The South Armenian Block: Gondwanan origin and Tethyan evolution in space and time

Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia 6102, Australia
Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94–96, 72076 Tübingen, Germany
Institute of Geological Sciences, Armenian National Academy of Sciences, 24a Marshal Baghramyan Ave, Yerevan 0019, Armenia

1. Introduction

The present-day tectonic setting of the Arabian-Eurasian collision zone is the result of a complex Late Palaeozoic to Cenozoic geodynamic evolution that is partially preserved in large-scale tectono-stratigraphic terranes stretching from the Mediterranean to Tibet. Integral to this evolution is the Permian breakup of Gondwana and the formation of a collection of microcontinents in the Tethyan realm, termed Cimmeria (Sengör and Yilmaz, 1981), which drifted away from the NE margin of Gondwana during the Perman–Triassic as the Neotethys Ocean opened (e.g., Stampfl and Borel, 2002; Torsvik and Cocks, 2013). These terranes, presently stretching from Turkey to southern China, have successively amalgamated to the southern Eurasian continental margin during the Mesozoic and Cenozoic, closing the Palaeotethys and Neotethys Oceans.

One of these Gondwana-derived fragments is the South Armenian Block (SAB; Knipper and Khain, 1980), a continental fragment presently separated from the former southern Eurasian margin by the Sevan–Akera suture zone in the north and east, and juxtaposed
along another ophiolite-bearing suture zone against the easternmost Taurides and Iran to the south (Fig. 1; Knipper, 1975; Adamia et al., 1981). Its kinematic evolution within the Tethyan realm between the Permian and Late Cretaceous remains enigmatic, chiefly because of the limited amount of available geological evidence. Although its Gondwanan origin has long been inferred (Belov and Sokolov, 1973; Aghamalyan, 1978), its affinity with neighbouring Gondwana-derived terranes, especially Central Iran, the Pontides and the Taurides, is not well-understood. In the absence of palaeomagnetic constraints on the position of the SAB during its northward drift, it has been interpreted as a contiguous part of Iran (e.g., Stampfli et al., 1991; Brunet et al., 2003; Adamia et al., 2017), the Taurides (e.g., Okay and Tüysüz, 1999; Barrier and Vrielynck, 2008; Rolland et al., 2012; Meijers et al., 2015), and as a separate micro-continent (van Hinsbergen et al., 2020). Moreover, no unequivocal constraints have yet been placed on the timing of rifting of the SAB from the Gondwanan margin and, as a result, the inferred ages range from Late Permian (~260 Ma) to Early Jurassic (~174 Ma) (Şengör and Yilmaz, 1981; Mart, 1987; Gealey, 1988; Kazmin, 1991; Bazhenov et al., 1996; Stampfli and Borel, 2002; Robertson et al., 2004; Moix et al., 2008).

Currently no consensus exists on the provenance and geodynamic evolution of the SAB within the Tethyan realm. Key questions yet to be answered by observational data include: (1) When did the SAB start drifting from the Gondwanan margin?; (2) What is its relation to the neighbouring terranes of present-day Turkey and Iran?; and (3) How did the SAB evolve and interact in the Mesozoic Tethyan realm? Here, we present the first U-Pb geochronological and trace-element data on zircons, coupled with geochemical compositions of their metamorphic host rocks that

Fig. 1. Tectonic maps of the circum-Caucasian region. (a-b) Maps presented in recent review papers by Rolland (2017) and Adamia et al. (2017), respectively, illustrating the ambiguous tectonic affinity of the South Armenian Block. (c) Geological map of the Tethyan belt from eastern Turkey to western Iran, highlighting the Lesser Caucasus, Mesozoic and Cenozoic intrusive rocks and ophiolites (after Mederer et al., 2014, and references therein) and main tectonic units (van der Boon et al., 2018, and references therein). IAES = Izmir-Ankara-Erzincan suture; SAB = South Armenian Block; SASZ = Sevan Akera suture zone; SKIA = Somkheto Karabakh Island Arc; SSZ = Sanandaj-Sirjan zone; UD = Urumieh Dokhtar magmatic arc; ZSZ = Zagros suture zone.
consist part of the uplifted SAB basement, as well as $^{40}\text{Ar}/^{39}\text{Ar}$ ages and Sr-Nd-Pb isotope and geochemical compositions of hitherto unreported mafic to intermediate Mesozoic magmatism in the Late Devonian sedimentary cover of the SAB. These new results are used to reconstruct the geodynamic history of the SAB and interpret its evolution in the context of the Permian–Triassic breakup of the NE Gondwanan margin and the Mesozoic kinematic history of the Tethyan realm.

2. Geological setting

The Middle East–Caucasus region comprises a series of Gondwana-derived continental blocks that successively accreted to the southern Eurasian margin upon closure of the Palaeotethys and Neotethys Oceans in Palaeozoic to Cenozoic times (e.g., Barrier and Vrielynck, 2008). Here the focus is on the SAB, the central region between the contrasting palaeotectonic settings of Turkey and Iran (Fig. 1).

2.1. Iran

In Iran, Gondwana-derived Cimmerian blocks amalgamated to the Eurasian margin during the Late Triassic (Mouthereau et al., 2012; McQuarrie and van Hinsbergen, 2013) as a result of the northward subduction and closure of the Palaeotethys ocean during Permian–Triassic times (Berberian and King, 1981; Sengör, 1987; Stampfli, 2000). The Central Iran block is later separated into multiple continental domains due to the opening of back-arc basins (from E to W: Lut, Tabs, Yazd; Fig. 1), and are now separated by sutures with remnants of Cretaceous ophiolites (Shafaii Moghadam and Stern, 2015) and major faults (Alavi, 1991). These domains, often termed “Cadomian”, contain Ediacaran–Cambrian (600–520 Ma) crust (Hasanzadeh et al., 2008; Azizi et al., 2011; Jamshidi Badr et al., 2013; Shafaii Moghadam et al., 2015). This Central Iran block is bounded to the north by sutures in the Alborz and Kopet-Dagh mountains, to the east by the Sistan suture zone, and to the south by the Neotethys suture and the Arabia-derived Zagros fold-and-thrust belt (see Agard et al., 2011; Shafaii Moghadam and Stern, 2014). The Sanandaj-Sirjan zone, extending from NW to SE Iran, hosts a volcanic arc of Jurassic and younger age (e.g., Berberian and King, 1981; Sengör, 1990; Sheikhholeslami et al., 2008; Fazlnia et al., 2009), widely interpreted to reflect northeasterad subduction of the Neotethys since the Jurassic (Berberian and King, 1981; Davoudzadeh and Schmidt, 1981) or Late Jurassic times (Mohajel and Fergusson, 2000). Regardless of the interpretation of the Sanandaj-Sirjan Zone, Neotethys Ocean subducted beneath the Iranian Cimmerian blocks from Jurassic times until Arabia collided with Eurasia (Agard et al., 2011).

2.2. Turkey

Turkey’s tectonic history is markedly different from that of Iran. Two continent-derived fold-and-thrust belts—the Pontides and the Anatolide-Tauride block—are separated by the Izmir-Ankara suture zone (Fig. 1). The Pontides have been part of the southern Eurasian margin since at least Jurassic time (Dokuz et al., 2017), and is thought to have drifted away from Gondwana during the Late Triassic (~240 Ma) reaching the southern Eurasian margin during the Early Jurassic, and opening the Neotethyan Ocean in its wake (~180 Ma; Sengör and Yilmaz, 1981; van Hinsbergen et al., 2020). Continental lithosphere of the Anatolide-Tauride block, in central and southern Turkey, separated from Gondwana during the Early Jurassic (200–190 Ma; van Hinsbergen et al., 2020). The Anatolides comprise several metamorphosed and exhumed masses, such as the Kirşehir block, Taşvancı zone, Afyon zone, and the Menderes massif. In contrast, the Taurides are composed of mainly non-metamorphosed sedimentary rocks in the form of a thin-skinned fold and thrust belt. Both Anatolide and Tauride units are buried below Late Cretaceous ophiolites (Özgül, 1984), where the Taurides host the non-metamorphosed, foreland accreted equivalents of some of the Anatolide massifs that were buried deeper (van Hinsbergen et al., 2016). The Pontides were once separated from the Anatolide-Tauride block by one or more strands of the Neotethys Ocean, relics of which are found in the form of mélanges and in ophiolites throughout Turkey (e.g., Yilmaz and Yilmaz, 2013; Dilek and Furnes, 2019). Much of eastern Anatolia is known as the Eastern Turkish High Plateau, which has long been described as a subduction-accretion prism (Sengör and Yilmaz, 1981; Sengör et al., 1991). However, below the widespread Upper Neogene volcanic rocks of that plateau are Paleozoic to Cretaceous metamorphosed and non-metamorphosed continental rocks that are overlain by Cretaceous ophiolites and intruded by Upper Cretaceous and younger volcanic arc rocks (Kuscu et al., 2010; Yilmaz et al., 2010; Topuz et al., 2017). These rocks are equivalent to the northern Taurides and show that continental crust of the Taurides continues to the Iran-Turkey border (van Hinsbergen et al., 2020).

2.3. South Armenian Block

The Lesser Caucasus and Armenian Highland form a central region between the contrasting palaeotectonic systems of Turkey and Iran. These regions were separated by a plate boundary since Permian times (Stampfli and Borel, 2002), likely in the form of a major transform fault system. Palaeogeographic reconstructions suggest that this fault system could have been reactivated since the Early Eocene (Barrier and Vrielynck, 2008). The Arax valley fault (Fig. 1c; Jackson and McKenzie, 1984) has been suggested to be a vestige of this transform system, based on substantial differences in convergence between the Lesser Caucasus and Talysh of NW Iran (van der Boon et al., 2018).

The Lesser Caucasus, located south-west of the Greater Caucasus (Fig. 1c), represents a Jurassic-to-Eocene volcanic arc (Somkheto-Karabakh arc) built along the Eurasian continental margin and is considered part of the regional Pontide–Lesser Caucasus–Alborz volcanic palaeo-arc system (Lordkipanidze, 1980). Its southern and south-western border with the SAB is marked by the Sevan-Akera suture (Knipper, 1975; Adamia et al., 1980) that is demarcated by a belt of Jurassic ophiolites (Amasia, Sevan, and Stepanavan) that forms part of a regional ophiolite suture zone extending further west to the Ankara–Erzincan ophiolites south of the Pontides (Knipper and Khain, 1980; Hassig et al., 2013b). These ophiolites contain ~170–180 Ma oceanic crust, suggested to have formed in the upper plate of a Jurassic subduction zone (Galyan et al., 2007, 2009; Rolland et al., 2010; Hassig et al., 2013a; Topuz et al., 2013a, 2013b). They are overlain by pillow lavas or Middle–Upper Jurassic radiolarian cherts (Danelian et al., 2006, 2010, 2016). The Sevan-Akera suture zone also hosts an ophiolite-derived, Coniacian–Sanctonian (~84–90 Ma) flysch (Sosson et al., 2010, and references therein), which unconformably overlies the ophiolites as a forearc basin deposit, and which connects to the Lesser Caucasus arc. This demonstrates that the Jurassic ophiolites formed the Lesser Caucasus forearc and that ophiolite obduction effectively dates the collision of the SAB and Lesser Caucasus (van Hinsbergen et al., 2020), as is the case in the eastern Pontides (Topuz et al., 2014).

The continental SAB is generally assumed to be of peri-Gondwana origin, owing to its Proterozoic metamorphic basement ages (Knipper and Khain, 1980; Aghamalyan, 2004). This metamorphic basement is of Cadomian–Neoproterozoic age and outcrops in the Tsakhkunyats Massif, 40 km north of Yerevan.
Fig. 2. Geological map of the Tsakhkunyats metamorphic basement of the SAB compiled with use of maps and sections by Paffenholz (1952), Arakelyan (1957), Aghamalyan (1983), Meliksetian (1989), Kharazyan (2005), and the authors’ data. Locations of the studied samples with prefix “TSK-” are shown. Legend: Pliocene-Quaternary. 1. Q Al-Lac = Quaternary alluvial and lacustrine clastic deposits; 2. J ox, Q = Quaternary volcanic series: lava flows of andesites, dacites and pyroclastic deposits; 3. P 2 N 2 = Pliocene volcanic series: lava flows of andesites, dacites, rhyolites, and pyroclastic deposits. Eocene. 4. N 2 = Pliocene volcanic series: lava flows of andesites, dacites, rhyolites, and pyroclastic deposits. 5. P 2 N 2 = Middle Eocene: Tezhsar, Aghavnadsor, and Meghradsor intrusive complexes: alkali pseudoleucite and nepheline syenites, monzonites, syenogranites, diorites, monzodiorites (39.5–42.4 Ma; ages after Sokół et al., 2018; Grosjean et al., 2022); 6. P 2 N 2 = Middle Eocene volcanic, volcano-sedimentary and sedimentary suite. Upper Cretaceous. 6. P 2 N 2 = Upper Cretaceous: limestones, marls, conglomerates; 7. P 2 N 2 = Lower Cretaceous tonalitic intrusive formation, Gegharot and Mirak intrusives, tonalites and granodiorites (140–143 Ma; Galoyan et al., 2020). Jurassic. 8. P 2 N 2 = Upper Jurassic tonalitic intrusive formation, Aghveran, Artavaz and Hankavan intrusives, tonalites and granodiorites (155–161 Ma; Galoyan et al., 2020); 9. J Apn = Jurassic (?) Aparan volcanic, volcano-sedimentary suite and sedimentary suite. Late Palaeozoic. 10. P 2 N 2 = Middle–Late Permian trondhjemite (plagiogranite) intrusive complex (262.5 ± 4.3 Ma; this work and 250–270 Ma after Galoyan et al., 2020). 11. P 2 N 2 = Neoproterozoic: Bjni metamorphic complex, granite-gneisses and migmatites (558 ± 14 Ma; this work and 533–554 Ma after Galoyan et al., 2020); 12. P 2 N 2 = Neoproterozoic: Mesoproterozoic: Hankavan metamorphic complex, amphibolites, epidote-amphibole green schists, mica schists and marbles; 15. P 2 N 2 = Neoproterozoic: Aparan suite, quartzite schists, graphite-almandine-andalusite-mica schists, marbles. 16 = Faults; 17 = Pliocene and Quaternary volcanic centres. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Intra-oceanic and emplaced Cretaceous supra-subduction zone

Two different subduction systems were involved: the first was key) to the Khoy ophiolite (NW Iran near the Turkish border). Van Hinsbergen et al. (2020) provide a comprehensive interpretation of the SAB’s tectonic contacts with neighbouring blocks and proposed an alternative model. They infer that a suture zone (Yilmaz et al., 2014), termed Kağızman-Khoy suture, separates the SAB from the easternmost Taurides. It consists of a belt of ophiolite (NW Iran near the Turkish border). Two different subduction systems were involved: the first was intra-oceanic and emplaced Cretaceous supra-subduction zone ophiolites onto the Taurides (ca. 78–83 Ma metamorphism; Topuz et al., 2017), whereas the second closed the ocean basin and juxtaposed the easternmost Taurides and the SAB. Van Hinsbergen et al. (2020) note that the latter closure likely happened after ca. 75–80 Ma, when the SAB collided with the Transcaucasus (Rolland et al., 2012) and as a consequence the subduction system moved south.

Van Hinsbergen et al. (2020) further interpreted that the SAB detached from the Gondwana continent at ca. 240 Ma as part of the Pontides, and separated it from the Pontides by a ridge jump at ca. 230 Ma. In contrast, uncoupling of the Taurides from Gondwana did not start earlier than ca. 190–200 Ma (van Hinsbergen et al., 2020).

3. Samples

3.1. Metamorphic basement

The sampled Pan-African (Cadomian–Neoproterozoic) basement that outcrops in the Tsakhkunyats Massif, 40 km north of Yerevan, includes two Precambrian complexes: (1) Arzakan and (2) Hankavan (Fig. 2; Aghamalyan, 2004). The Arzakan complex (from which samples TSK-1 to 5 were taken; Table 1) consists of 1500-m thick parashists metamorphosed in the almandine-amphibolite facies, and 2000-m thick metavolcanics, phyllites (sample TSK-5), marbles, and schists metamorphosed in the greenschist facies (Adamia et al., 2011). The complex is intruded by granite-gneisses (sample TSK-3) having a Rb/Sr isochron age of 620 Ma (Aghamalyan, 2004) and zircon U-Pb ages of 533–554 Ma (Galoyan et al., 2020). The 1900-m thick lower part of the Hankavan complex was obducted over the Arzakan complex during the Pan-African orogenic events. It represents an oceanic crust–type assemblage, predominantly containing metakomatiite-basalt amphibolites (sample TSK-8) with thin sedimentary intercalations (Adamia et al., 2011). The 1000-m thick upper part of the Hankavan complex consists of metabasalt and metaandesite with beds of marble and quartz-mica schists (sample TSK-6). Both parts of the complex contain serpentinite lenses. The complex is cut by trondhjemite (plagiogranite) intrusions (sample TSK-7) having a Rb/Sr isochron age of 685 ± 77 Ma (Aghamalyan, 2004), while more recent U-Pb zircon dating yielded 250–270 Ma (Galoyan et al., 2020). Trondhjemite TSK-7 was also studied to obtain palaeomagnetic data (details in Supplementary Data S1). The petrography of the Tsakhkunyats rock samples are in Supplementary Data S2.

3.2. Mafic to intermediate sills and dykes

Fig. 3 shows the sedimentary cover of the SAB, which consists of folded Late Devonian to Late Triassic platform sediments (Aslanyan, 1958; Arakelyan, 1964). Mafic to intermediate sills and dykes penetrated this cover at several locations in Armenia and Nakhichevan, i.e., at Khor Virap (Ginter et al., 2011; Avagyan et al., 2018), Arpi (Arakelyan, 1952) and the Erakh-Negram zone in Nakhichevan (Khanzatian, 1992) (Fig. 4). For this study, Khor Virap and Arpi were sampled and analysed for the first time and results are integrated with geochemical and geochronological data reported for Negram and Darasham (Fig. 4; Karyakin, 1989; Khanzatian, 1992). The petrography of these rocks is in Supplementary Data S2.

The Khor Virap section, located 30 km south of Yerevan (Fig. 3b), consists of Upper Devonian–Lower Carboniferous shallow marine carbonates and siliciclastics (Ginter et al., 2011) with several distinct meter-scale mafic sills exposed on the hills near the Khor Virap monastery (Fig. 3). The section forms part of the Ararat depression, which is filled mostly by Quaternary lacustrine sediments, and represents an uplifted unit situated on a horst (Milanovsky, 1968) or related to local contractional tectonics associated with thrust faulting (Avagyan et al., 2015). The three sills (samples KV-1, KV-2, KV-3) lie conformably within the Famennian sedimentary units (Fig. 3b; Ginter et al., 2011). KV-3 is sampled from the largest well-exposed sill (~4 m thick), located between limestone (upper contact) and siliciclastics (lower contact) with well-pronounced thermal contacts on both sides (Fig. 3d). The KV-1 sill as well as an adjacent quartzite (metamorphosed Upper Devonian sandstone) were studied to obtain palaeomagnetic data (details in Supplementary Data S1).

The Arpi area (Ertych section; Serobyan et al., 2019), located 60 km SE of Khor Virap, also hosts several igneous sills and dykes. The sills (samples ARP-1, ARP-2 and ARP-4) also lie conformably within Famennian limestones and siliciclastics (Fig. 3c). In addition, well-exposed igneous dykes (samples ARP-3 and ARP-5) represent cross-cutting magmatic bodies interpreted as volcanic necks (Fig. 3f). In an earlier stratigraphic study on Upper Palaeozoic sediments (Arakelyan, 1952) these dykes were interpreted as centres of volcanic eruptions, although they were assumed to be of pre-Permian age. Sills ARP-1.4 and dyke ARP-3 were used to obtain palaeomagnetic data (details in Supplementary Data S1).

4. Methods

4.1. Whole-rock elements and isotopes

Whole-rock compositions of the studied samples were obtained by X-ray fluorescence spectrometry (XRF; for major elements) and inductively coupled plasma mass spectrometry (ICP-MS; for trace elements) at the Vrije Universiteit Amsterdam, using a Philips PW1404/10 XRF and Thermo Electron X-series-II ICP-MS, following the procedure of Klaver et al. (2017) and a modified procedure after Eggins et al. (1997), respectively. USGS reference material BHVO-2 was used as a secondary standard throughout ICP-MS analysis and indicated accuracy within 10% of the GeoReM preferred values (Jochum et al., 2016) for all reported trace elements (Supplementary Data S3). Uncertainties are typically < 2% (2 RSD) for major oxides and < 5% (2 RSD) for trace elements.
Isotope analyses for U, Pb and Sm, as well as Nd in samples ARP-3 and ARP-4, were conducted using a Thermo Fisher Neptune Multicollector (MC)-ICP-MS, following standard procedures (Font et al., 2012). Neodymium (for samples KV-1,2 and ARP-1, due to low Nd contents) and Sr isotope compositions were measured by thermal ionisation mass spectrometry (TIMS) using a Thermo Scientific Triton Plus instrument, following procedures outlined in Koornneef et al. (2013) and Klaver et al. (2015). Rubidium was measured by ionisation mass spectrometry (TIMS) using a Thermo Scientific Triton Plus instrument, following procedures outlined in Koornneef et al. (2013) and Klaver et al. (2015).

Table 1
Metamorphic basement and igneous intrusive rock sample information. Tectonic units refer to the legend shown in Fig. 2. [1] Ginter et al. (2011).

<table>
<thead>
<tr>
<th>Location/sample</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Tectonic unit</th>
<th>Lithology</th>
<th>Location description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arzakan complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSK-1</td>
<td>40.485868</td>
<td>44.596547</td>
<td>PR2-Arz (Bjni suite)</td>
<td>Mica schist</td>
<td>4.1 km N of Arzakan</td>
</tr>
<tr>
<td>TSK-2</td>
<td>40.503482</td>
<td>44.580877</td>
<td>PR4-Agh (Aghveran suite)</td>
<td>Metarhyolite</td>
<td>6.4 km NNW of Arzakan</td>
</tr>
<tr>
<td>TSK-3</td>
<td>40.471182</td>
<td>44.647065</td>
<td>PR2-Bj (Granite-gneiss Fm; Bjni massif)</td>
<td>Granite-gneiss</td>
<td>2.0 km N of Bjni (Vankidzore valley)</td>
</tr>
<tr>
<td>TSK-4</td>
<td>40.467222</td>
<td>44.648081</td>
<td>PR3-Arz (Vankidzore suite)</td>
<td>Mica schist</td>
<td>1.2 km N of Bjni (Vankidzore valley)</td>
</tr>
<tr>
<td>TSK-5</td>
<td>40.464362</td>
<td>44.647855</td>
<td>PR3-Arz - PR3 (Berdiatik suite)</td>
<td>Metaarkose phylite</td>
<td>1.2 km N of Bjni (Vankidzore valley)</td>
</tr>
<tr>
<td>Hankavan complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSK-6</td>
<td>40.639147</td>
<td>44.506208</td>
<td>PR4-Hank (Hankavan suite)</td>
<td>Green schist (metapelite)</td>
<td>1.8 km ENE of Hankavan (Marmarik valley)</td>
</tr>
<tr>
<td>TSK-7</td>
<td>40.61916</td>
<td>44.421675</td>
<td>pPyP2 - (Middle-Late Permian trondhjemite intrusive complex)</td>
<td>Trondhjemite</td>
<td>3.5 km ENE of Lusagyugh</td>
</tr>
<tr>
<td>TSK-8</td>
<td>40.61916</td>
<td>44.421675</td>
<td>PP (Hankavan complex, Kasalkh)</td>
<td>Metakomatite basalt amphibolite</td>
<td>3.5 km ENE of Lusagyugh</td>
</tr>
<tr>
<td>Igneous intrusive rocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khor Virap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KV-1</td>
<td>39.881272</td>
<td>44.573578</td>
<td>Famennian carbonates-siliciclastics [1]</td>
<td>Basalt</td>
<td>500 m NNW of Khor Virap monastery</td>
</tr>
<tr>
<td>KV-2</td>
<td>39.883244</td>
<td>44.574600</td>
<td>"</td>
<td>Basalt</td>
<td>"</td>
</tr>
<tr>
<td>KV-3</td>
<td>39.883739</td>
<td>44.575414</td>
<td>"</td>
<td>Basalt</td>
<td>"</td>
</tr>
<tr>
<td>Arpi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARP-1</td>
<td>39.733733</td>
<td>45.248772</td>
<td>Famennian limestones</td>
<td>Basalt</td>
<td>1 km SW of Arpi village</td>
</tr>
<tr>
<td>ARP-2</td>
<td>39.733775</td>
<td>45.249217</td>
<td>"</td>
<td>Basalt</td>
<td>"</td>
</tr>
<tr>
<td>ARP-3</td>
<td>39.730550</td>
<td>45.252692</td>
<td>"</td>
<td>Andesite</td>
<td>"</td>
</tr>
<tr>
<td>ARP-4</td>
<td>39.731139</td>
<td>45.253100</td>
<td>"</td>
<td>Basalt</td>
<td>"</td>
</tr>
<tr>
<td>ARP-5</td>
<td>39.732011</td>
<td>45.253333</td>
<td>"</td>
<td>Andesite</td>
<td>"</td>
</tr>
</tbody>
</table>

Zircon grains were separated from the crushed fractions of samples TSK-1,3,5,7 and ARP-1,3,5 by conventional gravimetric (heavy liquid) and magnetic separation techniques at the Vrije Universiteit Amsterdam. They were handpicked under a binocular microscope, mounted in epoxy resin and polished to expose grain centres for characterisation of internal structures by back-scattered electron (BSE) and cathodoluminescence (CL) imaging at Utrecht University.

Zircon trace element and U-Pb isotope analyses were obtained by laser ablation (LA) ICP-MS, using a GeoLas 200Q Excimer laser ablation system (193-nm wavelength) coupled to a Thermo Finnigan Element 2 sector field ICP-MS instrument, at Utrecht University. The laser was operated using a spot size of 20–40 μm, a pulse repetition rate of 10 Hz and an energy density of 5 J/cm2. For the trace-element analyses, offline time-integrated normalisation for instrumental drift was performed using the GLITTER software. For the trace-element analyses of zircons, the samples were calibrated to the NIST SRM 612 glass standard using an assumed fixed concentration of 32.45 wt% SiO₂ (151.684 ppm Si) in zircon (Anczkiewicz et al., 2001) measured on the interference-free isotope 29Si. For U-Pb dating, the four Pb isotopes, 232Th, 235U and 238U were measured. The 91500 zircon reference material (1,065 Ma; Wiedenbeck et al., 2004) was used as an external standard. Results for 91500 zircon ages yielded mean age of 1,065 ± 7 Ma (95% confidence level, MSDW = 0.72, probability = 0.92; Supplementary Fig. S1). Uncertainties for trace elements in zircon are typically smaller than 10% (2 RSD; Mason et al., 2008). U-Pb concordia diagrams, probability density plots and weighted averages were calculated using Isoplot 4. Cathodoluminescence images of the zircons with spot locations are in Supplementary Data S4.

4.3. 40Ar/39Ar dating

Samples KV-1, KV-2, ARP-3, and ARP-4 were crushed with a rock splitter and jaw crusher and consecutively washed and thoroughly cleaned in an ultrasonic bath. The samples were sieved into different size fractions. Phenocrysts were separated from the groundmass for sample ARP-4 and ~100 mg groundmass was irradiated together with a Drachenfels sandine fluence monitor (25.
Fig. 3. (a) Schematic map of the south Armenian-Nakhichevan area, showing the distribution of Upper Devonian–Lower Carboniferous sediments and the locations of the Khor Virap and Arpi (Ertych) areas (modified after Serobyan et al., 2019). Geological maps and schematic cross-sections through the Middle Palaeozoic of (b) Khor Virap (redrawn and modified after Ginter et al., 2011) and (c) Arpi (this study) with sample localities (prefixes “KV-” and “ARP-”, respectively). Field photographs of (d) Khor Virap sill KV-3, (e) Arpi sill ARP-4, and (f) Arpi dyke ARP-3 within the Frasnian–Famennian sediments.
52 ± 0.08 Ma based on Wijbrans et al. (1995) and calibrated to Kuiper et al. (2008) for 18 h in the Oregon State University Triga reactor, CLICIT facility (VU109). In addition, two plagioclase samples (KV-2, ARP-3) and one amphibole sample (KV-1) were separated using standard heavy liquid and magnetic mineral separation procedures and ~100 mg of each sample was irradiated in the same irradiation. All samples underwent a final hand-picking step under an optical microscope before irradiation.

40Ar/39Ar analyses were performed at the geochronology laboratory of the Vrije Universiteit Amsterdam on a Helix MC noble gas mass spectrometer. Samples and standards were fused and/or incrementally heated with a Synrad CO$_2$ laser beam and released gas was exposed to a hot NP10 getter, a hot St172 getter, Ti sponge at 500 °C, a Lauda cooler at −70 °C and analysed on the Helix MC.

The five argon isotopes were measured simultaneously with 40Ar on the H2-Faraday position with a 1013 Ω resistor amplifier, 39Ar on the H1-Faraday with a 1013 Ω resistor amplifier, 38Ar on the AX-CDD, 37Ar on the L1-CDD and 36Ar on the L2-CDD (CDD = Compact Discrete Dynode). Gain calibration for the CDDs and Faraday cups is done by peak jumping a CO$_2$ reference beam on all detectors in dynamic mode. In a few cases calibration of Faraday cups was checked by peak jumping the 40Ar beam between H2 and H1. All intensities were corrected relative to the L2 detector. Air pipettes were run every ten hours and were used for mass discrimination corrections. The atmospheric air value 40Ar/36Ar = 298.56 from Lee et al. (2006) was used in age calculations. Detailed analytical procedures for the Helix MC are described in Monster (2016). The correction factors for neutron interference

Fig. 4. (a) Simplified geological map of the south Nakhichevan area and adjacent part of NW Iran (modified after Alizadeh, 2008; Ghaderi et al., 2016), showing the distribution of Devonian to Cretaceous sediments and the locations of Lower Jurassic igneous rocks in the Negram area (studied by Kayakin, 1989; Bazhenov et al., 1996) and the Middle Triassic (232–243 Ma) and Early Cretaceous (104 and 126 Ma) igneous intrusions of the Darasham section (Khanzatian, 1992). (b) Cross-section of the Darasham section (redrawn after Khanzatian, 1992).
reactions were \((2.64 \pm 0.02) \times 10^{-4}\) for \(^{36}\text{Ar}/^{37}\text{Ar}\)\(_{\text{Ca}}\), \((6.73 \pm 0.04) \times 10^{-4}\) for \(^{39}\text{Ar}/^{37}\text{Ar}\)\(_{\text{Ca}}\), \((1.21 \pm 0.003) \times 10^{-2}\) for \(^{38}\text{Ar}/^{39}\text{Ar}\)\(_{\text{K}}\), and \((8.6 \pm 0.7) \times 10^{-4}\) for \(^{40}\text{Ar}/^{39}\text{Ar}\)\(_{\text{K}}\). All errors are quoted at the 2\(\sigma\) level and include all analytical errors. All relevant analytical data for age calculations can be found in the Supplementary Data S5.

5. Results

5.1. Metamorphic basement rocks

Descriptions and mineral contents of the SAB metamorphic basement rock samples are given in Table 1. Detailed petrographic observations of the rocks, as well as their isotope, major and trace element geochemistry, are provided in Supplementary Data S2 and S3, respectively. Two of the samples, TSK-3 and TSK-7, represent igneous intrusive bodies that penetrated the basement of the SAB.

Granite gneiss sample TSK-3 has a trace element geochemistry typical for granites formed in active continental margins and volcanic arcs and Neoproterozoic–Early Cambrian (541–547 Ma) subduction-related granitoids and metamorphic rocks from Iran (Balaghi Einalou et al., 2014). VAG = volcanic arc granites; ORG = ocean ridge granites; WPG = within-plate granites; COLG = collision granites. (d) Sr (ppm) versus Sr/Y (Defant and Drummond, 1990), with fields for typical arc rocks and TTG/adakites. (e) \((\text{Ba}/\text{Zr})_{\text{N}}\) versus \((\text{La}/\text{Yb})_{\text{N}}\), with fields for slab-derived adakites (Yogodzinski et al., 2015) and lower crust-derived adakites (Guan et al., 2012). Comparable data from rocks from the same respective metamorphic units of TSK-3 (gneisses) and TSK-7 (trondhjemites) studied by Galoyan et al. (2020) are also shown.

Fig. 5. Trace-element and Sr-Nd isotope diagrams for granite gneiss TSK-3 and trondhjemite TSK-7. (a) Th versus Ta (Schandl and Gorton, 2002). (b) Ta + Yb versus Rb (ppm) and (c) Yb versus Ta (ppm) (Pearce et al., 1984), illustrating the similarity between granite gneiss TSK-3 and granitic rocks associated with active continental margins and volcanic arcs and Neoproterozoic–Early Cambrian (541–547 Ma) subduction-related granitoids and metamorphic rocks from Iran (Balaghi Einalou et al., 2014).

Granite gneiss sample TSK-3 has a trace element geochemistry typical for granites formed in active continental margins (Fig. 5a) (Schandl and Gorton, 2002) and volcanic arcs (Fig. 5b-c) (Pearce et al., 1984). It also has compositional similarities with Neoproterozoic–Early Cambrian (541–547 Ma) subduction-related granitoids and metamorphic rocks from Iran studied by Balaghi Einalou et al. (2014) (Fig. 5), which constitute part of the crystalline basement underlying the Sanandaj–Sirjan zone, Central Iran and the Alborz Mountains (Hassanzadeh et al., 2008).
Trondhjemite (“plagiogranite”) sample TSK-7, which is composed of euhedral plagioclase (60–75%) and quartz (25–40%), represents a suite of metamorphosed leucocratic intrusions in the SAB basement (Fig. 2). The metamorphic grade of these trondhjemites is low compared to the surrounding amphibolites and metapelitic mica schists, as evidenced by the degree of preservation of primary magmatic zoned plagioclases and the absence of schistosity. A silica–total alkali classification (after Cox et al., 1979) confirms its granitic nature, and its trace-element content plots in the field of arc granites (Fig. 5b–c) (Pearce et al., 1984). The high Sr/Y ratio (234) at low Y (1.3 ppm) indicates an affinity with adakite/TTG rocks (Fig. 5d) (Defant and Drummond, 1990).
5.1.1. Zircon geochronology and geochemistry

A total of 130 spots on 58 zircon grains from samples TSK-1,3,5,7 was analysed for U-Pb ages by LA-ICP-MS (Supplementary Data S3 and S4). Back-scattered electron (BSE) and transmitted light images of representative zircons are shown in Fig. 6. The results for magmatic samples (TSK-3 and TSK-7) are plotted on weighted average (WA) and concordia diagrams (Fig. 7). For detrital samples (TSK-1 and TSK-5), the results are presented on probability/density plots in Fig. 8 (with all uncertainties are given at the 2σ level). In the following discussion, U-Pb (238U/206Pb) ages are used for zircons younger than 1.0 Ga, and Pb-Pb (207Pb/206Pb) ages are used for older zircons.

The U-Pb zircon ages for granite gneiss sample TSK-3 spread along the concordia from 600 to 440 Ma (Fig. 7). Core ages range from 600 to 520 Ma (WA = 540 ± 9 Ma), whereas rim ages range from 520 to 440 Ma (WA = 461 ± 14 Ma). The probability–density diagram (not shown) shows a peak at 540 Ma for the zircon cores. This age is defined by the most concordant (98–102%) zircons, suggesting that this is the age of granite formation.

The U-Pb zircon ages for trondhjemite sample TSK-7 yield a WA age of 262.5 ± 4.3 Ma (Fig. 7c) and concordia intercept of 262.2 ± 5.0 Ma (Fig. 7d). The former is taken as the intrusion age.

Mica schist TSK-1 and metaarkose phyllite TSK-5 are host to a substantial number of detrital zircons. U-Pb and Pb-Pb zircon ages show considerable variability, ranging from 3,650 Ma to 86 Ma (Fig. 8). These zircons can be divided into 5 age groups. Remarkably, the core of one grain from TSK-1 yields Eoarchean (3,650 Ma) ages (photo in Fig. 6). A Neoarchean–Palaeoproterozoic group comprising mostly TSK-1 zircons and one TSK-5 zircon, defines an age peak at ~2,500 Ma. Another Palaeoproterozoic group (1,655–1,850 Ma) is observed, consisting only of TSK-1 zircons, as is a Meso–Neoproterozoic group at 970–1,040 Ma. The majority of the zircons, both from TSK-1 and TSK-5, constitute a Neoproterozoic group, ranging from 527 to 850 Ma. This group defines a marked peak at ~600 Ma. TSK-1 also hosts a few Cretaceous (86–120 Ma) zircons.

All zircon grains were analysed for trace elements by LA-ICP-MS (Supplementary Data S3 and S4). Virtually all zircons have Th/U ratios between 0.3 and 1 (Fig. 9a), indicative of magmatic zircons (Teipel et al., 2004 and references therein). The overall range in Y content versus U/Yb ratios plot entirely within the field of continent-derived zircons (Grimes et al., 2007) and predominantly within that of continental granitoids (Fig. 9b) (Ballard et al., 2002; Belousova et al., 2006). Rare-earth element concentrations for zircons, normalised to C1 chondrite (McDonough and Sun, 1995), are typical of growth under magmatic conditions, with TSK-3 and TSK-5 showing minor negative Eu anomalies (Fig. 9c,d). TSK-7 has no negative Eu anomaly. They collectively indicate HREE enrichment up to about 5,000 times C1 chondrite, with marked HREE fractionation (YbN/GdN > 1).

5.2. Mafic to intermediate sills and dykes

5.2.1. Elemental and isotope geochemistry

The studied sills at Khor Virap and Arpi are predominantly basaltic rocks that are mildly alkaline to sub-alkaline (Fig. 10a) (Le Bas et al., 1986) with SiO2 contents ranging from 47.7 to 50.5 wt%. Detailed petrographic observations are listed in Supplementary Data S2. Conversely, dyke sample ARP-3 and ARP-5 classify as andesites (SiO2 = 61.0–61.3 wt%). All samples are calcalkaline (Peccerillo and Taylor, 1976) and have relatively low K2O content, ranging from 0.4 to 1.6 wt%. MgO content is moderate (3.7–8.2 wt%), with samples showing variable Mg-numbers (44–
55; Mg\# = 100 \times \text{Mg}/(\text{Mg} + \text{Fe}^{2+})]. Andesites ARP-3 and ARP-5 are further marked by lower FeO_{tot} (6.0 vs. 11.5–12.1 wt%, respectively), CaO (5.4–5.8 vs. 8.0–12.5 wt%) and TiO_{2} contents (0.8–0.9 vs. 1.8–2.9 wt%). The basalts, with the exception of sample KV-2, show enrichments in virtually all incompatible trace elements, with high LILE, HFSE and LREE abundances and relatively low LILE/HFSE values (e.g., Ba/Nb = 6–12). Primitive mantle-normalised incompatible trace element patterns (Fig. 10c-d) indicate that the main group of basalts from both sections closely resemble typical OIB. Although the three Arpi sills show patterns almost identical to the OIB-like Khor Virap samples, they have slight negative Pb anomalies (Pb/Pb* = 0.4–0.7). In contrast, the pattern for sample KV-2 is flatter, characterised by lower incompatible trace-element abundances, including LREE, LILE and HFSE, and displays a positive Pb anomaly (Pb/Pb* = 1.7; Fig. 10d). It is marked by lower LREE/HREE than OIB-type compositions (e.g., La/Yb = 5.9 vs. 9.8–13.5), as well as slightly higher LILE/HFSE (e.g., Ba/Nb = 14.6 vs. 6–12). It shows a clear affinity with typical P-MORB compositions (e.g., Schilling et al., 1983; Saccani et al., 2013b, 2014), except for slightly lower Nb, Ta, and Sr contents.

Andesites ARP-3 and ARP-5 collectively have different primitive mantle-normalised patterns (Fig. 10c) and are relatively enriched in the most incompatible trace elements. They show patterns similar to P-MORB, except for substantial negative Nb-Ta and Ti anomalies, slight positive Th and U anomalies and higher contents in several LILE (e.g., Ba, Rb, Cs), and can therefore be classified as subduction-related.

Sr-Nd-Pb isotope compositions of samples KV-1, KV-2, ARP-1, ARP-3 and ARP-4 are shown in Fig. 10e-f (and listed in Supplementary Data S3). Age-corrected values were calculated using the age data from the same samples (next section). Arpi rocks show restricted (87Sr/86Sr), values, ranging from 0.70452 to 0.70511, whereas Khor Virap basalts have slightly higher values (0.70535–0.70642). The highest value corresponds to KV-2, which also shows a distinct trace elemental composition (P-MORB affinity).

5.2.2. 40Ar/39Ar geochronology

The results of the 40Ar/39Ar dating for samples KV-1 (OIB), KV-2 (P-MORB), ARP-3 (andesite), and ARP-4 (OIB) are shown in Fig. 11, listed in Table 2 and Supplementary Data S5. Two replicate heating experiments of amphibole KV-1 (VU109-I3) were performed. The first sample (VU109-I3_1) yields a “plateau” age of 188.5 ± 1.1 Ma (Fig. 11a) for the steps with higher radiogenic yields (>59%), but contains only 29.1% of the 39ArK released. The atmospheric isochron intercept overlaps with air at 2\sigma (289.0 ± 10.3). The majority of the individual heating steps in the full age spectrum range between 169 and 189 Ma. The second experiment (VU109-I3_2) yields a “plateau” of 187.3 ± 0.8 Ma for the middle part of the heating spectrum (39ArK = 40.1%; MSWD = 2.7). The inverse isochron age is identical at 188.4 ± 1.4 Ma with an
40Ar/36Ar intercept of 292.5 ± 7.3. The two experiments are remarkably similar. Although not formally fulfilling definition of a plateau age (a.o., comprising > 50% 39ArK released), the “plateau” age of 188.5 ± 1.1 Ma most probably represents the eruption age.

Two replicate heating experiments of plagioclase sample KV-2 (VU118-I1) show disturbed age spectra with ages starting from 110 Ma, increasing to 245 Ma (I1a) and decreasing to 185 Ma. Note that the initial age step of 110 Ma is remarkably close to the magmatic event observable in the Arpi area (samples ARP-3 and ARP-5) and Darasham (Khanzatian, 1992). The preferred age is 233.7 ± 5.1 Ma (Fig. 11b), comprising 52.9% of the total 39ArK.

For plagioclase of sample ARP-3 (VU109-I4) one incremental heating experiment was performed. The sample shows a decreasing age spectrum. Six consecutive lower temperature heating steps yield a weighted mean age of 124.5 ± 0.5 Ma, comprising only 18.5% of the total 39ArK. Four consecutive higher temperature heating steps seem to define a “plateau” of 112.8 ± 0.5 Ma (Fig. 11c; comprising 28.9% 39ArK) with an atmospheric 40Ar/36Ar intercept (296.3 ± 9.5). This result is in good agreement with the U-Pb zircon ages of 116.7 ± 1.5 Ma for ARP-3 and 115.0 ± 1.4 Ma (Rolland et al., 2019; Hässig et al., 2016a, 2016b, 2017, Rolland et al., 2020). The radiogenic yields are high and an isochron could not be defined due to clustering of data points. Weighted mean ages of the four oldest consecutive steps yielded 230.9 ± 1.5 Ma (MSWD = 35.9; 39ArK = 34.0%, 40Ar* = 88.6%; K/Ca = 0.116 ± 0.007) and 245.4 ± 1.4 Ma (MSWD = 7.4; 39ArK = 28.4%, 40Ar* = 88.4%; K/Ca = 0.143 ± 0.011), respectively. The latter age is preferred and is in remarkable agreement with the U-Pb zircon age of 246.0 ± 3.3 Ma for ARP-1.

5.2.3. Zircon geochronology
In addition to 40Ar/39Ar dating, samples containing zircons were also U-Pb dated, considering the altered nature of the samples studied. A total of 35 zircon grains from samples ARP-1,3,4,5 and KV-1,2,3 were analysed for U-Pb ages by LA-ICP-MS (Supplementary Data S3). The results for ARP-1,3,5 are reported in concordia diagrams and weighted average (WA) plots (Fig. 12). The mean U-Pb zircon age is 246.0 ± 3.3 Ma for ARP-1; 116.7 ± 1.5 Ma for ARP-3; and 115.0 ± 1.4 Ma for ARP-5. The age for ARP-3 is in good agreement with the 40Ar/39Ar plateau age of 112.8 ± 0.5 Ma. The zircons in this sample were also analysed for trace elements by LA-ICP-MS (Supplementary Data S3).

Zircon trace-element composition diagrams for samples TSK-1 (mica schist), TSK-3 (granite gneiss), TSK-5 (metaarkose phylite), and TSK-7 (trondhjemite). (a) Zircon age (Ma) versus Th/U. Note that the majority of the grains originates from magmatic sources. Zircon fields are from Teipel et al. (2004) and references therein. (b) Y (ppm) versus U/Yb. Coloured fields indicate the compositional range of zircons derived from oceanic crust (blue), continent (yellow) (Grimes et al., 2007) and continental granitoids (green) (Ballard et al., 2002; Belousova et al., 2006). Note that all zircons are continent-derived. Rare-earth element concentrations for (c) magmatic (TSK-3, TSK-7) and (d) detrital zircons (TSK-1, TSK-5) normalised to C1 chondrite (McDonough and Sun, 1995). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
can therefore be considered as being "xenogenic", i.e., entrained during magma ascent.

6. Discussion

6.1. NE Gondwanan margin: Origin of the SAB

The peri-Gondwanan origin of SAB has long been inferred on the basis of its Cadomian–Neoproterozoic basement ages (Knipper and Khain, 1980; Aghamalyan, 1998, 2004) and is central to recent geo-dynamic interpretations (e.g., Meijers et al., 2015; Rolland, 2017; van Hinsbergen et al., 2020). Here, for the first time, the detrital (TSK-1, TSK-5) and magmatic (TSK-3) zircon record preserved in the metamorphic basement of the SAB (Figs. 1 and 2) provides insight into the palaeo-position of the SAB. Fig. 13 presents histograms of compiled ages from Late Neoproterozoic–Cenozoic detrital zircons derived from basements of the SAB (this study), the Taurides, Sakarya, Pontides, and Iran. This comparison demonstrates a marked similarity between the Neoproterozoic–Palaeozoic detrital zircon ages (TSK-1, TSK-5) and those of the neighbouring terranes, which firmly establishes a Gondwanan origin for the SAB. The widespread overlap of various age groups within the zircon record do not, at present, seem to allow a more precise palaeo-position of the SAB to be established for (pre-)Gondwanan times.
Most of these Gondwana-derived terranes contain evidence for Late Ediacaran–Early Cambrian magmatism, thought to be associated with a widespread continental arc along the northern margin of newly-formed Gondwana (Gessner et al., 2001; Ramezani and Tucker, 2003; Hassanzadeh et al., 2008). Evidence for this magmatism is found in the neighbouring terranes of Central Iran, where Neoproterozoic magmatic products have been found in the basement (Ramezani and Tucker, 2003; Hassanzadeh et al., 2008), and the Menderes massif of the Anatolide-Tauride platform, where active-margin type granites of Ediacaran-Cambrian age are exposed (Gessner et al., 2001). The magmatic zircons of mica granite-gneiss TSK-3, a metamorphosed intrusion into the SAB basement (Fig. 8), is consistent with this extensive magmatic episode in Ediacaran–Early Cambrian times. Its whole-rock composition is similar to typical volcanic arc granites and suggests formation in an active continental margin (Fig. 5).

6.2. Cimmerian continent: Rift initiation in the SAB

The Cimmerian continent was originally coined by Şengör and Yilmaz (1981) as an arc ripped from the NE margin of Gondwana above a SW-dipping Palaeotethys subduction zone in Late Permian–Early Triassic times. Recent evidence suggests that the opening of the Neotethys might have occurred as a result of back-arc spreading (Şengör et al., 2019b), as opposed to Atlantic-type continental margins on both sides of the Cimmerian continental ribbon. Since its original discovery, a substantial amount of Permian–Triassic rift-related magmatism has been identified along the collision belt, from Iran to China (e.g., Lapierre et al., 2004, 2007; Chauvet et al., 2008; Shellnutt et al., 2014; Shakerardakani et al., 2018; Wang et al., 2019; Zeng et al., 2019). The north-westernmost end of this continental ribbon appears to lie east of the Taurides (NE Turkey), as there Cretaceous ophiolites are found overthrusted by the SAB.
Jurassic ophiolites of the southern Pontide margin during the Cenozoic (Topuz et al., 2013b).

Details on the movement of the SAB within the Tethyan realm after its separation from Gondwana are lacking except for a single palaeomagnetic study on volcanics in southern Nakhichevan (Bazhenov et al., 1996), which positioned the SAB ($21.4^\circ N \pm 3.7^\circ$) at the African margin around the Early Jurassic, founded on results from four sites yielding positive fold and conglomerate tests, and a rock age inferred from geological mapping and stratigraphic relationships with sediment suites. Limestones and dolomites in the Julfa area, thought to be Middle-Upper Triassic (Karyakin, 1989), have later turned out to be Lower Triassic based on fossil fauna (Grigoryan, 1990). These rocks are overlain discordantly by presumed Lower Jurassic (devoid of any fossil fauna) and Middle Jurassic sedimentary sequences (Azizbekov, 1962; Grachev and Karyakin, 1983). This revised stratigraphic interpretation implies that the volcanics studied by Bazhenov et al. (1996) can be any age between 247 and 174 Ma. The uncertainty questions the robustness of earlier geodynamic reconstructions, which have often relied on this single palaeomagnetic constraint. Due to the lack of local geological evidence, existing geodynamic views for the Mesozoic rifting evolution of the SAB often depend on an assumed association with a neighbouring terrane. One group considers the SAB to be a contiguous part of the Anatolide-Taurides block, which did not start rifting until the Early Jurassic (e.g., Okay and Tüysüz, 1999; Barrier and Vrielynck, 2008; Rolland

Fig. 12. (a,c,e) Weighted mean 206Pb/238U age by data-point errors for the mafic to intermediate intrusions in the sedimentary cover of the SAB at Arpi (ARP-1, ARP-3, ARP-5). (b,d,f) U-Pb concordia plots (207Pb/235U vs. 206Pb/238U). Data-point error symbols and ellipses are 2σ.

183
et al., 2012; Rolland, 2017). Another group links it to Central Iran (e.g., Stampfli et al., 1991; Brunet et al., 2003; Adamia et al., 2017), which began to drift northward in Early Permian times as part of the Cimmerian blocks and reached Eurasia during the Late Triassic (Zanchi et al., 2009, and references therein). More recently, the SAB has been interpreted as an isolated microcontinent that, together with the Pontides, drifted away from the Taurides during the Triassic (van Hinsbergen et al., 2020).

6.2.1. Middle–Late Permian trondhjemite intrusions at Tsakhkunyats

The trondhjemite (“plagiogranite”) intruded into the previously-metamorphosed basement of the SAB at 262.5 ± 4.3 Ma. Based on the same Middle–Late Permian trondhjemite suite, Galoyan et al. (2020) surmised the existence of a long-lived S-dipping subduction zone by linking the petrogenesis of these rocks to the Carboniferous subduction zone that generated meta-granites in the Afyon zone in western Turkey (Candan et al., 2016), though it is unclear whether the disparate occurrences are related. Our palaeomagnetic data for this sample (Supplementary Data S1) point to a position at the NE margin of Gondwana at this time, next to the Pontides and the Iranian blocks (Fig. 14b). Its geochemical signature (Fig. 5) suggests magma genesis in an active continental margin. The trondhjemite is characterised by significant enrichment in Na over K ($\text{Na}_2\text{O}/\text{K}_2\text{O} = 7$), relatively high Sr (302 ppm), low Y (1.3 ppm) and Yb (0.2 ppm) and high Sr/Y (234), similar to adakitic melts. High Na$_2$O/K$_2$O ratios and incompatible-element patterns of the studied sample, as well as of samples from the same trondhjemite suite reported by Galoyan et al. (2020), more closely resemble modern subduction-related adakites and are different from thickened lower continental crust-derived adakites based on (La/Yb)$_\text{N}$ vs. (Ba/Zr)$_\text{N}$ (Fig. 5e). Sr-Nd isotope systematics (Fig. 5f) further demonstrate the affinity of the Tsakhkunyats trondhjemites to compositional fields of subduction-derived adakites, rather than lower continental crust adakites.

Middle–Late Permian volcanic arc-type intrusions into the SAB imply an active SW-dipping subduction at the NE margin of Gondwana at that time, whereby the SAB was part of the overriding plate (Fig. 15). This inference is in good agreement with recent evidence of the presence of arcs recorded as Upper Permian–Lower Triassic rocks across the Cimmerian continent, which became dispersed during the Alpine evolution (Sengör et al., 2019a). Similar Upper Permian–Lower Triassic arc-related rocks have been documented for the Pontides and Sakarya Zone (e.g., Eyuboglu et al., 2011; Karsli et al., 2016; Topuz et al., 2018), but are absent in the Anatolide-Tauride block. This observation corroborates the palaeo-position of the SAB as the SE extension of the Pontides during the Gondwanan assembly (Fig. 15).

Fig. 13. Histogram and smoothed density estimates of zircon ages of the metamorphic basement of (a) the Taurides (Menderes massif; Abbo et al., 2015), (b) Sakarya (Ayala et al., 2012; Ustaömer et al., 2012), (c) Pontides (Ustaömer et al., 2013; Okay et al., 2014), (d) Central Iran (incl., Sanandaj-Sirjan zone; Ferguson et al., 2016; Chiu et al., 2017), and (e) the SAB (this study; detrital zircons from samples TSK-1-3).

Fig. 14. Plots of age (in Ma) versus (a) mean declination and (b) palaeolatitude for the investigated SAB sites (Supplementary Data S1). Shaded areas show the respective values based on the apparent polar wander paths of Kent and Irving (2010) and Torsvik et al. (2012). Grey data shows the secondary component of TSK-7. Black arrows and green data points show restored vertical axis rotation related to the counterclockwise rotation of the SAB (see section 6.2 for further explanation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
6.2.2. Middle Triassic sills at Arpi, Darasham, and Khor Virap

Mafic OIB-type intrusions were emplaced into the Late Devo-
nian sedimentary cover of the SAB at Arpi (Fig. 1) at 246.0 ± 3.3 Ma. Similar intrusions are also present in the Late Devonian sedi-
ments in south Nakhichevan (Darasham section; K-Ar age of 239 ± 7 Ma; Khanzatian, 1992). The major element compositions
of the Arpi and Darasham basalts are virtually identical (Supple-
mental Fig. S3). Their OIB-type geochemistry indicates parental
masmas derived from the asthenosphere, similar to late Palaeozoic
rift-related basaltic magmatism of the northern Indian Gondwana
margin and surrounding areas (e.g., Chauvet et al., 2008; Lapierre
et al., 2014; Shellnutt et al., 2014; Wang et al., 2019; Zeng et al.,
2019). Slightly later, at 233.7 ± 5.1 Ma, a mafic P-MORB-like sill
also intruded the Late Devonian sedimentary cover of the SAB at
Khor Virap (Fig. 1).

It is generally assumed that sills and dykes, similar to the ones
reported here, represent the plumbing systems of ascending
mantle-derived magmas (e.g., Coetzee and Kisters, 2017). The
studied igneous rocks (section 3.2) likely represent parts of former
feeder dykes or remnants of fissure eruption conduits. It is note-
worthy that outcrops of these subvolcanic bodies abound only in
a relatively small area (~1,500 km²) of Upper Palaeozoic sequences
of the SAB in Armenia and Nakhichevan, but that they probably
signal an episode of magmatism at a much wider scale, since simi-
lar dyke and sill swarms are widespread in neighbouring
Gondwana-derived units (e.g., Jones et al., 2001; Gaggero et al.,
2012; Xu et al., 2016; Svensen et al., 2018; Wang et al., 2019). Par-
ticularly in Iran, a wide assortment of mafic subvolcanic intrusions
in Upper Devonian and Lower Carboniferous sequences has been
documented: in the Azerbaijan province (NW Iran; Alavi and
Bolourchi, 1973), the Nain-Kerman region (Central Iran; Wendt
et al., 2002; Hairapetian and Yazdi, 2003) and the Alborz Moun-
tains (N-NE Iran; Chavident-Syoki, 1994, 1995; Mahmudy
age dates and geochemical details are generally lacking, but many
have been linked to large-scale trap volcanism (Mahmody Gharai ...
et al., 2004) and are thought to be considerably younger than the Upper Devonian country rocks (Wendt et al., 2002). Available data for one location confirm an intraplate (OIB-type) affinity (Mahmudy Gharaei, 2002).

The transition from OIB- to P-MORB-type magmatism within the short time interval of ~10 Ma is consistent with a change from a more enriched to a more depleted asthenospheric mantle source during melting at gradually shallower levels. Such associations of MORBs variably enriched by OIB-type components are typical for many peri-Mediterranean ophiolite complexes (e.g., Saccani and Photiades, 2005, and references therein), the Kermanshah ophiolite and Sistan suture zone in Iran (Saccani et al., 2010, 2013a), Oman ophiolites (Lapière et al., 2004; Chauvet et al., 2011) and modern ocean basins (e.g., Le Roex et al., 1983, 1985; Haase and Devey, 1996). The generation of basaltic melts with OIB to MORB signatures is often an expression of asthenospheric upwelling and lithospheric extension that accompany initial continental rifting and subsequent (incipient) oceanic spreading (McKenzie and Bickle, 1988; Goring et al., 2003; Saccani et al., 2013a).

The intrusions in the sedimentary cover of the SAB at Arpi, Darasham and Khor Virap (Fig. 1) between ~246 and 234 Ma thus suggest that the SAB experienced an episode of extension during latest Middle Triassic times. Together with the slightly earlier emplacement of arc-related granitoids in the metamorphic basement at ~262 Ma (closer to the active NE margin), this provides time constraints on rift initiation in the region. We infer that the asthenosphere-derived magmatic bodies record the incipient stage of breakup of the NE margin of Gondwana in the SAB region, and hence the opening of the Neotethys Ocean between the SAB and Africa in Middle Triassic times (Fig. 16).

The palaeomagnetic declinations of ARP-1,4 (~246 Ma) and KV-1 (~189 Ma) (Supplementary Data S1) plot between the values inferred for Africa and Eurasia (Fig. 14a). If we account for the
assumed counterclockwise rotation of the SAB during its drift from the African to the Eurasian position, the declinations are more in agreement with Africa before 250 Ma, and more with Eurasia after 250 Ma (Fig. 14a). Accordingly, the results suggest that the rotation relative to Africa started before 250 Ma, and that the rotation relative to Eurasia was accomplished at 246 Ma (green and purple dots in Fig. 14). Additional support for this interpretation comes from the elongation of directional data, where declination deviations at 246 Ma might suggest rotational motion during that time and more latitudinal motions at 189 Ma led to inclination deviations (Fig. 14). Overall, the palaeomagnetic data are consistent with a rotational movement of the SAB from a position juxtaposed north of Africa and south of Eurasia (next to the Pontides and the Iranian blocks) between ~263 Ma and ~189 Ma, with most of the rotation having been completed before 240 Ma.

6.3. Mesozoic Tethyan realm: Evolution of the SAB

Lack of unequivocal geological evidence from the Armenian territory, owing to the extensive Cenozoic (volcano-)sedimentary cover, has hampered the reconstruction of the Mesozoic northward drift of the SAB in the Tethyan realm. In recent years, a significant effort has been made to reconstruct the tectonic evolution of the SAB from the Permian Gondwanan breakup to the Jurassic accre-
tion onto the Eurasian margin (Rolland et al., 2012) and the Miocene closure of the Neotethys by the Arabia-Eurasia collision (Okay et al., 2010; Cavazza et al., 2018). Most work has focused on the ophiolite complexes (Sevan-Akera, Vedi and Zangezur), thought to represent suture zones delimitating continental micro-blocks, and the metamorphic events preserved therein. The Jurassic–Cretaceous mafic intrusions in the Late Devonian sedimentary cover of the SAB at Khor Virap and Arpi (Fig. 1) provide more reliable, in-situ derived constraints on its Mesozoic evolution than the surrounding ophiolites, whose palaeo-positions with respect to the block are ambiguous.

6.3.1. Early Jurassic intrusions at Khor Virap

The Late Devonian sediments at Khor Virap also host two igneous sills consisting of intraplate OIB-type basalts dated at 188.5 ± 1.1 Ma. The only known, possibly contemporaneous, intra-continental igneous rocks in the SAB are Lower Jurassic basaltic rocks in the Negram–Julfa area (south Nahkichevan) and near the village of Aznaberdy (Çalxanqala) in central Nahkichevan (Karyakin, 1989; Bazhenov et al., 1996), the locations of which are shown in Fig. 3a and 4. Their age was not radiometrically determined, but the work of Karyakin (1989) and geological mapping place the rocks unconformably between Middle-Upper Triassic and Middle Jurassic sediments. Although detailed geochemical data are lacking, these alkali basalts have an OIB-type “continental rifting” signature (Karyakin, 1989), similar to the Khor Virap OIB intrusions. All of these occurrences, from Khor Virap to Aznaberdy to Negram, are positioned along a NW-SE-striking alignment (Fig. 1).

Based on their geochemical similarities, spatial association, and potential synchronicity, it is tempting to associate this Early Jurassic magmatism to lithospheric thinning and/or asthenospheric upwelling on the scale of the entire SAB, but this seems difficult to reconcile with existing geodynamic interpretations. Van Hinsbergen et al. (2020) used the palaeolatitude constraints of Bazhenov et al. (1996) and Meijers et al. (2015) to envisage the SAB as an isolated microcontinent during this period, left behind after an apparent Late Triassic ridge jump from south to north.
(Fig. 45 of van Hinsbergen et al., 2020), although constraints from the Triassic-Jurassic key interval are limited. Such a scenario would, however, not offer an obvious trigger for asthenospheric melting that the igneous rocks imply.

If we disregard the palaeolatitude of Bazhenov et al. (1996), in absence of a reliable age constraint, and consider the analytical uncertainty of our new position at 188.5 ± 1.1 Ma (Fig. 14; Supplementary Data S1), a scenario is conceivable in which the SAB continued its northward drift along with the Pontides (van Hinsbergen et al., 2020), and was already close to the Eurasian margin during the Early Jurassic. This is in line with the absence of evidence for any ‘stranding’ of the SAB in the Neotethys behind the eastern Pontides, although tighter palaeomagnetic testing is obviously needed. In this scenario the SAB met the Iranian block at about 190 Ma (Fig. 17), remarkably coinciding with the age of the studied intraplate magmatism. We propose this scenario as an update of the ‘isolated island’ interpretation of van Hinsbergen et al. (2020), as it provides a plausible explanation for the magmatic event. The rise of intraplate basalts may be facilitated by the presence of a plate boundary, as in the case of the Anatolian–African–Arabian plate junction in southeastern Turkey (Nikogosian et al., 2018). It is therefore conceivable that a similar setting along the triple junction between the SAB, Pontides–Transcaucasus and Iran triggered mantle melting and emplacement of the intraplate basalts of Khor Virap, Aznaberd, and Negram (Fig. 17).

6.3.2. Generation of the Armenian ophiolites

Current interpretations of the SAB are based chiefly on ophiolitic remnants in Armenia and the assumed Mesozoic palaeo-position of Bazhenov et al. (1996). Many authors have adopted the view that the drift history of the SAB was identical to that of the Taurides (Okay and Tüysüz, 1999; Barrier and Vrielynck, 2008; Rolland et al., 2012; Meijers et al., 2015). An alternative reconstruction (van Hinsbergen et al., 2020) proposes that the
Taurides drifted away from Gondwana much later (<200 Ma) than the SAB (~245 Ma), and that this ~50 Myr 'lag' persisted throughout the Mesozoic until the collision with Eurasia. According to this scenario all of the Armenian ophiolites formed in a forearc setting close to the Eurasian margin (van Hinsbergen et al., 2020), which is consistent with our suggested Middle Jurassic position of the SAB against the western boundary of the Iranian continent, a few hundred kilometres south of the Transcaucausus (Fig. 18). It explains the occurrence of MORB, OIB and E-MORB-type rocks (e.g., Rolland et al., 2020), as well as rare boninites in the SAB (Magakyan et al., 1993). Extension of the forearc region and eventual slab rollback (Fig. 18b) could have halted the SAB drift and initiate NE-directed subduction on the southern margin of the SAB.

6.3. Early Cretaceous (Albian) intrusions at Arpi and Darasham

In addition to the Middle Triassic alkaline intrusions, the Late Devonian sedimentary cover in the Arpi area also hosts an andesitic neck dated at 116.7 ± 1.5 Ma. They also have a clear parallel in the Darasham section in south Nakhichevan (Fig. 4), where an andesitic dyke (104.0 ± 2.2 Ma) and amphibole-bearing basaltic dyke (126.0 ± 2.1 Ma) have been found (Khanzatian, 1992). Their trace-element contents showing a subduction-related imprint are common geochemical signatures. Moreover, the Sr-Nd isotope compositions (Fig. 10e) of the Arpi andesite suggest source contamination by subducted crustal components. When the occurrence of slightly older (140–155 Ma) arc-type granodiorite intrusions in the SAB (Hässig et al., 2015; Galoyan et al., 2018, 2020) are also considered, this coexistence of subduction-associated magmatism in Armenia and Nakhichevan likely points to an active subduction system, at least during this (late) Early Cretaceous period (Fig. 19).

The arc-type granodiorite intrusions into the SAB basement at 140–155 Ma that have previously been explained by SW-dipping subduction (Hässig et al., 2015; Galoyan et al., 2018, 2020) in our interpretation are best explained by a NE-directed subduction zone at the southern margin of the SAB in Late Jurassic to Early Cretaceous times (Fig. 19). This subduction possibly initiated as a result of forearc spreading at the Eurasian margin, halting the SAB and accommodating continued Africa-Eurasia convergence to its south. The Early Cretaceous andesitic and basaltic sills in the Darasham section in south Nakhichevan (Khanzatian, 1992), and the Arpi andesitic intrusion of ~117 Ma possibly represent a continuation of this subduction-related igneous activity. This NE-directed subduction system obviates the need for one or more separate, coexisting active margins to explain the presence of the intrusive rocks (e.g., Hässig et al., 2015; Rolland, 2017; Galoyan et al., 2020), which seems unlikely given the convergence rate required to sustain multiple subduction zones.

7. Conclusions

We report new geochronological, geochemical, and palaeomagnetic data on magmatic intrusions into the Late Devonian sedimentary cover, and metamorphic rocks that constitute part of the basement of the South Armenian Block. These data are used to place new constraints on the origin and geodynamic history of the SAB in the context of Permain–Triassic breakup of the NE Gondwanan margin, the opening of the Neotethys Ocean, and the Mesozoic kinematic history of the SAB. Our conclusions can be summarised as follows:

1. The characteristic Neoproterozoic–Palaeozoic U-Pb age peaks of detrital zircons derived from the Armenian metamorphic basement firmly establish a Gondwanan origin of the SAB.

2. The geochemistry of trondhjemite ("plagiogranite") intrusions into the Armenian metamorphic basement at ~263 Ma demonstrates their adakite/TTG affinity and reflects magma genesis in an active continental margin, consistent with a SW-dipping subduction zone active at the NE Gondwanan margin (Pontides and SAB) during the Middle–Late Permian.

3. Mafic alkaline OIB-like sills in the Late Devonian sedimentary cover in the Arpi (south central Armenia) and Darasham (south Nakhichevan) areas, dated at ~246 Ma, are products of asthenospheric melting beneath the SAB. A mafic P-MORB-like intrusion at Khor Virap, dated at ~234 Ma, reflects melt derivation from a more depleted, shallower mantle source. This set of intrusions is typical of initial continental rifting and early-stage oceanic spreading and suggests a phase of extensional tectonics in the SAB during the Middle Triassic. We infer that this activity marks the incipient breakup of the NE Gondwanan margin and subsequent opening of the Neotethys Ocean in the area.

4. Mafic alkaline OIB-type sills within the Late Devonian sedimentary cover at Khor Virap (south central Armenia), dated at ~189 Ma, testify to another episode of magma production in the shallow asthenospheric mantle beneath the SAB. In our interpretation the SAB continued its northwards drift alongside the eastern Pontides and reached the Iranian block at about 190 Ma. The intraplate magmatism is likely associated with the triple junction between the SAB, Pontides-Transcaucasia and Iran.

5. Andesitic dykes in the Late Devonian sedimentary cover in the Arpi (~117 Ma) and Darasham (104–126 Ma) areas exhibit a "subduction-related" geochemical signature, consistent with melt derivation from subduction-modified lithospheric mantle, which also applies to other sporadic occurrences of Late Jurassic to Early Cretaceous igneous products in the SAB. This subduction-related magmatism can be explained by a NE-directed subduction system at the southern margin of the SAB, driven by forearc spreading in the Eurasian margin, which led to cessation of the SAB drift and accommodated compression south of the SAB in Late Jurassic–Early Cretaceous times.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We gratefully acknowledge Dr. Vilen Aghamalyan for his decades-long study of the Tsakhkunyats metamorphic basement and great contribution in revealing its complex geology, as well as for help in selecting representative samples. We thank Pieter Vroon and Helen de Waard for their help with XRF and ICP-MS analyses, respectively, and Roel van Elsas for sample preparation. We thank Dr. Iain Neill and an anonymous reviewer for their constructive comments, and Dr. Andrea Festa for editorial handling. This research was partially supported by The Netherlands Research Centre for Integrated Solid Earth Science (ISES) through grant 6.2.12. IKN, AJJBG and JMK acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n° 759563). The Armenian team was supported by the State fund base founding of the Institute of Geological Sciences of the Armenian Academy of Sciences. The data used are listed in the supplementary material, tables and references.

