Pliocene hominins from East Turkana were associated with mesic environments in a semiarid basin

Amelia Villaseñor a, *, Kevin T. Uno b, Rahab N. Kinyanjui c, d, e, Anna K. Behrensmeyer f, René Bobe g, h, Eldert L. Advokaati, Marion Bamford i, Susana C. Carvalho g, h, k, Ashley S. Hammond l, m, Dan V. Palcu n, o, Mark J. Sier p, q, r, Carol V. Ward t, David R. Braun u

a Department of Anthropology, The University of Arkansas, 330 Old Main, Fayetteville, AR, 72701, USA
b Lamont-Doherty Earth Observatory of Columbia University, Division of Biology and Paleo Environment, Palisades, NY, 10964, USA
c Department of Earth Sciences, National Museums of Kenya, Nairobi, 00658-00100, Kenya
d Department of Archaeology, Max Planck Institute of Geochondrology, 07745, Jena, Germany
e Human Origins Program, National Museum of Natural History, Smithsonian Institution, MRC 121, Washington, DC, 20013, USA
f Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, UK
g Centro Nacional de Investigación y Desarrollo Científico e Industrial 'Fort Hoofddijk', Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, the Netherlands
h Laboratory for the Study of the Past, Faculdade de Ciências de Lisboa, Universidade de Lisboa, 1000-149 Lisbon, Portugal
i Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, P Bag 3, WITS, 2050, South Africa
j Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICAEHB), Universidade do Algarve, 8000-139 Faro, Portugal
k Department of Earth Sciences, National Museums of Kenya, Nairobi, 40658-00100, Kenya
l Université Libre de Bruxelles, Vrije Universiteit Brussel, SIBRO, Brussels, Belgium
m New York Consortium in Evolutionary Primatology at AMNH, New York, NY, 10024, USA
n Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, Washington, DC, 20013, USA
o Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
p Oceanographic Institute of the University of Sáo Paulo, Brazil
q Paleomagnetic Laboratory Fort Hoofddijk, Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, the Netherlands
r Centro Nacional de Investigación Sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain
t Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, UK
u Center for the Advanced Study of Human Paleobiology, Anthropology Department, George Washington University, Washington, DC, USA

A R T I C L E I N F O

Article history:
Received 3 June 2022
Accepted 19 April 2023

Keywords:
Middle Pliocene hominin paleoecology
Stable isotope ecology
Australopithecus afarensis
Kenyanthropus platyops
Koobi Fora

A B S T R A C T

During the middle Pliocene (~3.8–3.2 Ma), both Australopithecus afarensis and Kenyanthropus platyops are known from the Turkana Basin, but between 3.60 and 3.44 Ma, most hominin fossils are found on the west side of Lake Turkana. Here, we describe a new hominin locality (ET03-166/168, Area 129) from the east side of the lake, in the Lokochot environs, we combine information from sedimentology, the relative abundance of associated mammalian fauna, plant macrofossils, and stable isotopes from plant wax biomarkers, pedogenic carbonates, and fossil tooth enamel. The combined evidence provides a detailed view of the local paleoenvironment occupied by these Pliocene hominins, where a biodiverse community of primates, including hominins, and other mammals inhabited humid, grassy woodlands in a fluvial floodplain setting. Between ~3.596 and 3.44 Ma, increases in woody vegetation were, at times, associated with increases in arid-adapted grasses. This suggests that Pliocene vegetation included woody species that were resilient to periods of prolonged aridity, resembling vegetation structure in the Turkana Basin today, where arid-adapted woody plants are a significant component of the ecosystem. Pedogenic carbonates indicate more woody vegetation than other vegetation proxies, possibly due to differences in the spatial scale and ecological biases in preservation that should be accounted for in future studies. These new hominin fossils and associated multiproxy paleoenvironmental indicators from a single locale through time suggest that early hominin species occupied a wide range of habitats, possibly including wetlands within semiarid landscapes. Local-scale paleoecological evidence from East Turkana supports regional evidence that middle Pliocene eastern Africa may have experienced large-scale, climate-driven near-arid periods of aridity. This information extends our understanding of hominin environments beyond the limits of simple wooded, grassy, or mosaic environmental descriptions.

* Corresponding author.

E-mail address: avillase@uark.edu (A. Villaseñor).

https://doi.org/10.1016/j.jhevol.2023.103385
© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Middle Pliocene hominins (3.8–3.2 Ma) were taxonomically diverse and geographically widespread within Africa (e.g., Behrensmeyer and Reid, 2013; Haile-Selassie et al., 2015; Spoor et al., 2016). Despite the increase in our knowledge of Pliocene hominin diversity, the environmental constraints associated with the ranges of these hominins are best known from only a handful of localities. Abundant fossils and detailed paleoecological work from sites such as Hadar, Ethiopia, West Turkana, Kenya, and Laetoli, Tanzania, provide the primary basis of our ecological and evolutionary knowledge of Pliocene hominin taxa (e.g., Kimbel et al., 1994; Leakey et al., 2001; Boe et al., 2002; Drapeau et al., 2005; Campisano and Feibel, 2008; Reed, 2008; Kimbel and Delezene, 2009; Harrison, 2011a,b; Ward et al., 2020). Both *Kenyanthropus platyops* and *Australopithecus afarensis* are argued to have been present in middle Pliocene Kenya and had similar adaptive strategies, including potential tool use and the incorporation of C₄ resources into their diets (Kimbel, 1988; Leakey et al., 2001; Ungar et al., 2010; Cerling et al., 2013; Delezene et al., 2013; Harmand et al., 2015; Mbuu et al., 2016; Wynn et al., 2020).

Regional paleoecological analyses of the middle Pliocene Horn of Africa revealed periods of prolonged aridity resulting in an abundance of arid-adapted vegetation such as Amaranthaceae and Chloridoideae (Bonnefille, 2010; Liddle et al., 2016). However, the rift valley is tectonically active, creating topographical complexity that contributes to a variety of microclimates. Thus, while the region became drier, some areas likely remained relatively mesic. As documented in modern rift valley ecosystems (e.g., Lake Manyara), vegetation on either side of a lake can be drastically different due to the presence of freshwater springs and differences in topography (Barboni et al., 2019). These differences are particularly stark in semiarid environments prevalent throughout the rift today and in the past (Boe, 2006). Thus, detailed, local-scale paleoenvironmental reconstructions are needed to develop a nuanced understanding of the hominin niche.

Fossils are not equally represented across time and space due to taphonomic factors, such as burial environments and sedimentation rates, which limit the reconstruction of hominin ecology. Pliocene fossils are more abundant in the Awash Valley of the Afar Basin in Ethiopia than they are in the Turkana Basin in Kenya (Villaseñor et al., 2020). This has been attributed to lower depositional rates in the Turkana Basin, hence lower probability of burial and preservation of hominin remains (Campisano and Feibel, 2007). Within the Turkana Basin, fewer middle Pliocene hominin fossils are documented from East Turkana than from West Turkana (Villaseñor et al., 2020). Until now, very few hominin fossils were known from East Turkana’s Lokochot member (3.60–3.44 Ma) (Leakey, 1976), though an extensive collection of hominins derives from contemporaneous sediments at Lomekwi on the west side of Lake Turkana (Leakey et al., 2001; Skinner et al., 2020). Additional paleontological records of fossils and multiproxy comparisons from the lesser-known regions, such as East Turkana, could provide key insights into the environmental tolerance of middle Pliocene hominin species and additional information about their ecological niches.

Here, we present a multiproxy analysis of the paleoenvironment of the Lokochot Member of the Koobi Fora Formation (Fig. 1), where the recovery of new hominin specimens can be placed within a discrete geochronological and paleoecological context. The hominin specimens are from a new site in Area 129, ET03-166/168, discovered during a systematic stratigraphic survey led by authors A.K.B. and R.B. in 2003. The first hominin fossil at ET03-166/168 was found by Robert Moru. Tom Mukhuya, Catherine Haradon, and James Murage also participated in the systematic survey in 2003 and recovered mammal fossils associated with the first hominin. Continued paleontological work at the site and in the region has recovered additional hominin and mammal fossils. Both the hominin and associated mammal fossils from ET03-166/168 are eroding out of a floodplain paleosol at the base of a sedimentary sequence that includes fluvial sands, silts, and clays (NL129-17; Fig. 2). Contemporaneous mammalian community ecology, phytoliths, and stable isotope data from pedogenic carbonates, plant wax biomarkers, and large mammal enamel from this sequence represent an opportunity to explore detailed local- and regional-scale ecological records at a single paleontological locality. We also discuss the relationships and biases of the multiproxy evidence. Taken together, these data provide the basis for a broader understanding of the middle Pliocene hominin niche.

1.1. Multiproxy paleoenvironmental analysis

Multiproxy paleoenvironmental comparisons are complex, in part because each proxy represents different spatial and temporal scales (Davis and Pineda-Munoz, 2016; Du et al., 2019). When considered together, however, ecological reconstructions based on multiple proxies reveal new insights into the hominin environmental niche. For example, multiproxy comparisons can link orbitally driven climate shifts to regional changes in plant communities and innovations in human behavior (e.g., Potts et al., 2018; Lupien et al., 2021). Additionally, paleoenvironmental analyses suggest that middle Pliocene eastern African environments are heterogeneous at the landscape scale (e.g., Reed, 2008; Curran and Haile-Selassie, 2016; Su and Haile-Selassie, 2022). Here, we analyze a variety of paleoenvironmental indicators (e.g., stable isotopes from pedogenic carbonates, enamel, and plant wax biomarkers, along with phytoliths and faunal abundance data) from ET03-166/168 and the surrounding sediments, which are spatially and temporally well constrained by radiometric and paleomagnetic dating. We examine both landscape and local-level interpretations of the environment and place these interpretations within a regional context to gain insight into the ancient biomes affecting hominin evolution. Multiproxy paleontological comparisons provide robust paleoenvironmental interpretations for newly described hominin fossils as well as important examples of limitations when proxies are used in isolation.

1.2. Geochronology and depositional environments of Area 129

The Turkana Basin is a fossiliferous, tectonically active region within the East African Rift Valley System (EARS). Fossils and paleobotanical proxies used in this study derive from Koobi Fora Formation sediments that were deposited on the eastern flank of a large half-graben system within the Turkana Basin (Feibel, 2011; Figs. 1 and 2). The members of the Koobi Fora Formation are designated by underlying tuffs that provide their names (Brown and Feibel, 1986). The hominins and paleoecological information described here derive from the Lokochot Member (Fig. 2). East Turkana is further divided into multiple collection areas that span the eastern portion of modern Lake Turkana (Brown and Feibel, 1991). The new fossil data in this study derive from one of two main areas that comprise the majority of Lokochot member outcrops—Area 129. Although the Lokochot Tuff (3.60 ± 0.05) does not outcrop in Area 129, the stratigraphic sections in this area are capped by the overlying Tulu Bor Tuff, which is dated to 3.44 ± 0.041 Ma (Brown, 1982; Cerling and Brown, 1982; Brown and Mcdougall, 2011; WoldeGabriel et al., 2013).

East Turkana’s geological history is characterized primarily by deltaic environments and river systems that constrained the
dominant plant and mammal communities (Harris et al., 1988; Brown and Feibel, 1991; Levin et al., 2011; Villaseñor et al., 2020).

The regional vegetation was also affected by shifting climatic and tectonic activity that drove lacustrine or fluviatile phases within the Turkana Basin (Bruhn et al., 2011; Levin et al., 2011). The Area 129 ET03-166/168 hominin fossils were recovered from one of the few areas where the Lokochot Member deviates from lacustrine lithofacies that dominate much of this member. Sediments include well-developed paleosols, fine silts and sands with planar and/or cross lamination, and laterally discontinuous channel forms that

Figure 1. A) Map of the Lake Turkana region with an outline of Area 129 in brown and B) enlarged map of Area 129 with the boundaries outlined in red. Sediments from the Lokochot member are highlighted in green, and the hominin-bearing sediments are outlined in a blue box. C) The primary fossil-bearing area is enlarged. The contour lines represent different elevations at meters above sea level (masl), while the colored circles indicate where different taxa were recovered. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
eroded into the underlying mudstones. In the uppermost portion of the section (Fig. 2), a well-developed and laterally extensive paleosol is capped by a thick (>1.5 m) erosion-resistant outcrop of the Tulu Bor Tuff (3.44 Ma), which serves as a marker horizon. A total of seven different pedogenically altered units occur 25 m below this tuff. These paleosols extend to the north and south of the ET03-166/168 locality and were the source for the majority of the pedogenic carbonate and other paleobotanical proxy samples analyzed in this study.

Although the minimum age of the NL129-17 section (Fig. 2) at ET03-166/168 is clearly provided by the Tulu Bor tuff, the maximum age is not well constrained. To provide a more detailed geochronological context, we conducted a paleomagnetic analysis of sediment samples from throughout the geological sequence that begins at the erosional base of the Il Nitirwa River and extends to the top of the Tulu Bor Tuff (Fig. 3). Given the well-known age of this tuff, we expect most of the sediments to fall within the Gauss chron2An (C2An; 2.61–3.596 Ma); specifically, between the Mammoth subchron 2An.2r (3.207–3.33 Ma) and the Gauss to the Gilbert Chron (3.596 Ma; Raffi et al., 2020). The transition from the Gauss to the Gilbert Chron (3.596 Ma) has been documented in the Koobi Fora Formation previously (Hillhouse et al., 1977). Locating this transition within the NL129-17 section would represent a maximum age for these sediments.

1.3. Regional and local faunal diversity and abundance of the Pliocene Turkana Basin

Interbasin and intrabasin studies of fossil assemblages show that the eastern African rift valley supported a diversity of Pliocene mammal communities and habitats (Bobe et al., 2007; Du and Alemseged, 2018; Villasenor et al., 2020). Comparisons of large mammal fossils indicate that East Turkana had higher species diversity than West Turkana or the Lower Omo Valley during the Pliocene (3.5–3.0 Ma), which may be due to high habitat heterogeneity in East Turkana (Du and Alemseged, 2018). High specimen numbers of bovid taxa associated with mesic habitats also suggest that East Turkana supported extensive floodplains during the middle Pliocene (3.6–3.22 Ma). On the west side of the lake, the fossil bovid community from middle Pliocene West Turkana likely represents drier habitats than in East Turkana (Bobe et al., 2007; Villasenor et al., 2020). Here, we examine large mammal abundance between 3.60 and 3.44 Ma using fossil databases and systematic surveys of Area 129 to explore local to
regional mammal community dynamics associated with the hominin fossils.

1.4. Stable isotopes from vegetation proxies

Plant macrofossils are rare in the eastern African paleontological record, but geochemical signals from the terrestrial record provide reliable evidence of past vegetation. Stable carbon isotopes reflect how organisms physiologically utilize heavy and light stable isotopes. Typically, the stable carbon isotope signal of terrestrial organisms is determined by two functional groups of primary producers; grasses and sedges follow a C₄ photosynthetic pathway, while trees and shrubs follow a C₃ photosynthetic pathway. Plants using the crassulacean acid metabolism (CAM) pathway are also present throughout sub-Saharan Africa, but geographically restricted and productivity limited, and thus not discussed here (Ségalen et al., 2007; Monger et al., 2009). During photosynthesis, C₄ plants discriminate less against the heavier carbon isotope (¹³C) and have a carbon isotope value (δ¹³C) that is more positive compared to C₃ plants (O’Leary, 1981). Carbon isotope ratios of the heavy to light carbon isotopes are expressed using delta notation, where \[\delta^{13}C = \left(\frac{R_{sample}}{R_{standard}} - R_{standard} \right) \times 1000 \]

Each isotopic proxy for paleovegetation represents a different spatiotemporal signal of the paleoenvironment. Vegetation proxies utilized for stable isotope analysis vary from those derived directly from plant tissue (plant waxes) preserved in paleosol, to mineralized tissue (enamel) from mammalian herbivores who (during the time of enamel formation) consumed different proportions of plant types based on their dietary specializations, to pedogenic carbonate

Figure 3. Paleomagnetic stratigraphic section with sediment descriptions and sample positions of both the paleomagnetic samples (EA-character strings) and the paleoecological samples (KF-character strings) from Area 129. The section approximately geographically equivalent to the NL129-17 section (in Fig. 2) relative to the hominin site, ET03-166/168.
nODULES that formed from carbonates in soils over tens to hundreds of years and represent many generations of plants. Below, we introduce the three vegetation proxies used in this study.

Plants produce waxes, primarily on their leaf cuticles (outer coverings), to protect leaf tissue from abrasion by dust, attack from insects or fungi, and water loss from the leaf surface. Plant waxes include normal alkanes (n-alkanes) and n-alkanoic acids (fatty acids; Eglinton and Hamilton, 1967). Characteristic patterns in plant wax distributions can be used to identify plant-derived n-alkanes or fatty acids in the terrestrial sedimentary record, including lacustrine, fluvial, and paleosol sediments. The carbon isotope ratios of n-alkanes and fatty acids in these sediments reflect the photosynthetic pathways of local vegetation and can therefore be used to determine the proportion of C3 and C4 vegetation (Chikaraishi and Naraoka, 2001). Fatty acids and n-alkanes from C3 plants have δ13C values ranging from about −40 to −28‰; values in C4 plants range from −24 to −18‰. Plant wax δ13C values are more negative than their bulk plant tissue due to discrimination against 13C during lipid synthesis (Chikaraishi and Naraoka, 2003). Fatty acids and n-alkanes are commonly preserved in sedimentary organic matter, where their resistance to diagenetic alteration and isotope exchange makes them an excellent geochronal proxy for reconstructing past vegetation. Biomarkers recovered from floodplain or pedogenic surfaces, as they are in this study, record a time-averaged but localized representation of the paleovegetation (Uno et al., 2016).

Pedogenic carbonates provide a different source of information about paleovegetation compared to plant waxes. Carbonate nodules that form at >30 cm below the soil surface typically reflect the isotopic ratios of C3, C4, or CAM plants present in soil rather than fluctuations in atmospheric CO2 (Cerling, 1984). Each carbonate nodule represents a limited spatial (<1 m) but highly averaged temporal signal (10–1000 years) of the paleoenvironment (e.g., Behrensmeyer et al., 2007; Du et al., 2019). Pedogenic carbonates primarily form in semiarid environments, that is, seasonal environments with limited rainfall (<1000 mm of rainfall) (Cerling and Quade, 1993). Here, we combine published stable isotope values from Area 129 pedogenic carbonates as well as unpublished data from both the ET03-166/168 hominin site and the broader Area 129 region.

Stable carbon isotopes from enamel reveal the dietary breadth of an animal but can also be used as a proxy for paleovegetation. Carbon isotopes from enamel reflect the proportion of C3, C4, or CAM vegetation consumed by an individual during the development of their teeth (Cerling and Harris, 1999). While carbon isotopes indicate dietary specializations within taxa, at the community scale, carbon isotope values from a diversity of species can reveal large-scale shifts in vegetation availability, particularly in primary consumers with flexible diets, like bovids (e.g., Cerling et al., 1997, 2015; Lee-Thorp et al., 2007; Uno et al., 2011). Here, we examine carbon isotopes from the enamel of several large mammal taxa from Area 129 in East Turkana, primarily specimens associated with the ET03-166/168 site.

1.5. Phytoliths

Phytoliths are microscopic silica bodies that form in or around plant cells. They are preserved in soils after the plant’s organic matter decays and can last for millions of years (Piperno, 2006). Phytoliths are classified using morphological features according to their anatomical origin, taxonomic affiliation, and/or functional traits (Twiss et al., 1989; Alexandre et al., 1997; Piperno, 2006; Strömgren et al., 2016). Some taxa produce specific identifier morphotypes, including grasses, palms, and sedges. Identification of grass phytoliths to subfamily level aids in reconstructing key ecological traits of the plant community (e.g., warm and humid, cool, hot and dry-adapted) and photosynthetic pathways (C3 vs. C4 grasses; Twiss, 1992; Strömgren et al., 2018). Phytoliths preserve well in multiple depositional environments (Albert et al., 2006, 2009; Barboni et al., 2010; Albert and Bamford, 2012). In paleosol and floodplain sediments, such as those examined in this study, phytoliths likely represent local but temporally averaged signals of vegetation biomass (Strömgren et al., 2018).

2. Materials and methods

2.1. Magnetostratigraphy and geochronology

All lithologies present at the NL129-17 section (Fig. 2) were sampled for magnetic polarity analysis except un lithified coarse sands (Fig. 3). Authors E.L.A., D.V.P., and M.J.S. collected 2.5-cm-diameter cylindrical rock cores with an electric drill mounted with a diamond-coated bit and cooled with an air-powered fan. Cores were oriented with a geological compass corrected for local declination. A total of 33 drilled samples were taken during the 2017 field season and cut to standard dimensions using a double-bladed saw. Magnetostratigraphic analyses were performed on 37 specimens from the 33 drilled samples to identify the transition from the Gauss to the Gilbert Chron (3.59 Ma) if present (Supplementary Online Material [SOM] S1 Methods; SOM Table S1).

2.2. Paleontological surveys

Over five field seasons in Area 129 (2003, 2012–2015), vertebrate fossil collection targeted the Lokochot Member (Figs. 1 and 2). Authors A.K.B, R.B., and A.V. used systematic biostratigraphic surveys to record and collect fossils (Behrensmeyer and Barry, 2005). The method prioritized collecting specimens with both taxonomic and paleoecological importance, including those that provide ecological insight, such as diversity and abundance (often craniodental remains), or accumulation processes (e.g., postracina with carnivore damage). This collection methodology, referred to informally as ‘bone walks’ (BW), also aims to document all specimens that are not collected, from whole bones to unidentifiable fragments to trace fossils. The surveys use teams of trained paleontologists, and all specimens were identified to the most specific taxonomic level possible in the field. Only specimens visible on the surface of outcrops were recorded during these systematic surveys. Specimens that provided higher-resolution (tribe to species level) taxonomic and taphonomic information were collected, locations were recorded using high-resolution (~3 m buffer) GPS and are curated in the Palaeontology and Archeology Divisions of the Earth Sciences Department at the National Museums of Kenya. Geographic and geologic context were recorded using field geo spatial data collectors (GISPro on an iOS device) and stratigraphic sections. All specimens have barcode IDs and are recorded in the Koobi Fora Research and Training Program database.

These collections were augmented using a ‘surface scrape’ methodology at the ET03-166/168 site, where hominin fossils were recovered. The top layer of sediment was removed and screened through a 3-mm sieve. All fossils identifiable to tribe level were collected and cataloged. Data from the biostratigraphic survey and surface scrapes complement material from typical fossil collection methods used in previous seasons, which often focused on concentrations or ‘patches’ of fossils. These patches typically represent specific taphonomic circumstances favorable to fossil preservation (Behrensmeyer et al., 2000), whereas biostratigraphic surveys represent the broader fossil landscape for particular stratigraphic intervals.
Systematic biostratigraphic sampling is limited to single, well-defined stratigraphic horizons, providing a measure of the distribution of fossils on the outcrop surface, which can also reflect their original distribution in different paleoenvironments on the ancient landscapes (Behrensmeyer and Kidwell, 1985; Behrensmeyer and Barry, 2005). In Area 129, the well-defined blocks of stratigraphic horizon extended from the base of the outcrop representing the modern II Naitirwa drainage to the top of the Lokochot Member, which is capped by the distinctive outcrop of the Tulor Bor Tuff. The surveys reported in this study were conducted within ~1 km of the primary stratigraphic reference section, NL129-17 associated with the ET03-166/168 site, which occurs in the silty sand at the base of NL129-17 (Fig. 2). The strata represented in the NL129-17 section were initially surveyed and fossils collected in 2003, with subsequent fossil collections in 2012, 2013, 2014, and 2015. A micro-stratigraphic section by A.K.B. in 2003 (AKB129-BW58) shows the detail at the ET03-166/168 hominin site (Fig. 2). The specimens collected between 2003 and 2015 have higher-resolution metadata compared to those recovered before 2003, including more spatially and stratigraphically explicit information. Previous (pre-2003) field collections as well as specimens from our systematic surveys are combined for regional faunal comparisons (specimen-level data are available in a GitHub repository at https://github.com/ameliavillasenor/Area-129-manuscript). Contextual information such as substrate, slope, and outcrop conditions were recorded for each surveyed fossil occurrence.

New hominin specimens were recorded during systematic surveys in Area 129 beginning in 2003. Morphological descriptions of the fossil hominin material can be found in SOM S2 Results.

2.3. Faunal abundance

Faunal abundance analyses of East Turkana were limited to specimens associated with the Lokochot Member (~3.6–3.4 Ma). We examined both the proportions of taxa identified to family in the Area 129 sample as well as those within ~50 lateral meters of the same silty sand unit as the primary hominin site ET03-166/168 (https://github.com/ameliavillasenor/Area-129-manuscript). For a broader geographic comparison of medium-large mammals (>1 kg), we also included roughly contemporaneous specimens from equivalent strata in the Nachukui Formation (West Turkana) and the Hadar (Awash Valley, Ethiopia) and Shungura (Lower Omo Valley, Ethiopia) formations. Proportions of specimens were compared between East Turkana (Areas 129 and 117), West Turkana, the Lower Omo Valley, and Hadar/Dikika at family and tribe taxonomic levels. Mammal specimen lists that are attributed to members dated between 3.60 and 3.44 Ma were compiled from the fossil hominin material can be found in SOM S2 Results.

Furthermore, though the four sites (East Turkana, West Turkana, Omo, and Hadar/Dikika) represent a range of depositional environments through time, all exhibit fluvial accumulation within their deposits (Villaseñor et al., 2020). Fluvial units represent large time (10^7–10^4 years) and spatial scales (Behrensmeyer, 1988). Since this comparison averages these large scales of fossil data, we interpret the interbasin mammal community comparisons as regional-scale paleoenvironmental indicators. This is in contrast to the local-scale paleoenvironmental indicators represented by the paleoenvironmental data from ET03-166/168.

The bootstrap method described in Villaseñor et al. (2020) was used to calculate 95% confidence intervals for each taxon (tribe or family) within each site (Efron and Tibshirani, 1994; Manly, 2007). This method reflects the uncertainty in abundance when the sample size is small. Bootstrapping and quantile functions were conducted in R base package v. 4.1.2 (R Core Team, 2021).

2.4. Plant wax biomarkers

Ten sediment samples were collected during field work in 2017 by K.T.U. and E.L.A. for biomarker, phytolith, and soil carbonate analyses (SOM S1; SOM Table S2; Fig. 3). The samples were collected from the vertical section (NL129-17) associated with the hominin site (ET03 166/168). Sediment samples containing pedogenic carbonates were analyzed for δ13C (described in section 2.5). The sediment sampling protocol was designed to avoid potential contamination from modern plant waxes, with all samples collected from newly excavated trenches in areas with little or no overlying vegetation. Nitrile gloves prevented contamination from modern sources of lipids. About 300–500 g of freshly exposed, consolidated sediment was collected directly onto aluminum foil from 25 to 55 cm below the modern land surface. Prior to wrapping in foil, the samples were inspected for any traces of modern roots or plant matter. Carbon isotope ratios of n-alkanes and fatty acids of plant waxes were prepared by K.T.U. and analyzed using a GC coupled to a Thermo Delta V isotope ratio mass spectrometer through a combustion interface at the Lamont Doherty Earth Observatory Stable Isotope Laboratory (SOM S1).

Carbon isotope data were corrected following the methods outlined in Polissar and D’Andrea (2014) using a MATLAB (Math-Works; Natick, MA) routine. Error is presented as the standard error of the mean and includes uncertainty in the reference gas, multiple injections, and standard values. To compare with the other carbon isotope data sets in this study, C3 n-alkane carbon isotope data were converted to 100·‰ C3 values based on a linear mixing model with endmembers defined by a large data set of modern African plants compiled by Polissar et al. (2021). After adjusting endmembers by +1.7‰ to account for changes in the δ13C atm from modern (−8‰) to preindustrial values (−6.3‰; Francey et al., 1999), we arrive at −32.4 ± 2‰ for the C3 and −20.0 ± 2‰ for the C4 endmembers, respectively. There is no correction for the δ13C values of atmospheric CO2 (δ13C atm) between the Pliocene values from Area 129 (3.59–3.44 Ma), estimated to be −6.2‰, and the commonly accepted preindustrial (1750 AD) value of −6.3‰ (Francey et al., 1999). The difference in the two values is similar to the uncertainty of the isotopic measurement and smaller than the uncertainty in the reconstructed Pliocene values (0.35‰) determined by Tipple et al. (2010).

2.5. Pedogenic isotopic analysis

Fifty pedogenic carbonate samples were collected from Area 129 between 2003 and 2017, including seven from within the NL129-17 section and its equivalent paleomagnetic section (Figs. 2 and 3; SOM Table S3). These seven samples represent the 20 vertical
meters measured from the hominin-bearing silt (ET03-166/168), which is at the base of the NL129–17 section (Fig. 2). Twenty-seven of the 50 samples were previously published (SOM S1; SOM Table S3; Levin et al., 2011). Pedogenic carbonates were collected from sediments that show clear evidence of pedogenesis (e.g., dish structures, root casts) and derive from largely clay-rich contexts. All pedogenic carbonate samples were collected from below the Tulu Bor Tuff. Each sample was collected from a trench extending at least 40 cm below the top of the soil formation (Levin et al., 2011). Only soil samples with discrete nodules were sampled, and 1–2 nodules were analyzed per soil horizon (SOM S1).

We compiled the new East Turkana data with published values from East Turkana with estimated ages of 3.60–3.44 Ma. East Turkana δ¹³C values were also compared to published Hadar and West Turkana δ¹³C values from this time interval (Levin, 2013). West Turkana data were updated with values from Lomekwi (Harmand et al., 2015).

To compare Area 129 stable isotope data sets from the different proxies (leaf wax biomarkers, enamel, and soil carbonate), carbon isotope data were converted to % C₃ values using a linear mixing model as described in Cerling et al. (2015). The linear mixing model used δ¹³C endmember values from both mesic and xeric vegetation systems (Cerling et al., 2015). End members (C₃ based on endmembers of δ¹³C values for C₃ and C₄ vegetation corrected to preindustrial (1750 AD) values: mesic estimates are ~26.6‰ for C₃ and ~11.2‰ for C₄ endmembers, while xeric estimates are ~25.6‰ for C₃ endmembers and ~10% for C₄ endmembers. As with the plant wax isotopes, we made no adjustment between δ¹³C atm values from the Pliocene (~6.2‰) and preindustrial periods.

2.6. Enamel isotopes

We obtained enamel from large mammal herbivores (n = 45) associated with the Lokochot member in Area 129. The specimens were collected during the 2003–2015 field seasons during systematic biostratigraphic surveys (Behrensmeyer and Barry, 2005) in Area 129. Specimens were identified to the most specific taxonomic level possible by A.V., R.B., and A.K.B. Each specimen was assessed for signs of diagenesis (e.g., recrystallization on tooth surfaces). Nonaltered specimens were sampled using a diamond-tipped drill bit after removing several microns of surface enamel. Stable carbon isotopes were analyzed from Area 129 specimens identified to at least the family level (Cerling et al., 2015; SOM S1; Table S3).

Using the same endmember estimates for mesic and xeric systems applied to pedogenic carbonates, enamel δ¹³C values were converted to % C₄ values using a linear mixing model (Cerling et al., 2015). These C₄ estimates provide the basis for comparing isotopes from enamel with other carbon isotope data sets from different proxies. Enamel is assumed to be 14‰ enriched compared to vegetation (Cerling and Harris, 1999).

2.7. Phytoliths

The 10 sediment samples described in section 2.4 were also processed and analyzed for phytoliths following the Strömberg et al. (2013) protocol (SOM S1). At least 200 diagnostic phytoliths were counted for each sample to ensure robust environmental reconstructions (Albert and Weiner, 2001; Strömborg, 2009). Author R.K. classified diagnostic phytoliths into three main categories based on the functional types of plant habitats: (1) grasses include diagnostic taxa such as Panicoideae, Chloridoideae, and unidentified PACMAD (Panicoideae, Aristidoideae, Chloridoideae, Michrozioideae, Arundinoideae, and Danthonioideae) lineages; (2) the ‘woody’ category of phytoliths represents plants associated with closed habitats, which include trees and woody dicot morphotypes, whereas ‘dicot general’ includes a wider range of taxa, including shrubs and herbaceous plants; and (3) palms consisting of diagnostic echinated palm phytoliths (SOM Fig. S1). Nondiagnostic phytoliths were classified as ‘others’ (Strömborg, 2003).

Two environmental indices were calculated from a subset of phytolith morphotypes: the Dicotyledons/Panicoideae (D/P) and Lph (the ratio of Chloridoideae [saddle] morphotypes over the sum of Panicoideae [bilobates + crosses + polylobates] and Chloridoideae phytolith types; Bremond et al., 2008a). The Lph index estimates the moisture gradient, where a higher Lph index indicates higher aridity, while lower values indicate more humid-adapted grasses and lower aridity (Bremond et al., 2008b). Chloridoideae phytolith types are primarily found in hot and dry climates at low elevation, while Panicoideae (which primarily uses the NADP-me pathway) is associated with warm and moist climates (Twiss, 1992; Cerling and Harris, 1999; Peterson et al., 2010).

The D/P phytolith index is a ratio of the tree-derived phytolith type (dicotyledons; spheroid granulate morphotypes) over the sum of Panicoideae-derived (bilobates + crosses + polylobates) morphotypes. The D/P index is thus a coarse indicator of tree density, where higher values indicate more trees. This index correlates well with the leaf area index, and both are good indicators of the forest-to-savanna transitions (Bremond et al., 2005).

3. Results

3.1. Geochronology

Characteristic remanence magnetization directions are normal, and no reversal has been identified (SOM S2). Since the sedimentary layers sampled here are capped by the Tulu Bor Tuff, which has been dated to 3.44 ± 0.041 Ma, the normal direction found throughout the section supports our expectation that the sediments sampled in this study fall within the Gauss chron2An (C2An;...
2.61–3.596 Ma). We did not identify the transition from the Gauss to the Gilbert Chron (3.596 Ma), suggesting that all sediments in this study are younger than 3.596 Ma. Based on this evidence, the age of the hominin locality is inferred to be between ~3.596 and 3.44 Ma.

3.2. Paleontological survey

Five systematic surveys from Area 129 conducted within 1 km of the primary hominin site (ET03-166/168) yielded sample sizes of >20 specimens. Two (TB-BW24 and TB-BW28) were particularly fossiliferous (>56 specimens), but only TB-BW28 was diverse, with nine different orders of vertebrates, including a hominin specimen recovered during the initial survey (Fig. 4). Both TB-BW28 and the nearby TB-BW29 showed higher percentages of mammalian and terrestrial vertebrates than the other nearby surveys (Fig. 4). The targeted surveys near the primary hominin-bearing site (TB-BW28) revealed a diverse mammalian community within a small area, where clusters of small nonhominin primate specimens \(n = 6 \) were found in association with the (ET03-166/168) hominin locality. Three of the four hominin specimens (KNMER-72590, 72591, and 71396) and many other mammal fossils were derived from bone walks conducted in 2003 (data included here) and 2012–2015 (data not included here).

3.3. New hominin specimens

The new hominin fossils consist of an upper premolar crown and three partial molars (SOM S2; Fig. 5). The ET03-166/168 Area 129 hominin premolars and molars are morphologically consistent with all contemporaneous hominin fossils from eastern Africa to which they can be compared, which derive from Lomekwi, Hadar, Maka, and Woranso Mille (Leado Dido’a area; White et al., 2000; Leakey et al., 2001; Melillo et al., 2021). In size, the premolar crown (KNM-ER 72592) falls within the range of \(P^3 \)’s of \(A. afarensis \) from Hadar, Ethiopia, and teeth from Lomekwi, Kenya, which are unattributed to taxon but are found from deposits that have yielded \(K. platyops \) (Leakey et al., 2001; Skinner et al., 2020). KNM-ER 72592 is slightly smaller than the two specimens attributed to \(Australopithecus deyiremeda \) from Woranso Mille (SOM Table S4). The only molar that can be measured (KNM-ER 72951) falls within the size range for molars from all three comparative samples. The Area 129 hominins are not diagnostic to a particular taxon given their preservation and the fact that, to date, no diagnostic features of upper premolar or molar crowns preserved in the Area 129 specimens discriminate among \(A. afarensis, A. deyiremeda, \) and the Lomekwi hominins (Skinner et al., 2020; Melillo et al., 2021).

3.4. Faunal abundance

The proportions of mammal fauna in Area 129 (Fig. 6) are similar to the broader Pliocene East Turkana region’s mammalian proportional abundance, where bovids, cercopithecids, and suids comprise the most abundant groups (Fig. 7). The Area 129 sample contains the only hominin fossils from the Lokochot Member on the east side of Lake Turkana. The ET03-166/168 site, where most of the hominin specimens were recovered, contains a greater proportion of primate (26%) and hominin specimens (3%) compared to the larger Area 129 or East Turkana region (Figs. 6 and 7; SOM S1; SOM Table S5).

Between 3.44 and 3.60 Ma, in the Afar and Turkana Basin sites discussed here, bovids are the most abundant large mammal group except in the Lower Omo Valley, where suids are most abundant (Fig. 7). East Turkana has the greatest proportion of cercopithecid specimens (14% of the total; Fig. 7), and the newly discovered 129 hominin premolars and molars are morphologically consistent with all contemporaneous hominin fossils from eastern Africa to which they can be compared, which derive from Lomekwi, Hadar, Maka, and Woranso Mille (Leado Dido’a area; White et al., 2000; Leakey et al., 2001; Melillo et al., 2021). In size, the premolar crown (KNM-ER 72592) falls within the range of \(P^3 \)’s of \(A. afarensis \) from Hadar, Ethiopia, and teeth from Lomekwi, Kenya, which are unattributed to taxon but are found from deposits that have yielded \(K. platyops \) (Leakey et al., 2001; Skinner et al., 2020). KNM-ER 72592 is slightly smaller than the two specimens attributed to \(Australopithecus deyiremeda \) from Woranso Mille (SOM Table S4). The only molar that can be measured (KNM-ER 72951) falls within the size range for molars from all three comparative samples. The Area 129 hominins are not diagnostic to a particular taxon given their preservation and the fact that, to date, no diagnostic features of upper premolar or molar crowns preserved in the Area 129 specimens discriminate among \(A. afarensis, A. deyiremeda, \) and the Lomekwi hominins (Skinner et al., 2020; Melillo et al., 2021).

Figure 5. KNM-ER 72590 (M2 or M1) shown in mesial view, KNM-ER 72591 (right M1) and KNM-ER 72592 (left P1) shown in occlusal view, and KNM-ER 71396 (M1 or M2) shown in mesial view.

Figure 6. Mammal (>1 kg) family abundance from Area 129 (3.59–3.44 Ma; individuals based on database specimen numbers). Light gray bars indicate the proportion of taxa that are spatially associated (within ~50 m) with hominin site and stratigraphic section ET03-166/168 (SOM Table S5). Notably, there is a higher proportion of Cercopithecidae associated directly with the hominin site.
hominins comprise ~1% of the total specimens identified to family. In contemporaneous sediments of Hadar/Dikika and the Lower Omo Valley, hominins make up less than 1% of the sampled mammal community; large herbivore families are the most abundant groups at these sites. In contrast, hominids are 7% of the large mammal fauna recorded in West Turkana. However, the total sample size of mammals attributed to family within West Turkana’s Kataboi Member (=Lokochot) is very low (n = 41), compared to the other three equivalent formations with >250 specimens each (Fig. 7).

The cross-basin comparison at the tribe level shows that East Turkana diverges from West Turkana, the Lower Omo Valley, and Hadar/Dikika (Fig. 8). Nyanzachoerini is the most abundant tribe identified in the Lower Omo Valley, Hadar/Dikika, and West Turkana (>27% among all sites). The Lower Omo Valley has more than 60% of its specimens attributed to Nyanzachoerini, and the second most abundant tribe is Papionini. East Turkana contains the lowest proportion of Nyanzachoerini (13%), and Alcelaphini and Tragelaphini are as abundant as Nyanzachoerini. West Turkana has only 30 specimens identified to the tribe level, making
comparisons with better sampled regions uncertain. Both East Turkana and Hadar/Dikika are more taxonomically diverse than the Lower Omo Valley or West Turkana. They also have more even proportions of taxa, with no tribe representing more than 27% of the assemblage.

3.5. Plant wax biomarker concentrations and 13C

Chemical analyses indicated good preservation of plant wax biomarkers in the terrestrial soils of Area 129 (SOM S1; SOM Tables S6 and S7). We focus on the C_{31} n-alkane and corresponding C_{30} fatty acid (n-alkanoic acid) 13C data because the C_{31} n-alkane is produced in relatively similar abundances by C_3 and C_4 plants and therefore makes it the best representative of paleo-vegetation (Garcin et al., 2014). C_{31} n-alkanes ($n = 6$) range from −27.2 to −22.9‰ (SOM S2; SOM Table S8). The C_{30} fatty acids (n-alkanoic acid; $n = 8$) show a slightly wider range in 13C values from −30.3 to −21.8‰ (SOM S2; SOM Table S9). There is strong agreement between the two n-alkyl lipid homologs (C_{31} n-alkanes and C_{30} fatty acids), further supporting the isotopic integrity of the plant waxes. The calculated C_4 values from the C_{31} n-alkane range from 42 to 76% C_4 (median = 46 ± 23% C_4; Fig. 9). Plant wax 13C data from within the hominin-bearing horizon indicate an average of 49 ± 24% C_4 vegetation (Fig. 10).
3.6. Pedogenic carbonate $\delta^{13}C$

The range of $\delta^{13}C$ values from the NL129-17 section ($[-8.7\%] - [-6\%]$) indicates vegetation that ranges from moderate to high woody cover in fluvial floodplain environments (Figs. 9 and 10). The average $\delta^{13}C$ of Area 129 (-7.02%) is indistinguishable from the larger coeval East Turkana regional signal for the middle Pliocene (7.1%), based on published values from the Area 117 region to the southwest (Levin et al., 2011). Values range from 8.7% to 4.3%. The average values are concordant with contemporaneous Hadar and West Turkana $\delta^{13}C$ average values (-7.3% and -7.4%, respectively). Slightly more positive $\delta^{13}C$ values in the East Turkana region suggest that the paleolandscape maintained less woody cover than coeval samples from West Turkana or Hadar. Compared to the C_4 biomass represented by enamel and plant wax biomarkers, pedogenic carbonates from both NL129-17 (12–31% C_4) and the larger Area 129 (13–43% C_4) represent significantly less C_4 biomass (Fig. 10).

3.7. Enamel $\delta^{13}C$

The large herbivore families of Area 129 are primarily mixed (C_3–C_4) feeders or C_4 vegetation specialists (Fig. 10; SOM Table S10). At the ends of the $\delta^{13}C$ dietary spectrum are Giraffidae (a C_3 specialist with mean $\delta^{13}C = -12.0\%$) and Equidae (a C_4 specialist with mean $\delta^{13}C = -1.1\%$). Suidae consumed primarily C_4 biomass (average $\delta^{13}C = -2.1\%$). The largest sample of herbivores is from the family Bovidae ($n = 26$), which also skews toward the C_4 end of the spectrum ($\delta^{13}C = -2.8\%$). The average $\% C_4$ estimate from the large mammal community (using the mesic endmember estimates) is 61–63%. Using xeric endmember estimates, the estimate for the large herbivore community is 86–93% C_4. Thus, carbon isotopes from enamel suggest C_4 biomass consumption was high using either endmember when compared to the vegetation proxies, especially pedogenic carbonates. Pedogenic carbonates suggest at most 43% C_4 biomass on the landscape, which is much lower
than would be inferred from the large herbivore community δ^{13}C diet (Fig. 10).

3.8 Phytolith analysis

Through time (across the 10 samples from the NL129-17 section), the phytolith assemblage is dominated by forest indicator and woody dicot morphotypes, followed by grass short silica cells (GSSCs) phytoliths (Fig. 11; SOM Table S11). The average distribution of identifiable phytoliths across the 10 samples in the NL129-17 section was 42.7% woody (including both forest indicator phytoliths and woody dicots) and 24.3% grass (SOM Table S11). Palm and sedge diagnostic morphotypes were also present throughout the section, ranging from 3% to 18% and 1% to 5%, respectively. Morphotypes that were nondiagnostic to specific plant functional types were categorized as general dicots. The GSSCs phytoliths show the grasslands consisted of both tall Panicoidae and short Chloridoideae C4 grasses and other unidentified PACMAD grasses.

4. Discussion

4.1 Area 129 hominins were associated with a diverse primate community and riparian environments

Phytolith data associated with the hominin level suggest vegetation consisting of large proportions of wooded vegetation (D/P index) and humid-adapted C4 grasses (Iph index; Fig. 9). The primary hominin-bearing layer is a sandy silt capped by a paleosol. Plant wax biomarkers and phytoliths were recovered from the upper portion of the sandy silt unit, near the boundary between the hominin-bearing layer and the overlying paleosol (~0.64 m above the base of the fossil-bearing silty sands; Fig. 3). In this layer, woody plants and palms comprise nearly 60% of the recovered phytoliths, while C4 vegetation comprises approximately 20% of the remaining sample (Fig. 11; SOM Table S11). Sedges and palm phytoliths indicate the presence of swampy and/or wetland habitats on the fluvial floodplain. Specifically, forest tree–derived morphotypes and palm morphotypes reflect forest vegetation associated with riparian or freshwater habitats, respectively (Ashley et al., 2009; Barboni et al., 2019). A small proportion of scrubland phytoliths (3%) from this layer suggest occasional or proximal arid conditions. Plant wax biomarker data support a mixed wooded-grassland environment with 49% C4 vegetation (mean for samples from the hominin level). Phytolith data indicate that the C4 component was composed of grasses and sedges.

Sedimentary features in Area 129 also provide evidence that freshwater habitats were regularly present, supporting the paleo-vegetation reconstructions. The vertical pattern of sands, finer silts, and clays with pedogenic modification, capped again by sand, recorded in the NL129–17 section is typical of aggrading fluvial systems in which a channel moves laterally across its floodplain over time (e.g., Smith and Putnam, 1980). Aggrading fluvial systems build fining-upward sequences from sand to stacked units of silt and clay, which are then capped by another sand, representing the return of the channel to this part of the alluvial plain. The thick sandstone between meters 17.5 and 26 (just below the Tulu Bor Tuff) represents a channel of considerable size, likely a major river for Pliocene East Turkana. Some of the surface fossils recorded in the systematic bone surveys may be derived from these sands. Active channels and proximal floodplains represent unstable land surfaces for vegetation, but fluvial systems also support nearby regions with stable surfaces with extensive soils and perennial vegetation, such as trees. The presence of large channels may explain the large proportion (44% and greater) of aquatic animals recorded during systematic bone surveys (Fig. 4), which in turn support the hypothesis that bodies of water, such as perennial channels and associated floodplain wetlands, were present within kilometers of the ET03–166/168 hominin locality. The combined evidence thus indicates that the hominins at ET03–166/168 were preserved in a floodplain landscape that supported riparian vegetation and a diverse mammalian community.

The sample of mammals spatially associated with the new hominin fossils contains a large proportion of primates, primarily small cercopithecids (26% of the mammalian community) (Fig. 6), which is higher than the overall collection from Area 129 and East Turkana.
Turkana. Small-sized cercopithecids, such as guenons, likely incorporated C4 resources into their diets by the middle Pliocene (Levin et al., 2015; Manthi et al., 2020), but these species are usually somewhat arboreal and associated with wooded regions (Frost et al., 2020). Reed (2008) found that modern forest communities (generally associated with >1000 mm of rainfall) are composed of nearly 20% species with arboreal adaptations, while closed woodlands and ecotones (forest edge environments) have nearly 10% of community members with arboreal adaptations. If the NISP tallies of a relatively small assemblage (n = 129) provide some indication of original abundance in the original ecosystem, the faunal assemblage associated with the hominin fossils includes an unusual number of arboreal species. This suggests that the fossil assemblage represents a mammalian community associated with woodlands, such as a gallery forest or groundwater-fed wetlands (Barboni et al., 2019). The unusual representation of small primate specimens may also be the taphonomic signature of a bone-accumulating agent such as a large raptor or mammalian carnivore (Fernández-Jalvo et al., 2016). One of the prime teeth collected from the site shows evidence of enamel dissolution that supports this hypothesis (Fernández-Jalvo and Andrews, 2016).

Assuming paleolake Lokochot was present to the west, the largerscaled data (presumably recorded in Area 129 phytoliths reconstructed) as a broad, heterogeneous alluvial plain with river channels, seasonally flooded low areas, and an emergent, productive floodplain area that merged farther westward into a fluvial-deltaic plain. Upland and drier terrestrial landscapes may have been present to the east. The riparian environments bordering Lake Turkana likely had limited drainage basins that supported local ecosystems distinct from those of the larger paleo-Omo River to the north, where hominin fossils are rare at this time (Villeseñor et al., 2020). The Lower Omo Valley River deposits represent a perennial channel system and an extensive drainage basin in the Ethiopian highlands. This large river system supported dense riparian woodlands inhabited by larger numbers of suids and C3-consuming bovids than are present in contemporaneous East Turkana, in addition to large numbers of cercopithecids (Figs. 6 and 7; Barr, 2015; Negash et al., 2020). By contrast, evidence from vegetation proxies and the mammalian community spatially associated with the Area 129 hominin fossils suggests that these hominin fossils were associated with a mix of wooded and riparian habitats with mesic grasses. Sedimentary evidence from the upper sections of NL129-17 indicates alternating periods of flooding and aridity associated within a variable and possibly ephemeral fluvial regime. In summary, the depositional, fossil, and vegetation information indicate that the Area 129 hominins and other fauna inhabited a floodplain landscape with humid grasses and substantial C3 biomass.

4.2. Vegetation proxies show major ecological shifts over time within a single site

Contemporaneous vegetation proxies are preserved within ~17 m above the base of the section within a series of alternating paleosols, bedded silts, and sandy silts, which indicate that stable floodplain surfaces were periodically interrupted by active overbank deposition (Fig. 9). Proxy data reveal an interesting, partly fluvial-deltaic plain. In summary, the depositional, fossil, and vegetation information indicate that the Area 129 hominins and other fauna inhabited a floodplain landscape with humid grasses and substantial C3 biomass. Notably, samples collected from the alternating paleosol and bedded silt sequence between NL129-17 13.5–16.6 m show the greatest shifts in vegetation dominance (Fig. 9). At 14.8 m, phytolith indices indicate higher proportions of humid grasses (low Iph) and less woody cover (low D/P) associated with a silty layer interpreted as a crevasse splay. At 15.9 m, within the overlying paleosol layer, there is a shift back to woody dicots based on phytoliths/D/P index and the δ13C value of pedogenic carbonate (~7.9%), suggesting a woodland or shrubland. The most dramatic shift in phytolith indices occurs between 15.9 and 16.6 m, when the grass community includes more humid-adapted Panicoideae grasses and has low tree density but then switches to arid-adapted grasses and more woody vegetation (Fig. 9). Patterns of high woody cover combined with arid-adapted grasses could result from local changes in the depositional environment but also suggest a larger-scale environmental driver such as changes in rainfall amount, regional temperature, and seasonality, which, in turn, affect evapotranspiration. Lower rainfall has been linked to higher tree density and greater amounts of C3 grasses in modern Laetoli (Andrews and Bamford, 2008; Andrews et al., 2011). On orbital timescales, rainfall patterns vary in the Turkana Basin and thus could be a driver of the observed vegetation shifts (Feakins et al., 2007; Lupien et al., 2018, 2020).

Stable carbon isotopes from pedogenic carbonates in the NL129-17 section indicate C3 woody to mixed C3–C4 vegetation through time but do not offer similar resolution for the major shifts in vegetation recorded by phytoliths and plant biomarkers (Fig. 9). This may be because some of the pedogenic carbonates were recovered from different layers within the NL129-17 section than the plant waxes or phytoliths (Fig. 9). However, it could also result from greater time averaging in each individual pedogenic carbonate specimen as compared to the signal preserved in the phytolith assemblages and biomarker proxies. Alternatively, pedogenic carbonates could be biased toward carbonate precipitation during times when more C3 plants are affecting soil chemistry through increased transpiration, such as dry seasons (e.g., Meyer et al., 2014; Huth et al., 2019).

Examining proxy associations with the different lithofacies in more detail, the tree density index (D/P) suggests increased woody cover associated with three of the well-developed paleosols in NL129-17, including the paleosol immediately above the hominin site. Lower woody cover, combined with higher humid grasses based on the lph index, coincides with some bedded sedimentary layers, indicating intervals of rapid floodplain aggradation. Each of the paleosols likely represents 102–104 years each, for an estimated total time span of 6000–60,000 years, which is within the range of documented semi-arid floodplain sedimentary rates (Daniels, 2003). This means a rate of overall sediment accumulation between ~2 and 40 cm/1000 yrs, with the latter being more in line with other calculations for the Koobi Fora Formation (Campisano and Feibel, 2007). The bounding dates (3.596–3.44 Ma) for the NL129–17 section give a maximum time span of ~150 kyr. It is thus reasonable to estimate that fine-grained lithofacies between the sand bodies represent tens of thousands of years within this interval, long enough to be affected by Milankovitch or other shorter-term climatic cycles.

The sample sizes associated with this section are too small to test for correlations between depositional facies and vegetation type. However, proxies derived from paleosols generally preserve higher levels of C3 vegetation and are often associated with greater
proportions of arid-adapted grasses (lp index). Phytoliths collected from silty sediments associated with floodplain or crevasse splays have a lower D/P index compared to those collected from well-developed paleosols, but plant wax biomarkers do not always show the same strong pattern of greater C₄ biomass in silty sediments. Pedogenic carbonates have a relatively limited δ¹³C range, from −6.0‰ to nearly −8.7‰, indicating low levels of C₄ biomass (average = 20%) throughout the section. In contrast, plant wax δ¹³C shows a much higher variability (−10‰ range) and indicates higher abundance of C₄ biomass (average = 49%) for the sampled intervals of the NLI29-17 section. The offset between pedogenic and plant wax carbon isotopes has also been observed in other parts of the Turkana Basin and is discussed in detail, but not resolved, in Uno et al. (2016).

4.3. Local and regional comparisons of contemporaneous proxies provide insight into their biases

The vegetation proxies (pedogenic carbonates, plant wax biomarkers, and phytoliths) from the geologic sections associated with ET03-166/168 each represent relatively small spatial scales (local) and provide variably time-averaged information. The fact that phytoliths and plant wax biomarkers show strong shifts from grass to woody-dominated ecosystems through time indicates that temporal and spatial averaging in these samples is less than the temporal and spatial scale of environmental change between the sample levels. Pedogenic carbonate δ¹³C signals, however, consistently represent high levels of C₃ woody cover (forest to woodland/shrubland) through the same sample interval. The differences in signal could be due to the greater time averaging of pedogenic carbonate nodules, which averages short-term vegetation change. Phytoliths and biomarkers, in contrast, may have high turnover rates in biologically and chemically active substrates and are therefore weighted toward sampling a short period of time prior to final burial. Furthermore, phytoliths and plant wax biomarkers can be deposited and preserved in a greater range of sedimentary environments than pedogenic carbonates, which are generally restricted to soils that experience strong rainfall seasonality and mean annual rainfall of ~400–1000 mm and therefore form only seasonally and in specific conditions (Breecker et al., 2008; Meyer et al., 2014). Thus, differences among the vegetation proxies used in this study affect paleoenvironmental interpretations, and their offsets are an intriguing result of our study that should be investigated further.

Within the broader Area 129 temporospatial region (Fig. 1), δ¹³C values from large herbivore enamel represent more C₄ vegetation on average than do those from the pedogenic carbonates (Fig. 10). This supports the hypothesis that mammal enamel from fossil herbivore communities represents larger spatial scales, and thus greater spatial averaging of vegetation, than other vegetation proxies (Du et al., 2019). Biases toward C₄ consumption in enamel could also be influenced by observations of high abundances of grazers across multiple habitat types, including those with high levels of woody cover (Negash and Barr, 2023). However, Du et al. (2019) reported that δ¹³C values of pedogenic carbonates represent more C₃ environments across the Plio-Pleistocene Afar and Turkana Basins compared to δ¹³C values from mammalian tooth enamel. Uno et al. (2016) find that plant wax biomarkers indicate 25–30% more C₄ biomass on the landscape than do coeval pedogenic carbonates in the Pleistocene terrrestrial sediments of West Turkana. Our data from Area 129 further support these observations of biases among proxies (Fig. 10), particularly that pedogenic carbonates are biased toward a C₃ signal compared to other vegetation proxies.

4.4. Interbasin comparisons suggest aridity characterizes the Pliocene eastern African basin

The new hominin specimens from Area 129 support the hypothesis that hominins were widespread but rare compared to other large fauna in the middle Pliocene Turkana Basin (Bobe et al., 2002; Su and Harrison, 2008; Villaseñor et al., 2020). At East Turkana, they represent slightly more than 1% of the fossil large mammal specimens, which is consistent with previous observations of hominin abundances from this region (Villaseñor et al., 2020). West Turkana shows a higher relative abundance of hominins than East Turkana, but with low sample sizes overall. Previous research suggests that the high numbers of hominin specimens and low samples of other rare fauna are due to sampling and reporting biases (Villaseñor et al., 2020). East Turkana has the largest published faunal sample identified to tribe from the 3.59–3.44 Ma interval (n = 273 specimens) and the most even distribution of identified tribes compared to the three other contemporaneous sites in this study: Hadar/Dikika, the Lower Omo Valley, and West Turkana. The most abundant two tribes in East Turkana, Alcelaphini and Tragelaphini, are associated with open grassland and mixed grassland–woodland environments in the Pliocene, respectively (Cerling et al., 2015; Fig. 8). Since boids represent nearly 40% of specimens at East Turkana, these mammalian distributions support the reconstruction of a region with heterogeneous C₃/C₄ vegetation at regional scales (Cerling et al., 2015; Villaseñor et al., 2020). Paleoenvironmental data from ET03-166/168 suggest the mixed C₃/C₄ vegetation represents shifts between more arid C₃-dominated environments and wetter C₄-dominated environments.

Though published faunal collections from other middle Pliocene regions are limited in sample size, paleoenvironmental proxies such as pedogenic carbonates, plant wax biomarkers, and pollen records have a more robust spatiotemporal record. Liddy et al. (2016) found that δ¹³C values from plant waxes from the Gulf of Aden suggest a high abundance of C₃ vegetation at the regional scale between 3.8 and 3.0 Ma, specifically arid-adapted C₃ taxa in Amaranthaceae, based on corresponding pollen data from the same core (DSDP 231). Grass pollen is very low in abundance during this period. Cerling et al. (2011) also found that the Turkana Basin experienced a period of increasing woody cover after 3.6 Ma, compared to the Late Miocene and Early Pliocene paleoenvironments, based on pedogenic carbonate δ¹³C values. Lake Lokochot would have supported mesic environments near the lakeshore, particularly on the east side of present-day Lake Turkana, which represents the gently sloping hanging wall of a half-graben bounded by a major, basin-forming normal fault on its west side (Brown and Feibel, 1986). However, these mesic conditions could have waxed and waned with shifting depositional environments as well as climate cycles, leading to the local temporal changes in vegetation documented in this study (Fig. 9). To the north, the Afar basin also experienced a peak in woody cover after 3.6 Ma, but later than in the Turkana Basin (Cerling et al., 2011). Assuming pedogenic carbonates regularly form during periods of higher seasonality and water deficits (Cerling, 1984), the increase in C₃ vegetation indicated by pedogenic carbonates could support other records of Pliocene aridity from northeast Africa (Liddy et al., 2016).

These findings add ecological depth to the habitat reconstructions of other middle Pliocene hominin sites from nearby regions. For example, Harmand et al. (2015) suggest that the stone tools found on the opposite side of the Turkana basin two hundred thousand years later, at ~3.3 Ma, are associated with a woody or shrubby environment based on pedogenic carbonates and associated mammalian taxa. Leakey et al. (2001) make the same interpretation about environments using the faunal evidence, particularly the presence of Theropithecus brumpti, to suggest that
K. platyops specimens are associated with higher levels of woody cover. As noted in this study and several others (Uno et al., 2016; Du et al., 2019), pedogenic carbonates may be biased toward C₃ biomass compared to other proxies. Furthermore, the C₃ signal in the Turkana Basin could indicate arid-adapted woody taxa, suggesting that environments occupied by Pliocene hominins incorporated regions with prolonged water deficits (Blumenthal et al., 2017).

4.5. Biome reconstructions of the middle Pliocene aid in defining the hominin niche

The middle Pliocene Turkana Basin may represent a non-analogue ecosystem, i.e., a combination of climate and vegetation types that is not present on the modern tropical African landscapes. This region of the EARS has hosted topographically varied ecosystems for tens of millions of years; high temperatures and water deficits have likely been important ecological characteristics of the low-elevation rift landscapes for at least four million years, although annual rainfall was likely higher than today (Passey et al., 2010; Fortelius et al., 2016; Blumenthal et al., 2017). As represented in this study and other analyses through time, a mixed C₃ and C₄ ecosystem was an important component of the regional Pliocene biomes associated with hominins in the rift valley (Cerling et al., 2011; Levin et al., 2011; Paquette and Drapeau, 2021). Furthermore, since arid-adapted grasses and high proportions of C₃ biomass are associated in this study (Fig. 9), it is possible that the C₃ biomass included arid-adapted plant taxa, such as those characterizing the vegetation community of the Turkana Region today. Additionally, local shifts in hydrology would have exerted important controls on vegetation composition through time that affected the habitability of hominin sites within semi-arid regions (Cuthbert et al., 2017; Barboni et al., 2019; Joordens et al., 2019).

Both A. afarensis and K. platyops are known from the middle Pliocene Turkana Basin (Kimbel, 1988; Leakey et al., 2001). Between 3.6 and 3.0 Ma, the A. afarensis range spans from northern Ethiopia to Tanzania’s lowland rift valley basins, indicating a large functional niche of A. afarensis (Bonneille et al., 2004; Reed, 2008; Su and Harrison, 2015). In contrast, the documented spatiotemporal range of K. platyops is more restricted; the type and paratype specimens date to between 3.5 and 3.3Ma, and all specimens associated with this taxon derive from West Turkana, Kenya (Leakey et al., 2001; Skinner et al., 2020). Of course, it is possible that this species occurred in different regions of Africa that did not preserve fossils, such as central African biomes.

The multiproxy data in this study, particularly the vegetation proxies from ET03-168/166, demonstrate that middle Pliocene hominin fossils in the Turkana Basin were most closely associated with mesic grasses and mixed C₃–C₄ biomass within a region that likely included substantial arid-adapted C₃ biomass (Gibert et al., 2022). This adds to a growing body of literature indicating that, rather than being tied to C₃, tree-dominated habitats, the Pliocene hominin environmental niche (including the Australopithecus anamensis lineage) included mixed C₃ and C₄ vegetation (i.e., open, wooded grasslands and other types of mixed wooded-grassy vegetation, e.g., Boe et al., 2020). This pattern is further supported by the fact that relatively few Pliocene hominins are found in sedimentary deposits that preserve evidence for extensive woodland vegetation, such as the Lower Omo Valley in Ethiopia (Boe et al., 2002; Villaseñor et al., 2020) and Lothagam (Leakey and Harris, 2003). Thus, we suggest that Pliocene hominins utilized mesic habitats within regions characterized as semiarid and seasonally water-limited, such as those in the present-day Turkana basin. Utilizing mesic environments within semiarid biomes would have increased the ability of early hominins to move and inhabit a wide range of ecosystems by introducing new niche space and potential corridors within the basin of the rift valley that were not available to other species of Pliocene apes (Cuthbert et al., 2017; Joordens et al., 2019).

5. Conclusions

The new hominins from Area 129 and the associated vegetation proxies demonstrate not only that both C₃ and C₄ biomass were important components of Pliocene Turkana Basin ecology but that multiproxy comparisons give a more nuanced view of the region across scales. Though it is unclear how hominins utilized Pliocene biomes beyond consuming a mix of C₃ and C₄ plant types, this study shows that one geographically restricted part of the Turkana Basin offered local habitats ranging from C₄-dominated to C₃-dominated environments that fluctuated over relatively short time intervals (~10⁶ years or less). Periods when C₃ plants dominated were associated with higher levels of arid-adapted C₃ grasses. Combined with previous studies, this study supports the hypothesis that mesic environments within semiarid regions were an important facet of the hominin niche. Multiproxy evidence combined with detailed stratigraphy of the hominin site (ET03-166/168) allows a richer and more nuanced reconstruction of the environments than would any single proxy. Multiproxy isotopic evidence also supports the hypothesis that carbon isotopes from pedogenic carbonates are C₃ biased relative to plant wax biomarkers and enamel isotopes. A similar, spatially focused multiproxy approach in other regions that preserve proportionally more hominins than East Turkana, such as Hadar, Dokika, or Woranso-Mille in Ethiopia, and West Turkana in Kenya, would further define the range of rift valley habitats, provide boundaries for the Pliocene hominin niche, and further resolve the limitations of the most common environmental proxies.

Acknowledgments

We thank the many skilled Kenyan field workers and fossil collectors. This research would not be possible without them. We are grateful to the National Museums of Kenya, NACOSTI, the Koobi Fora Field School, and the many field school students who participated in data collection and processing. We acknowledge Naomi Levin and Christopher Campisano, whose careful geologic and paleoecological records were foundational to this paper. We are grateful to the three anonymous reviewers, the Associate Editor, and the JHE Editor, Andrea Taylor, whose questions and insights improved the manuscript. We also thank Lucas Delezene for carefully editing the manuscript many times. This research was funded by the Leakey Foundation, the National Science Foundation (SBE-1534824 and SBE-1624398), and the Ford Foundation. D.V.P. also acknowledges the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support through grant 2018/2073-6.

Supplementary Online Material

Supplementary online material to this article can be found online at https://doi.org/10.1016/j.jhevol.2023.103385.

References

Albert, R.M., Bamford, M.K., Cabanes, D., 2006. Taphonomy of phytooliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quat. Int. 148, 78–94.

