negative linear cor-
relation) and 1 (positive linear correlation). A cor-
relation coefficient of 0 implies no linear dependency
between two phases in that direction.

The coefficient of variation (Eq. 2) was then
calculated to represent the general orientation of
each individual segmented phase, thus:

cv ¼
r
l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i xi � lð Þ2p xið Þ
q

l
ð2Þ

This measure is the ratio of the standard devi-
ation (r) to the mean (l) of the previously men-
tioned area percentages calculated along a defined
direction. This measure is dimensionless and is thus
of interest for comparing numerical values of dif-
ferent populations with various averages. The
interpretation of the data was based on the fact that
higher values are obtained along the longitudinal
axis of a phase and lower values are obtained per-
pendicular to this axis (see Fig. 4). Phases that have
no preferential elongation/orientation display simi-
lar (low) values for each measured direction.

As previously mentioned, the above statistical
measures were calculated along a defined direction.
Images were usually stored as a stack of virtual 2D
slices perpendicular to the rotational axis or Z-axis,
but calculations for the 2D slices along the Z-axis
only give 1D information. For a stereographic
depiction of a possible variety in statistical measures
along different predefined directions, and thus in
3D, the images were re-sliced along all possible
directions. Orientations were presented in a spheri-
cal coordinate system using the azimuth on the XY
plane and the inclination from the Z-axis (Fig. 5a).
Using a spacing of 15� along the azimuth on the XY
plane (360�) and the inclination from the Z-axis
(90�) gave 175 predefined directions. A script was
written in Fiji/ImageJ to re-slice automatically the
images over all predefined directions and to calcu-
late along each defined direction the surface areas
for each segmented phase. Data were represented
correspondingly in a polar rose chart using Plotly
Python Open Source Graphing Library (Fig. 5b).

RESULTS

Mineral Distribution Maps

The mineral content of the drilled core samples
(based on mineral distribution maps acquired with
TIMA-X and sorted according to lrec; Fig. 2b)
consisted of kaolinite, beryl, albite, quartz, K-feld-
spar, muscovite, Fe–Li mica, schorl, apatite, zircon,
barite, and columbite–tantalite. The matrix occur-
ring between the larger-sized minerals of these
samples consisted almost entirely of quartz and al-
bite, but often contained traces of K-feldspar
occurring together with beryl. Muscovite was next to

Figure 1. Overview of the different steps that were undertaken for the segmentation of different mineral phases.
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quartz and albite an important constituent and it was
observed to be often overgrown by an albite matrix
(Fig. 6b). Muscovite ranges in size from centimeter-
size to aggregates of submillimeter-sized crystals.
Kaolinite was closely associated with muscovite, but
was only present in minor amounts. Besides mus-
covite (Fig. 7a), another mica was present to a much
lesser extent and has been identified as Fe–Li mica
(Fig. 7b). Tourmaline occurs as grouped acicular
crystals. EDX analyses of tourmaline showed sig-
nificant amounts of Fe, Al, and to a lesser extent Na
and Mg. Therefore, tourmaline was identified as a

Fe-rich member of the schorl–dravite series (cf.,
Hulsbosch et al., 2013). Apatite mostly occurred as
dispersed submillimeter-sized minerals within the
matrix. One of the investigated polished sections of
sample A rather displayed a grouped occurrence of
apatite grains (Fig. 6b). Barite was observed as a
small veinlet (400 lm) along the cleavage planes of
muscovite and also as an inclusion within tourma-
line. Small columbite–tantalite inclusions (18 lm)
were observed in both the albite–quartz matrix and
in association with muscovite grains. Cassiterite was
not observed during TIMA-X mapping.

Figure 2. Calculated attenuation coefficients of all minerals possibly present. (a) Linear attenuation coefficients (llin) of the

studied mineral assemblages as a function of X-ray energy. (b) Reconstructed attenuation coefficients (lrec) as calculated for

the given experimental setup and sample size. The FFAST database maintained by the National Institute of Standards and

Technology (NIST) (Chantler et al., 2005), and available online at physics.nist.gov/PhysRefData/FFast/html/form.html, allows

to calculate llin as a function of energy. Density values for the different mineral phases are derived from the calculated densities

in the handbook of mineralogy (Anthony et al., 2001) and is available online at handbookofmineralogy.org.
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X-ray Micro-Computed Tomography (lCT)

Comparison of Mineral Distribution Maps with lCT
Data

The lCT images of the drilled core samples
(Fig. 6d) were interpreted by comparison with the
equivalent mineral distribution maps acquired with

TIMA-X (Fig. 6b) and by using the calculated lrec

values of the occurring minerals for the given
experimental setup (Fig. 6c). The matrix of the
samples consisted almost entirely of two phases that
were close to each other in grayscale values, but
were still visually distinguishable based on slight
differences in grayscale values (Fig. 8a). These
mineral phases were identified as quartz and albite

Figure 3. Procedure of post-processing the segmented lCT data. (a) Original lCT slice where lighter gray values correspond

with higher lrec values. (b) Data preparation by automatic thresholding and binary morphological operations. (c) Mineral

phase segmentation using Weka 3D segmentation. (d) Segmented dataset after post-processing. (e)–(g) Detailed excerpts

(see c) of how intermediate mineral phases are removed from the segmented dataset. (f) Removed datapoints of where an

intermediate phase coincides with the area overlapped by both the low-density phase and high-density phase after a single

dilation (morphological operation). (g) Final segmented image where misclassified intermediate phases (see, e.g., removed

rim of intermediate phase around high-density phase) are excluded for further feature extraction.
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and they occurred as interconnected phases
throughout the drilled core samples. The next main
mineral phase identified in the lCT data was mus-
covite. It occurred as large centimeter-sized scaly

mineral fragments, but also as much smaller frag-
ments (often as stellate aggregates) disseminated in
the matrix. It was often observed for the large scaly
muscovite fragments that they were overgrown by a
small border of albite matrix, regardless of being
located within a quartz-rich matrix. Some of the
larger muscovite fragments were altered and only
displayed relicts of the original shape. K-feldspar
was, similar to observations with TIMA-X, found to
be associated with beryl within the samples
(Fig. 8a). Euhedral crystals of K-feldspar and beryl
were observed only when occurring with(in) mus-
covite and/or neighbored by schorl. Apatite oc-
curred mostly as a minor phase, but was widely
distributed throughout the samples. Together with
TIMA-X observations (see also Fig. 6), it was ob-
served that apatite may occur as well as grouped
fragments that were strongly intergrown with stel-
late aggregates of muscovite. Minor occurrences of
dense minerals, which appeared to be mainly zircon
grains, when compared with corresponding mineral
distribution maps, were strongly correlated with
these grouped occurrence of apatite grains. The
prismatic/acicular crystal habit of schorl (Fig. 8a)
allowed to differentiate these mineral fragments
from apatite. Schorl was unaffected by the presence
of other mineral phases and maintained its mineral
shape. Clusters of schorl fragments are unobstructed

Figure 4. Virtual sample (X:Y:Z = 9 9 9 9 9) containing

a segmented phase A (9 9 2 9 2). The coefficient of

variation is 0 for phase A when measured along the X-

axis (as the values of A remain constant, i.e.,

Y:Z = 2 9 2), while the coefficient of variation is 1.87

for phase A when measured along the Y- or Z-axis (i.e.,

the measured values are here either 0 or 9 9 2).

Figure 5. Outline for visualization of oriented statistical measures. (a) Orientation of re-sliced data by using two angular

measurements. (b) Data plot of 3D statistical measures (in the image of stereonets for the representation of 3D structural

geological analysis).

468 Buyse, Dewaele, Boone and Cnudde



by the presence of muscovite fragments nor of the
main matrix constituents. One remarkable observa-
tion was the presence of a two centimeter long
schorl fragment crosscutting sample B (Fig. 8a and
b). There were several mineral phases associated
with this schorl crystal, which were, from low density
to high density, albite–muscovite–schorl or at least
minerals with a similar gray value. Because this was
an important observation, sample B was re-polished
to acquire an additional mineral distribution map for
this slice to confirm the lCT observations. It is
important to note that, next to albite, quartz was

also identified as a low-density phase within this
schorl crystal. The observed occurrence of a small
barite vein as a possible mineral inclusion within a
muscovite grain during TIMA-X analysis was con-
firmed to be a real mineral inclusion during lCT
analyses.

Segmentation of Mineral Phases

Based on the observations acquired for the two
samples and the predetermined lrec values (Fig. 2b),

Figure 6. Mineral distribution map of sample A (acquired with TIMA-X) with the corresponding lCT slice. (a) BSE image.

(b) Mineral distribution map. (c) Calculated lrec values for the identified (color coded) minerals in the mineral distribution

map. (d) Corresponding lCT slice.
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different phases were selected for segmentation
using the proposed methodology. An example of a
possible output for sample A is presented below.

The group of identified mineral phases was re-
duced to the following five segmented phases (from
low to high lrec): albite, quartz, muscovite, schorl/
apatite and dense mineral phases (Fig. 9), with vol%
of 43.51, 43.43, 11.36, 1.60 and 0.04, respectively,
with respect to the sample data after a first step of
data preparation. The remaining 0.06 vol% was re-
moved from the dataset through post-processing to
remove false mineral phase identification at the
boundaries between two segmented phases. The
difference in grayscale value and lrec of schorl and
apatite were limited. Apatite was expected to be
only slightly higher in grayscale value (see Fig. 2b)
and were therefore grouped because of their simi-
larity. The dense mineral phase consisted of all
identified mineral phases for which lrec was higher
than the other segmented phases (i.e., denser than
schorl/apatite). These phases included ore minerals
and high-density accessory minerals (in particular
zircon) that were observed during mineral mapping.
It must be noted that this sample was also re-pol-
ished to chemically investigate the largest grain that
was classified as a dense mineral phase using TIMA-

X (Fig. 9). It, however, displayed relatively higher
grayscale values, and thus higher lrec value, than
zircon. This grain has been identified as a Nb–Ta–U
oxide mineral and indeed not as zircon. This Nb–Ta–
U oxide, or previously described in Lehmann et al.
(2008) as U-rich microlite, is one of the more rare
Nb–Ta minerals present in the mineralized peg-
matites, compared to the more common columbite–
tantalite solid-solution series. However, this mineral
could be locally concentrated in specific zones
(Lehmann et al., 2008), and has been described to be
characteristic for the Nb–Ta mineralization of the
Gatumba area (Melcher et al., 2015).

Interrelationships and Orientation of Mineral Phases

Sample A presented in the previous section was
analyzed further using a correlation matrix (Fig. 10)
to investigate possible spatial correlations. For the
five different segmented phases, 10 unique interre-
lationships could be calculated. The coefficient of
variation (Fig. 11) was calculated for the five dif-
ferent segmented phases, which may give insights
into the possible preferential orientation of minerals
to deduce possible oriented growth or the so-called

Figure 7. Comparison of measured and simulated EDX spectra of (a) muscovite and (b) minerals that classify as Fe–Li mica

(zinnwaldite) following the AM system.
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unidirectional solidification texture (UST) (Shannon
et al., 1982). One of the main observations from
Figure 10 was the omnidirectional strong negative
correlation between albite and quartz, which was to
a lesser extent also observable between albite and
muscovite. However, an omnidirectional positive
correlation was observed between schorl/apatite and
the dense mineral phase, which was here mostly
zircon. In data plots of the correlation matrix where
muscovite was considered (Fig. 10), the correlation
was influenced strongly by the coefficient of varia-
tion of muscovite (Fig. 11). Mostly low cv values at
an inclination of 90� were reflected particularly in
the correlation between muscovite and schorl/ap-
atite and between muscovite and the dense mineral
phase. The same was observed for cv values of the
dense mineral phase, where the deviating value at an
azimuth of 90� and inclination of 45� was well re-
flected in the correlation matrix involving the dense
mineral phase. A relatively high cv value at this

orientation can be explained by the large Nb–Ta–U
oxide grain (see Fig. 11) included within the group
of otherwise much smaller dense mineral grains. The
influence of cv was less pronounced for albite and
quartz because both phases only displayed low cv
values within small ranges (0.154–0.45 and 0.127–
0.372, respectively).

DISCUSSION

The combination of different imaging tech-
niques, both 2D and 3D, has a strong application
potential for the analysis of mineralogy and geo-
chemistry of rock samples down to the microscopic
scale. Extending this into 3D allows for the study of
mineral relationships and the quantification of
morphological characteristics of minerals without
stereological errors from 2D estimations. Recent
existing practices in analyzing ore samples (e.g.,

Figure 8. (a) A lCT slice of sample B with some of the most important identified mineral phases indicated. Note that the

grayscale values are adjusted to the range of values present within this slice (see Fig. 6c for relative position of lrec for each

indicated mineral). (b) 3D visualization of the elongated assemblage of albite, quartz, muscovite, and schorl in (a) and where

the different phases are indicated according to their colors used in Figure 6 (grid size = 5 mm).
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Guntoro et al., 2019b; Warlo et al., 2021) demon-
strate both the shortcomings as well as the benefits
from combining SEM–EDX with lCT.

Polished sections were analyzed here with
SEM–EDX to classify minerals with an AM system
and the obtained mineral distribution maps were
used to interpret their distribution in 3D. Sample
preparation was especially necessary to perform
SEM-based AM analyses, as this technique requires
a well-polished surface with a sputtered carbon
coating to produce high quality images (Reed, 2005).
Besides, commercial SEM instrumentation often
comes with standard sample holders, which limits
the possible 3D volumes to be analyzed with both
SEM and lCT. For our system, the diameter per
sample was standard one inch and the sample was
also limited in height to fit in the vacuum chamber.
In addition, when scanning polished samples with
lCT, image artifacts occur at the surface of samples
due to the so-called cone-beam effect (Cnudde &
Boone, 2013; Guntoro et al., 2019b). This effect
eventually alters the grayscale values and thus also
limits the possible segmentation. To anticipate
these, core samples with the same diameter, but
extended in length, were scanned prior to any sam-
ple preparation. This allowed us to select a region of

interest from the lCT data, in accordance with the
polished sample, without having these image arti-
facts at the polished surfaces. By doing this, the
information from an equivalent lCT slice of the
polished surface can then be used to train the 3D
Weka segmentation. Alternatively, optimized image
acquisition (De Witte, 2010) and post-processing
steps (Kazhdan et al., 2015) can be undertaken to
remove some of these image artifacts at the surface
of samples.

Despite the above-mentioned limitations of
combining lCT with SEM–EDX, a SEM–EDX
based AM system proved to be an important and
needed part of the methodology to provide back-
ground information for visual interpretation and/or
segmentation of lCT data. SEM-based AM systems
are commercially more and more well-established
(Graham, 2017) and they are increasingly applied in
geological studies (e.g., Warlo et al., 2019; Keulen
et al., 2020). For minerals with similar chemical
compositions, but with different crystalline struc-
tures (e.g., hematite and magnetite) or minerals that
are not straightforward to classify using existing
SEM-based AM systems (e.g., mineral polymorphs),
one can consider XRD. XRD is a routinely per-
formed, but destructive, laboratory technique that

Figure 9. Volume rendering of the different segmented phases within sample A (grid size = 5 mm).
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has already proven to be an essential tool for phase
identification within geosciences (Artioli, 2018).
Advanced developments in X-ray microscopy en-
abled the establishment of laboratory-based
diffraction contrast tomography (Holzner et al.,
2016), which opens opportunities for further re-
search in 3D materials science. An example, where
this could have been of benefit here, is the identifi-
cation of a mineral that strongly resembled biotite in
EDX spectrum (Fig. 7b), but which showed to have
a density that was too low and, therefore, was clas-
sified as a Fe–Li mica. Although the Li-content of
this mineral was not measurable with the used SEM
equipment, as the elemental range of EDX is limited
from beryllium to uranium, this chemical informa-
tion can be inferred from the combination of SEM-
based AM, lCT analyses and previous observations.
Solely based on EDX spectra (Fig. 7b), this mineral
can be interpreted as the iron end-member (annite)
of the biotite mica group. However, the relative

position of lrec in the lCT images shows that its
value is too low to be classified as biotite. The cal-
culated lrec was lower than those of apatite and
schorl, which suggests the presence of a low atomic
number element that significantly lowers its attenu-
ation coefficient. Lithium is such an element that is
known to be incorporated into mica minerals of
corresponding pegmatites (Hulsbosch et al., 2013).
Lepidolite and zinnwaldite, respectively, containing
3.70–5.42 wt% and 2.19–3.72 wt% of Li2O (Anthony
et al., 2001), are the two most common Li-micas in
cassiterite and topaz-bearing pegmatites (Dill, 2010)
and were previously also observed in this mineral-
ization (Hulsbosch et al., 2013). The relative position
of lrec matched well with the simulated lrec value of
zinnwaldite (Fig. 2b) and excluded lepidolite (lrec of
lepidolite is too low). In this case, even powder
XRD analysis would not give a decisive answer due
to its resemblance with other mica minerals, espe-
cially when the co-existence of other micas is

Figure 10. Correlation matrix of the different segmented phases within sample A (see Fig. 9).
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inevitable in the sample preparation. Only chemical
data from, e.g., laser ablation inductively coupled
plasma mass spectrometry can give a decisive an-
swer, but techniques like this are often not available
or are too costly for routinely analyses.

By using XRD analysis, it would have been
possible to narrow the possibilities down to a more
specific mineral or mineral group. Although this may
be of importance for the mineralogical interpreta-
tion of the data, this will hardly influence the seg-
mentation of the lCT data. For the example of
hematite (Fe2O3; q = 5.23 g/cm3) and magnetite
(Fe2+Fe2O4; q = 5.20 g/cm3), lrec will be here nearly
the same (2.81 and 2.83, respectively).

The main advantage of mineral distribution
maps acquired with TIMA-X is the possibility to
correlate this 2D mineralogical information directly
with a 3D lCT dataset and to re-polish the sample to
a specific section of interest for verification. As an
example, the mineral assemblage in Figure 8 was

checked to see if the assumptions that were made
from lCT images were correct. It is the interpreta-
tion of these sought for 3D mineral assemblages that
will help to further refine the paragenesis of ore
deposits. On top of that, similar to a mineral stan-
dards library that is built within AM systems, a list of
identified minerals can be deduced to build a library
of linear attenuation coefficients llin (see Fig. 2a).
Once all possible minerals encountered for the ore
deposit under consideration are known, a library of
lrec values can be calculated for a given lCT setup.
It is just so that calculations of the linear attenuation
coefficient llin are not sufficient to predict the
behavior, or better the produced grayscale values, of
the different minerals in the lCT images. As visu-
alized in Figure 2a, this value depends largely on the
energy of radiation. Because the source of radiation
is almost always polychromatic in laboratory-based
systems (Cnudde & Boone, 2013), combined with an
energy-dependent detector sensitivity, a measure

Figure 11. Coefficients of variation for segmented phases of sample A (see Fig. 9). Note that each segmented mineral phase

displays a different range of values.
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needs to be calculated for a certain setup. A possi-
bility is to calculate this based on the effective en-
ergy (Bam et al., 2020), which is a weighted average
of an actual polychromatic beam for a specific volt-
age and setup (see Table 1). This was successfully
applied in recent studies (Gibson et al., 2021; Warlo
et al., 2021). Although this assumption may be cor-
rect when considering the X-ray beam before
entering the sample, this X-ray beam is still a poly-
chromatic beam that will be altered in terms of
effective energy depending on material composition
and sample thickness. As also issued in Bam et al.
2020, this will affect the expected discrimination
between the minerals (see Fig. 12). To counter this
issue, the effect of material properties and sample
thickness and the full polychromatic beam was here
taken into account to calculate lrec for each mineral
(Fig. 2b). The lrec was calculated here on the
assumption that a monomineralic sample with a
thickness of 2 cm (according to the used sample
diameter in this study) was scanned. Note that al-
though these values proved to serve as perfect
guides for phase segmentation, images are still prone
to several systematic errors (e.g., noise, discretiza-
tion effects, imaging artifacts; Cnudde & Boone,
2013). Machine learning tools like Weka 3D seg-
mentation (Arganda-Carreras et al., 2017) are cap-
able of dealing with some of these errors to improve
the accuracy of the segmented phases. By training a
range of image features (e.g., edge detectors and

texture filters) it becomes possible to distinguish
different phases from each other that may contain
overlapping grayscale values (Fig. 13). Extending
mineral phase segmentation to more advanced ma-
chine learning techniques could provide even better
results (e.g., Furat et al., 2019; Evsevleev et al.,
2020), but would require a more elaborate period of
segmentation training.

The resulting segmented data can be quantified
in 3D through a variation of data analysis methods
(Guntoro et al., 2019a) to open up a new depth of
information in describing textures of minerals. This
allows for the 3D interpretation of both the indi-
vidual phases and of the interrelationships between
the different phases. In terms of ore geology, tex-
tural elements like size, shape, and orientation of
mineral grains are referred to as structural textures,
while the spatial relation between mineral phases is
referred to as stationary texture (Lobos et al., 2016).
The presented methodology covers both the quan-
titative extraction of structural textures (i.e., coeffi-
cient of variation as a measure of orientation;
Fig. 11) and stationary textures (i.e., correlation
matrix; Fig. 10) with low computational expense.
The employed script only required to open the
segmented dataset four times at the same time:
(± 7 GB). Because this feature extraction does not
take into account individual grains/minerals for its
calculations, this could be applied immediately to

Figure 12. Extreme example of the influence of material

composition and sample thickness on the relative position

of lrec for three minerals that were encountered during

SEM–EDX analyses.

Figure 13. Distributions of grayscale values for each

segmented phase in sample A. The eroded data points

coincide with local maxima at the intersection between two

segmented phases.
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single/grouped grayscale values instead of more
elaborately trained segmented datasets. The
extraction of these features in such a manner opens
possibilities to quantify datasets of whole core sec-
tions and/or of selected segments within these cores
(e.g., vein orientation and correlation of mineral
phases with ore minerals). As an example, one Nb–
Ta–U oxide and multiple zircon grains were found
to be associated with a stellate aggregate of mus-
covite that was strongly intergrown with a grouped
occurrence of apatite (see Fig. 6b). It is this spatial
association that caused the positive correlation be-
tween schorl/apatite and the dense mineral phase
(Fig. 10).

CONCLUSIONS

In this work, we applied a comprehensive
methodology for characterization of the mineralogy
of a Sn–Nb–Ta mineralization in 3D. First, a mineral
library of all minerals present was derived from
SEM-based AM analyses for the calculation of llin.
The deduced lrec served as a most correct guide to
differentiate between different minerals for a given
experimental lCT setup. For example, this allowed
us to differentiate biotite from a Fe–Li mica due to
the attribution of the low atomic element lithium.
The trainable Weka 3D segmentation within the
open-software Fiji environment allowed for data
preparation and the differentiation between five
separate phases (albite, quartz, muscovite, schorl/
apatite and dense mineral phase). Quantitative
information on the orientation of individual mineral
phases and their spatial correlation in 3D was pro-
vided by the calculation of statistical descriptors at a
low computational expense. Combining lCT and an
SEM-based AM system within a comprehensive
methodology can aid in the mineralogical investi-
gation of an ore deposit, both in aspects of visual-
ization and quantification at the microscopic scale.
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Hrstka, T., Gottlieb, P., Skála, R., Breiter, K., & Motl, D. (2018).
Automated mineralogy and petrology—Applications of
TESCAN Integrated Mineral Analyzer (TIMA). Journal of
Geosciences, 63, 47–63.

Hulsbosch, N., Hertogen, J., Dewaele, S., Andre, L., & Muchez, P.
(2013). Petrographic and mineralogical characterisation of
fractionated pegmatites culminating in the Nb–Ta–Sn peg-

matites of the Gatumba area (western Rwanda). Geologica
Belgica, 16(1–2), 105–117.

Hulsbosch, N., & Muchez, P. (2020). Tracing fluid saturation
during pegmatite differentiation by studying the fluid inclu-
sion evolution and multiphase cassiterite mineralization of
the Gatumba pegmatite dyke system (NW Rwanda). Lithos,
354–355, 105285.

Jardine, M. A., Miller, J. A., & Becker, M. (2018). Coupled X-ray
computed tomography and grey level co-occurrence matrices
as a method for quantification of mineralogy and texture in
3D. Computers and Geosciences, 111, 105–117.

Kazhdan, M., Lillaney, K., Roncal, W., Bock, D., Vogelstein, J., &
Burns, R. (2015). Gradient-domain fusion for color correc-
tion in large EM image stacks.

Ketcham, R. A., & Mote, A. S. (2019). Accurate measurement of
small features in X-ray CT data volumes, demonstrated using
gold grains. Journal of Geophysical Research: Solid Earth,
124, 3508–3529.

Keulen, N., Malkki, S. N., & Graham, S. (2020). Automated
quantitative mineralogy applied to metamorphic rocks.
Minerals, 10, 47.

Kyle, J. R., & Ketcham, R. A. (2015). Application of high reso-
lution X-ray computed tomography to mineral deposit origin,
evaluation, and processing. Ore Geology Reviews, 65(4), 821–
839.

Laforce, B., Vermeulen, B., Garrevoet, J., Vekemans, B., Van
Hoorebeke, L., Janssen, C., & Vincze, L. (2016). Laboratory
scale X-ray fluorescence tomography: Instrument character-
ization and application in earth and environmental science.
Analytical Chemistry, 88(6), 3386–3391.

Lehmann, B., Halder, S., Ruzindana Munana, J., Ngizimana, J., &
Biryabarema, M. (2014). The geochemical signature of rare-
metal pegmatites in Central Africa: Magmatic rocks in the
Gatumba tin-tantalum mining district, Rwanda. Journal of
Geochemical Exploration, 144, 528–538.

Lehmann, B., Melcher, F., Sitnikova, M. A., & Ruzindana, M. J.
(2008). The Gatumba rare-metal pegmatites: Chemical sig-
nature and environmental impact. Études Rwandaises, 16, 25–
40.

Lobos, R., Silva, J. F., Ortiz, J. M., Dı́az, G., & Egaña, A. (2016).
Analysis and classification of natural rock textures based on
new transform-based features. Mathematical Geosciences,
48(7), 835–870.

Masschaele, B., Dierick, M., Van Loo, D., Boone, M. N., Brabant,
L., Pauwels, E., Cnudde, V., & Van Hoorebeke, L. (2013).
HECTOR: A 240 kV micro-CT setup optimized for research.
Journal of Physics: Conference Series, 463, 012012.
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