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A Critique of the Cross-Lagged Panel Model

Ellen L. Hamaker and Rebecca M. Kuiper
Utrecht University

Raoul P. P. P. Grasman
University of Amsterdam

The cross-lagged panel model (CLPM) is believed by many to overcome the problems associated with
the use of cross-lagged correlations as a way to study causal influences in longitudinal panel data. The
current article, however, shows that if stability of constructs is to some extent of a trait-like, time-
invariant nature, the autoregressive relationships of the CLPM fail to adequately account for this. As a
result, the lagged parameters that are obtained with the CLPM do not represent the actual within-person
relationships over time, and this may lead to erroneous conclusions regarding the presence, predomi-
nance, and sign of causal influences. In this article we present an alternative model that separates the
within-person process from stable between-person differences through the inclusion of random inter-
cepts, and we discuss how this model is related to existing structural equation models that include
cross-lagged relationships. We derive the analytical relationship between the cross-lagged parameters
from the CLPM and the alternative model, and use simulations to demonstrate the spurious results that
may arise when using the CLPM to analyze data that include stable, trait-like individual differences. We
also present a modeling strategy to avoid this pitfall and illustrate this using an empirical data set. The
implications for both existing and future cross-lagged panel research are discussed.

Keywords: cross-lagged panel, reciprocal effects, longitudinal model, trait–state models, within-person
dynamics

In 1980, Rogosa’s seminal article A Critique of the Cross-
Lagged Correlation was published, which successfully conveyed
the message that comparing cross-lagged correlations from longi-
tudinal panel data is an inappropriate basis for making causal
inferences.1 One of the key insights stemming from Rogosa’s
article is that, if two constructs are characterized by different
degrees of stability, the comparison of cross-lagged correlations
may lead to spurious conclusions regarding the causal mechanism.
Since then, most researchers interested in causality in panel data
have abandoned cross-lagged correlations and endorsed the cross-
lagged panel model (CLPM)—also known as the cross-lagged
path model or the cross-lagged regression model—instead. In the
CLPM, stability of the constructs is controlled for through the
inclusion of autoregressive relationships, and it is therefore often
believed that the cross-lagged regression parameters obtained with
this model are the most appropriate measures for studying causal-
ity in longitudinal correlational data (e.g., Deary, Allerhand, &
Der, 2009; Soenens, Luyckx, Vansteekiste, Duriez, & Goossens,
2008; Wood, Maltby, Gillett, Linley, & Joseph, 2008). Specifi-

cally, it is common practice to standardize the cross-lagged regres-
sion coefficients and compare their relative strength with deter-
mine which variable has a stronger causal influence on the other
(Bentler & Speckart, 1981).

The current article forms a sequel to the warning given by
Rogosa (1980), in that it will be argued that not only should we
account for stability, but we also need to account for the right kind
of stability. It will be shown that if stability of the constructs is to
some extent of a trait-like, time-invariant nature, the inclusion of
autoregressive parameters will fail to adequately control for this.
As a result the estimates of the cross-lagged regression coefficients
will be biased, which may lead to erroneous conclusions regarding
the underlying causal pattern. This message is not novel in itself:
In fact, it has been recognized repeatedly that the “omitted variable
problem” may affect the estimation of the cross-lagged coeffi-
cients (e.g., Allison, 2009; Dwyer, 1983; Finkel, 1995; Heise,
1970), and diverse modeling strategies have been proposed to

1 While the omitted variable problem implies that we cannot make
strong causal statements based on correlational data, it does not prohibit the
use of the concept of Granger causality (Granger, 1969). However, many
researchers using cross-lagged regression refrain from using the term
causal, and use terms like reciprocal relationship (Erickson, Wolfe, King,
King, & Sharkansky, 2001; Lindwall, Larsman, & Hagger, 2011), role
(Ribeiroet al., 2011), cross-domain effects (Burt, Obradović, Long, &
Masten, 2008), exposure (Cole et al., 2006), impact (Gault-Sherman,
2012), or influence (Green, Furrer, & McAllister, 2011), instead. It may be
argued however, that these alternative terms also imply a causal mecha-
nism, and even more so, that an interest in causality is actually the driving
force behind these studies. Therefore, we decided to use the terms causal
and causality in the current article, although we acknowledging that strong
causal statements can only be based on experimental designs, and we
should confine ourselves to the concept of Granger causality.
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account for unobserved variables that influence the observed vari-
ables. However, given the popularity of the CLPM, it seems that
either this warning has been lost on a large group of substantive
researchers, or many researchers are simply not convinced that this
could form a serious problem.

In the current article, we therefore present a closely related
alternative structural equation modeling (SEM) approach that is
inspired by considering cross-lagged panel data from a multilevel
perspective, implying we need to distinguish between the within-
person and the between person level. We show that this alternative
SEM approach can lead to very different conclusions than the
traditional CLPM when considering the three major objectives of
cross-lagged panel research, that is: (a) whether or not variables
influence each other; (b) which of the variables is causally dom-
inant; and (c) what the sign of influence is. In doing so we hope to
raise awareness about the limitations of the traditional CLPM, and
to stimulate researchers to consider alternative SEM approaches.

This article is organized as follows. In the first section, two
models for investigating cross-lagged effects are presented: the
traditional CLPM and an extension of this model based on taking
a multilevel perspective. We discuss the meaning of each model,
the way they predict change, and the minimum number of waves
needed for identification. In the second section, we discuss four
other SEM approaches that include cross-lagged relationships and
discuss how these are related to the model we propose. In doing so,
we sketch the broader context of the current account and point the
reader in the direction of other alternatives. The third section
consists of a more in-depth comparison of the traditional CLPM
and the proposed alternative. In the fourth section, a modeling
strategy is proposed to ensure that—if present—both forms of
stability are accounted for and we illustrate this using an empirical
data set. The article ends with summarizing the most important
findings of the present study, discussing the implications for lon-
gitudinal research, and providing guidelines for future cross-
lagged panel research.

Two Models for Studying Reciprocal Influences

Cross-lagged panel research is concerned with the effect of two
or more variables on each other over time. To give an impression
of the kinds of questions researchers have tried to tackle using the
CLPM, consider the following anthology: Do maternal warmth
and praise reduce internalizing and externalizing problems in
children with autism (Smith, Greenberg, Mailick Seltzer, & Hong,
2008)? Is the relationship between parenting and adolescent de-
linquency bidirectional (Gault-Sherman, 2012)? Does gratitude
foster social support or vice versa (Wood et al., 2008)? What is the
direction of causality between intelligence and academic achieve-
ment (Watkins, Lei, & Canivez, 2007)? Is processing speed a
foundation for successful cognitive aging (Deary et al., 2009)?
What is the role of a pessimistic explanatory style on developing
and maintaining social support networks in adolescents (Ciarrochi
& Heaven, 2008)? What is the directional nature of the relationship
between the quality of the parent–child relationship and a child’s
ADHD symptoms (Lifford, Harold, & Thapar, 2008)? And—at a
macro social-economic level—what is the direction of causality
between intelligence and economic welfare of nations (Rinder-
mann, 2008)?

In this section the traditional CLPM is presented, which is the
most typical modeling approach for this kind of research. In
addition, an alternative model is presented, which we refer to as
the random intercepts cross-lagged panel model (RI-CLPM), that
accounts for trait-like, time-invariant stability through the inclu-
sion of a random intercept (i.e., a factor with all loadings con-
strained to 1). This random intercept partials out between-person
variance such that the lagged relationships in the RI-CLPM actu-
ally pertain to within-person (or within-dyad) dynamics. We dis-
cuss how these models predict change, how many measurement
waves are needed for identification, and how they are related to
each other.

The CLPM

The CLPM can be used if two or more variables have been
measured at two or more occasions, and if the interest is in their
influences on each other over time. Let x and y denote two distinct
variables which were measured multiple times, and which will be
analyzed with the CLPM. While this approach typically consists of
modeling the covariance structure only, the means are included
here as well for the sake of completeness. We stress, however, that
no constraints are imposed on these means, which is equivalent to
analyzing the centered data. A graphical representation of this
model is given in the left panel of Figure 1 (see Appendix A for the
corresponding SEM specification).

The measurement equations for the CLPM with means can be
expressed as

xit � �t � pit (1a)

yit � �t � qit (1b)

where �t and �t represent the grand means at occasion t for the two
variables respectively. If the data are centered first (or, when only

Figure 1. Two bivariate models for three waves of data: the standard
CLPM, and the alternative RI-CLPM. Triangles represent constants (for
the mean structure); squares denote observed variables; circles represent
“latent” variables. Note that in the CLPM on the left, the “latent” variables
p and q are simply the centered observed variables.
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the covariance matrix is analyzed), �t � �t � 0, such that pit � xit

and qit � yit. When the means are included, however, pit and qit

represent the individuals’ temporal deviations from the time-
varying group means. Note that, although we refer to Equations 1a
and 1b as the measurement equations, this is not a true measure-
ment model, as we have not specified any measurement errors.2

The temporal deviations pit and qit (or—when the data are
centered first—the observed scores), are modeled with the struc-
tural equations

pit � �tpi,t�1 � �tqi,t�1 � uit (1c)

qit � 	tqi,t�1 � 
tpi,t�1 � vit. (1d)

The autoregressive parameter �t and �t are included to account
for the stability of the constructs: The closer these autoregressive
parameters are to one, the more stable the rank order of individuals
is from one occasion to the next. However, even when the stability
coefficients are very high, when enough time passes, the original
rank order will be lost. Hence, it is not stability of a trait-like
nature, and it is therefore often referred to as temporal stability
instead (e.g., Heise, 1970).

The cross-lagged parameters �t and �t form the key to investi-
gating reciprocal causal effects in this model (Rogosa, 1980):
Through standardizing these parameters, a comparison of the rel-
ative effects of x and y on each other can be made, which can then
be used to determine causal predominance (Bentler & Speckart,
1981). These parameters are often interpreted in terms of predict-
ing change (e.g., Finkel, 1995; Ribeiro et al., 2011; Rindermann,
2008). To show the reasoning behind this interpretation, we write

yit � yi,t�1 � (�t � qit) � (�t�1 � qi,t�1)

� (�t � �t�1) � (	t � 1)qi,t�1 � 
tpi,t�1 � vit,

(2)

which shows that the cross-lagged parameter �t indicates the
extent to which the change in y can be predicted from the indi-
vidual’s prior deviation from the group mean on x (i.e., pi,t	1 �
xi,t	1-�t	1). In this expression, we also control for the structural
change in y (i.e., �t � �t�1), and one’s prior deviation from the
group mean on y (i.e., qi,t	1 � yi,t	1-�t	1). Including the persons’
prior deviation from the group mean in this representation is
sometimes considered a way to control for bias due to regression
toward the mean (Liker, Augustyniak, & Duncan, 1985).

The CLPM is just identified with only two waves of data, which
makes it an appealing modeling approach from a practical point of
view: In fact, we found that 45% of the datasets published in 2012,
which were used to estimate this model, consisted of only two
waves of data.3 This is noteworthy, because it implies that in
almost half of the applications, the parameters of the CLPM and
their standard errors can be estimated, but it is not possible to
evaluate whether the model provides a proper description of the
actual underlying mechanism, as the model is just identified and
will yield a perfect fit, which is really not meaningful.

The RI-CLPM

As described above, the CLPM only accounts for temporal
stability through the inclusion of autoregressive parameters. This
implies that in this model it is implicitly assumed that every person

varies over time around the same means �t and �t, and that there
are no trait-like individual differences that endure. At closer con-
sideration, this is a rather problematic assumption, as it is difficult
to imagine a psychological construct—whether behavioral, cogni-
tive, emotional, or psychophysiological—that is not to some extent
characterized by stable individual differences (if not for the entire
life span, then at least for the duration of the study).

Longitudinal data can actually be thought of as multilevel data,
in which occasions are nested within individuals (or other systems,
like dyads). When considering this perspective, it becomes clear
that we need to separate the within-person level from the between-
person level. This idea motivated the development of the alterna-
tive model we present here, which can be thought of as an
extension of the CLPM that accounts not only for temporal sta-
bility, but also for time-invariant, trait-like stability through the
inclusion of a random intercept. This alternative model can be
expressed as

xit � �t � �i � pit
* (3a)

yit � �t � �i � qit
* (3b)

where �t and �t are again the temporal group means. The addi-
tional terms 
i and �i are the individual’s trait-like deviations from
these means: They can be thought of as latent variables or factors
whose factor loadings are all constrained to 1, as in case of random
intercepts in latent growth curve (LGC) modeling (with the dif-
ference that here the group means are allowed to vary freely over
time). We have added an asterisk to the temporal deviation terms
pit

* and qit
*, to emphasize these terms are different from the indi-

vidual deviation terms in the traditional CLPM: In the current
model they represent the individual’s temporal deviations from
their expected scores (i.e., �t � �i and �t � �i), rather than from
the group means (i.e., �t and �t).

Subsequently these deviations are modeled as

pit
* � �t

*pi,t�1
* � �t

*qi,t�1
* � uit

* (3c)

qit
* � 	t

*qi,t�1
* � 
t

*pi,t�1
* � vit

*, (3d)

where the autoregressive and cross-lagged regression parameters
differ from the ones in the CLPM, as indicated by the asterisks.
That is, the autoregressive parameters �t

* and 	t
* do not represent

the stability of the rank order of individuals from one occasion to
the next, but rather the amount of within-person carry-over effect
(cf., Hamaker, 2012; Kuppens, Allen, & Sheeber, 2010; Suls,
Green, & Hillis, 1998): If it is positive, it implies that occasions on

2 Related to this, we point out that while pit and qit are represented in
Figure 1 using circles (as opposed to squares, which indicate observed
variables), these are not truly latent variables in the sense of being cor-
rected for measurement error: However, the current representation corre-
sponds with the way this model would be defined in the LISREL frame-
work, which also forms the basis for Mplus. Furthermore, it makes it easier
to see how the alternative we present later is an extension of this traditional
cross-lagged model.

3 We used PsycINFO and searched for peer reviewed articles that
appeared in 2012 and which made reference to the term “cross-lagged” in
either the title, the abstract or the key words. We found 115 peer reviewed
publications of which two were on time series analysis, one on multilevel
modeling, and one did not include an application. The 111 remaining
publications reported on 117 datasets.
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which a person scored above his or her expected score are likely to
be followed by occasions on which he or she still scores above the
expected score again, and vice versa.4

The main interest here is however in the cross-lagged parame-
ters �t

* and 
t
*, which indicate the extent to which the two variables

influence each other. Specifically, 
t
* indicates the degree by which

deviations from an individual’s expected score on y (i.e., qit
* �

yit � ��t � �i�) can be predicted from preceding deviations from
one’s expected score on x (i.e., pi,t�1

* � xi,t�1 � ��t � �i�), while
controlling for the individual’s deviation of the preceding expected
score on y (i.e., qi,t�1

* � yi,t�1 � ��t�1 � �i�). The cross-lagged
relationships pertain to a process that takes place at the within-
person level and they are therefore of key interest when the interest
is in reciprocal influences over time within individuals or dyads. A
graphical representation of this model is given in the right panel of
Figure 1 (see Appendix A for the corresponding SEM specifica-
tion).

Expressing change in the RI-CLPM, we can write

yit � yi,t�1 � ��t � �i � qit
*� � ��t�1 � �i � qi,t�1

* �
� (�t � �t�1) � �	t

* � 1�qi,t�1
* � 
t

*pi,t�1
* � vit

*,

(4)

which shows that the cross-lagged parameter indicates the extent
to which the change in y can be predicted from the individual’s
prior deviation from his or her expected score on the other variable
(i.e., pi,t�1

* � xi,t�1 � ��t � �i�), while controlling for the structural
change in y (i.e., �t � �t�1), and the prior deviation from one’s
expected score on y (i.e., qi,t�1

* � yi,t�1 � ��t�1 � �i�). Through
taking the difference, Equation 4 no longer includes the stable,
trait-like individual component �i. This illustrates the fact that
difference scores are a way to eliminate the effect of stable,
unobserved variables, which is sometimes considered a major
advantage of difference score modeling over other approaches (cf.
Allison, 2009; Liker et al., 1985).

Note however that both �i and 
i are still implicitly present in
the expression in Equation 4, through the inclusion of qi,t�1

* and
pi,t�1

* . Hence, despite the similarity between Equation 2 (based on
the CLPM) and in Equation 4 (based on the RI-CLPM), these two
models predict change from other aspects, unless 
i and �i are
zero. In fact, it is easy to see that the traditional CLPM is nested
under the current model, as it can be obtained from the latter by
fixing the variances and covariance of 
i and �i to zero. However,
comparing these models using a chi-square difference test is com-
plicated by the fact that it requires us to fix two parameters at the
boundaries of the parameter space (i.e., the two variances are fixed
to zero): As a result the log likelihood difference of these two
nested models does not have a regular chi-square distribution, but
follows a chi-bar-square distribution, which is a weighted sum of
different chi-square distributions (Stoel, Galindo Garre, Dolan, &
van den Wittenboer, 2006). The computation of the required
weights, and subsequently determining the actual p values, can be
troublesome (Silvapulle & Sen, 2004; Stoel et al., 2006). However,
we can make use of the fact that the regular chi-square difference
test is conservative in this context, meaning that, if it is significant,
we are certain that the correct (i.e., chi-bar-square difference) test
will be significant too.

While the CLPM requires only two waves of data, the RI-CLPM
requires at least three waves of data, in which case there is 1 degree
of freedom (df).5 If the intervals (i.e., lags) between occasions 1
and 2 and between occasions 2 and 3 are the same (i.e., the
observations are equally spaced in time), than we can test whether
the effects that the variables have on each other remain stable over
time by constraining the lagged parameters over time, and doing a
chi-square difference test. The latter model would give us an
additional 4 df (i.e., 5 df in total). Furthermore, we may want to
investigate whether the means can be constrained over time, such
that we obtain another 4 df (resulting in 9 df in total).

If these constraints are not tenable (for instance, because the
intervals between the observations vary over time, or because the
underlying process changes over time), and we are not sure
whether the effect of the time-invariant stability components 
i

and �i are equal over time, we may wish to remove the constraint
on the factor loadings. This relaxation may especially be of interest
when the observations are made further apart in time, and we
expect that we are also measuring some structural changes. How-
ever, this would imply that 
i and �i no longer represents random
intercepts (as in multilevel modeling), but rather represent latent
variables or traits (as common in SEM). Even more so, it would
imply we need more waves of data to estimate this model.

Conclusion

The CLPM is nested under the RI-CLPM. The latter is an
attempt to disentangle the within-person process from stable
between-person differences while the former does not differentiate
between these two levels that are likely to be present in the data.
The question thus rises what happens if the data were generated by
the RI-CLPM, but are analyzed using the CLPM: Most likely this
will lead to a contamination of the estimated within-person recip-
rocal effects, but to obtain more insight into this matter, we need
to take a closer look at the relationship between the cross-lagged
parameters from both models.

However, before doing this, we consider how the RI-CLPM is
connected to other longitudinal SEM approaches that include
cross-lagged relationships: In doing so we aim to present a broader
context for the current exposition and provide some reference
points for readers already familiar with (some of) these SEM
approaches.

Relatedness to Other Existing SEM Approaches

There are several other longitudinal SEM approaches that can be
used for bivariate data, which include cross-lagged relationships.

4 One could also say these autoregressive parameters indicate the sta-
bility of the rank-order of individual deviations, but this is less appealing
from a substantive viewpoint.

5 The number of observed statistics in the covariance matrix is equal to
(6 � 7)/2 � 21, while the number of parameters for the covariance structure
equals 20, that is: two variance and one covariance for the between-person
structure (i.e., the random intercepts), two variances and one covariance for
the first occasion at the within-person level, four lagged parameters for the
first interval, four lagged parameters for the second interval, two residual
variances and one residual covariance at the second occasion at the within-
person level, and two residual variances and one residual covariance at the
third occasion at the within-person level.
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Here we consider four of these, that is: (a) the Stable Trait
Autoregressive Trait and State (STARTS) model (Kenny & Zau-
tra, 1995; Kenny & Zautra, 2001); (b) the Autoregressive Latent
Trajectory (ALT) model (Bollen & Curran, 2006; Curran & Bol-
len, 2001); (c) the Latent Change Score (LCS) model (Hamagami
& McArdle, 2001; McArdle & Hamagami, 2001); and (d) a
modification of the Latent State-Trait (LST) model (Schmitt &
Steyer, 1993; Steyer, Schwenkmezger, & Auer, 1990). In this
section we discuss the relatedness between the RI-CLPM and these
four alternatives, focusing on the substantive and methodological
similarities and differences. Note that this section is decidedly not
meant as an in depth evaluation of these diverse alternatives: The
interested reader is referred to the included citations for further
details.

STARTS Model by Kenny and Zautra

The STARTS model by Kenny and Zautra (2001), is also known
as the Trait State Error (TSE) model (Kenny & Zautra, 1995). It
allows the user to decompose observed variance into three com-
ponents: (a) the stable trait, which does not change; (b) the au-
toregressive trait, which changes according to an autoregressive
process; and (c) the state or error, which is unique to the occasion.
Originally, Kenny and Zautra (1995) included constraints over
time in their model, such that the relative contributions of these
three components remains stable over time, but these constraints
may be relaxed if enough measurement waves are available (cf.
Lucas & Donnellan, 2007).

Most applications of this model are based on univariate repeated
measurements, but Kenny and Zautra (1995) and Zautra, Marbach,
Raphael, Lennon, and Kenny (1995) consider bivariate extensions
of this model as well. The RI-CLPM proposed in the current article
differs from the bivariate STARTS model in that it does not
include measurement error: The RI-CLPM can thus be thought of
as a special case of the STARTS model (without the constraints on
the lagged relationships over time), in which the observations are
modeled without measurement error.

Clearly, the inclusion of measurement error in itself is recom-
mendable, as we know that measurement error is likely to be
present in psychological measurements. However, Kenny and Zau-
tra (2001) indicate that the model is often difficult to estimate, and
that it may require 10 or more waves of data. Cole, Martin, and
Steiger (2005) performed a simulation study and concluded that
the (univariate) STARTS model frequently led to improper solu-
tions that were difficult to interpret (i.e., negative variance esti-
mates, or problems with convergence in the form of singularity of
the approximate Hessian matrix). They also discuss some of the
reasons for this: For instance, when the autoregressive parameter is
very close to zero, it becomes difficult to distinguish between
variance that is due to measurement error, and variance that is the
stochastic input of the autoregressive process. Thus, while extend-
ing the model with measurement error may be preferable from a
theoretical point of view, the practical consequences (i.e., having
to have many more measurement waves), make it a less attractive
alternative for the traditional CLPM.

ALT Model by Curran and Bollen

The ALT model was developed by Curran and Bollen (2001; see
also Bollen & Curran, 2006), to “combine the best of two worlds:”

It allows people to be characterized by their own trajectory over
time (as in the LGC model), while their observations may also
exhibit some carry-over effect from one occasion to the next (as in
the autoregressive or simplex model). In the bivariate extension of
the ALT model presented by Curran and Bollen (2001), the ran-
dom effects that describe the individual trajectories may be corre-
lated to each other across the variables (as is the case in a bivariate
LGC model), and there may also be cross-lagged influences be-
tween the observations (as in the CLPM).

While this hybrid model seems to have a lot of potential,
applying and interpreting the ALT model is not as straightforward
as one may be inclined to think at first: Because the lagged
relationships are included between the observations, there is a
recursiveness in the model, which has some adverse effects. First,
it implies the process needs to be “started up,” for which Curran
and Bollen (2001) propose two solutions: Either the first observa-
tion is treated as exogenous, or nonlinear constraints are imposed
on the loadings for the first occasion. While treating the first
occasion as exogenous is relatively easy, Jongerling and Hamaker
(2011) show that this may lead to rather unexpected growth
curves: For instance, in an ALT model with a random constant
only (i.e., no linear trend parameter), one may actually be model-
ing an increasing or decreasing trend over time. Such undesirable
effects are not encountered when using the nonlinear constraints to
start up the process, but these require the assumption that the
lagged effects are constant over time,6 and are more difficult to
impose, especially in the bivariate case.

Second, the recursiveness in the ALT model implies that the
random constant and the random change parameter no longer have
the original role of individuals’ intercepts and slopes (Hamaker,
2005). For instance, the random constant not only affects an
observation directly, but also indirectly through (all) previous
occasions. Hamaker (2005) has shown that under the assumption
that the lagged effects are invariant over time, the ALT model can
be rewritten as a LGC model with autoregressive residuals, with
the advantage that the random parameters in this reparametrization
serve as the random intercept and slope that describe the underly-
ing individuals’ deterministic trends. This result has also been
extended to multivariate processes, meaning that the bivariate ALT
models can be rewritten as a bivariate LGC model with residuals
that are characterized by autoregressive and cross-lagged regres-
sive relationships (Hamaker, 2005).

Considering this latter parametrization, the RI-CLPM is related
to a bivariate ALT model with only random intercepts and no
random slopes. However, in the RI-CLPM we do not constrain the
mean structure, meaning that there may be changes—possibly, but
not necessarily linear—over time, which are identical for all
individuals. If the group means can be constrained to be equal over
time, the RI-CLPM is nested under the ALT model with only a
random intercept and no slope (using the parametrization proposed
by Hamaker, 2005, to avoid the recursiveness in the model).

6 Actually, one only has to assume the lagged relationships were invari-
ant before the observations started, which is rather abstract when consid-
ering the model as a local description instead of an everlasting truth; hence,
this is not a very restrictive assumption in practice.
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LCS Model by McArdle and Hamagami

The LCS model, also known as the Latent Difference Score
(LDS) model, was proposed by McArdle and Hamagami (2001;
Hamagami & McArdle, 2001), and forms a rather general model-
ing framework that includes many longitudinal SEM approaches
as special cases. What is characteristic of the LCS model is that
latent changes (i.e., the differences scores corrected for measure-
ment error), from one occasion to the next are modeled as a
function of a constant change parameter and a proportional
change parameter that depends on the preceding score: For this
reason the model is also referred to as the Dual Change Score
model (McArdle, 2009).

In the bivariate extension of this model, change is not only a
function of a constant change parameter and the proportional
change parameter, but also of the preceding score on the other
variable. The cross-lagged paths, going from one variable to the
change in the other, are referred to as coupling parameters, rather
than cross-lagged regression parameters. The interpretation is the
same, however, in that significant coupling parameters imply that
one variable has the tendency to impact changes in the other
variable (McArdle & Grimm, 2010). But instead of comparing
standardized coefficients in order to determine which variable is
causally dominant, the coupling parameters are used to set up a
vector field which depicts the expected changes from one occasion
to the next on both variables as a function of the current state (see
Boker & McArdle, 1995; McArdle, 2009; McArdle & Grimm,
2010). This plot is then used to make statements like: “The
resulting flow shows a dynamic process, where scores on Non-
Verbal abilities have a tendency to impact score changes on the
Verbal scores, but there is no notable reverse effect” (p. 348,
McArdle, 2005).

The LCS model has been extended with what has been referred
to as “dynamic error,” to distinguish it from measurement error
(see for instance McArdle, 2001): While measurement error only
affects the observation at the current occasion, dynamic error feeds
forward through the lagged relationships, affecting the trajectory
of the system and making it a stochastic rather than deterministic
process. The RI-CLPM can be thought of as closely related to the
LCS model with dynamic error, but without measurement error or
a constant change parameter. However, the LCS model is charac-
terized by a similar recursiveness as is present in the ALT model,
and therefore the random intercept term, which directly affects the
first latent score, also influences future occasions indirectly. Be-
cause the process is not “started up” as is done in ALT modeling,
the recursiveness is not dealt with in such a way that we can ensure
the process is stable in the absence of a constant change parameter.
As a result, the RI-CLPM is not a special case of the LCS model,
although they may be closely related in certain situations.

The LST Model by Steyer and Colleagues

The LST model was originally developed to distinguish between
measurement error and the true score (i.e., a latent variable), and to
further decompose the true score into a trait-like and a state-like
part (Schmitt & Steyer, 1993; Steyer, Mayer, Geiser, & Cole,
2015; Steyer, Schwenkmezger, & Auer, 1990). In practice this
typically implies that it is assumed that there is an underlying
construct, which is measured by multiple indicators. This under-
lying construct at a particular occasion is referred to as the state,

which is then decomposed into a trait-like part and an occasion-
specific part: Although there are some alternatives (see Geiser
& Lockhart, 2012; Schmukle, Egloff, Burns, 2002; Vecchione
& Alessandri, 2013), the trait-like part is often included as a
second-order factor relating the states—which are represented
by the first-order factors—to each other. The occasion-specific
part is the residual part of the state factor, which was not
accounted for by the trait.

The LST model has been extended with autoregressive relation-
ships either between the state factors (introducing a similar recur-
siveness as exists in the ALT model and the LCS model), or
between the occasion-specific components (to avoid the detrimen-
tal recursiveness in the model): The latter has been coined the Trait
State Occasion (TSO) model (Cole et al., 2005). Recently, the TSO
has been modified by Luhmann, Schimmack, and Eid (2011) to
handle single indicator data. In this modified model, the measure-
ment error term is omitted, the trait factor is modeled as a separate
factor with free factor loadings over time (rather than a second-
order factor), and second-order autoregressive relationships are
included. Note that if the measurement error term had been kept
(and the second-order autoregressive relationships were omitted),
the model would be identical to the STARTS model.

Luhmann et al. (2011) also propose a bivariate version of the
model, which includes cross-lagged regression paths between the
occasion-specific components (and no second-order autoregressive
relationships). The RI-CLPM can be seen as a special case of this
bivariate single indicator LST model, in which the factor loadings
for the traits are constrained to 1 over time. In applying this model
to empirical data, Luhmann et al. focus on decomposing the
variance into separate parts, as is also the goal in applying the
STARTS model and the original LST model. Furthermore, they
decompose the covariance between the two variables into a part
accounted for by the traits, a part accounted for by the autoregres-
sive and cross-lagged regressive relationships, and a part due to the
relationship between the residuals of the occasion-specific factors.

Conclusion

Clearly, the models discussed above show some overlap with
each other and with the RI-CLPM presented in the current article.
When considering these diverse modeling strategies, two observa-
tions seem of key importance. First, if researchers are specifically
interested in decomposing the variance into trait-like and state-like
components and the means are not of interest, the STARTS model
and the models based on the LST model are most relevant. In
contrast, if the interest is in individual developmental trajectories,
the ALT model and the LCS model are more appropriate, as they
are based on modeling both the mean structure and the covariance
structure and allow for individuals to have their own growth
curves. Second, the STARTS model, the ALT model and the LST
model are most typically applied to univariate data (even though
the original LST model uses multiple indicators); while bivariate
(or multivariate) extensions are possible, they do not form the core
focus and the cross-lagged regression parameters are not of key
interest. In contrast, the LCS model is most typically used to
investigate how two variables influence each other (based on the
expected change described with the vector field), although it can
also be applied to univariate data.
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The above observations are relevant, because they help pitting
the RI-CLPM against these alternatives. The main inspiration for
proposing the RI-CLPM is that we want to obtain estimates of
cross-lagged regression parameters that truly reflect the underlying
reciprocal process that takes place at the within-person level. The
model thus requires bivariate (or multivariate) data, the mean
structure is not (necessarily) of interest, and the focus is on how
(i.e., positive or negative cross-lagged coefficients), and how much
(i.e., compare standardized absolute values of cross-lagged coef-
ficients) the variables influence each other. Hence, because the
focus is on the covariance structure rather than the mean and
covariance structures, we could say that the RI-CLPM is more
closely related to the STARTS model and the LST and TSO
models. However, the goal is not to decompose the variance and
covariance into trait-like and state-like parts, but to determine how
the variables influence each other through the cross-lagged rela-
tionships at the within-person, state-like level, while controlling
for trait-like differences at the between-person level. With this goal
in mind, the RI-CLPM can be thought of as more closely related
to the bivariate ALT model or the LCS model, although there is no
inherent interest in individual developmental trajectories.

In sum, it can be stated that all models discussed in this section
could serve as alternatives to the CLPM: Each model forms an
attempt to separate between-person trait-like differences from the
within-person reciprocal process. While some of these models
include desirable properties such as measurement error and/or
differences in developmental trajectories, the advantage of the
RI-CLPM is that it is most closely related to the CLPM and
requires only three waves of data. Because two or three waves of
data are currently the norm in cross-lagged panel research, the
RI-CLPM is more likely to be considered by researchers as a
feasible alternative than models that require (many) more waves.
In the following sections we focus on the CLPM and the RI-
CLPM, but we return to the issue of other alternatives in the
discussion.

Comparing the Cross-Lagged Parameters

Cross-lagged panel research is characterized by three major
objectives: First, the aim is to determine whether the variables
have a significant effect on each other; second, the question is
which variable is causally dominant; and third, researchers want to
know whether a variable has a positive or negative influence on the
other variable. If researchers use the CLPM when the data were
actually generated by the RI-CLPM, the question is whether this
alters their conclusions with respect to these three objectives. In
this section we focus on these issues through considering the
cross-lagged regression parameters from both models analytically
and in simulations.

Analytical Comparison

In Appendix B we show that the standardized cross-lagged
regression parameter in the CLPM from variable x to variable y
can be expressed as a function of the parameters of the RI-CLPM,
that is


t

SD(xi,t�1)

SD(yit)
� �1 � �cov(�i, �i) � cov�qi,t�1

* , pi,t�1
* ��2��1

 �cov(�i, �i) � 	t
*cov�qi,t�1

* , pi,t�1
* � � 
t

*var�pi,t�1
* �

� �cov(�i, �i) � cov�qi,t�1
* , pi,t�1

* ��
 �var(�i) � 	t

*var�qi,t�1
* � � 
t

*cov�qi,t�1
* , pi,t�1

* ���,

(5)

which shows that it is a complex function of: (a) the cross-lagged
regression coefficient from variable x to variable y, that is 
t

*; (b)
the within-person autoregressive parameter of variable y, that is 	t

*;
(c) the covariance between the within-person deviations at the
previous time point, that is cov�qi,t�1

* , pi,t�1
* �; (d) the variance of

the within-person deviation at the preceding occasion, that is
var�qi,t�1

* �; (e) the variance of the trait-like component, that is
var(�i); and (f) the covariance between the trait-like components,
that is cov(�i, �i).

Considering the first objective of cross-lagged panel research,
that is, is there a significant effect of one variable on the other, the
relationship in Equation 5 is not very informative, although it may
be expected that the two models will not necessarily lead to same
conclusion regarding the presence of a cross-lagged relationship.

With respect to the second objective, the question is whether the
difference in absolute values of the standard cross-lagged coeffi-
cients is of the same sign across the two models. That is, the
question is whether

�
SD(xi,t�1)

SD(yit)
����

SD(yi,t�1)

SD(xit)
� and �
*

SD(pi,t�1
* )

SD(qit
*) ����*

SD(qi,t�1
* )

SD(pit
*) �.

are either both positive, leading to the conclusion that x is causally
dominant, or both negative, leading to the conclusion that y is
causally dominant. If these differences are not of the same sign,
this implies that using one model leads to the conclusion that x is
causally dominant, while the other model leads to the conclusion
that y is causally dominant. Clearly, that is not a desirable situa-
tion. For instance, when investigating the reciprocal influences of
mothers’ harshness and children’s behavioral problems, the RI-
CLPM may indicated that the mothers are causally dominant and
form the driving force in this potentially negative spiral, while the
CLPM may point to the children as being the instigator of mal-
adaptive patterns. While it is difficult to evaluate when these
models will lead to conflicting conclusions (due to the rather
complex relationships between the models’ differences of absolute
standardized cross-lagged parameters), we may expect that in
general larger trait-like differences are likely to have a stronger
distorting effect than small between-person differences.

The third objective concerns the sign of the cross-lagged pa-
rameters. Thus, the question is: If �� � 0, will � � 0, and when
��  0, will �  0? Naturally, the same question applies to �� and
�. Although this is not immediately apparent from the expression
in Equation 5, the many unrelated terms from the two levels
strongly suggest that �� and � not necessarily have the same sign.
This is again quite disturbing, as it suggests that using the CLPM
may lead to the conclusion that mothers’ harshness has a damping
effect on children’s behavioral problems, while the RI-CLPM may
indicate that mothers’ harshness actually exacerbates the chil-
dren’s behavioral problems.
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Simulations

In order to further investigate the effect of using the CLPM
instead of the RI-CLPM with respect to the three objectives of
cross-lagged panel research identified above, we performed a
series of simulations based on four models. The models used here
were handpicked in order to illustrate several specific situations in
which the CLPM may lead to contradictory results to the actual
underlying dynamics (in a similar vein as was done by Rogosa,
1980 when comparing the cross-lagged correlations to the under-
lying CLPM): Hence, we do not claim that these are necessarily
reflecting realistic scenarios, although they may. Characteristic of
each scenario here is that the covariance at the within-person level
is of a different sign than the covariance at the between-person
level, which can be seen as an instance of Simpson’s paradox (cf.,
Kievit, Frankenhuis, Waldorp, & Borsboom, 2013).7 In all four
scenarios the within-person variances were set to 1, whereas the
between-person variances were 2 or 3. As one may expect, more dramatic
(i.e., contradictive) results are obtained when the between-person
variances are substantial in comparison to the within-person vari-
ances. Furthermore, in each scenario we set the autoregressive
parameters for both variables to .5, because autoregressive param-
eters have to lie between 	1 and 1 and typically (although not
necessarily) will be larger than 0. The cross-lagged parameters
were chosen to reflect diverse scenarios (e.g., no effects, a strong
vs. a small effect etc.), but in all cases their values were smaller (in
absolute value) than the autoregressive parameters, and they were
chosen such that the bivariate process was covariance stationary
(cf. Hamilton, 1994).

We used Mplus (Muthén & Muthén, 1998–2012), to simulate
two-wave bivariate data according to a RI-CLPM, which were
subsequently used to estimate the traditional CLPM. For each
model, 1,000 replications were generated to ensure stable results.
We used a sample size of N � 200, which seems to be an accepted
sample size for a two-wave CLPM. Saving the parameter estimates
in a separate file, which we then imported into R (R Core Team,
2012), we computed the standardized cross-lagged parameters (as
Mplus does not allow for the computation of standardized param-
eters in case of Monte Carlo simulations).

The first model is characterized by an absence of reciprocal
effects. The covariance between the two variables at the within-
person level was .4 (implying that the residual variances at the
second wave were .75 and the residual covariance was .3, based on
stationarity constraints). The between-person variances were set to
3 for each variable, and the covariance at this level was set to 	2.
In the upper-left panel of Figure 2, the standardized cross-lagged
parameter estimates of this model are plotted. It clearly shows that
the point estimates are far from the generating values (indicated by
the diamond). The average � estimate was 	.118 (SD � .036,
average SE � .036), and the average � estimate was 	.120, (SD �
.037, average SE � .036). Considering whether the 95% confi-
dence intervals of these parameter estimates contained zero, we
obtained coverage rates of .105 for the � parameter, .103 for the �
parameter, which implies that in about 90% of the cases, the
CLPM would lead to the conclusion that there is at least one
significant negative cross-lagged parameter, although no cross-
lagged relationships were present in the model that generated the
data.

The second model is characterized by cross-lagged regression
parameters of .3. The within-person covariance was set to .5
(implying that the innovation variances were .51 and the covari-
ance between the innovations was .03). The between-person vari-
ances were set to 2, and the between-person covariance was set
to 	1. In the upper-right panel of Figure 2 the standardized
cross-lagged parameter estimates are plotted. Based on 1,000
replications, the average � estimate was 	.003 (SD � .032,
average SE � .034), and the average � estimate was 	.003 (SD �
.034, average SE � .034). Coverage rates for the 95% confidence
interval containing zero were .951 and .945, respectively, indicat-
ing that in about 95% of the cases it would be concluded that these
parameters are not significantly different from zero, although there
were substantial cross-lagged relationships in the model that gen-
erated the data.

The third model is based on an asymmetry in the a cross-lagged
relationships: � was set to 	.3 (from variable y to variable x), and
� was set to .1 (from x to y). The within-person covariance was set
to 	.5 (implying that the innovation variances were .51 for the
x-variable and .79 for the y-variable, while their covariance

7 A possible example could be the relationship between number of words
typed per minute and the number of typos: At the within-person level there
is a positive relationship, as a person tends to make more mistakes when
(s)he types faster, while at the between-person level there is a negative
relationship as people who have more experience tend to type faster while
making fewer mistakes, and vice versa.

Figure 2. Standardized cross-lagged parameter estimates obtained with
the traditional CLPM. Generating values from the RI-CLPM are denoted
by the diamond. Areas A indicate solutions in which |�| � |
| such that
variable x is causally dominant; areas B indicate solutions in which �| � |
|
such that variable y is causally dominant. Only 250 estimates (of the 1000
replications) per model are plotted for reasons of clarity.
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was 	.29). The between-person variances were set to 2 and their
covariance was set to 1. The standardized cross-lagged parameter
estimates are given in the lower-left panel of Figure 2. It shows
that while the original combination of parameter values is in the
area that is characterized by a standardized |
| that is smaller than
the standardized |�|, indicating that variable y is causally dominant,
most point estimates fall in the area in which the standardized |
|
is actually larger than the standardized |�|, leading to the opposite
conclusion that variable x is causally dominant. The average esti-
mate for � is .002 (SD � .039, average SE � .040), and for � it is
.151 (SD � .034, average SE � .033). For � (which equaled 	.3
in the generating model), the coverage rate of the 95% confidence
interval containing zero was .958, which implies that in about 95%
of the cases the conclusion would be that there is a nonsignificant
relationship from y to x. The coverage rate � (where true � is .1)
was .010, which implies that in 90% of the cases a significant
relationship from variable x to y would be detected. This further
shows that the CLPM may result in the wrong variable being
identified as being causally dominant.

Finally, the fourth model is also characterized by an asymmetry,
in that � (from variable y to x) was set to .3 and � was set to .1.
The within-person covariance was set to .5 (implying that the
innovation variances of variables x and y were .72 and .60, respec-
tively, and the covariance between the innovations was 	.056).
The between-person variances ware set to 3 and their covariance
to 	2. The standardized point estimates of the cross-lagged pa-
rameters are presented in the lower-right panel of Figure 2, show-
ing that, while the generating cross-lagged parameters implied that
variable y was causally dominant, the parameter estimates almost
always lead to the conclusion that variable x is causally dominant.
The average point estimate for � was 	.023 (SD � .037, average
SE � .036), and for � it was 	.093 (SD � .033, average SE �
.033). The 95% confidence intervals included zero with a rate of
.897 for �, and .192 for �, meaning that in almost 90% of the cases
we would fail to detect the relationship from variable y to x (which
in reality was .3), while in more than 80% of the cases we would
detect a significant negative relationship from variable x to y
(which in reality was .1). This illustrates another disturbing fact:
The CLPM may result in a significant estimate of a cross-lagged
parameter that actually has a different sign than the corresponding
cross-lagged parameter in the generating model.

Conclusion

While the algebraic relationship in Equation 5 shows that the
cross-lagged parameters from the two models are not necessarily
identical, it is not easy to see how they will differ, especially in the
light of the three objectives of cross-lagged panel research. The
simulations we presented here show however that the CLPM can
lead to spurious results regarding all three objectives in this line of
research, that is, it can be misleading with respect to: (a) the
presence of causal relationships (Models 1 and 2); (b) the causal
priority of two variables (Models 3 and 4); and (c) the sign of the
causal relationship (Model 4).

The simulations here were designed to illustrate these specific
situations, without the intention to represent typical psychological
processes. The fact is that we do not know what would be typical
values for the parameter of the RI-CLPM, because this is not a
model that is currently used in practice. In the simulations here the

between-person variance was relatively large (i.e., two or three
times as large as the within-person variance), and in general it can
be stated that the results from the CLPM deviated more from the
generating RI-CLPM when the between-person variances in-
creased. Furthermore, the correlation at the between-person level
also influences the results, especially if it is of the opposite sign of
the correlation that exists at the within-person level (i.e., in the
presence of Simpson’s paradox, Kievit et al., 2013). Finally, sam-
ple size affects the variability in estimates and their standard errors
(i.e., both are inversely related to sample size), but the bias
resulting from estimating a model that does not distinguish be-
tween within-person dynamics and between-person trait-like dif-
ferences does not vanish when sample size increases.

Modeling Strategy

To avoid the pitfall exposed above, we propose a modeling
strategy that allows us to investigate whether there are trait-like,
time-invariant individual differences present in the constructs that
are studied, which should be accounted for through the inclusion of
a random intercept. This strategy is based on the fact that the
CLPM is nested under the RI-CLPM, such that if three or more
waves of data are available, both models can be fitted to the data
and can be compared using a chi-bar-square test for the difference
in chi-squares (Stoel et al., 2006). We illustrate this strategy using
data that are reported in Soenens Luyckx, Vansteekiste, Duriez,
and Goossens (2008), concerning the effect of diverse aspects of
parenting style on depressive symptoms of adolescents and vice
versa. The data were obtained from 396 students and consist of
three waves, with intervals of one year, starting in the fall of the
first year in college.

We begin with considering the relationship between Parental
Psychological Control (based on items like “My parents are less
friendly to me if I don’t see things like they do”), and Adolescents’
Depressive Symptomatology. First, we fit a model in which the
means of each variable are constrained over time (i.e., �t � � and
�t � �), while the covariance structure is unconstrained: Models
in which the group means do not change over time facilitate
interpretation, although time-invariant means are no prerequisite
for the models considered here. The fit of this model is not
satisfactory, according to some measures (chi-square is 13.75, 4 df,
p � .008; RMSEA � .078), whereas other measures indicate this
is a good model (CFI � .990; SRMR � .024). Inspection of the
means shows that especially the mean of Adolescents’ Depressive
Symptomatology at the first wave is higher than at the other two
waves: This measurement is from the first semester that the par-
ticipants are in college, and the elevated average may thus reflect
the difficulties associated with getting adjusted to these new
circumstances. Freeing this mean leads to appropriate model fit
(�2�3� � 3.33, p � .344; RMSEA � .017; CFI � 1.000; SRMR �
.011). Although constraining this first mean does not affect our
results for the lagged parameters in a substantive way, the results
reported below are based on the model in which this first mean for
Adolescents’ Depressive Symptomatology is not constrained to be
equal to the means at subsequent waves.

Second, we model the covariance structure using the RI-CLPM,
while keeping the constraints on the means (except for the first
mean of Adolescents’ Depressive Symptomatology), and time-
invariant lagged parameters. This model fits well (chi-square is
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9.85, 8 df, p � .276; RMSEA � .024; CFI � .998; SRMR � .025).
Finally, we fit the CLPM, with the same constraints on the means
and lagged parameters as used in the previous model. This model
does not fit well according to some measures (chi-square is 66.18,
11 df, p  .001; RMSEA � .113), although other measures lead to
the conclusion that the model fits approximately (CFI � .943;
SRMR � .042). Note that because the null-model here consists of
fixing two parameters on the boundary of the parameter space (i.e.,
two variances fixed to zero), the standard chi-square difference test
will be too conservative (see Stoel et al., 2006). The chi-square
difference is 66.18 	 9.85 � 56.33, with 3 df, which is significant
at an � of .05 (that is, p  .01).

To show that the substantive interpretation of the underlying
process depends on the model one uses, we consider the standard-
ized cross-lagged regression parameter estimates from both mod-
els presented in Figure 3. It shows that both models lead to
significant positive cross-lagged parameters. However, while the
RI-CLPM indicates that the effect of Parental Psychological Con-
trol on Adolescents’ Depressive Symptomatology is only slightly
larger than the reverse effect (i.e., .240 vs. .212 and .265 vs. .205
between Wave 1 and Wave 2), the CLPM leads to the conclusion
that the effect of parents on adolescents is much larger than that of
adolescents on their parents (i.e., .239 vs. .139 and .248 vs. .134
between Wave 1 and Wave 2). Hence, using the CLPM would lead
to the conclusion that parents are causally dominant, while the
RI-CLPM leads to the conclusion that the reciprocal process is
much more symmetric.

We apply the same procedure for the variables Parental Re-
sponsiveness (based on items like “My parents make me feel better
after I discussed my worries with them”), and Adolescents’ De-
pressive Symptomatology. Here, both the first mean of the adoles-
cents’ variable, and the last mean of the parents’ variable were
estimated freely, in order to obtain a fitting model (chi-square is
.933, 2 df, p � .627; RMSEA � .000; CFI � 1.000; SRMR �
.006): The last mean of Parental Responsiveness was significantly
lower than that at the other two measurement waves, which may
reflect the increasing independence of the adolescents in the third
year of college. The RI-CLPM fitted well according to all four fit
measures (chi-square is 11.86, 7 df, p � .105; RMSEA � .042;
CFI � .996; SRMR � .031), while the CLPM gave mixed results
(chi-square is 76.01, 10 df, p  .001; RMSEA � .129; CFI � .939;
SRMR � .048). The chi-square difference is 76.01 	 11.86 �
64.15, with 3 df, which is significant at an � of .05 (that is, p 
.01).

Comparing the standardized lagged parameter estimates from
both models given in Figure 3, the RI-CLPM leads to the conclu-
sion that there are no reciprocal influences between Parental
Responsiveness and Adolescents’ Depressive Symptomatology,
whereas the CLPM leads to the conclusion that there is a signifi-
cant negative effect from Parental Responsiveness to subsequent
Adolescents’ Depressive Symptomatology (and while there is no
significant effect from adolescents to parents, it would be con-
cluded that parents are causally dominant here).

In conclusion, the modeling strategy illustrated above shows
that it is possible to investigate whether the constructs are charac-
terized by time-invariant, trait-like individual differences, and that
using the traditional CLPM can lead to erroneous conclusions
regarding the pattern of mutual influences. Hence, researchers
should make sure to use an alternative that decomposes the vari-
ance into between-person differences and the within-person pro-
cess. If the constructs are not characterized by time-invariant,
trait-like individual differences, running the RI-CLPM will not
affect the results substantially, although in that case one can also
use the simpler CLPM instead.

Discussion

Rogosa summarized his critique on the cross-lagged correlation
methodology—which he referred to as CLC—saying: “CLC may
indicate the absence of direct causal influence when important
causal influences, balanced or unbalanced, are present. Also, CLC
may indicate a causal predominance when no causal effects are
present. Moreover, CLC may indicate a causal predominance
opposite to that of the actual structure of the data; that is, CLC may
indicate that X causes Y when the reverse is true” (p. 246, Rogosa,
1980). In the current article, similar problems have been exposed
in the context of the CLPM. That is, the CLPM may indicate there
are reciprocal effects when these do not exist (Model 1), and may
fail to detect them when they do exist (Model 2). Furthermore, the
CLPM may identify one variable as being causally dominant,
when in fact the other variable is (Models 3 and 4). Finally, the
CLPM may indicate a negative influence from one variable on
another, while in reality the effect is positive (Model 4).

The source of these problems is the failure to adequately sepa-
rate the within-person and the between-person level in the pres-
ence of time-invariant, trait-like individual differences. As a result,
the estimates of lagged parameters are confounded by the relation-
ship that exists at the between-person level (see Hamaker, 2012 for

Figure 3. Standardized parameter estimates for Soenens data obtained with the RI-CLPM (above the arrows)
and the CLPM (below the arrows). Standard errors are given between parentheses. � indicates significant at � �
.05; �� indicates significant at � � .01; ��� indicates significant at � � .001.
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other situations in which this confounding may occur). As it is
reasonable to assume that most psychological constructs that are
studied with cross-lagged panel designs are to some extent char-
acterized by time-invariant stability reflecting a trait-like property
(at least for the duration of the study), it follows that many lagged
parameters reported in the literature will not reflect the actual
within-person (causal) mechanism.

This is especially problematic if one wishes to use the results
from cross-lagged panel research as a basis for future interven-
tions. For instance, the results obtained with the traditional CLPM
for adolescent depression and parental responsiveness in this arti-
cle, would lead the researcher to conclude that increasing parental
responsiveness should result in a reduction in depressive symp-
toms on part of the adolescent; however, the RI-CLPM shows that
this result is an artifact, and that there is actually no lagged effect
from parental responsiveness to adolescents’ depression. Note that
this does not imply that the two variables are unrelated: In fact, the
trait-like individual differences are negatively correlated (esti-
mated correlation is 	.443, SE � .067, p  .001), indicating that
parents who tend to be more responsive on average, tend to have
adolescents who suffer less from depressive symptomatology on
average. However, we cannot derive a causal mechanism from
these results, which explains this relationship and that can be used
as the foundation for an intervention. This shows that “getting it
right” with respect to the cross-lagged relationships is not just an
academic concern.

We found that 45% of the studies that we examined estimated
the CLPM based on only two waves of data. In these cases, the
CLPM is saturated, and hence no statements regarding model fit
can be made: That is, the model will always fit perfectly, and the
interest in estimating this model is simply in obtaining estimates of
the cross-lagged regression parameters which are corrected for the
temporal stability of the constructs. This implies that to date, it is
impossible to tell what portion of the results reported in the
literature based on the CLPM provide truthful reflections of the
actual reciprocal mechanisms, and what portion is flawed and if so,
how serious these errors are.

Researchers interested in studying lagged relationships are there-
fore well advised to employ the following approach. First, a minimum
of three measurement waves are required: Only then can the within-
person process be controlled for stable between-person differences
through the inclusion of a random intercept. Note, however, that to be
able to consider some of the other alternatives, more measurement
waves are needed. Second, start with a model in which only the means
are constrained over time, while the covariance structure is estimated
freely: This allows one to determine whether there are structural
changes over time. If this model proves tenable, subsequent models
can be specified for the covariance structure, while leaving the means
constrained over time. If the first model proves untenable however,
the researcher should identify the source of misfit, and consider
freeing certain means (as we did in the empirical applications included
in this article), or use an alternative modeling approach such as LGC
or ALT modeling (Hamaker, 2005). If there is no need for an alter-
native model based on the mean structure, the researcher can continue
with comparing the CLPM with the RI-CLPM in order to determine
whether the constructs are characterized by trait-like between-person
differences, or that it can be assumed that all individuals vary around
the same mean (or trend when the means could not be constrained
over time).

Despite our emphasis on the RI-CLPM as an alternative to the
traditional CLPM in this article, we want to stress that it is certainly
not our intention to try to convince the reader that the RI-CLPM is
necessarily the best alternative for the CLPM: Without a doubt, there
will be many instances where another approach is more suited, some
of which were already discussed in this article. Here, we briefly touch
upon four additional issues that researchers of reciprocal longitudinal
effects are advised to consider.

First, it is only reasonable to expect that our measurements contain
some measurement error, and the relative contribution of measure-
ment error changes when we distinguish between the within-person
and between-person levels. That is, after we have partialed out the
stable between-person differences, the measurement error will ac-
count for more of the remaining variance than of the total variance.
Consequently, the distorting effects of measurement error on our
results will increase once we adequately separate the within-person
fluctuations from the stable between-person differences. Measure-
ment error can be handled either by obtaining a relatively large
number of repeated measurements (say � 10) such that a bivariate
STARTS model can be used, or by having multiple indicators (e.g.,
test halves) such that a bivariate TSO model can be estimated; in both
cases, the researcher will be able to distinguish between the within-
person process and stable trait-like between-person differences, while
controlling for measurement error.

Second, there is a growing body of literature on applying contin-
uous time modeling using SEM (see Oud, 2007; Oud & Delsing,
2010; Voelkle, Oud, Davidov, & Schmidt, 2012), and this approach
has several important advantages over discrete time modeling as
discussed in the current article. That is, continuous time modeling—
which is based on (stochastic) differential equations—can easily
account for varying lags (i.e., intervals between the observations),
both over time and across individuals. Hence, this approach is more
appropriate for diverse kinds of longitudinal data with unequally
spaced observations, either by design or as the result of practical
issues. Additionally, it circumvents the problem of having to decide
on the “right” lag for a particular effect. As has been pointed out by
Gollob and Reichardt (1987), the effect variables have on each
other—as quantified by the cross-lagged parameters—change when
another lag is considered, meaning that results are highly dependent
on the lag one uses. An advantage of continuous time modeling is that
it actually allows us to represent the autoregressive and cross-lagged
effects as a function of the lag length (e.g., Oud & Delsing, 2010;
Voelkle et al., 2012).

Third, researchers may wish to consider models that allow for
individual differences in cross-lagged (and autoregressive) effects,
especially if they have intensive longitudinal data (say more than 30
measurement occasions per person). To this end, one can use multi-
level modeling, in which the lagged variables (either centered per
person or not) are included as predictors (Bringmann et al., 2013).
However, standard multilevel software typically does not allow for
more than one outcome variable, such that separate analyses need to
be run for a multivariate system. Moreover, this approach does not
allow for varying intervals between the observations, while unequally
spaced observations are not uncommon in intensive longitudinal data
(for instance, as the result of experience method sampling). If one
wishes to: (a) consider random lagged effects; (b) allow for varying
intervals between observations (both within and across individuals);
and (c) account for measurement error in a bivariate system, one can
make use of the free software package BHOUM (Oravecz, Tuer-
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linckx, & Vandekerckhove, 2009).8 This method overcomes many of
the limitations associated with standard multilevel software for inves-
tigating random reciprocal effects. A drawback of the current version
of BHOUM is however that it does not allow for asymmetric cross-
lagged effects within a person. Hence, while the cross-lagged param-
eters may differ across individuals, for any particular person the
influence of xt	1 on yt is identical to the effect of yt	1 on xt. Another
issue that needs to be considered here is how to compare the relative
strength of random cross-lagged parameters, as standardizing param-
eters in multilevel models is not straightforward (Nezlek, 2001).

Finally, one may also want to consider how the underlying process
itself changes over time. For instance, the effect of the time-invariant
individual differences may change over time, such that instead of
having a random intercept, we will simply have a trait (i.e., a latent
variable with unconstrained factor loadings over time). We may also
expect developmental changes that are reflected by changes in the
autoregressive or cross-lagged regression parameters over time (even
when the observations are equally spaced over time): Such nonsta-
tionarity is not uncommon when larger time spans are considered.
Alternatively, the autoregressive and cross-lagged parameters may be
characterized by recurrent changes, reflecting switches between dif-
ferent states or regimes (e.g., de Haan-Rietdijk, Gottman, Bergeman,
& Hamaker, 2014). While some kind of heterogeneity over time—
whether across years or second-to-second—is often more realistic
than assuming a stationary process that is in equilibrium, such in-
creased complexity always comes at the cost of requiring more waves
of data.

In conclusion, the RI-CLPM presented here is but one alternative
for the CLPM: In fact, it is a rather restrictive model, that may not
represent the truth very well in most cases. However, by pitting these
two models against each other, we aim to increase awareness regard-
ing the serious limitations of the CLPM for uncovering within-person
reciprocal processes, and in doing so we hope to convince researchers
to consider alternative approaches, whatever these may be.

8 The program and its documentation can be found at http://www.cogsci
.uci.edu/ zoravecz/bayes/BOUM.php
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Appendix A

Model Specifications of a CLPM and a RI-CLPM

Specifying a CLPM for three occasions can be done with the
measurement equation

	
xi1

yi1

xi2

yi2

xi3

yi3


�	
�1

�1

�2

�2

�3

�3


�	
p1i

q1i

p2i

q2i

p3i

q31


, (6a)

and structural equation

	
p1i

q1i

p2i

q2i

p3i

q31


�	
0 0 0 0 0 0

0 0 0 0 0 0

�2 �2 0 0 0 0


2 	2 0 0 0 0

0 0 �3 �3 0 0

0 0 
3 	3 0 0


	
p1i

q1i

p2i

q2i

p3i

q31


�	
p1i

q1i

u2i

v2i

u3i

v31


,

(6b)

where the covariance matrix of the latter residual vector is

� �	
�x1

2

�x1y1
�y1

2

0 0 �u2

2

0 0 �u2v2
�v2

2

0 0 0 0 �u3

2

0 0 0 0 �u3v3
�v3

2


. (6c)

Note that the variances and covariance between pi1 and qi1 are
identical to those of xi1 and yi1 in this model.

Specifying the RI-CLPM for three waves of data in SEM soft-
ware is based on the measurement equation units

	
xi1

yi1

xi2

yi2

xi3

yi3


�	
�1

�1

�2

�2

�3

�3


�	
1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1



p1i

*

q1i
*

p2i
*

q2i
*

p3i
*

q31
*

�i

�i

, (7a)

and structural equation

p1i
*

q1i
*

p2i
*

q2i
*

p3i
*

q3i
*

�i

�i

�

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�2
* �2

* 0 0 0 0 0 0


2
* 	2

* 0 0 0 0 0 0

0 0 �3
* �3

* 0 0 0 0

0 0 
3
* 	3

* 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

p1i
*

q1i
*

p2i
*

q2i
*

p3i
*

q3i
*

�i

�i

�

q1i
*

p1i
*

u2i
*

v2i
*

u3i
*

v3i
*

�i

�i

, (7b)

where the covariance matrix of the latter residual vector is

� �

⎣
⎢
⎢
⎢
⎡ �p1

*
2

�p1
*q1

* �q1
*

2

0 0 �u2
*

2

0 0 �u2
*v2

* �v2
*

2

0 0 0 0 �u3
*

2

0 0 0 0 �u3
*v3

* �v3
*

2

0 0 0 0 0 0 ��
2

0 0 0 0 0 0 ��,� ��
2 ⎦
⎥
⎥
⎥
⎤

.

(7c)
Note that in contrast to the previous model, here the variances

and covariance of p1i
* and q1i

* are not identical to those of xi1 and yi1

(unless �i � �i � 0 for all i).

(Appendices continue)
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Appendix B

The Standardized Cross-Lagged Regression Coefficient of the CLPM as a Function of the
Parameters of the RI-CLPM

The standardized cross-lagged parameters in the traditional CLPM can be expressed as partial correlations
(e.g., Heise, 1970). Focusing on the cross-lagged parameter �t from pi,t-1 to qit, and making use of the fact that
pi,t and qit are the group mean centered variables xit and yit, we can write


t

�(xi,t�1)

�(yit)
�

�(xi,t�1yit) � �(yi,t�1xi,t�1)�(yi,t�1yit)

1 � �(yi,t�1xi,t�1)
2 . (8)

In order to see how the cross-lagged parameter � from the traditional CLPM is related to the cross-lagged
parameters �� of the RI-CLPM, we need to express the correlations used on the right-hand side of Equation
8 in terms of the parameters of the latter model. If we assume that all the observed variables are standardized,
the correlation between yi,t-1 and yit can be expressed as

�(yi,t�1yit) � E[��i � qi,t�1
* ���i � qit

*�]

� E��i
2� � E�qi,t�1

* qit
*�

� var(�i) � E�qi,t�1
* �	t

*qi,t�1
* � 
t

*pi,t�1
* � vit

*��
� var(�i) � E�	t

*qi,t�1
*2 � � E�
t

*qi,t�1
* pi,t�1

* �
� var(�i) � 	t

*var�qi,t�1
* � � 
t

*cov�qi,t�1
* , pi,t�1

* �,

(9)

while the correlation between yi,t	1 and xi,t	1 can be expressed as

�y1x1 � E���i � qi,t�1
* ���i � pi,t�1

* ��
� E[�i�i] � E�qi,t�1

* pi,t�1
* �

� cov(�i, �i) � cov�qi,t�1
* , pi,t�1

* �,

(10)

and the correlation between yit and xi,t	1 can be expressed as

�(xi,t�1yit) � E[��i � pi,t�1
* ���i � qit

*�]

� E[�i�i] � E�pi,t�1
* qit

*�
� cov(�i, �i) � E�pi,t�1

* �	t
*qi,t�1

* � 
t
*pi,t�1

* � vit
*��

� cov(�i, �i) � E�	t
*pi,t�1

* qi,t�1
* � � E�
t

*pi,t�1
*2 �

� cov(�i, �i) � 	t
*cov�qi,t�1

* , pi,t�1
* � � 
t

*var�pi,t�1
* �

(11)

Using these expressions for the correlations in Equation 8, we can now write


t

SD(xi,t�1)

SD(yit)
�

cov(�i, �i) � 	t
*cov(qi,t�1

* , pi,t�1
* ) � 
t

*var(pi,t�1
* )

1 � �cov(�i, �i) � cov(qi,t�1
* , pi,t�1

* )�2

�
�cov(�i, �i) � cov�qi,t�1

* , pi,t�1
* ���var(�i) � 	t

*var�qi,t�1
* � � 
t

*cov�qi,t�1
* , pi,t�1

* ��
1 � �cov(�i, �i) � cov�qi,t�1

* , pi,t�1
* ��2 .

Similarly, the relationship between �t and �t
* can be derived.
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