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ABSTRACT
A typical index at the end of a textbook contains a manually-
provided vocabulary of terms related to the content of the textbook.
In this paper, we extend our previous work on extraction of knowl-
edge models from digital textbooks. We are taking a more critical
look at the content of a textbook index and present a mechanism
for classifying index terms according to their domain specificity: a
core domain concept, an in-domain concept, a concept from a related
domain, and a concept from a foreign domain. We link the extracted
models to DBpedia and leverage the aggregated linguistic and struc-
tural information from textbooks and DBpedia to construct and
prune the domain-specific knowledge graphs. The evaluation ex-
periments demonstrate (1) the ability of the approach to identify
(with high accuracy) different levels of domain specificity for auto-
matically extracted concepts, (2) its cross-domain robustness, and
(3) the added value of the domain specificity information. These re-
sults clearly indicate the improved quality of the refined knowledge
graphs and widen their potential applicability.
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ing and information discovery;Clustering and classification;
Information extraction; •Applied computing→Document anal-
ysis.
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1 INTRODUCTION
Back-of-the-book indices are collections of terms that can help
textbook readers in several ways. As a navigation tool, an index
provides readers with hand-crafted shortcuts from a target notion
to a place in the textbook that explains it or elaborates on it. As
an information retrieval tool, it supports meaningful annotation
of the textbook content with manually selected keywords. Finally,
as a knowledge organization method, an index is a collection of
important domain terms curated by an expert. We underline the
fact that index terms and links between them and textbook pages
are created manually. There have been a few research attempts
to develop methods and tools for automated index construction
[11, 61]; however, their results are far from reliable. More recently
developed approaches on terminology extraction either require
very large corpora [65] or utilize supervised methods [63]. Finally,
existing commercial indexing software such as CINDEX1 or Index
Manager2 can help automate some steps of index creation (such as
creating a word list, or alphabetizing of an index), but still require
manual supervision. At the end of the day, index development is a
task that has to be donemanually and cannot be done just by anyone.
Multiple books (e.g., [6, 9, 30]) and guidelines (e.g., [1, 2]) are written
to direct the index creation process. Dedicated associations (e.g.,
The American Society for Indexing3 and The Society of Indexers4)
develop and disseminate book-indexing methods and practices.
Methodologies for indexing stipulate index length and style, good
and bad candidates for index terms, how to maintain consistency
when creating hierarchical indices, interrelationships among terms,
etc. Usually, it is either a textbook author or a dedicated human
indexerwho creates the index. As a result, a typical textbook index is
not just a collection of words but also a reference model produced
by an expert according to a predefined set of rules. Each entry
in this model is accompanied with one or more links to relevant
textbook pages. Moreover, these pages do not simply mention index
entries but provide meaningful references by either introducing
corresponding terms or elaborating them.

In our recent work [4], we have described a procedure for auto-
mated extraction of knowledge models from PDF textbooks, based
on their structure, formatting and organization patterns. We have
paid special attention to the index sections of the processed text-
books as the source of fine-grained domain terminology and text
annotations. We have been able to automatically link index terms to
their corresponding resources in DBpedia5, thus enriching our text-
book models with additional semantic information and connecting
them to the open linked data cloud [3].
1http://www.indexres.com
2http://index-manager.net
3https://www.asindexing.org/
4https://www.indexers.org.uk/
5http://dbpedia.org
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At the same time, even a surface analysis of a typical textbook
index can show that not all index entries are equally representative
of the domain of the textbook 6. From the epistemological perspec-
tive, an index of any document reflects not only the expertise and
efforts of its creator, but also the needs of a group of users for whom
the index is created, and the task that these users are engaged in
[27]. Hence, on one hand, we can never expect a textbook index
to represent a fully objective and neutral model with consistent
granularity of cohesive terms covering the domain of the textbook
exclusively, completely and unambiguously. At the same time, we
can expect that the purpose of an index follows the purpose of the
textbook itself, namely, to present important notions that help read-
ers better understand a certain subject. Many of the index entries
will introduce the core concepts from the target domain, yet there
will also be terms included in the index to represent the unique view
of the textbooks author, make connections to relevant domains,
and present potential use cases, applications and examples. In other
words, even a good index is likely to include a large number of en-
tries that refer to concepts that either mildly relevant to the target
domain, or not relevant at all. For example, in a statistics textbook,
the terms mean and hypotheses testing will belong to the core of
the main subject. There will also be other, more niche statistical
terms, such as five-number summary and cross-validation. Terms
like factorial and De Morgan’s laws are likely to be present as well,
yet they are associated with domains related to statistics: math-
ematics and set theory, respectively. Finally, terms like Euro coin
and Bovine Spongiform Encephalopathy are from entirely different
domains, included to enrich the textbook with examples.

This means that knowledge models that we extract from text-
books contain concepts with low domain specificity. This can seri-
ously reduce the value of such models as intelligent services built
on top of them would have hard time distinguishing between rele-
vant and irrelevant domain knowledge. For example, an adaptive
learning environment [26] using such a model could misjudge the
importance of a certain concept and mistakenly guide students to
irrelevant educational material.

Since manual assessment of domain specificity of large knowl-
edge graphs is a time-consuming and complex task [40], we have
focused on developing a method for automated analysis of index
terms and identification of their relevance to the domain of a text-
book. We integrate information extracted from textbooks and DB-
pedia. Textbooks supply index terms and referenced text fragments,
while DBpedia provides structural (categories and links) and textual
(abstracts) information associated with the resources linked to the
index terms. The contributions of this paper are two-fold: (1) an
approach for identifying the domain specificity relation of index
terms; (2) an evaluation of the accuracy and applicability of the
proposed approach.

2 PRELIMINARIES
2.1 Domain Specificity
Generally speaking, domain specificity classification refers to the
task of assigning to a term the label used or not used concerning

6e.g. while analyzing textbooks on statistics, we have observed a rather stable ratio of
about 2/3 of all index entries categorizable as relevant to the domain of statistics

a domain D of interest [32]. In this paper, we extend the tradi-
tional classification into a set L of four domain specificity labels to
annotate the index terms. Each label l ∈ L is one of the following:
• core-domain: key index terms that represent the most impor-
tant and frequently used concepts in D;
• in-domain: additional index terms that belong to D;
• related-domain: index terms from domains related to D;
• out-of-domain: index terms not related to D (often used for
pedagogical reasons, e.g., examples, use-cases, summaries).

2.2 DBpedia
DBpedia is a knowledge graph [22] extracted from Wikipedia [7].
Each Wikipedia entry/page is represented as a DBpedia resource.
Currently, its English version describes over 6 million resources,
uniquely identified by URIs7. Knowledge in DBpedia can be queried
through its SPARQL endpoint or downloaded as a full RDF model.
Each DBpedia resource has an abstract, a category, and a set of
links to other resources. Abstracts are extracted from the texts of
Wikipedia pages preceding tables of contents. Categories are spe-
cial kind of resources used to classify and group regular resources
on similar subjects. Each resource has one or more categories as-
sociated, and each category has a set of sub-categories and super-
categories.We use the symbols ⊆c and ⊇c to indicate that a category
is a sub-category or a super-category, respectively. For example,
dbc:Statistics ⊆c dbc:Probability_and_statistics and dbc:Statistics ⊇c

dbc:Applied_statistics. Also, when ⊆c and ⊇c are used between a
resource and a category, they show the direct category of the re-
source. For example, dbr:Mean ⊆c dbc:Means. This allows navigate
the non-strict hierarchy of categories using a number of hops (n-
hops) to connect categories and resources. Finally, each resource is
associated with other resources using the hyperlinks between the
corresponding Wikipedia pages of the resources. Figure 1 shows
five DBpedia resources and how they are connected to dbc:Statistics
using the categorization system.

2.3 Knowledge Model Extraction and Linking
to DBpedia

As mentioned, we have previously developed a method for the
automated extraction of knowledge models from textbooks [5].
Figure 2.A presents a summarized version of this process. During
the first stage, a knowledge model is extracted from a textbook
using its formatting, structure, and organization. Then, the model
is enriched with additional semantic information from DBpedia by
linking identified index terms into DBpedia resources. The second
stage is more relevance for our current work, therefore we provide
a more detailed description of it.

First, the index section of the textbook is processed, all terms
are extracted and added to a glossary. Then, during the term link-
ing step, each term is queried against DBpedia. When a result is
retrieved, it can be either (1) a resource or (2) a list of candidate
resources with the same or similar names. Suppose the result is a

7For example, the resource about the arithmetic mean has the full URI http://dbpedia.
org/ resource/Arithmetic_mean corresponding to the shorter (namespaced) version
dbr:Arithmetic_mean. For simplicity, in the rest of the paper we use namespaced URIs
of resources and properties. Namespace prefixes can be found at https://dbpedia.org/
sparql?help=nsdecl
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Figure 1: Resources connected using the categorization sys-
tem.

single resource r , and it belongs to a sub-category that is at most
3-hops away from the target category (representing D). r is consid-
ered to belong to D unambiguously and is linked to the target term.
After all index terms have been tossed to the DBpedia SPARQL
interface as queries, we obtain a set of resources called SEED8.
Each r ∈ SEED represents a seed resource in D. When multiple
resources are retrieved, we compute a similarity function between
each candidate resource’ abstract and the cumulative abstract of
SEED. The candidate resource with the highest similarity, which
is also above a threshold, is linked to the target term. This second
set of resources is called RES . In the final step, each linked term is
enriched with semantic information extracted from DBpedia.

Once the model is fully linked and enriched, it is serialized as
an XML file using the Text Encoding Initiative (TEI)9. Up to this
point, we have not experimented with further improvement of
our models and considered all index terms that we extract equally
important for the subject of the textbook, i.e. for the domain model
extracted from it. In the next section, we perform a deeper analysis
of the textbook indices and refine extracted models by labeling their
concepts according to their domain specificity. The star in fig. 2.A
indicates where the approach presented in this paper fits within
the general workflow.

3 APPROACH
To decide whether a resource (and an index term linked to it) be-
longs to a domain, our approach heavily relies on the structure of
the DBpedia category graph that provides an easily navigatable
web of (sub)domains for any root domain category. However, some
properties of this graph present challenges. For example, it is possi-
ble for a resource to be connected to a root category using both sub-
and super-categories. The former connection denotes belonging to
the main domain, and the latter indicates that the resource is related
indirectly through a different domain. When both connections exist,

8In our previous work, this set was called the core set
9https://tei-c.org/

it is not possible to discern which one is stronger. In fig. 1, Median
is connected to Statistics both directly to the root and indirectly
through Mathematical_analysis. Another important consideration
is that a presence of a direct hierarchical path from a domain cat-
egory to a resources is not enough to assume that the resource
belongs to the domain. In fig. 1, ASCII is connected to Statistics by
a chain of 6 sub-categories, yet it is not a statistical concept. The
third challenge is to decide if resources connected only through
super-categories are sufficiently relevant to be considered as a part
of a related domain or not (e.g., in fig. 1 do resources Probability and
Indicator_function belong to domains related to Statistics?). Finally,
a resource could have multiple paths to a domain using different
categories with varying degrees of relevance, making it necessary
to identify the most related one. For example, Scatter_plot has two
direct paths to Statistics using only sub-categories in fig. 1.

To combat these challenges, we need to combine information
from textbook models with the content and structural properties of
the DBpedia knowledge graph. Figure 2.B shows the overall process
for identifying domain specificity of individual DBpedia resources
/ index terms. The final result is the refined model, which is es-
sentially a domain specificity graph where each individual vertex
represents a concept and each concept is marked with an individ-
ual specificity label. It is essential to mention that each domain
specificity graph indicates only the specificity of concepts extracted
from a source textbook (or a set of textbooks) regarding the tar-
get domain; it does not try to label the specificity of all possible
resources in DBpedia regarding this domain. The following subsec-
tions explain the stages of the proposed approach. Additionally, the
algorithmic representations of the main methods of the approach
can be found in the Appendix.

3.1 Initialization
The first stage of the approach is preparatory. The DBpedia re-
sources matched to the textbook’s index terms are divided into two
sets: SEED and RES (see Section 2.3). An empty domain specificity
graph is created. The graph is denoted by DSG = (V ,E), where
V is a set of vertices representing concepts and categories, and
E ⊆ V × V is a set of unweighted and directed edges represent-
ing the hierarchical relations of resources in the categorization
system of DBpedia. There are one special vertex, root ⊆ V , and
two subsets of vertices, C ⊆ V and CAT ⊆ V . Root represents the
main DBpedia category of D (e.g., dbc:Statistics). C is composed of
concepts - DBpedia resources linked to index terms whose domain
specificity has been identified. Finally, CAT vertices are DBpedia
categories with an identified domain specificity and linked to the
concepts inC . Elements inC andCAT are annotated with one of the
domain specificity labels from L. A path denoted by pi = (root ⊇c
cat1 ⊇c . . . ⊇c catn ⊇

c c) | catx ∈ CAT , c ∈ C, and i ∈ N, con-
nects c to root . Pc = {p1, . . . ,pд} is a set of д paths connecting c
to root . For a pi , if ∀catx ∈ pi , root ⊇c catx , c is a core-domain or
in-domain concept. On the contrary, if ∃catx ∈ pi , root ⊆c catx , c
is a related-domain concept. Finally, if �pi | c ∈ pi , c is an out-of-
domain concept and it is disconnected from DSG . Figure 3 shows a
fragment of the domain specificity graph used in Section 3.7.

Resources in SEED andRES are called concepts in the next stages
since their domain specificity is being determined.
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Figure 2: A. Knowledge model creation. B. Identification of domain specificity.

3.2 Identification of Domain Concepts
The second stage of the approach identifies concepts that belong
to the main domain of the textbook. First, concepts from SEED
are added to the DSG. All c ∈ SEED are considered part of D
because they have at least one category three or fewer hops from
the root . This number of hops was selected after running several
experiments. It is also in line with previous work [17, 42]. For each
c ∈ SEED, the path finder method discovers Pc . This method is a
depth-first search (DFS) [10, chap. 22.3] algorithm that starts with
all direct categories of c to find all sequences of form c ⊆c catn ⊆

c

. . . ⊆c cat1 ⊆c root . A path pi is constructed and added to Pc
when the root is found within the maximum number of hoops (3)
in a sequence. A graph traversal algorithm is necessary because
although SPARQL 1.1 supports property paths [51], it does not
return arbitrary paths of variable length. Instead, in practice, it only
allows testing reachability [13, 50].

Then, the path scoring method assess each pi ∈ Pc to assign a
score (scatn ) according to their belonging to D. Each category in a
pi is scored as the average of three sub-scores: s1 - the similarity
between all the category’s resources and SEED; s2 - the percentage
of category’s resources that have a direct link to root ; and s3 - the
similarity between the category and its super-category along the
path. The final score of a pi is the score of catn , which is the direct
parent category of c . It is important to note that the same category
will have different scores in different pi since each category score
incorporates all its super-categories up to the root . After the scoring
is finished, the pi with the highest score is selected. Finally, c is
added to C with l = in-domain. The categories in the selected pi
are added to CAT with l = in-domain. All pairs of vertices in pi
are added to E. By selecting the pi with the highest score, only the
most relevant categories to D are added initially to DSC .

In the second part of the current stage, more in-domain re-
sources are discovered. First, since at this point CAT contains only
in-domain categories, we can directly add the concepts that be-
long to any of those categories. Each c ∈ RES is added to C if:
c ⊆c catn ∈ CAT . Then, for each of the the remaining c ∈ RES ,
all corresponding pi are discovered with the path finder method.
For optimization purposes, in this case we use a maximum of six
hops; this helps us avoid finding too many irrelevant paths. Next,
paths are scored using the path scoringmethod. However, we add
a inclusion/exclusion mechanism based on thresholds (represented
using lower case Greek letters) to detect when a category/path
deviates too much from D. A pi is excluded if s2 < α ∧ s3 < β for

catn . After discarding, if c has at least one pi , c is added to C with
l = in-domain. The categories in the highest scored pi are added to
CAT with l = in-domain. All pairs of vertices in pi are added to E.

3.3 Identification of Concepts from Related
Domains

The third stage of the approach is to identify the concepts that are
not a part of D, but still relevant enough to be considered from
related domains. First, for each c | c ∈ RES ∧ c < C , all the pi
that connect c to root indirectly are discovered with the related
path finder method. This method is similar to path finder, but it
goes up (using super-categories) and down (using sub-categories)
along the hierarchy of categories, which allows finding paths of
the form: pi = (root ⊆c . . . ⊆c cat

sp
x ⊇

c . . . ⊇c catn ⊇
c c), which

indirectly connect c to the root using a super-parent category catspx .
In practice, this method finds the lowest common ancestors of c and
root [8]. For optimization purposes, and due to the fact that using
super-categories might result in two very unrelated domains to be
connected (e.g., dbc:Statistics and dbc:Musicology are connected
through the dbc:Academic_disciplines super-parent category), we
use a maximum of eight hops.

Next, indirect pi are scored using the related path scoring
method with an exclusion threshold. This method is similar to
path scoring, with only one change in s2: it checks the intersec-
tion between the links from the category’s resources and the links
from the SEED resources. It has been shown that resources sharing
similar links are related [53]. Using our exclusion mechanism, a pi
is too unrelated to D if s2 < γ ∨scatn < δ for catn . After discarding,
if a concept has at least one indirect pi remaining, c is added to C
with l = related-domain. The categories and vertices in the best pi
are added to CAT with l = related-domain and to E, respectively.

In rare cases, some concepts can be considered in-domain even
though there is no direct path to root . For example, the dbr:Sample_
space concept belongs to the probability domain, but it is a sig-
nificant concept of statistics. For such cases, the related path as-
sessment method checks five constraints to identify a resource as
in-domain despite an indirect pi . First, if the related pi is connected
through a sibling category of the root . Second, if the score of catn
is high enough (> ϵ). Third, if the percentage of shared links is high
enough (> ζ ). Fourth, if the similarity between the resource and
SEED is high enough (> η). Fifth, if the resource and the root link
to each other. If at least four out of five constraints are met, the l
associated to c is changed to in-domain.
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3.4 Identification of Concepts from Foreign
Domains

The fourth stage of the approach identifies the resources that are
from domains that are not related to the subject of the textbook.
This process is straightforward. Any remaining c | c ∈ RES ∧ c < C
is unrelated to D and is added to C with l = out-of-domain.

3.5 Identification of Core Domain Concepts
The final stage evaluates all c ∈ C with l = in-domain to see if
any of them represent one of the most important concepts in D,
which are the core-domain concepts. We assume that the most used
resources through textbooks and DBpedia should indicate the most
relevant concepts in D. We apply the core concepts assessment
method to discover such concepts. First, a popularity score is as-
signed to each concept based on how many times it has been seen
in the textbooks and the number of other concepts linking to it in
the DSG. The resources with the popularity scores in the upper
quartile are selected. Finally, only the concepts that are referenced
widely from outside D are selected. We consider that core concepts
are so relevant that they are also used in other domains. If most of
the resources that reference (link) the concept belong to a different
domain, then it is marked as a core-domain concept. To check if
a resource r belongs to D or a different domain, a simplified ver-
sion of the related path scoring method is used. Each of the direct
categories of a resource is checked: if the combined score of the
similarity between resources in the category and the percentage
of shared links between the seed resources is below θ , the category
is considered to be from a different domain. Finally, if most of the
categories from r are from a different domain, then r < D.

3.6 Thresholds
After several experiments, the used thresholds were calibrated with
the values shown in Table 1. The selected values were flexible but
also robust enough to achieve good results in two very different
domains: statistics and ancient philosophy (see Section 4). Section
4.4 includes a brief discussion on threshold calibration.

Table 1: Threshold values.

Threshold α β γ δ ϵ ζ η θ

Value 0.1 0.4 0.3 0.25 0.3 0.5 0.2 0.1

3.7 Example
Figure 3 presents the domain specificity graph of one statistics
textbook [15]. In miniature, the whole graph is presented. The
subgraph on the center is a zoom in and it contains the same five
resources as in fig. 1, but the two graphs (named DOMAIN and
DBPEDIA respectively) look completely different. In our DOMAIN
graph, each resource is a concept with a clear relation to the domain
of interest; there are no multiple paths from different domains to the
resources, as in the DBPEDIA graph. The challenges described at the
beginning of this section have been addressed. TheMedian concept
had two possible paths and relations in the DBPEDIA graph, but in
the DOMAIN graph it has been identified as a concept belonging

Figure 3: Example of a domain specificity graph.

to the domain, even as core-domain. There is a connecting path
from statistics to ASCII in DBPEDIA, but in DOMAIN, it has been
identified as a out-of-domain concept. The Probability and Indicator_
functions have been considered relevant enough to be classified
as related-domain concepts in the DOMAIN graph. Finally, the
most relevant path from statistics to Scatter_plot has been identified
in DOMAIN, in contrast, there were two possible paths in the
DBPEDIA graph.

Our domain specificity graphs identify not only the type of
domain specificity relationships, but also allows for explaining how
the relations exist. For example, in the DOMAIN graph, Indicator_
function is a related concept to statistics from the probability domain.

4 EVALUATION
Three evaluation experiments have been conducted using a local
copy of the latest dump of DBpedia (version 2020.12.01). The ground
truth models generated for the first two evaluations are made pub-
licly available10.

4.1 Evaluation One: MAIN DOMAIN
The goal of the first experiment was to examine how well our
approach can identify concepts that belong to a domain. We used
textbooks about statistics. Statistics is richly connected to many
other domains (different sub-fields of mathematics and computer
science). For this reason, creation of a comprehensive list of related-
domain resources is not practically feasible. Therefore, for this
evaluation, we were interested only in the classification accuracy
of the core-domain and in-domain terms.

4.1.1 Data sets & Procedure. Ten introductory statistics textbooks
were used [12, 15, 16, 18, 21, 24, 29, 38, 55, 59]. From each text-
book, we extracted a knowledge model and enriched its index
terms with their corresponding resources in DBpedia using the
dbc:Statistics category as the main domain. Then, we applied the de-
scribed approach for the domain specificity graph construction. The
approach was executed over the combination of all selected text-
books to obtain their cumulative knowledge graph. To determine
10https://github.com/intextbooks/domain-specificity
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the true domain specificity label of all concepts we created a ground
truth using multiple sources. First, we identified the core-domain
concepts by checking the intersection of six statistical glossaries
([20, 23, 28, 34, 52, 56]). A term was marked as core-domain if it
appeared in at least two glossaries or in [34], which is a master list
of core statistical terms created manually and rated by statistics
instructors. After finding the corresponding DBpedia resources we
obtained 186 core concepts. Then, we identified the in-domain con-
cepts by merging three sources: 1) all DBpedia resources extracted
from a list of statistical articles in Wikipedia11, 2) a list of statistical
DBpedia resources constructed using the ISI Multilingual Glos-
sary of Statistical Terms (as described in [3]), and 3) all resources
in DBpedia which have explicitly encoded in their URI that they
belong to statistics (e.g., dbr:Q-value_(statistics)). After removing
the concepts already marked as core, we got the final list of 2658
in-domain concepts. Any concept outside the ground truth was
classified as other-domain (meaning it can be either related-domain
or out-of-domain). We calculated the confusion matrix and used
standard accuracy, precision, and recall as our evaluation metrics
[44, chap. 9]. Additionally, we used a simple path-based baseline
(BL) for comparison as used in previous works [33, 42]. BL only used
the DBpedia categorization system: if a resource could be reached
from the domain root using sub-categories within 2-hops, it was
classified as core-domain; using sub-categories within 4-hops it was
classified as in-domain; otherwise, it was considered being too far
from the domain root and was classified as other-domain. Finally,
we used the McNemar’s test [49] (a non-parametric test for paired
nominal data) to analyze statistical significance of differences in
accuracy between our graph and the baseline.

4.1.2 Results. Table 2 shows the results of focusing on the bound-
ary of the target domain (is a concept a part of the domain or not).
The approach outperforms the baseline in terms of precision, re-
call and accuracy. The later difference is statistically significant as
indicated by the McNemar’s test (χ2(1, N = 648) = 13.829, p < 0.001).

When the task becomes more difficult and we try finding which
concepts belong to the core of the domain, the gap between the
baseline and the proposed approach increases overall, as seen in
Table 3. The the baseline outperforms our approach only in terms
of recall of core-domain concepts. However, on the other two recall
values as well as the precision of obtained labels, our approach
clearly performs better. It is important to mention that for many
tasks, precision is a much more important metric as its increase
leads to elimination of type I error. It is also worth noticing, that
our approach makes considerably fewer serious mistakes (labeling
core-domain concepts as other-domain and vice versa). When it
comes to accuracy, again, the difference between the two methods
was significant according to a McNemar’s test (χ2(1, N = 648) =
35.359, p < 0.001).

4.2 Evaluation Two: MULTIPLE DOMAINS
We have analyzed the cross-domain robustness of the approach
by applying it to the ancient philosophy domain. Additionally, we
have checked the ability of the approach to distinguish between
in-domain, related-domain, and out-of-domain concepts.

11https://en.wikipedia.org/wiki/List_of_statistics_articles

4.2.1 Data sets & Procedure. We used one textbook about ancient
Greek and Roman philosophy [31]. Its knowledge model was ex-
tracted and enriched with corresponding DBpedia resources us-
ing the dbc:Ancient_Greek_philosophy category, after which . its
domain specificity graph was generated. To determine the true
domain specificity label of the concepts we created a ground truth
manually. For each concept we assigned one of the three possible
labels (in-domain, related-domain, and out-of-domain). We consid-
ered as in-domain the concepts directly associated with the ‘topics’
inferred from the chapters and covered across the textbook (e.g.,
Plato). Related-domain concepts corresponded to general philosoph-
ical notions and philosophers, people and places from the same
era, and auxiliary philosophical terms (e.g., logic). General and
broad concepts (e.g., art) were classified as out-of-domain. In case
of doubt, we used the textbook itself, the Stanford Encyclopedia of
Philosophy12, and general web searches to clarify the relevance of
a concept in the domain. A total of 426 unique concepts were classi-
fied. We used the same metrics as in the previous experiments. BL
was applied as well, but in this case, any resource reached directly
within 4-hops was classified as in-domain, within 4-hops using an
indirect path as related-domain, or otherwise as out-of-domain. The
McNemar’s test was applied to verify statistical significance.

4.2.2 Results. Table 4 presents the results. They show that the
accuracy of the approach remains high and stable in a different
domain as well. Also, when identifying the possible domains of con-
cepts, the accuracy of our approach is 20% higher than the baseline.
Our method’s combination of content and structural properties
gets high precision and recall values across all possible labels com-
pared to the method using only category-based paths (BL) . Some
resources have both direct and indirect paths to the domain, and
the use of a scoring function is the key to decide the proper relation
to the main domain. Finally, there is a statistically significant differ-
ence between the accuracy of our model and the baseline according
to a McNemar’s test (χ2(1, N = 426) = 62.959, p < 0.001).

4.3 Evaluation Three: APPLICATION
The goal of this experiment was to show the added value of domain
specificity labels. To that end, we applied our approach to model
documents for a simple query-based retrieval task.

4.3.1 Data sets & Procedure. We employed Apache Lucene13 to
construct a web search system for textbooks. Our experimental
model (ind+) used a combination of textual content, index terms,
and core-domain and in-domain labels to model (sub)chapters and
sections of textbooks, where index terms and labeled index terms
received more weight. For each search query, a ranked list of docu-
ments was retrieved using a standard tf-idf scoring formula [48].
As baselines, we used two variations of the system: tf-idf uses
only the content, and ind uses the content and the index terms
(without domain specificity labels). To evaluate the added value of
domain specificity information against the baselines, we followed
a standard procedure [39, Chapter 8]. We selected two textbooks
from Section 4.1 ([38] and [15]) as the target document collection.
We composed a set of queries using 20 syllabi of university-level

12https://plato.stanford.edu/index.html
13https://lucene.apache.org/
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Table 2: Results for domain boundary detection (statistics).

actual relation
n = 648 in-domain other-domain

∑
Precision Recall Accuracy

GRAPH in-domain 383 11 394 .972 .897 .915*other-domain 44 210 254 .827 .950∑
427 221

BL in-domain 362 13 375 .965 .848 .880other-domain 65 208 273 .762 .941∑
427 221

*Statistical significance against BL.

Table 3: Results for core domain boundary detection (statistics).

actual relation
n = 648 core-domain in-domain other-domain

∑
Precision Recall Accuracy

GRAPH
core-domain 45 5 0 50 .900 .306

.762*in-domain 94 239 11 344 .695 .854
other-domain 8 36 210 254 .827 .950∑

147 280 221

BL
core-domain 59 87 6 152 .388 .401

.637in-domain 70 146 7 223 .655 .521
other-domain 18 47 208 273 .762 .941∑

147 280 221
*Statistical significance against BL.

Table 4: Results for multi-domain boundary detection (ancient philosophy).

actual relation
n = 426 in-domain related-domain out-of-domain

∑
Precision Recall Accuracy

GRAPH
in-domain 129 8 0 137 .942 .977

.932*related-domain 3 148 16 167 .886 .937
out-of-domain 0 2 120 122 .984 .882∑

132 158 136

BL
in-domain 127 8 2 137 .927 .962

.723related-domain 1 51 4 56 .911 .323
out-of-domain 4 99 130 233 .558 .956∑

132 158 136
*Statistical significance against BL.

statistics courses14 to represent typical information needs of stu-
dents: 100 queries were selected from statistics syllabi and 40 from
statistics-related syllabi. Additionally, we selected ten queries from
the Table of Content from an additional textbook [45]. Three ex-
perts in statistics were recruited to generate a set of relevance
assessments for query-document pairs. For each query, each rater
indicated the chapters, sub-chapters, and sections from the two
textbooks that were relevant using a three-point scale: (1) partially
relevant, (2) relevant, and (3) highly relevant. Finally, we applied
the experts’ assessments as the ground truth to evaluate the re-
sults retrieved by the queries using average normalized discounted
cumulative gain (NDCG) at 1, 3, and 5. NDCG@1 measures the
effectiveness of retrieving the most relevant document, while @3
and @5 measure it for three and five most relevant documents,
respectively. Inter-reliability between raters was calculated using
pooled Fleiss’ kappa across all queries [14, 43]. The resulting kappa
of 0.36 is considered a fair agreement. Given that all raters were
experts and made their relevance assessments fully independently

14e.g., https://www.stat.berkeley.edu/~mgoldman/sylsm09.pdf

from each other, we used a smoothed factor15 to compute the final
relevance for each query-document pair.

4.3.2 Results. NDCG mean values and standard deviations are
presented in Table 5. Results show that the ind+ model using do-
main specificity of index terms supports more accurate retrieval
of relevant documents. Pairwise t-tests confirm that the difference
between ind+ and tf-idf is significant across all three metrics, and
between ind+ and ind for NDCG @3 and @5 (see Table 5).

The three systems perform similarly when a query corresponds
to a single concept that appears textually in concise (sub)chapters
(e.g., "nonparametric statistics"). The use of index terms in both
ind and ind+ helps to find synonyms. For example, the "graph"
query is matched to concepts like "chart," "bubble plot," and "scatter
diagram." Finally, the domain specificity data is useful as it encodes
information about the relevance of a term in a domain. The ind+
model is better than ind when the queries correspond to concepts

15Calculated using 1 + ((1 − suppor t ) · (log(suppor t ) · suppor t )), which was
inspired by the expected information gain formula used in decision trees
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with identified domain specificity (e.g., "type I and type II errors"
which is a core-domain concept).

ind+ is a simple model that could be further imrpoved using
the full potential of domain specificity and the DSG. For example,
queries like "histograms and other graphs" could bematched to their
corresponding main concept in the DSG (db:Histogram) to use the
information from its parent category (dbc:Statistical_charts_and_
diagrams) to identify related concepts (dbc:Pie_chart, dbc:Box_plot,
...). Creating a more powerful model is part of our future work.

Table 5: Retrieval of documents.

NDCG@1 NDCG@3 NDCG@5
tf-idf ind ind+ tf-idf ind ind+ tf-idf ind ind+

M .303 .410 .420 .327 .427 .452 .348 .459 .474
SD .386 .411 .412 .349 .355 .353 .355 .358 .356
t -3.24 .639 - -4.74 2.5 - -4.95 2.04 -
df 140 140 - 140 140 - 140 140 -
Sig < .01 .524 - < .0001 < .05 - < .0001 < .05 -

Table 6: Coverage of in-domain+ concepts (statistics).

Set size 1 2 3 4 5 6 7 8 9 10
M 97 157 202 239 270 297 321 343 362 383

4.4 General Discussion
Our approach is sensitive to the incompleteness / inconsistencies
in DBpedia. Since classification of resources into categories is done
mainly byWikipedia authors, it is a subjective process and some cat-
egories can be missing or inappropriate. For example, the categories
of dbr:Mutual_exclusivity do not include probability, therefore it is
not classified as a related-domain concept of statistics). Some other
resources have categories that reflect too high relevance to the do-
main. In our ancient philosophy evaluation, dbr:Alcibiades is marked
as a pupil of Socrates in DBpedia, and therefore it is classified as an
in-domain concept, while, in fact, he was a not a philosopher.

We also noticed that for the ancient philosophy domain, the
abstracts of the resources tend to be more general than for statistics,
and higher thresholds in the scoring functions would have been
beneficial. One possible solution for this situation is to automatically
adjust the thresholds based on the seed resources’ path scores.

Finally, as we used more textbooks in the same domain, the
coverage of concepts in the domain increases. We calculated the
number of in-domain+ concepts discovered when increasing the
number of textbooks. For the statistics domain, we took ten text-
books and experimented with all possible sets (permutations) when
using from 1 to 10 textbooks. Table 6 contains the average numbers
of correctly discovered in-domain+ concepts for each set.

5 RELATEDWORK
Textbook Indices. Index sections are a source of document and
domain-specific terms. Surprisingly, textbook indices have not yet
received much attention in the literature. NLP tools and heuristic
reasoning were applied to extract terminology using the index sec-
tion of a single book [35]. A security textbook was used as a source
of terms to develop a cybersecurity ontology [58]. Besides using
index terms, terminology extraction methods can automatically

identify and extract core vocabulary of a specialized domain in un-
and semi-structured corpora [19, 37].
Domain Specificity. Automatic approaches have been proposed for
domain specificity classification: using sample terms to query docu-
ments and estimate the domain specificity according to the distribu-
tion of the domain of those documents [32], training of classifiers
to assign to a term one category from a predefined set of classes
[47], and using terminological services to create domain vectors
and assign categories to vector representations of documents [25].
Domain Discovery. In-domain terms can be discovered by generating
a list with relevant terms in a specific domain. Domain-relevant
terms can be extracted from documents using TFIDF techniques
[62]. Wikipedia has been widely used to extract domain-specific
terms/thesauri [41], and sets of relevant categories to a domain of
interest [42, 57]. Finally, DBpedia has been used to extract domain-
specific hierarchical subgraphs of categories and resources [33].
Semantic Relatedness. For domain specificity, the notion of semantic
relatedness is important to identify if a resource (or set of resources)
is part of the target domain. Several features have been used to com-
pute the relatedness between elements: the Wikipedia’s network
of inter-article links [60], the proximity of terms in DBpedia [36],
and the similarity of the properties of two resources [46]. At the
domain level, a combination of features (graph-based, text-based,
and web-based) has been used to rank DBpedia resources based on
their relatedness to one specific domain [17].

6 CONCLUSION AND FUTUREWORK
We explored how textbook indices can be used to extract high-
quality knowledge graphs in narrow domains. Specifically, we pre-
sented an approach to automatically label terms in relation to the
main subject of a textbook (i.e. domain specificity). We extended
the traditional binary classification of specificity into four labels
that better reflect the degree of how much a term belongs to the
target subject: core-domain for the most important domain concepts,
in-domain for regular concepts in the main domain, related-domain
for neighboring domains, and out-of-domain for concepts unrelated
to the domain, but important for pedagogical reasons. Ultimately,
this approach allows to address one of the biggest problems of
textbook indices as sources of domain knowledge, namely presence
of a large portion of entries that are either weakly related or un-
related to the target domain. Our evaluations experiments have
demonstrated that the approach is capable to distinguish with high
accuracy between the concepts relevant and non-relevant to the do-
main. Additionally, the accuracy of identifying the most important
core-domain concepts also remains considerably high. Moreover,
the approach has been successfully tested across two different do-
mains (statistics and ancient philosophy). Finally, we showed that
the domain specificity information can be helpful in the context of
information retrieval tasks.

Our next step is to further experiment with the potential of do-
main specificity information when using our knowledge graphs in
combination with powerful language models. One possible direc-
tion is to explore informed word embeddings [54, 64], where we
could use the index terms and different weights according to their
domain specificity to produce embeddings reflecting a domain of
interest.
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A ALGORITHMS

Algorithm 1: Path scoring
Input: a Pc
for pi ∈ Pc do

form ← 1 to n do // n categories in pi
Rm ← getResourcesFromCategory(catm ∈ pi )
s1 ← cosSim(getAbstr(Rm ), getAbstr(SEED))
// captures the sim between the category

and D (represented by SEED)
s2 ← countDirectLink(Rm , root)/|Rm |
// captures the % of resources that

directly mention D
s3 ←
scatm−1 ∗cosSim(getAbstr(Rm ), getAbstr(Rm−1))
// captures the sim between the current

and the previous category in the path

scatm ←
s1+s2+s3

3
end

end

Algorithm 2: Related path assessment
Input: a pi
cstr1 ← if pi of the form: root ⊆c cat1 ⊇c cat2 ⊇c . . . ⊇c c
then 1 // c is connected through a sibling

category of root

cstr2 ← if scatn > ϵ then 1 // the score of the path

is high

cstr3 ← if s2 of catn > ζ then 1 // the % of shared

links between c and D is high
cstr4 ← if cosineSim(getAbstr(c), getAbstr(SEED)) > η
then 1 // the similarity between c and D is high

cstr5 ← if
countDirectLink(c, root) ∨ countDirectLink(root , c)
then 1 // c and root link to each ther

cstrt ←
∑5
n=1 cstrn

Algorithm 3: Core concepts assessment
Input: a pi
core ← ∅

for c ∈ C ∧ lc = in-domain do

pop1 ←
∑#textbooks
t=1 1 if c ∈textbookt

#textbooks
pop2 ←

| {e :e ∈E∧e={x,c }} |
max{ | {e :e ∈E∧e={x,c ′ }} |:∀c ′∈C }

popc ←
pop1+pop2

2
end
for c ∈ C ∧ popc ∈ upper quartile do

дeneral ← 0, speci f ic ← 0
LINKS ← resources that link to c
for res ∈ LINKS do

for cat | cat ⊇c res do
Rcat ← getResourcesFromCategory(cat)

abstractsRcat ← getAbstr(Rcat )

abstractsSEED ← getAbstr(SEED)

sim ← cosSim(abstractsRcat ,abstractsSEED)

links ← |getLinks(Rcat )∩getLinks(SEED) |
|getLinks(Rcat ) |

score ← sim+l ink
2

if score > θ then
speci f ic ← speci f ic + 1

else
дeneral ← дeneral + 1

end
end

end
if дeneral > speci f ic then

coreTerms ← coreTerms ∪ {c}
end

end
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