A Matrix Version of Dwork's Congruences

Frits Beukers

Abstract In this article we give an example of a matrix version of the famous congruence for hypergeometric functions found by Dwork in 'p-adic cycles'.

1 Introduction

In this paper we shall deal with results of the following type. Let F(t) be an infinite power series with constant term 1 and coefficients in \mathbb{Z}_p , the *p*-adic numbers. Denote by $F_m(t)$ its *m*-th truncation, i.e. all terms of degree $\geq m$ in F(t) are deleted. We shall be interested whether there are hypergeometric series F(t) for which

$$\frac{F(t)}{F(t^p)} \equiv \frac{F_{p^s}(t)}{F_{p^{s-1}}(t^p)} (\text{mod } p^s)$$
(1)

for all $s \ge 1$. The first such result was given by Dwork in 'p-adic cycles', [3], for the case of F(t) = F(1/2, 1/2; 1|t). The proof of this result is based on a *p*-adic study of the coefficients of F(1/2, 1/2; 1|t). Using [3, Cor 1] and [3, Thm 3] one can generalize this approach to other hypergeometric functions whose monodromy around 0 is unipotent (i.e. all β -parameters are 1). The goal of the present paper is to provide a more geometric approach to Dwork's congruences based on the papers [1] and [2] (Dwork crystals I and II), written jointly with Masha Vlasenko. In it we give an elementary approach to the construction of the so-called unit root crystal in Dwork's *p*-adic theory of zeta-functions of algebraic varieties. As application we present main result of this paper, geometric examples of (1) in Sect. 3. In Sect. 5 we present main result of this paper,

F. Beukers (🖂)

Utrecht University, Utrecht, The Netherlands e-mail: f.beukers@uu.nl

© Springer Nature Switzerland AG 2021

Work supported by the Netherlands Organisation for Scientific Research (NWO), grant TOP1EW.15.313.

A. Bostan and K. Raschel (eds.), *Transcendence in Algebra, Combinatorics, Geometry and Number Theory*, Springer Proceedings in Mathematics & Statistics 373, https://doi.org/10.1007/978-3-030-84304-5_2

Theorem 5.1, containing an example of a matrix version of Dwork's congruence. Its proof requires some ideas in addition to [1] and [2].

2 Summary of [1] and [2]

Let *R* be a characteristic zero domain and *p* an odd prime such that $\bigcap_{s\geq 1} p^s R = \{0\}$. Suppose that *R* is *p*-adically complete. Let $f \in R[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ be a Laurent polynomial and $\Delta \subset \mathbb{R}^n$ its Newton polytope. Let Δ° be its interior. Consider the *R*-module Ω_f° of differential forms generated over *R* by

$$\omega_{\mathbf{u}} := (k-1)! \frac{\mathbf{x}^{\mathbf{u}}}{f(\mathbf{x})^k} \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_n}{x_n}, \quad \mathbf{u} \in k\Delta^{\diamond}$$

for all $k \ge 1$. Contrary to [1] and [2] we have now written the elements of Ω_f as differential forms. Let us abbreviate $\frac{dx_1}{x_1} \land \cdots \land \frac{dx_n}{x_n}$ to $\frac{d\mathbf{x}}{\mathbf{x}}$. Differential forms in Ω_f° can be expanded as formal Laurent series. To that end

Differential forms in Ω_f° can be expanded as formal Laurent series. To that end we choose a vertex **b** of Δ and obtain a Laurent expansion with support in $C(\Delta - \mathbf{b})$, the positive cone generated by the vectors in $\Delta - \mathbf{b}$, and coefficients in *R* of the form

$$\sum_{\mathbf{k}\in C(\Delta-\mathbf{b})} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \frac{d\mathbf{x}}{\mathbf{x}}, \quad a_{\mathbf{k}}\in R$$

We denote such forms by Ω_{formal} . The exact forms are denoted by $d\Omega_{\text{formal}}$. We call them formally exact forms and they are characterized by the following lemma of Katz, [4, Lemma 5.1].

Lemma 2.1. A series $\sum_{\mathbf{k}\in C(\Delta-\mathbf{b})} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \frac{d\mathbf{x}}{\mathbf{x}}$ is a formal derivative if and only if

 $a_{\mathbf{k}} \equiv 0 \pmod{p^{\operatorname{ord}_p(\mathbf{k})}}$ for all \mathbf{k} .

Here $\operatorname{ord}_p(k)$ denotes the *p*-adic valuation of *k* and $\operatorname{ord}_p(\mathbf{k}) = \min(\operatorname{ord}_p(k_1), \ldots, \operatorname{ord}_p(k_n)).$

We define the Cartier operator \mathscr{C}_p on Ω_{formal} by

$$\mathscr{C}_p\left(\sum_{\mathbf{k}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \frac{d\mathbf{x}}{\mathbf{x}}\right) := \sum_{\mathbf{k}} a_{p\mathbf{k}} \mathbf{x}^{\mathbf{k}} \frac{d\mathbf{x}}{\mathbf{x}}.$$
(2)

Using \mathscr{C}_p we have an alternative characterization of formally exact forms which is a direct consequence of Lemma 2.1.

Lemma 2.2. A series $h \in \Omega_{\text{formal}}$ is a formal derivative if and only if $\mathscr{C}_p^s(h) \equiv 0 \pmod{p^s}$ for all integers $s \ge 1$.

When applied to a rational differential form \mathscr{C}_p acts as

$$\mathscr{C}_p\left(S(\mathbf{x})\frac{d\mathbf{x}}{\mathbf{x}}\right) = \sum_{\mathbf{y}:\mathbf{y}^p=\mathbf{x}} S(\mathbf{y})\frac{d\mathbf{y}}{\mathbf{y}}.$$

The summation extends over all $y_i = \zeta_i x_i^{1/p}$, i = 1, ..., n, where each ζ_i runs over all *p*-th roots of unity. So we see that \mathscr{C}_p sends rational differential forms to rational differential forms. Unfortunately, Ω_f° is not sent to itself. But we have something that comes close. Define the *p*-adic completion

$$\widehat{\Omega}_{f}^{\circ} := \lim_{\leftarrow} \Omega_{f}^{\circ} / p^{s} \Omega_{f}^{\circ}.$$

Fix a Frobenius lift σ on R: this is a ring endomorphism $\sigma : R \to R$ such that $\sigma(r) \equiv r^p \pmod{p}$ for every $r \in R$. We have

Proposition 2.3. If p > 2 then $\mathscr{C}_p(\Omega_f^\circ) \subset \widehat{\Omega}_{f^\sigma}^\circ$.

The proof is given in [1, Prop 3.3] and consists of a straightforward computation ending with a *p*-adic expansion in $\widehat{\Omega}^{\circ}_{f^{\sigma}}$.

We shall be interested in $U_f^{\circ} := \widehat{\Omega}_f^{\circ} \cap d\Omega_{\text{formal}}$. These are differential forms that are not necessarily exact but become exact when embedded in the formal expansions. Katz refers to them as 'forms that die on formal expansion', [4, Thm 6.2(1.b)]. In [1, Prop 4.2] we find a characterization of the elements of U_f° without any reference to formal expansion.

Proposition 2.4. With the notations as above we have

$$U_f^{\circ} = \{ \omega \in \widehat{\Omega}_f^{\circ} \mid \mathscr{C}_p^s(\omega) \equiv 0 (\text{mod } p^s \widehat{\Omega}_{f^{\sigma^s}}^{\circ}) \text{ for all } s \ge 1 \}.$$

We now come to one of the main results in [1, Thm 4.3]. Let $h = |\Delta^{\circ} \cap \mathbb{Z}^n|$. Define the Hasse-Witt matrix β_p as the $h \times h$ -matrix given by

$$(\beta_p)_{\mathbf{u},\mathbf{v}} = \text{coefficient of } \mathbf{x}^{p\mathbf{u}-\mathbf{v}} \text{ of } f(\mathbf{x})^{p-1}, \quad \mathbf{u}, \mathbf{v} \in \Delta^{\circ} \cap \mathbb{Z}^n$$

Theorem 2.5. Suppose det (β_p) is invertible in R. Then $\widehat{\Omega}_f^\circ/U_f^\circ$ is a free R-module of rank h with basis $\frac{\mathbf{x}^{\mathbf{u}}}{f} \frac{d\mathbf{x}}{\mathbf{x}}, \mathbf{u} \in \Delta^\circ \cap \mathbb{Z}^n$.

The remainder of [1] and [2] is then devoted to the construction of *p*-adic approximations to the $h \times h$ -matrix of the Cartier operator. In [2] we give special attention to those approximations that give rise to congruences of the form (1) (in case h = 1) and higher.

3 First Examples

In [5] we find a very general theorem providing congruences of the form (1).

Theorem 3.1 (Mellit-Vlasenko). Let $g(\mathbf{x}) \in \mathbb{Z}_p[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ be a Laurent polynomial in the variables x_1, \ldots, x_n . Suppose that the Newton polytope Δ of g has the origin as unique interior lattice point. For every integer $r \geq 0$ denote by f_r the constant term of $g(\mathbf{x})^r$ and define $F(t) = \sum_{r \geq 0} f_r t^r$. Then the congruences (1) hold for all $s \geq 1$.

In [2, (7)] there is a stronger result with an entirely different proof.

Theorem 3.2 (Beukers-Vlasenko). *With the same notations as in Theorem 3.1 we have*

$$\frac{F(t)}{F(t^p)} \equiv \frac{F_{mp^s}(t)}{F_{mp^{s-1}}(t^p)} \pmod{p^s}$$
(3)

for all $m, s \ge 1$.

Here is an application.

Corollary 3.3. Let $k \ge 2$ be an integer and p an odd prime not dividing k. Then (1) holds for the hypergeometric series

$$_{k-1}F_{k-2}(1/k, 2/k, \ldots, (k-1)/k; 1, 1, \ldots, 1|t).$$

Proof. Consider

$$g = \frac{1}{k} \left(x_1 + \dots + x_{k-1} + \frac{1}{x_1 \cdots x_{k-1}} \right).$$

A simple calculation show that f_r is zero if k does not divide r and equal to

$$\frac{1}{k^{kl}}\frac{(kl)!}{(l!)^k} = \frac{(1/k)_l}{l!}\frac{(2/k)_l}{l!}\cdots\frac{((k-1)/k)_l}{l!}$$

if r = kl. Hence

$$F(t) = {}_{k-1}F_{k-2}(1/k, 2/k, \dots, (k-1)/k; 1, 1, \dots, 1|t^k).$$

Now apply Theorem 3.2 with m = k and replace t^k by t.

Here is another variation which generalizes Dwork's example

Corollary 3.4. Let $k \ge 2$ be an integer and p an odd prime. Then (1) holds for the hypergeometric series

$$_{k-1}F_{k-2}(1/2, 1/2, \ldots, 1/2; 1, 1, \ldots, 1|t).$$

Proof. Consider

$$g = 2^{-k} \left(x_1 + \frac{1}{x_1} \right) \cdots \left(x_k + \frac{1}{x_k} \right).$$

A simple calculation shows that f_r is zero if r is odd and equal to

$$\left(\frac{(1/2)_l}{l!}\right)^k$$

if r = 2l. Hence

$$F(t) = {}_{k-1}F_{k-2}(1/2, \ldots, 1/2; 1, 1, \ldots, 1|t^2).$$

Now apply Theorem 3.2 with m = 2 and replace t^2 by t.

4 One Variable Polynomials

Let again *R* be a characteristic zero ring, *p* an odd prime such that $\bigcap_{s\geq 1} p^s R = \{0\}$ and suppose *R* is *p*-adically complete. Let $\sigma : R \to R$ be a Frobenius lift. It turns out that in the case of one variable polynomials *f* the theory sketched in Sect. 2 has a very nice simplification that we like to present for general monic $f \in R[x]$ with $f(0) \neq 0$. Let *d* be the degree of *f*. We suppose that $d \geq 2$ and that the discriminant of *f* is invertible in *R*. The space Ω_f° is given by $\mathcal{O}_f^{\circ} dx$ where \mathcal{O}_f° is the *R*-module generated by the forms $l! \frac{x^k}{f^{l+1}}$ with $0 \leq k \leq d(l+1) - 2$. Similarly we define \mathcal{O}_f in the same way but with the inequalities $0 \leq k \leq d(l+1) - 1$. The exact forms in Ω_f° are then given by $d\mathcal{O}_f$. We call them *rational exact forms*.

We define $\mathscr{O}_{\text{formal}} = \frac{1}{x} R[[1/x]]$ and $\Omega_{\text{formal}} = \frac{1}{x} \mathscr{O}_{\text{formal}} dx$. We embed Ω_f° in Ω_{formal} by expansion in powers of 1/x. The *formally exact forms* are defined by $d\mathscr{O}_{\text{formal}}$.

The interior of the Newton polytope is $\Delta^{\circ} = (0, d)$ and the cardinality of $\Delta^{\circ} \cap \mathbb{Z}$ is d - 1. So, letting p be an odd prime, the Hasse-Witt matrix $\beta_p(t)$ is a $(d - 1) \times (d - 1)$ -matrix. It turns out that $\det(\beta_p) \equiv \operatorname{disc}(f)^{p-1} \pmod{p}$, where $\operatorname{disc}(f)$ is the discriminant of f. By p-adic completeness of R and invertibility of $\operatorname{disc}(f)$ in R we find that $\det(\beta_p)$ is invertible in R. According to Theorem 11 in Dwork crystals I, [1], we know that $\widehat{\Omega}_f^{\circ}/d\mathcal{O}_{\text{formal}}$ is a free rank d - 1 module over R with basis $dx/f, xdx/f, \dots, x^{d-2}dx/f$.

It turns out that in the case n = 1 formally exact forms coincide with rational exact forms. More precisely,

Proposition 4.1. Let $f \in R[x]$ be a monic polynomial and suppose that its discriminant is invertible in R. Then $\Omega_f^\circ \cap d\mathcal{O}_{\text{formal}} = d\mathcal{O}_f$. *Proof.* Clearly $d\mathcal{O}_f \subset d\mathcal{O}_{\text{formal}}$. We first show that every $\omega \in \Omega_f^\circ$ is equivalent modulo $d\mathcal{O}_f$ to a form Q(x)dx/f with $Q(x) \in R[x]$ of degree $\leq d - 2$. To that end we use the one variable version of the Griffiths reduction procedure. Since *p* does not divide disc(*f*), to every $Q(x) \in R[x]$ of degree $\leq N$ there exist polynomials $A, B \in R[x]$ of degrees $\leq d - 1$ and $\leq \max(d - 2, N - d)$ respectively, such that Q = Af' + Bf.

Let us start with a form $l!Q(x)dx/f^{l+1}$ with $\deg(Q) \le (l+1)d - 2$ and l > 0. Write Q = Af' + Bf with $\deg(A) \le d - 1$, $\deg(B) \le ld - 2$. Then we obtain

$$l! \frac{Q(x)}{f^{l+1}} dx = l! \frac{Af'}{f^{l+1}} dx + l! \frac{B}{f^l} dx$$
$$= -d\left((l-1)! \frac{A}{f^l}\right) + (l-1)! \frac{A'}{f^l} dx + l! \frac{B}{f^l} dx$$
$$\equiv (l-1)! \frac{lB+A'}{f^l} dx \pmod{d\mathscr{O}_f}.$$

Note that $\deg(lB + A') \le ld - 2$. By repeating this procedure we see that any $\omega \in \Omega_f^\circ$ is equivalent modulo $d\mathcal{O}_f$ to a form Qdx/f with $Q \in R[x]$ of degree $\le d - 2$.

The second part of our proof consists of showing that $Qdx/f \in d\mathcal{O}_{\text{formal}}$ implies that Q = 0. Suppose that

$$\frac{Qdx}{f} = d\left(\sum_{n\geq 0}\frac{a_n}{x^n}\right) = \sum_{n\geq 1} -\frac{na_n}{x^{n+1}}dx.$$

From this we see that the coefficient of dx/x^{mp^s+1} in the 1/x-expansion of Qdx/f is divisible by p^s for any $m, s \ge 0$. Let K be the splitting field of f over R and let $\alpha_1, \ldots, \alpha_d \in K$ be the zeros of f. Then there exist A_1, \ldots, A_d in $R[\alpha_1, \ldots, \alpha_d]$ such that

$$\operatorname{disc}(f)\frac{Qdx}{f} = \sum_{i=1}^{d} \frac{A_i dx}{x - \alpha_i} = \sum_{n \ge 0} (A_1 \alpha_1^n + \dots + A_d \alpha_d^n) \frac{dx}{x^{n+1}}.$$

We now know that $A_1 \alpha_1^{mp^s} + \cdots + A_d \alpha_d^{mp^s}$ is divisible by p^s for all $m \ge 0$. In particular for $m = 0, 1, \ldots, d - 1$. Now note that

$$\det((\alpha_i^{mp^s})_{i=1,\dots,d;m=0,\dots,d-1}) = \prod_{i< j} (\alpha_i^{p^s} - \alpha_j^{p^s})$$
$$\equiv \prod_{i< j} (\alpha_i - \alpha_j)^{p^s} \equiv \operatorname{disc}(f)^{p^s} (\operatorname{mod} p),$$

which is a unit in *R*. We conclude that $A_i \equiv 0 \pmod{p^s}$ for all *i* and *s*. Hence $A_i = 0$ for all *i* and we conclude Q(x) = 0, as asserted.

An immediate corollary is its extension to *p*-adic completions. Denote $\widehat{\Omega}_{f}^{\circ}$ as before and similarly $\widehat{\mathscr{O}}_{f}$. Then we find,

Proposition 4.2. Let $f \in R[x]$ be a monic polynomial and suppose that its discriminant is invertible in R. Then $U_f^\circ = \widehat{\Omega}_f^\circ \cap d\mathcal{O}_{\text{formal}} = d\widehat{\mathcal{O}}_f$.

The operator \mathscr{C}_p is essentially a lift of a Cartier operator which is only well-defined in characteristic *p*. In [1] and [2] it sufficed to use only the operator \mathscr{C}_p defined above. However, as a new ingredient, we need to consider other lifts. Let $a \in \mathbb{Z}_p$. Define \mathscr{C}_p^a as the operator with the property that $\mathscr{C}_p^a((x-a)^{k-1}dx) = (x-a)^{k/p-1}dx$ if *p* divides *k* and 0 if not. In general it acts on rational differential forms as

$$\mathscr{C}_p^a\left(S(x)\frac{dx}{x}\right) = \sum_{y:(y-a)^p = x-a} S(y)\frac{dy}{y}.$$

So we sum over $y = a + \zeta (x - a)^{1/p}$ where ζ runs over the *p*-th roots of unity. We can compare \mathscr{C}_p and \mathscr{C}_p^a by looking at their action on Ω_{formal} .

Proposition 4.3. We have $\mathscr{C}_p^a(\Omega_f^\circ) \subset \widehat{\Omega}_{f^\sigma}^\circ$ and

$$\mathscr{C}_p(\omega) \equiv \mathscr{C}_p^a(\omega) (\text{mod } pd\widehat{\mathscr{O}}_{f^\sigma})$$
(4)

for all $\omega \in \Omega_f^\circ$.

Proof. The fact that the image of \mathscr{C}_p^a lies in $\widehat{\Omega}_{f^a}^{\circ}$ follows along the same lines as in the proof of [1, Prop 3.3]. Clearly we have $R[[1/x]] \cong R[[1/(x-a)]]$ through the expansion $\frac{1}{x-a} = \sum_{n\geq 0} \frac{a^n}{x^{n+1}}$. Let us prove our second assertion for $\omega_k = (x-a)^{-k-1}dx$ for $k \geq 1$. The full statement then follows by linearity.

Observe that

$$\omega_k = (x-a)^{-k-1} dx = -d\left(\frac{1}{k}(x-a)^{-k}\right).$$

If k is not divisible by p then clearly $\omega_k \in d\mathcal{O}_{\text{formal}}$. Since $\mathscr{C}_p(d\mathcal{O}_{\text{formal}}) \subset pd\mathcal{O}_{\text{formal}}$ we get that $\mathscr{C}_p(\omega_k) \equiv 0 \pmod{pd\mathcal{O}_{\text{formal}}}$. We have trivially $\mathscr{C}_p^a(\omega_k) = 0$. This proves our statement for k not divisible by p. Suppose now that p divides k. Then

$$\frac{1}{k}(x-a)^{-k} \equiv \frac{1}{k}(x^p-a)^{-k/p} \pmod{\mathscr{O}_{\text{formal}}}$$

hence, after taking differentials,

$$(x-a)^{-k-1}dx \equiv (x^p-a)^{-k/p-1}x^{p-1}dx \pmod{d\mathscr{O}_{\text{formal}}}$$

Application of \mathscr{C}_p gives $\mathscr{C}_p(\omega_k) \equiv \omega_{k/p} \pmod{pd\mathscr{O}_{\text{formal}}}$. Note that $\omega_{k/p} = \mathscr{C}_p^a(\omega_k)$ when *p* divides *k*. Thus we conclude that

$$\mathscr{C}_p(\omega_k) \equiv \mathscr{C}_p^a(\omega_k) \pmod{pd\mathcal{O}_{\text{formal}}}$$

By linearity this congruence holds for all $\omega \in \Omega_f^\circ$.

It remains to see that we can replace $pd\mathcal{O}_{\text{formal}}$ by $pd\widehat{\mathcal{O}}_f$. From Proposition 3.6 in [1] it follows that to any $\omega \in \widehat{\Omega}_f^\circ$ there exists $\omega_1 \in \widehat{\Omega}_{f^\sigma}^\circ$ and a polynomial $A(a, \omega)$ such that $\mathscr{C}_p^a(\omega) = \frac{A(a,\omega)}{f^\sigma} + p\omega_1$. Since $\mathscr{C}_p^a(\omega) - \mathscr{C}_p^0(\omega) \in pd\mathcal{O}_{\text{formal}}$ it follows that $A(a, \omega) - A(0, \omega)$ is divisible by p. Hence

$$\frac{1}{p}(\mathscr{C}^a_p(\omega) - \mathscr{C}^0_p(\omega)) \in \widehat{\Omega}^{\circ}_{f^{\sigma}} \cap d\mathscr{O}_{\text{formal}} = d\widehat{\mathscr{O}}_{f^{\sigma}}$$

The latter equality follows from Proposition 4.2.

5 A Matrix Example

The examples in the Sect. 3 are all related to the case h = 1, one interior lattice point of the Newton polytope Δ . In this section we consider an example of rank h = 2.

Theorem 5.1. Let

$$\mathscr{Y}(t) = \begin{pmatrix} F(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}|t^2) & -\frac{1}{3}tF(\frac{7}{6}, \frac{5}{6}, \frac{3}{2}|t^2) \\ -\frac{2}{3}tF(\frac{2}{3}, \frac{4}{3}, \frac{3}{2}|t^2) & F(\frac{1}{6}, \frac{5}{6}, \frac{1}{2}|t^2) \end{pmatrix}$$

Denote by $\mathscr{Y}_m(t)$ the *m*-th truncated version of $\mathscr{Y}(t)$, i.e. we drop all term starting with t^m . Then, for all primes p > 3 and all $m, s \ge 1$ we have

$$\mathscr{Y}_{mp^{s}}(t) \begin{pmatrix} \epsilon_{p} & 0 \\ 0 & 1 \end{pmatrix} \mathscr{Y}_{mp^{s-1}}(t^{p})^{-1} \equiv \mathscr{Y}(t) \begin{pmatrix} \epsilon_{p} & 0 \\ 0 & 1 \end{pmatrix} \mathscr{Y}(t^{p})^{-1} (\text{mod } p^{s}).$$

Here $\epsilon_p = 1$ *if* 3 *is a square modulo* p *and* -1 *if not.*

For the proof of this theorem, given at the end of this section, we require the one variable polynomial $f = x^3 - x - t \in R[x]$ with $R = \mathbb{Z}_p[\![t]\!]$, where p is a prime with p > 3. As Frobenius lift we take $g(t)^{\sigma} = g(t^p)$ for all $g(t) \in R$. The discriminant of f equals to $4 - 27t^2$, and hence it is invertible in R.

We define the 2 \times 2-matrix Λ_p with entries in *R* by

$$\mathscr{C}_p\begin{pmatrix} dx/f\\ xdx/f \end{pmatrix} \equiv \Lambda_p\begin{pmatrix} dx/f^{\sigma}\\ xdx/f^{\sigma} \end{pmatrix} \pmod{d\widehat{\mathscr{O}}_f}.$$
(5)

The relation of Λ_p with hypergeometric functions is obtained by period maps. To that end we consider

A Matrix Version of Dwork's Congruences

$$l!\frac{x^{k-1}dx}{f^{l+1}} = l!\frac{x^{k-1}dx}{(x^3 - x)^{l+1}} \sum_{r \ge 0} \binom{r+l}{l} \frac{t^r}{(x^3 - x)^r},$$

and then take termwise the residue at x = 0. We could rephrase this procedure by saying that we expand $x^{k-1}dx/f^{l+1}$ as two-sided Laurent series in R[[x, t/x]] and then take the residue at x = 0. Similarly we can take residues at $x = \pm 1$ (i.e. by expanding in Laurent series in $x \mp 1$). The result is again a power series in t. As long as 0 < k < 3(l + 1) the terms of the series have no residue at ∞ and therefore the sum of the residues at 0, 1, -1 of the series is 0. We carry out the residue computations for l = 0, k = 1, 2. A straightforward calculation shows that

$$\operatorname{res}_{x=0} \frac{dx}{(x^3 - x)^{r+1}} = \begin{cases} 0 & \text{if } r \text{ is odd} \\ -\binom{3n}{n} & \text{if } r = 2n \end{cases}$$

$$\operatorname{res}_{x=0} \frac{xdx}{(x^3-x)^{r+1}} = \begin{cases} 0 & \text{if } r \text{ is even} \\ \binom{3n+1}{n} & \text{if } r = 2n+1 \end{cases}.$$

Denote $\operatorname{res}_{\pm}\omega = \operatorname{res}_{x=1}\omega - \operatorname{res}_{x=-1}\omega$. Then we obtain

$$\operatorname{res}_{\pm} \frac{dx}{(x^3 - x)^{r+1}} = \begin{cases} 0 & \text{if } r \text{ is even} \\ -\frac{3}{2} \frac{(7/6)_n (5/6)_n}{(3/2)_n n!} \left(\frac{27}{4}\right)^n & \text{if } r = 2n+1 \end{cases}$$
$$\operatorname{res}_{\pm} \frac{x dx}{(x^3 - x)^{r+1}} = \begin{cases} 0 & \text{if } r \text{ is odd} \\ \frac{(1/6)_n (5/6)_n}{(1/2)_n n!} \left(\frac{27}{4}\right)^n & \text{if } r = 2n \end{cases}.$$

Let us denote the period map obtained by taking *minus* the residue at 0 by ρ_0 and the one by taking the difference of the residues at ± 1 by ρ_{\pm} . We summarize

$$\rho_0 \left(\frac{dx}{f} \right) = F\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right)^{27t^2/4}.$$

$$\rho_0 \left(\frac{x}{dx}{f} \right) = -t F\left(\frac{2}{3}, \frac{4}{3}, \frac{3}{2}\right)^{27t^2/4}.$$

$$\rho_{\pm} \left(\frac{dx}{f} \right) = -\frac{3}{2} t F\left(\frac{7}{6}, \frac{5}{6}, \frac{3}{2}\right)^{27t^2/4}.$$

$$\rho_{\pm} \left(\frac{x}{dx}{f} \right) = F\left(\frac{1}{6}, \frac{5}{6}, \frac{1}{2}\right)^{27t^2/4}.$$

A crucial property of ρ_0 , ρ_{\pm} is that they vanish on exact forms, i.e. $d\widehat{\mathcal{O}}_f$. This is because residues of exact forms are zero, which is a special case of [2, Prop 2.2].

Proposition 5.2. For every $\omega \in \widehat{\Omega}_{f}^{\circ}$ we have $\rho_{0}(\mathscr{C}_{p}(\omega)) = \rho_{0}(\omega)$ and $\rho_{\pm}(\mathscr{C}_{p}(\omega)) = \rho_{\pm}(\omega)$.

Proof. Let $\omega \in \widehat{\Omega}_{f}^{\circ}$. Expand it in R[[x, t/x]]dx. The value of ρ_{0} is minus the coefficient of dx/x. By definition of \mathscr{C}_{p} this value is the same for $\mathscr{C}_{p}(\omega)$, hence our first assertion follows. Similarly we can see that the residue at 1, which we denote by ρ_{1} , has the property $\rho_{1}(\mathscr{C}_{p}^{1}(\omega)) = \rho_{1}(\omega)$. It follows from Proposition 4.3 that $\mathscr{C}_{p}^{1}(\omega) \equiv \mathscr{C}_{p}(\omega) \pmod{d\widehat{\mathcal{O}}_{f}}$. Hence $\rho_{1}(\mathscr{C}_{p}(\omega)) = \rho_{1}(\omega)$. The same result holds of course for $\rho_{\pm} = \rho_{1} - \rho_{-1}$.

Corollary 5.3. Let

$$Y(t) = \begin{pmatrix} F(1/3, 2/3; 1/2|^{27t^2}/4) & -\frac{3}{2}tF(7/6, 5/6; 3/2|^{27t^2}/4) \\ -tF(2/3, 4/3; 3/2|^{27t^2}/4) & F(1/6, 5/6; 1/2|^{27t^2}/4) \end{pmatrix}$$

Let Λ_p be the 2 × 2 cartier-matrix in (5). Then

$$\Lambda_p = Y(t)Y(t^p)^{-1}.$$

Proof. We start with the equality (5), apply ρ_0 and use $\rho_0 \circ \mathscr{C}_p = \rho_0$ to obtain

$$\begin{pmatrix} \rho_0(dx/f)\\ \rho_0(xdx/f) \end{pmatrix} = \Lambda_p \begin{pmatrix} \rho_0(dx/f^{\sigma})\\ \rho_0(xdx/f^{\sigma}) \end{pmatrix}.$$

Similarly we obtain

$$\begin{pmatrix} \rho_{\pm}(dx/f)\\ \rho_{\pm}(xdx/f) \end{pmatrix} = \Lambda_p \begin{pmatrix} \rho_{\pm}(dx/f^{\sigma})\\ \rho_{\pm}(xdx/f^{\sigma}) \end{pmatrix}.$$

Our corollary follows from the above evaluations of the periods.

In order to get Dwork type congruences we also need to introduce a suitable 'period map mod *m*'. By that we mean an *R*-linear map $\rho : \widehat{\Omega}_f \to R$ such that $\rho(\widehat{\Omega}_f \cap d\mathcal{O}_{\text{formal}}) \subset mR$ and $\delta \circ \rho \equiv \rho \circ \delta \pmod{mR}$ for any derivation δ on *R*.

For our purposes we use a slight generalization of the period maps we considered in [2, Section 5]. We define $\rho_{0,m}$ by

$$\rho_{0,m}\omega = \rho_0 \left(1 - \frac{t^m}{(x^3 - x)^m}\right)\omega.$$
(6)

Similarly we define $\rho_{1,m}$, $\rho_{-1,m}$ and the difference $\rho_{\pm,m}$. As an illustration we elaborate $\rho_{0,m}(dx/f)$. We get

A Matrix Version of Dwork's Congruences

$$\begin{split} \rho_{0,m}(dx/f) &= -\operatorname{res}_{x=0} \left(1 - \frac{t^m}{(x^3 - x)^m} \right) \frac{dx}{x^3 - x - t} \\ &= -\operatorname{res}_{x=0} \frac{1}{(x^3 - x)^m} \sum_{r=0}^{m-1} (x^3 - x)^{m-1-r} t^r dx \\ &= -\operatorname{res}_{x=0} \sum_{r=0}^{m-1} \frac{t^r dx}{(x^3 - x)^{r+1}} \\ &= \sum_{2n < m} {\binom{3n}{n}} t^{2n}. \end{split}$$

The latter polynomial is the truncation of $F(1/3, 2/3, 1/2|27t^2/4)$ truncated at the degree *m* term. Denote the truncation at degree *m* of a power series g(t) by $g(t)_m$. Then we obtain

$$\rho_{0,m} (dx/f) = F(1/3, 2/3, 1/2|27t^2/4)_m.$$

$$\rho_{0,m} (xdx/f) = -(tF(2/3, 4/3, 3/2|27t^2/4))_m.$$

$$\rho_{\pm,m} (dx/f) = -\frac{3}{2}(tF(7/6, 5/6, 3/2|27t^2/4))_m.$$

$$\rho_{\pm,m} (xdx/f) = F(1/6, 5/6, 1/2|27t^2/4)_m.$$

Lemma 5.4. We have $\rho_{0,m}(d\widehat{\mathcal{O}}_f) \equiv 0 \pmod{m}$ and $\rho_{\pm,m}(d\widehat{\mathcal{O}}_f) \equiv 0 \pmod{m}$.

Secondly, for any $m \ge 1$ divisible by p we have $\rho_{0,m} \equiv \rho_{0,m/p}^{\sigma} \circ \mathscr{C}_p \pmod{p^{\operatorname{ord}_p(m)}}$ and $\rho_{\pm,m} \equiv \rho_{\pm,m/p}^{\sigma} \circ \mathscr{C}_p \pmod{p^{\operatorname{ord}_p(m)}}$. Here $\rho_{0,m}^{\sigma}$ is defined as in equation (6) but with t replaced by t^p . Similarly for $\rho_{\pm,m}^{\sigma}$.

Proof. For any $G \in \widehat{\mathcal{O}}_f$ we have

$$\rho_{0,m} dG = -\text{coefficient of } \frac{dx}{x} \text{ in } \left(1 - \left(\frac{t}{x^3 - x}\right)^m\right) dG$$
$$\equiv -\text{coefficient of } \frac{dx}{x} \text{ in } d\left(1 - \left(\frac{t}{x^3 - x}\right)^m\right) G \equiv 0 \pmod{m}.$$

The applicability of ρ_0 requires that we consider expansions as doubly infinite Laurent series in R[x, t/x]. For $\rho_{1,m}$ the proof runs similarly.

For the proof of the second part let $\omega \in \widehat{\Omega}_{f}$. Then we have

$$\begin{split} \rho_{0,m}(\omega) &= -\text{coefficient of } \frac{dx}{x} \text{ in } \left(1 - \left(\frac{t}{x^3 - x}\right)^m\right) \omega \\ &\equiv -\text{coefficient of } \frac{dx}{x} \text{ in } \left(1 - \left(\frac{t^p}{x^{3p} - x^p}\right)^{m/p}\right) \omega \pmod{p^{\text{ord}_p(m)}} \\ &\equiv -\text{coefficient of } \frac{dx}{x} \text{ in } \mathscr{C}_p \left(1 - \left(\frac{t^p}{x^{3p} - x^p}\right)^{m/p}\right) \omega \pmod{p^{\text{ord}_p(m)}} \\ &\equiv -\text{coefficient of } \frac{dx}{x} \text{ in } \left(1 - \left(\frac{t^p}{x^3 - x}\right)^{m/p}\right) \mathscr{C}_p(\omega) \pmod{p^{\text{ord}_p(m)}} \\ &\equiv \rho_{0,m/p}^\sigma \mathscr{C}_p(\omega) \pmod{p^{\text{ord}_p(m)}}. \end{split}$$

The second step uses the obvious fact that the Cartier transform does not change the coefficient of $\frac{dx}{x}$.

In a similar manner one can show that

$$\rho_{1,m}(\omega) \equiv \rho_{1,m/p}^{\sigma} \mathscr{C}_p^1(\omega) \pmod{p^{\operatorname{ord}_p(m)}}.$$

Proposition 4.3 tells us that $\mathscr{C}_p^1(\omega) \equiv \mathscr{C}_p(\omega) \pmod{pd\widehat{\mathcal{O}}_{f^{\sigma}}}$. Together with the first part of our lemma, which implies that $\rho_{1,m/p}^{\sigma}(pd\widehat{\mathcal{O}}_{f^{\sigma}}) \equiv 0 \pmod{p^{\operatorname{ord}_p(m)}}$, we get

$$\rho_{1,m}(\omega) \equiv \rho_{1,m/p}^{\sigma} \mathscr{C}_p(\omega) \pmod{p^{\operatorname{ord}_p(m)}}.$$

In a similar way the statement for $\rho_{\pm,m}$ follows.

Corollary 5.5. Let notations be as in Corollary 5.3 Let $Y_m(t)$ be the matrix Y(t), where the entries have been truncated at t^m . Then, for any $m, s \ge 1$,

$$Y_{mp^{s}}(t) \equiv (Y(t)Y(t^{p})^{-1})Y_{mp^{s-1}}(t^{p}) \pmod{p^{s}}.$$

Proof. We start with the equality (5), which holds true modulo $pd\widehat{\Omega}_f$ according to [1, (14)]. Then apply $\rho_{0,mp^{s-1}}^{\sigma}$ and use $\rho_{0,mp^s} \equiv \rho_{0,mp^{s-1}}^{\sigma} \circ \mathscr{C}_p \pmod{p^s}$ to obtain

$$\begin{pmatrix} \rho_{0,mp^s}(dx/f)\\ \rho_{0,mp^s}(xdx/f) \end{pmatrix} \equiv \Lambda_p \begin{pmatrix} \rho_{0,mp^{s-1}}^{\sigma}(dx/f^{\sigma})\\ \rho_{0,mp^{s-1}}^{\sigma}(xdx/f^{\sigma}) \end{pmatrix} \pmod{p^s}.$$

Similarly we obtain

$$\begin{pmatrix} \rho_{\pm,mp^s}(dx/f) \\ \rho_{\pm,mp^s}(xdx/f) \end{pmatrix} \equiv \Lambda_p \begin{pmatrix} \rho_{\pm,mp^{s-1}}^{\sigma}(dx/f^{\sigma}) \\ \rho_{\pm,mp^{s-1}}^{\sigma}(xdx/f^{\sigma}) \end{pmatrix} \pmod{p^s}.$$

Our corollary follows from the above evaluations of the mod *m* periods and $\Lambda_p = Y(t)Y(t^p)^{-1}$.

We end with the proof of our main theorem.

Proof of Theorem 5.1. The proof follows the same steps as Corollary 5.3, but with the polynomial $f = x^3 - x - 2t/3\sqrt{3}$. This polynomial is defined over $\mathbb{Z}_p[\sqrt{3}][t]$ with Frobenius lift σ such that $\sigma(t) = t^p$ and $\sigma(\sqrt{3}) = \epsilon_p \sqrt{3}$. Hence $f^{\sigma} = x^3 - x - 2\epsilon_p t^p/\sqrt{3}$. We also use the new basis dx/f, $\sqrt{3}xdx/f$ and replace ρ_{\pm} by $\frac{1}{\sqrt{3}}\rho_{\pm}$. The adapted version of Corollary 5.3 would then become

$$\Lambda_p = \mathscr{Y}(t) \begin{pmatrix} \epsilon_p & 0 \\ 0 & 1 \end{pmatrix} \mathscr{Y}(t^p)^{-1}.$$

The remainder of the proof follows the same lines as above.

We finally give, without proof, the system of differential equations for $\mathscr{Y}(t)$ and its congruence version. Again the proof follows the same lines as in [2].

Theorem 5.6. We have

$$\frac{d}{dt}\mathscr{Y}(t) = \frac{1}{3(1-t^2)} \begin{pmatrix} 2t & -1 \\ -2 & t \end{pmatrix} \mathscr{Y}(t)$$

and

$$\frac{d}{dt}\mathscr{Y}_{mp^s}(t) \equiv \frac{1}{3(1-t^2)} \begin{pmatrix} 2t & -1 \\ -2 & t \end{pmatrix} \mathscr{Y}_{mp^s}(t) \pmod{p^s}$$

For all $m, s \geq 1$.

Acknowledgements I would like to thank Ling Long for our discussions which gave rise to this paper. I also like to thank the referees for their valuable feedback and their corrections.

References

- F. Beukers, M. Vlasenko, Dwork crystals I, Int. Math. Res. Notices 2021, 8807–8844, https:// doi.org/10.1093/imrn/rnaa119
- F. Beukers, M. Vlasenko, Dwork crystals II, Int. Math. Res. Notices 2021, 4427–4444, https:// doi.org/10.1093/imrn/rnaa120
- 3. B. Dwork, p-adic cycles, Publications Mathématiques de l'I.H.É.S. 37 (1969), 27-115
- 4. N. Katz, Internal reconstruction of unit-root F-crystals via expansion coefficients. With an appendix by Luc Illusie Annales scientifiques de l'É.N.S 18 (1985), 245–285
- 5. A. Mellit, M. Vlasenko, Dwork's congruences for the constant terms of powers of a Laurent polynomial, Int. J. Number Theory 12 (2016), 313–321