
AMatrix Version of Dwork’s
Congruences

Frits Beukers

Abstract In this article we give an example of a matrix version of the famous
congruence for hypergeometric functions found by Dwork in ‘p-adic cycles’.

1 Introduction

In this paper we shall deal with results of the following type. Let F(t) be an infinite
power series with constant term 1 and coefficients inZp, the p-adic numbers. Denote
by Fm(t) its m-th truncation, i.e. all terms of degree ≥ m in F(t) are deleted. We
shall be interested whether there are hypergeometric series F(t) for which

F(t)

F(t p)
≡ Fps (t)

Fps−1(t p)
(mod ps) (1)

for all s ≥ 1. The first such result was given by Dwork in ‘p-adic cycles’, [3], for the
caseof F(t) = F(1/2, 1/2; 1|t). Theproof of this result is basedona p-adic studyof the
coefficients of F(1/2, 1/2; 1|t). Using [3, Cor 1] and [3, Thm 3] one can generalize this
approach to other hypergeometric functionswhosemonodromy around 0 is unipotent
(i.e. allβ-parameters are 1). The goal of the present paper is to provide amore geomet-
ric approach to Dwork’s congruences based on the papers [1] and [2] (Dwork crystals
I and II), written jointly with Masha Vlasenko. In it we give an elementary approach
to the construction of the so-called unit root crystal in Dwork’s p-adic theory of zeta-
functions of algebraic varieties. As application we present in this paper some hyper-
geometric examples of (1) in Sect. 3. In Sect. 5 we present main result of this paper,
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Theorem 5.1, containing an example of a matrix version of Dwork’s congruence. Its
proof requires some ideas in addition to [1] and [2].

2 Summary of [1] and [2]

Let R be a characteristic zero domain and p an odd prime such that ∩s≥1 ps R =
{0}. Suppose that R is p-adically complete. Let f ∈ R[x±1

1 , . . . , x±1
n ] be a Laurent

polynomial and � ⊂ R
n its Newton polytope. Let �◦ be its interior. Consider the

R-module �◦
f of differential forms generated over R by

ωu := (k − 1)! xu

f (x)k
dx1
x1

∧ · · · ∧ dxn
xn

, u ∈ k�◦

for all k ≥ 1. Contrary to [1] and [2] we have now written the elements of � f as
differential forms. Let us abbreviate dx1

x1
∧ · · · ∧ dxn

xn
to dx

x .
Differential forms in �◦

f can be expanded as formal Laurent series. To that end
we choose a vertex b of� and obtain a Laurent expansion with support inC(� − b),
the positive cone generated by the vectors in� − b, and coefficients in R of the form

∑

k∈C(�−b)

akxk
dx
x

, ak ∈ R.

We denote such forms by �formal. The exact forms are denoted by d�formal. We call
them formally exact forms and they are characterized by the following lemma of
Katz, [4, Lemma 5.1].

Lemma 2.1. A series
∑

k∈C(�−b) akx
k dx

x is a formal derivative if and only if

ak ≡ 0(mod pordp(k)) for all k.

Here ordp(k) denotes the p-adic valuation of k and ordp(k) = min(ordp(k1), . . . ,
ordp(kn)).

We define the Cartier operator Cp on �formal by

Cp

(
∑

k

akxk
dx
x

)
:=

∑

k

apkxk
dx
x

. (2)

Using Cp we have an alternative characterization of formally exact forms which is a
direct consequence of Lemma 2.1.

Lemma 2.2. A series h ∈ �formal is a formal derivative if and only if C s
p(h) ≡

0(mod ps) for all integers s ≥ 1.
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When applied to a rational differential form Cp acts as

Cp

(
S(x)

dx
x

)
=

∑

y:yp=x

S(y)
dy
y

.

The summation extends over all yi = ζi x
1/p
i , i = 1, . . . , n, where each ζi runs over

all p-th roots of unity. So we see that Cp sends rational differential forms to rational
differential forms. Unfortunately, �◦

f is not sent to itself. But we have something
that comes close. Define the p-adic completion

�̂◦
f := lim← �◦

f /p
s�◦

f .

Fix a Frobenius lift σ on R: this is a ring endomorphism σ : R → R such that
σ(r) ≡ r p(mod p) for every r ∈ R. We have

Proposition 2.3. If p > 2 then Cp(�
◦
f ) ⊂ �̂◦

f σ .

The proof is given in [1, Prop 3.3] and consists of a straightforward computation
ending with a p-adic expansion in �̂◦

f σ .
We shall be interested in U ◦

f := �̂◦
f ∩ d�formal. These are differential forms that

are not necessarily exact but become exact when embedded in the formal expansions.
Katz refers to them as ‘forms that die on formal expansion’, [4, Thm 6.2(1.b)]. In
[1, Prop 4.2] we find a characterization of the elements of U ◦

f without any reference
to formal expansion.

Proposition 2.4. With the notations as above we have

U ◦
f = {ω ∈ �̂◦

f | C s
p(ω) ≡ 0(mod ps�̂◦

f σ s ) for all s ≥ 1}.

We now come to one of the main results in [1, Thm 4.3]. Let h = |�◦ ∩ Z
n|.

Define the Hasse-Witt matrix βp as the h × h-matrix given by

(βp)u,v = coefficient of xpu−v of f (x)p−1, u, v ∈ �◦ ∩ Z
n

Theorem 2.5. Suppose det(βp) is invertible in R. Then �̂◦
f /U

◦
f is a free R-module

of rank h with basis xu

f
dx
x , u ∈ �◦ ∩ Z

n.

The remainder of [1] and [2] is then devoted to the construction of p-adic approx-
imations to the h × h-matrix of the Cartier operator. In [2] we give special attention
to those approximations that give rise to congruences of the form (1) (in case h = 1)
and higher.
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3 First Examples

In [5] we find a very general theorem providing congruences of the form (1).

Theorem 3.1 (Mellit-Vlasenko). Let g(x) ∈ Zp[x±1
1 , . . . , x±1

n ] be a Laurent poly-
nomial in the variables x1, . . . , xn. Suppose that the Newton polytope � of g has
the origin as unique interior lattice point. For every integer r ≥ 0 denote by fr the
constant term of g(x)r and define F(t) = ∑

r≥0 fr tr . Then the congruences (1) hold
for all s ≥ 1.

In [2, (7)] there is a stronger result with an entirely different proof.

Theorem 3.2 (Beukers-Vlasenko). With the same notations as in Theorem 3.1 we
have

F(t)

F(t p)
≡ Fmps (t)

Fmps−1(t p)
(mod ps) (3)

for all m, s ≥ 1.

Here is an application.

Corollary 3.3. Let k ≥ 2 be an integer and p an odd prime not dividing k. Then (1)
holds for the hypergeometric series

k−1Fk−2(1/k, 2/k, . . . , (k−1)/k; 1, 1, . . . , 1|t).

Proof. Consider

g = 1

k

(
x1 + · · · + xk−1 + 1

x1 · · · xk−1

)
.

A simple calculation show that fr is zero if k does not divide r and equal to

1

kkl
(kl)!
(l!)k = (1/k)l

l!
(2/k)l

l! · · · ((k−1)/k)l

l!
if r = kl. Hence

F(t) = k−1Fk−2(1/k, 2/k, . . . , (k−1)/k; 1, 1, . . . , 1|t k).

Now apply Theorem 3.2 with m = k and replace t k by t . ��
Here is another variation which generalizes Dwork’s example

Corollary 3.4. Let k ≥ 2 be an integer and p an odd prime. Then (1) holds for the
hypergeometric series

k−1Fk−2(1/2, 1/2, . . . , 1/2; 1, 1, . . . , 1|t).
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Proof. Consider

g = 2−k

(
x1 + 1

x1

)
· · ·

(
xk + 1

xk

)
.

A simple calculation shows that fr is zero if r is odd and equal to

(
(1/2)l

l!
)k

if r = 2l. Hence

F(t) = k−1Fk−2(1/2, . . . , 1/2; 1, 1, . . . , 1|t2).

Now apply Theorem 3.2 with m = 2 and replace t2 by t . ��

4 One Variable Polynomials

Let again R be a characteristic zero ring, p an odd prime such that ∩s≥1 ps R = {0}
and suppose R is p-adically complete. Let σ : R → R be a Frobenius lift. It turns
out that in the case of one variable polynomials f the theory sketched in Sect. 2 has
a very nice simplification that we like to present for general monic f ∈ R[x] with
f (0) = 0. Let d be the degree of f . We suppose that d ≥ 2 and that the discriminant
of f is invertible in R. The space �◦

f is given by O◦
f dx where O◦

f is the R-module

generated by the forms l! xk

f l+1 with 0 ≤ k ≤ d(l + 1) − 2. Similarly we define O f in
the same way but with the inequalities 0 ≤ k ≤ d(l + 1) − 1. The exact forms in�◦

f
are then given by dO f . We call them rational exact forms.

We defineOformal = 1
x R�1/x� and�formal = 1

xOformaldx . We embed�◦
f in�formal

by expansion in powers of 1/x . The formally exact forms are defined by dOformal.
The interior of the Newton polytope is �◦ = (0, d) and the cardinality of �◦ ∩ Z

is d − 1. So, letting p be an odd prime, the Hasse-Witt matrix βp(t) is a (d − 1) ×
(d − 1)-matrix. It turns out that det(βp) ≡ disc( f )p−1(mod p), where disc( f ) is the
discriminant of f . By p-adic completeness of R and invertibility of disc( f ) in R
we find that det(βp) is invertible in R. According to Theorem 11 in Dwork crystals
I, [1], we know that �̂◦

f /dOformal is a free rank d − 1 module over R with basis
dx/ f, xdx/ f, . . . , xd−2dx/ f .

It turns out that in the case n = 1 formally exact forms coincide with rational
exact forms. More precisely,

Proposition 4.1. Let f ∈ R[x] be a monic polynomial and suppose that its discrim-
inant is invertible in R. Then �◦

f ∩ dOformal = dO f .
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Proof. Clearly dO f ⊂ dOformal. We first show that every ω ∈ �◦
f is equivalent mod-

ulo dO f to a form Q(x)dx/ f with Q(x) ∈ R[x] of degree ≤ d − 2. To that end
we use the one variable version of the Griffiths reduction procedure. Since p does
not divide disc( f ), to every Q(x) ∈ R[x] of degree ≤ N there exist polynomials
A, B ∈ R[x] of degrees ≤ d − 1 and ≤ max(d − 2, N − d) respectively, such that
Q = A f ′ + B f .

Let us start with a form l!Q(x)dx/ f l+1 with deg(Q) ≤ (l + 1)d − 2 and l > 0.
Write Q = A f ′ + B f with deg(A) ≤ d − 1, deg(B) ≤ ld − 2. Then we obtain

l!Q(x)

f l+1
dx = l! A f

′

f l+1
dx + l! B

f l
dx

= −d

(
(l − 1)! A

f l

)
+ (l − 1)! A

′

f l
dx + l! B

f l
dx

≡ (l − 1)! l B + A′

f l
dx(mod dO f ).

Note that deg(l B + A′) ≤ ld − 2. By repeating this procedure we see that any ω ∈
�◦

f is equivalent modulo dO f to a form Qdx/ f with Q ∈ R[x] of degree ≤ d − 2.
The second part of our proof consists of showing that Qdx/ f ∈ dOformal implies

that Q = 0. Suppose that

Qdx

f
= d

(
∑

n≥0

an
xn

)
=

∑

n≥1

− nan
xn+1

dx .

From this we see that the coefficient of dx/xmps+1 in the 1/x-expansion of Qdx/ f
is divisible by ps for any m, s ≥ 0. Let K be the splitting field of f over R and let
α1, . . . , αd ∈ K be the zeros of f . Then there exist A1, . . . , Ad in R[α1, . . . , αd ]
such that

disc( f )
Qdx

f
=

d∑

i=1

Aidx

x − αi
=

∑

n≥0

(A1α
n
1 + · · · + Adα

n
d )

dx

xn+1
.

We now know that A1α
mps

1 + · · · + Adα
mps

d is divisible by ps for all m ≥ 0. In par-
ticular for m = 0, 1, . . . , d − 1. Now note that

det((αmps

i )i=1,...,d;m=0,...,d−1) =
∏

i< j

(α
ps

i − α
ps

j )

≡
∏

i< j

(αi − α j )
ps ≡ disc( f )p

s
(mod p),

which is a unit in R. We conclude that Ai ≡ 0(mod ps) for all i and s. Hence Ai = 0
for all i and we conclude Q(x) = 0, as asserted. ��
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An immediate corollary is its extension to p-adic completions. Denote �̂◦
f as

before and similarly Ô f . Then we find,

Proposition 4.2. Let f ∈ R[x] be a monic polynomial and suppose that its discrim-
inant is invertible in R. Then U ◦

f = �̂◦
f ∩ dOformal = dÔ f .

The operatorCp is essentially a lift of a Cartier operatorwhich is onlywell-defined
in characteristic p. In [1] and [2] it sufficed to use only the operatorCp defined above.
However, as a new ingredient, we need to consider other lifts. Let a ∈ Zp. Define
C a

p as the operator with the property that C a
p ((x − a)k−1dx) = (x − a)k/p−1dx if p

divides k and 0 if not. In general it acts on rational differential forms as

C a
p

(
S(x)

dx

x

)
=

∑

y:(y−a)p=x−a

S(y)
dy

y
.

So we sum over y = a + ζ(x − a)1/p where ζ runs over the p-th roots of unity. We
can compare Cp and C a

p by looking at their action on �formal.

Proposition 4.3. We have C a
p (�◦

f ) ⊂ �̂◦
f σ and

Cp(ω) ≡ C a
p (ω)(mod pdÔ f σ ) (4)

for all ω ∈ �◦
f .

Proof. The fact that the image of C a
p lies in �̂◦

f σ follows along the same lines as
in the proof of [1, Prop 3.3]. Clearly we have R�1/x� ∼= R�1/(x − a)� through
the expansion 1

x−a = ∑
n≥0

an

xn+1 . Let us prove our second assertion for ωk = (x −
a)−k−1dx for k ≥ 1. The full statement then follows by linearity.

Observe that

ωk = (x − a)−k−1dx = −d

(
1

k
(x − a)−k

)
.

If k is not divisible by p then clearly ωk ∈ dOformal. Since Cp(dOformal) ⊂ pdOformal

we get that Cp(ωk) ≡ 0(mod pdOformal). We have trivially C a
p (ωk) = 0. This proves

our statement for k not divisible by p. Suppose now that p divides k. Then

1

k
(x − a)−k ≡ 1

k
(x p − a)−k/p(mod Oformal)

hence, after taking differentials,

(x − a)−k−1dx ≡ (x p − a)−k/p−1x p−1dx(mod dOformal).

Application of Cp gives Cp(ωk) ≡ ωk/p(mod pdOformal). Note that ωk/p = C a
p (ωk)

when p divides k. Thus we conclude that
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Cp(ωk) ≡ C a
p (ωk)(mod pdOformal).

By linearity this congruence holds for all ω ∈ �◦
f .

It remains to see that we can replace pdOformal by pdÔ f . From Proposition 3.6
in [1] it follows that to any ω ∈ �̂◦

f there exists ω1 ∈ �̂◦
f σ and a polynomial A(a, ω)

such that C a
p (ω) = A(a,ω)

f σ + pω1. Since C a
p (ω) − C 0

p (ω) ∈ pdOformal it follows that
A(a, ω) − A(0, ω) is divisible by p. Hence

1

p
(C a

p (ω) − C 0
p (ω)) ∈ �̂◦

f σ ∩ dOformal = dÔ f σ .

The latter equality follows from Proposition 4.2. ��

5 A Matrix Example

The examples in the Sect. 3 are all related to the case h = 1, one interior lattice point
of the Newton polytope �. In this section we consider an example of rank h = 2.

Theorem 5.1. Let

Y (t) =
(

F(1/3, 2/3, 1/2|t2) − 1
3 t F(7/6, 5/6, 3/2|t2)

− 2
3 t F(2/3, 4/3, 3/2|t2) F(1/6, 5/6, 1/2|t2)

)
.

Denote by Ym(t) the m-th truncated version of Y (t), i.e. we drop all term starting
with tm. Then, for all primes p > 3 and all m, s ≥ 1 we have

Ymps (t)

(
εp 0
0 1

)
Ymps−1(t p)−1 ≡ Y (t)

(
εp 0
0 1

)
Y (t p)−1(mod ps).

Here εp = 1 if 3 is a square modulo p and −1 if not.

For the proof of this theorem, given at the end of this section, we require the one
variable polynomial f = x3 − x − t ∈ R[x] with R = Zp�t�, where p is a prime
with p > 3. As Frobenius lift we take g(t)σ = g(t p) for all g(t) ∈ R. The discrimi-
nant of f equals to 4 − 27t2, and hence it is invertible in R.

We define the 2 × 2-matrix 
p with entries in R by

Cp

(
dx/ f
xdx/ f

)
≡ 
p

(
dx/ f σ

xdx/ f σ

)
(mod dÔ f ). (5)

The relation of 
p with hypergeometric functions is obtained by period maps. To
that end we consider
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l! x
k−1dx

f l+1
= l! xk−1dx

(x3 − x)l+1

∑

r≥0

(
r + l

l

)
tr

(x3 − x)r
,

and then take termwise the residue at x = 0. We could rephrase this procedure by
saying that we expand xk−1dx/ f l+1 as two-sided Laurent series in R�x, t/x� and
then take the residue at x = 0. Similarly we can take residues at x = ±1 (i.e. by
expanding in Laurent series in x ∓ 1). The result is again a power series in t . As long
as 0 < k < 3(l + 1) the terms of the series have no residue at∞ and therefore the sum
of the residues at 0, 1,−1 of the series is 0. We carry out the residue computations
for l = 0, k = 1, 2. A straightforward calculation shows that

resx=0
dx

(x3 − x)r+1
=

{
0 if r is odd

−(3n
n

)
if r = 2n

resx=0
xdx

(x3 − x)r+1
=

{
0 if r is even(3n+1

n

)
if r = 2n + 1

.

Denote res±ω = resx=1ω − resx=−1ω. Then we obtain

res±
dx

(x3 − x)r+1
=

{
0 if r is even

− 3
2

(7/6)n(5/6)n
(3/2)nn!

(
27
4

)n
if r = 2n + 1

res±
xdx

(x3 − x)r+1
=

{
0 if r is odd
(1/6)n(5/6)n

(1/2)nn!
(
27
4

)n
if r = 2n

.

Let us denote the period map obtained by taking minus the residue at 0 by ρ0 and
the one by taking the difference of the residues at ±1 by ρ±. We summarize

ρ0 (dx/ f ) = F(1/3, 2/3, 1/2|27t2/4).

ρ0 (xdx/ f ) = −t F(2/3, 4/3, 3/2|27t2/4).

ρ± (dx/ f ) = −3

2
t F(7/6, 5/6, 3/2|27t2/4).

ρ± (xdx/ f ) = F(1/6, 5/6, 1/2|27t2/4).

A crucial property of ρ0, ρ± is that they vanish on exact forms, i.e. dÔ f . This is
because residues of exact forms are zero, which is a special case of [2, Prop 2.2].

Proposition 5.2. For everyω ∈ �̂◦
f we have ρ0(Cp(ω)) = ρ0(ω) and ρ±(Cp(ω)) =

ρ±(ω).



56 F. Beukers

Proof. Let ω ∈ �̂◦
f . Expand it in R�x, t/x�dx . The value of ρ0 is minus the coef-

ficient of dx/x . By definition of Cp this value is the same for Cp(ω), hence our
first assertion follows. Similarly we can see that the residue at 1, which we denote
by ρ1, has the property ρ1(C 1

p (ω)) = ρ1(ω). It follows from Proposition 4.3 that

C 1
p (ω) ≡ Cp(ω)(mod dÔ f ). Hence ρ1(Cp(ω)) = ρ1(ω). The same result holds of

course for ρ± = ρ1 − ρ−1. ��
Corollary 5.3. Let

Y (t) =
(

F(1/3, 2/3; 1/2|27t2/4) − 3
2 t F(7/6, 5/6; 3/2|27t2/4)

−t F(2/3, 4/3; 3/2|27t2/4) F(1/6, 5/6; 1/2|27t2/4)
)

.

Let 
p be the 2 × 2 cartier-matrix in (5). Then


p = Y (t)Y (t p)−1.

Proof. We start with the equality (5), apply ρ0 and use ρ0 ◦ Cp = ρ0 to obtain

(
ρ0(dx/ f )
ρ0(xdx/ f )

)
= 
p

(
ρ0(dx/ f σ )

ρ0(xdx/ f σ )

)
.

Similarly we obtain

(
ρ±(dx/ f )
ρ±(xdx/ f )

)
= 
p

(
ρ±(dx/ f σ )

ρ±(xdx/ f σ )

)
.

Our corollary follows from the above evaluations of the periods. ��
In order to get Dwork type congruences we also need to introduce a suitable

‘period map mod m’. By that we mean an R-linear map ρ : �̂ f → R such that
ρ(�̂ f ∩ dOformal) ⊂ mR and δ ◦ ρ ≡ ρ ◦ δ(mod mR) for any derivation δ on R.

For our purposes we use a slight generalization of the period maps we considered
in [2, Section5]. We define ρ0,m by

ρ0,mω = ρ0

(
1 − tm

(x3 − x)m

)
ω. (6)

Similarly we define ρ1,m, ρ−1,m and the difference ρ±,m . As an illustration we elab-
orate ρ0,m(dx/ f ). We get
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ρ0,m(dx/ f ) = −resx=0

(
1 − tm

(x3 − x)m

)
dx

x3 − x − t

= −resx=0
1

(x3 − x)m

m−1∑

r=0

(x3 − x)m−1−r tr dx

= −resx=0

m−1∑

r=0

tr dx

(x3 − x)r+1

=
∑

2n<m

(
3n

n

)
t2n.

The latter polynomial is the truncation of F(1/3, 2/3, 1/2|27t2/4) truncated at the degree
m term. Denote the truncation at degree m of a power series g(t) by g(t)m . Then we
obtain

ρ0,m (dx/ f ) = F(1/3, 2/3, 1/2|27t2/4)m .

ρ0,m (xdx/ f ) = −(t F(2/3, 4/3, 3/2|27t2/4))m .

ρ±,m (dx/ f ) = −3

2
(t F(7/6, 5/6, 3/2|27t2/4))m .

ρ±,m (xdx/ f ) = F(1/6, 5/6, 1/2|27t2/4)m .

Lemma 5.4. We have ρ0,m(dÔ f ) ≡ 0(mod m) and ρ±,m(dÔ f ) ≡ 0(mod m).
Secondly, for any m ≥ 1 divisible by p we have ρ0,m ≡ ρσ

0,m/p ◦ Cp(mod pordp(m))

and ρ±,m ≡ ρσ±,m/p ◦ Cp(mod pordp(m)). Here ρσ
0,m is defined as in equation (6) but

with t replaced by t p. Similarly for ρσ±,m.

Proof. For any G ∈ Ô f we have

ρ0,mdG = −coefficient of dx
x in

(
1 −

(
t

x3 − x

)m)
dG

≡ −coefficient of dx
x in d

(
1 −

(
t

x3 − x

)m)
G ≡ 0(mod m).

Theapplicability ofρ0 requires thatwe consider expansions as doubly infiniteLaurent
series in R�x, t/x�. For ρ1,m the proof runs similarly.

For the proof of the second part let ω ∈ �̂ f . Then we have
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ρ0,m(ω) = −coefficient of dx
x in

(
1 −

(
t

x3 − x

)m)
ω

≡ −coefficient of dx
x in

(
1 −

(
t p

x3p − x p

)m/p
)

ω (mod pordp(m))

≡ −coefficient of dx
x in Cp

(
1 −

(
t p

x3p − x p

)m/p
)

ω (mod pordp(m))

≡ −coefficient of dx
x in

(
1 −

(
t p

x3 − x

)m/p
)
Cp(ω) (mod pordp(m))

≡ ρσ
0,m/pCp(ω) (mod pordp(m)).

The second step uses the obvious fact that the Cartier transform does not change the
coefficient of dx

x .
In a similar manner one can show that

ρ1,m(ω) ≡ ρσ
1,m/pC

1
p (ω)(mod pordp(m)).

Proposition 4.3 tells us that C 1
p (ω) ≡ Cp(ω)(mod pdÔ f σ ). Together with the first

part of our lemma, which implies that ρσ
1,m/p(pdÔ f σ ) ≡ 0(mod pordp(m)), we get

ρ1,m(ω) ≡ ρσ
1,m/pCp(ω)(mod pordp(m)).

In a similar way the statement for ρ±,m follows. ��
Corollary 5.5. Let notations be as in Corollary 5.3 Let Ym(t) be the matrix Y (t),
where the entries have been truncated at tm. Then, for any m, s ≥ 1,

Ymps (t) ≡ (Y (t)Y (t p)−1)Ymps−1(t p)(mod ps).

Proof. We start with the equality (5), which holds true modulo pd�̂ f according to
[1, (14)]. Then apply ρσ

0,mps−1 and use ρ0,mps ≡ ρσ
0,mps−1 ◦ Cp(mod ps) to obtain

(
ρ0,mps (dx/ f )
ρ0,mps (xdx/ f )

)
≡ 
p

(
ρσ
0,mps−1(dx/ f σ )

ρσ
0,mps−1(xdx/ f σ )

)
(mod ps).

Similarly we obtain

(
ρ±,mps (dx/ f )
ρ±,mps (xdx/ f )

)
≡ 
p

(
ρσ

±,mps−1(dx/ f σ )

ρσ
±,mps−1(xdx/ f σ )

)
(mod ps).

Our corollary follows from the above evaluations of the mod m periods and 
p =
Y (t)Y (t p)−1. ��
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We end with the proof of our main theorem.

Proof of Theorem 5.1. The proof follows the same steps as Corollary 5.3, but with
the polynomial f = x3 − x − 2t/3

√
3. This polynomial is defined over Zp[

√
3]�t�

with Frobenius lift σ such that σ(t) = t p and σ(
√
3) = εp

√
3. Hence f σ = x3 −

x − 2εpt p/
√
3.We also use the new basis dx/ f,

√
3xdx/ f and replace ρ± by 1√

3
ρ±.

The adapted version of Corollary 5.3 would then become


p = Y (t)

(
εp 0
0 1

)
Y (t p)−1.

The remainder of the proof follows the same lines as above. ��
We finally give, without proof, the system of differential equations for Y (t) and

its congruence version. Again the proof follows the same lines as in [2].

Theorem 5.6. We have

d

dt
Y (t) = 1

3(1 − t2)

(
2t −1
−2 t

)
Y (t)

and
d

dt
Ymps (t) ≡ 1

3(1 − t2)

(
2t −1
−2 t

)
Ymps (t)(mod ps)

For all m, s ≥ 1.
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