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Chapter 1

General introduction
The electrocardiogram (ECG) is a widely used clinical tool which provides insight in 
cardiac electrical activity to diagnose cardiac pathology. The technique itself has not 
undergone major changes since 1942, i.e. the assessment of the cardiac activation 
and recovery still relies on the interpretation from the standard 12-lead ECG. The 
ECG provides a rather distant view on the electrical activity of the heart as the 
electrodes placed on the skin only measure the potential resulting from the spatial 
summation of all simultaneous electrical activity. The view is further ‘blurred’ by the 
tissues between the electrodes and the cardiac electrical activity. Through invasive 
procedures, detailed insight in cardiac electrical activity can be obtained, but due 
to the high risk of such procedures, such procedures are not routinely performed. 
This thesis focusses on non-invasive ECG-based methods to obtain detailed insight 
on local cardiac activity, the so-called inverse ECG methods. The improvement and 
application of such techniques to detect disease onset and progression in cases of 
inherited arrhythmogenic cardiomyopathy is described. Additionally, new tools to 
enhance the diagnostic value of the 12-lead ECG are discussed. 

Inherited cardiomyopathies 
In inherited cardiomyopathies, disease onset and progression are slow and the 
disease may develop over years from no phenotype to severe abnormalities.1,2 

Cardiomyopathies are characterized by a broad spectrum of disease phenotypes, 
potentially progressing into either heart failure or ventricular arrhythmia (VA).1,3 Due to 
the identification of many pathogenic variants, predisposition for either hypertrophic-, 
dilated-, arrhythmogenic-, restrictive- or non-compaction cardiomyopathy is further 
unraveled. Throughout the last decade, our understanding of genotype-phenotype 
relation in inherited cardiomyopathies has improved substantially.4-7

However, disease penetrance is incomplete and phenotypic disease expression is 
heterogeneous, as indicated by the large variability in age of disease onset and 
the rate of progression. Overlap in phenotypic expression of underlying genotypic 
substrate is the rule rather than the exception.5-7 Dilated cardiomyopathy (DCM) and 
arrhythmogenic cardiomyopathy (ACM) are two extremes of the cardiomyopathy 
spectrum. Whereas DCM usually manifests with symptoms of heart failure, in ACM 
electrical remodeling may precede structural changes and life-threatening VA can 
be the first disease manifestation. In family members of patients diagnosed with 
either ACM or DCM, deciding on the type and frequency of clinical evaluation is 
challenging due to the heterogeneous disease penetrance and progression. With 
increasing extent of structural abnormalities, prognosis worsens.8-11

Known genetic etiology of ACM comprises desmosomal, lamin A/C, filamin-C, and 
phospholamban gene variants impairing the electrical and structural stability of 
the myocardium.  The known genetic etiology of DCM partially overlaps with these 
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genes.5,12-15 Especially for asymptomatic variant carriers, it is important to determine 
whether carriers will develop either ACM or DCM as first phenotypical disease 
manifestation. However, besides genetic predisposition, environmental factors also 
play a pivotal role in disease manifestation as illustrated by the incomplete penetrance 
and heterogeneous disease expression of both ACM and DCM. For example, within 
one family carrying the same pathogenic variant; one member may suffer from lethal 
VA during the concealed phase of disease, whereas another remains unaffected.3, 

16 On the other hand, in carriers already diagnosed with ACM, the identification of 
predictors of progression to a pure ACM-phenotype or a combination of A/DCM-
phenotype is important to decide on appropriate clinical treatment regimen. 

Current clinical diagnostic tools 
As in ACM first manifestation of disease may be life-threatening VA, the identification 
of yet asymptomatic individuals at-risk is crucial. Due to increased genetic cascade 
screening, more genotype-positive yet phenotype-negative at-risk family members 
are identified. These are often young, asymptomatic and healthy individuals who 
may or may not develop any sign of disease.3,8,13,17 In these individuals, apart from the 
early identification of individuals at-risk for VA, selecting appropriate clinical follow-
up intervals and deployed diagnostic tools to provide a personalized follow-up and 
treatment strategy is important.8 However, due to the heterogeneous phenotypic 
disease expression and the either right-, left- or bi-ventricular involvement in 
disease, adequate risk-stratification remains challenging and very subtle signs of 
early manifestation of disease may easily go unnoticed.

Predictors to assess the first phenotypical expression and progression towards 
ACM and/or DCM-phenotype and left-/right-/bi-ventricular involvement are yet 
unidentified. Within the process of clinical follow-up, the decision on an individualized 
time interval for follow-up is difficult. Current guidelines recommend that individuals 
at-risk for ACM should undergo clinical evaluation every 1-3 years, starting at 10-12 
years of age, as the disease is known to predominantly manifest in young adulthood. 
3,18-21 With the identification of early signs of disease, treatment can be initiated and 
lifestyle changes may be proposed to reduce risk of VA. One example is the advice 
to reduce sport intensity, as individuals with a history of high-intensity exercise have 
a higher risk for VA.22,23

ACM diagnosis requires extensive clinical work-up aimed to identify any phenotypic 
expression of the disease. In ACM, the use of just one single test is not enough 
to identify disease. Therefore, a combination of diagnostic tools is usually used, 
as described in the task force criteria (TFC) for ARVC first published in 199424 and 
modified in 201025. The TFC consists of six categories describing criteria with a high 
specificity for ACM as major and others as minor. The 12-lead electrocardiogram 
(ECG) plays a pivotal role in the TFC criteria as early electrical signs of disease may 
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precede first structural signs. With the ECG, electrical currents generated by the heart 
are measured as potentials at the body surface. The ECG provides direct insight in 
cardiac electrical activity and represents an indispensable, cheap, non-invasive and 
easy to use diagnostic tool in current clinical practice.

History of the ECG
In 1895, a few years after the first measurement of human cardiac potentials on the 
body surface by Waller26 (1887), Einthoven introduced a method to record the ECG 
in a way resembling the modern-day ECG recordings27. He introduced the ‘Einthoven 
Triangle’ to measure the three extremity leads I, II and III, wherewith general 
information about cardiac electrical activity is obtained. Additionally, he named the 
wave deflections that he observed during his recording as currently still used in clinical 
practice; the P-wave, QRS complex and T-wave. After the introduction of ‘Wilson’s 
Central Terminal’ (WCT), an electrical reference computed from the extremity leads28 
(1931), precordial ECG leads (V1-V6) were introduced29. Using electrodes located 
at standardized positions close to the heart and referenced to the WCT, precordial 
leads are recorded. With these leads, more regional information about cardiac 
electrical activity is obtained, compared to the global information obtained with 
the extremity leads. Not long after30,31 (1942), the augmented extremity leads were 
introduced, providing yet another global view on cardiac activity. The combination 
of the extremity leads (I, II, III), augmented extremity leads (aVR, aVL and aVF) and 
precordial leads (V1-V6) is what we know as the standard 12-lead ECG in current 
clinical practice. 

Capturing cardiac electrical activity and function, the 12-lead ECG
The ECG displays the spatial summation of the currents generated by depolarization 
and repolarization waves traveling through the myocardial tissue resulting in 
potentials at the body surface. By recording changes in these body surface potentials 
(BSP, also ECG), direct insight in cardiac electrical activity is obtained. The observed 
BSP are generated by changes in the transmembrane potential of myocardial cells 
due to a shift of intracellular and extracellular ion concentrations. The complex 
and correct interplay of different ion channels and electrolytes and cell-to-cell 
contact is essential for the initiation of cardiac contraction. As depolarization waves 
initiate cardiac contraction, a beat-to-beat pulsatile movement of blood is initiated. 
Disturbances in this process, due to electrolyte imbalance, channel dysfunction or 
conduction defects, may result in cardiac dysfunction or even arrhythmias. 

Normal ventricular activation is initiated by the His-Purkinje system. The anatomy 
of the His-Purkinje was first described by Tawara et al.32, showing that the system 
consists of a branched network of isolated fast-conducting fibers. Further studies 
showed that there is a large anatomical variability33-36 in the His-Purkinje system, and 
the study of Durrer et al.37 showed that normal ventricular activation can be related to 



1

13

General introduction and thesis outline

the position of specific cardiac anatomical structures. Inter-individual differences in 
position of these structures (moderator band and papillary muscles) and the location 
of the septal initial sites of activation are directly related to QRS-morphology.38-40

In current clinical practice, the standard 12-lead ECG is used to assess rhythm (e.g. sinus 
rhythm, atrial fibrillation, ventricular arrhythmias), investigate waveform morphology 
to assess the presence of conduction disturbances (e.g. bundle branch block, scar, 
ischemia) and to perform measurements (e.g. QRS duration, QTc time). However, 
information about subtle progression of cardiac disease is more difficult to detect. 
Recently developed ECG-based deep learning algorithms do indicate that slight 
differences between ECGs can indicate for example reduced left ventricular ejection 
fraction41 or hyperkalemia42. These observations indicate that the ECG does contain 
more information than currently accessible in clinical practice, it remains unknown 
where the algorithms based their decision on. To improve algorithm trustworthiness, 
current research is focused on the explainability of such algorithms.43 Especially in 
progressive cardiomyopathies like ACM, subtle changes in ECG waveforms may 
indicate substrate development and such signs may be used for risk-stratification.44 
But accurate assessment is limited as (slight) inconsistencies in electrode positioning 
also cause ECG waveform changes. In such cases, it remains uncertain whether 
differences between subsequent ECGs is due to pathology or electrode positioning. 

A second difficulty in ECG interpretation is linking cardiac electrical activity to 
cardiac anatomy. The vectorcardiogram was introduced to overcome this problem 
by representing cardiac electrical activity as a vector whereof the magnitude 
and direction changes over the cardiac cycle. It provides a three-dimensional 
representation of cardiac activity which is related to the thorax, but not to cardiac 
anatomy. Furthermore, the method requires the placement of additional leads in 
standardizes position and as is the case with the 12-lead ECG, the method remains 
sensitive to electrode placement. 

Solving the inverse problem of electrocardiography 
Solving an inverse problem is the process of estimating causal parameters 
underlying a set of observations, in particular, the factors resulting in observations 
are estimated from the observation itself. Specifically, solving the inverse problem 
of electrocardiography means that cardiac electrical activity resulting in observed 
body surface potentials (BSP) is non-invasively estimated. The application of iECG 
techniques in a slowly progressing disease like ACM may enable the early identification 
of disease even prior to structural or mechanical defects. Whereas in principle, the 
12-lead ECG can be used to image the cardiac activation sequence, it only provides 
a succinct representation of cardiac electrical activity. By imaging the complex 
interplay of electrical waves underlying the ECG using iECG techniques, important 
additional knowledge about the underlying cardiac substrate can be obtained.45-54  
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In inherited cardiomyopathies, such an imaging technique may potentially be very 
valuable to study progression of the underlying cardiac substrate and to improve 
risk-stratification methods.45,55-57

In principle, the relation between ECG and cardiac electrical currents comes down 
to Ohms law (V=I*R), where the potentials observed at the body surface (V) are the 
result of generated cardiac currents (I) and the resistance between the heart and the 
body surface (R). With iECG techniques, extensive BSP measurements are combined 
with subject specific anatomy to estimate cardiac electrical activity.51,53,58-61 However, 
the problem is fundamentally hampered as completely different ventricular activation 
sequences can explain one BSP waveform, also referred to as ill-posedness.62-64  The 
direct relation between cardiac electrical currents and recorded BSP is ‘blurred’, as 
recorded waveforms are the result of spatial summation of the current generated by 
simultaneous activation wavefronts, resulting in partial cancellation and amplification. 
With an increasing number of activation waves (sinus rhythm), solving the inverse 
problem of ECG inherently becomes more complicated.53

To allow for a robust approximation of the cardiac activation sequence, iECG procedures 
are regularized. Most used regularization methods in iECG are the zero order 
Tikhonov, regularizing local amplitude, and the second order Tikhonov, regularizing 
local acceleration and deceleration, also known as Laplacian regularization. These 
methods pose mathematical constraints to the estimated activation sequences 
to secure important physiological characteristics of the estimated activation 
sequence.65-68 As most of the possible cardiac activation sequences explaining a BSP 
waveform are implausible from an electrophysiological point of view, regularization 
was the first basic attempt to constrain the inverse estimation towards the selection 
of a physiologically realistic solution. Such a regularization technique however only 
mathematically constrains one important characteristic, but others may still be 
electrophysiologically inaccurate. 

Extensive (>67 lead) ECG data

Cardiothoracic and electrode imaging

Input

Patient specific 
anatomical modeling

OutputMethod
Inverse ECG 

method Local activation timing mapping

Local activation timing (ms)
0 200

Figure 1. General overview of traditional inverse ECG techniques.
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The potential-based formulation (Equivalent Potential Distribution, EPD69,70) and 
the wavefront-based formulation (Equivalent Dipole Layer, EDL71,72) are the two 
most well-known iECG techniques (Figure 1). Both methods require detailed patient 
specific anatomical data, extensive ECG measurements (>67 leads) and precise 
information regarding electrode positioning. The most commonly used method is 
the EPD-model, where the cardiac activation pattern is estimated by solving the 
mathematical linear relation between electrical potentials on the body surface and 
the epicardial surface. In recent studies73-76, a novel EPD based formulation was 
introduced to allow for the estimation of both endocardial and epicardial potentials, 
but assumptions made in this novel method remains under debate. EDL-based iECG 
relates endocardial and epicardial cardiac electrical currents at any time instant to 
body surface potentials. The foundation of the model lies in work by Wilson et al.77 
in 1933, who described activation wavefronts traveling through the myocardium 
using a dipole layer78,79. In 1978, Salu80 showed the equivalence between this dipole 
layer at the wavefront and a dipole layer at the depolarized surface bounding the 
ventricular myocardium, based on the solid angle theory81. Along with the work of 
Geselowitz71,82, who observed that the local dipole layer strength is proportional to 
the local transmembrane potential and that the model also holds in homogeneous 
anisotropic tissue, the groundwork for the current EDL model was laid83,84. As the 
simulated currents in the heart follow the local transmembrane potential waveform, a 
direct link to cardiac electrophysiology was created. Both the EPD-based formulation 
and EDL-based formulation are ill-posed and therefore requires regularization. But 
as EDL-based iECG additionally requires an initial estimation due to the non-linearity 
of the formulation. This EDL-based initial estimate can be further optimized based on 
ventricular electrophysiological properties. 
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Figure 2.  General overview of the CineECG technique.
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As indicated previously, with decreasing QRS duration, the inverse problem becomes 
inherently more complex due to the interplay of several waveforms initiated through 
the His-Purkinje system at distinct sites at the ventricular endocardium.37 This has 
been recently shown in a large cohort study using the EPD-based technique53, 
where with decreasing QRS duration, the inversely estimated activation sequence 
corresponded less well to invasive measurements. Therefore, in these cases, 
additional regularization is required to enable the application of iECG to identify 
early signs of disease. 

Traditional iECG techniques (Figure 1, EPD- and EDL-based) are mathematically 
complex and computationally demanding. They require many more leads than 
the standard 12-lead ECG, which in application is expensive and time-consuming. 
CineECG was introduced in an attempt to image key temporo-spatial features of the 
activation sequence that are difficult to reliably obtain from the ECG using just the 
12-lead ECG, thus the additional burden of electrode numbers is minimized. With 
CineECG, the average position of cardiac activity at each time instant is projected 
into the cardiac anatomy, thereby providing a direct link between cardiac anatomy 
and electrical activity. The computation is based on a simplified anatomical model 
combined with a vector direction-oriented approach and provides a mathematically 
and computationally lightweight and less complex alternative to traditional inverse 
ECG methods. CineECG has been shown to be a robust technique to detect substrate 
in Brugada Type-1 patients and differentiate between bundle branch blocks and 
may play an important additive role for the early detection of disease onset and 
progression.
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Thesis outline
With (the optimization of) iECG techniques, current clinical practice regarding ACM 
diagnosis and risk-stratification may be further enhanced. In this thesis, we describe 
several methods to enhance the diagnostic yield of the ECG in the identification and 
risk-stratification of ACM. 

In Part I, we specifically focus on the optimization of EDL-based iECG for normal 
ventricular activation estimation. In Chapter 2, we describe the incorporation of 
subject-specific His-Purkinje model into the iECG method and we compare the non-
invasively estimated activation maps to invasive maps in Chapter 3. In Chapter 4, we 
apply the improved method in pathogenic variant carriers and controls and compare 
findings to cardiac MRI examination and clinical characteristics. In Chapter 5, we 
describe a new method to model myocardial disease in EDL-based ECG simulations.
 
In Part II, we describe our novel 12-lead based inverse ECG method, CineECG, to 
estimate the average direction of cardiac electrical activity. We first conceptually 
validated the novel method in cases of bundle branch blocks, as described in 
Chapter 6. Thereafter, we further optimized the method and validated the method 
through a simulation study, as described in Chapter 7. In the same chapter, we test 
the method for its robustness in electrode positioning and use of a generic versus 
personalized anatomical model by using in-patient data and compare the obtained 
average activation sequence to invasively acquired local activation timing maps. 

In Part III, we describe new tools to enhance the diagnostic yield of the 12-lead ECG. 
Therefore, in Chapter 8, a new 3D-camera based method is described to improve 
repositioning of ECG electrodes. Furthermore, in Chapter 9, the upcoming field of 
big data and artificial intelligence is described together with potentially promising 
new research directions to further unravel the complex nature of disease progression 
in ACM. 

In Chapter 10, I discuss how the described techniques in this thesis can enhance 
diagnosis and risk-stratification in ACM. Therefore, the techniques are put into 
perspective within possible fields of application in current clinical practice and 
describe other techniques showing potential benefits in the early detection of disease 
onset and progression in inherited cardiomyopathies. Additionally, future studies are 
proposed to further improve the described methods.
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Abstract
Inverse electrocardiography (iECG) estimates epi- and endocardial electrical activity 
from body surface potentials maps (BSPM). In individuals at risk for cardiomyopathy, 
non-invasive estimation of normal ventricular activation may provide valuable 
information to aid risk stratification to prevent sudden cardiac death. However, 
multiple simultaneous activation wavefronts initiated by the His-Purkinje system, 
severely complicate iECG. To improve the estimation of normal ventricular activation, 
the iECG method should accurately mimic the effect of the His-Purkinje system, which 
is not taken into account in the previously published multi-focal iECG. Therefore, we 
introduce the novel multi-wave iECG method and report on its performance. 

Multi-wave iECG and multi-focal iECG were tested in four patients undergoing 
invasive electro-anatomical mapping during normal ventricular activation. In each 
subject, 67-electrode BSPM were recorded and used as input for both iECG methods. 
The iECG and invasive local activation timing (LAT) maps were compared. 

Median epicardial inter-map correlation coefficient (CC) between invasive LAT 
maps and estimated multi-wave iECG versus multi-focal iECG was 0.61 versus 0.31. 
Endocardial inter-map CC was 0.54 respectively 0.22. 

Modeling the His-Purkinje system resulted in a physiologically realistic and robust 
non-invasive estimation of normal ventricular activation, which might enable the 
early detection of cardiac disease during normal sinus rhythm.
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Introduction 
Recorded body surface potential maps (BSPM) have a direct relation to the cardiac 
electrical activity. Methods to describe this relation are often referred to as ‘solving 
the inverse problem of electrocardiography’, ‘epicardial electrocardiographic (ECG) 
imaging’ or ‘inverse electrocardiography (iECG)’. The most commonly used method 
is based on the Equivalent Potential Distribution (EPD) model.1,2 In this method, the 
cardiac activation pattern is estimated by solving the mathematical linear relation 
between the electrical activity on the body surface and the epicardial surface. Recently 
this method has also been adjusted to estimate both endocardial and epicardial 
activation. Later, Equivalent Double Layer (EDL)-based iECG was introduced, relating 
body surface electrical activity to electrical activity both on the endocardium and the 
epicardium by simulating the generated cardiac currents.3,4 The currents generated 
by the heart follow the local transmembrane potential waveform, thereby creating 
a direct link to cardiac electrophysiology. Furthermore, EDL-based iECG requires an 
initial estimate that can be based on ventricular electrophysiology, in contrast to 
EPD-based iECG.4,5 

Inverse estimation of cardiac activity has been used to determine origins of 
arrhythmias6,7 or to provide insight in electrophysiological substrates of structurally 
diseased hearts.8,9 In individuals with genetic predisposition for cardiomyopathies, 
ventricular arrhythmias or sudden cardiac death can be the first manifestation 
of disease. In these individuals, adequate non-invasive identification of the 
arrhythmogenic substrate during normal His-Purkinje initiated ventricular activation, 
may prove to be of utmost importance to improve early detection of disease and 
aid early treatment. However, the non-invasive estimation of normal ventricular 
activation using BSPM is challenging, due to the nature of this complex activation 
pattern. Ventricular activation initiated by the His-Purkinje system is the result of 
multiple near simultaneous activation waves initiated at several endocardial locations 
(Figure 1).10-12 Recorded BSPM waveforms are the result of spatial summation of the 
current generated by these simultaneous activation wavefronts, resulting in partial 
cancellation and amplification.10 Therefore, the non-invasive estimation of normal 
ventricular activation is more complicated than of ventricular activation from a single 
focus such as premature ventricular contractions. Studies of the anatomy of the His-
Purkinje system13-15 and the Purkinje-myocardial junctions16,17 showed inter-individual 
diversity and structural heart disease or conduction defects complicate the non-
invasive estimation of normal ventricular activation even more.18,19 Furthermore, the 
His-Purkinje system consists of numerous ramifications and terminates in Purkinje 
myocardial junctions distributed over a large part of the ventricular endocardium. 
However, the endocardium is not activated simultaneously as the dense distribution 
of Purkinje-myocardial junctions may suggest, but by multiple wavefronts initiated 
at distinct endocardial regions (Figure 1).13-15 Characterization of the patient specific 
anatomy of the His-Purkinje system and the effect of the increased velocity of the 
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Figure 1. Normal ventricular activation. Normal ventricular activation in a healthy subject. In eight slices 
ventricular activation is displayed from early (pink) to late (blue). Around the endocardial structures in 
the LV (papillary muscles), around the RV moderator band, at the LV septal wall and near the MV, areas 
of early activation are observed. Reproduced with permission from.10,13 LA=left atrium, RA=right atrium, 
Ao=aortic valve, RV=right ventricle, MV=mitral valve, LV=left ventricle.

sub-endocardial layer has been studied previously in computer models, indicating 
the effect of these parameters on QRS derived parameters.20-23 In our study, we 
incorporated a generic model of the His-Purkinje system in the iECG method, as, in 
line with the findings of the previous studies, this would provide a physiologically 
realistic estimation of the cardiac activation sequence.

In earlier EDL-based studies, the existence of multiple breakthroughs was mimicked 
through an iterative multi-foci search over the complete ventricular myocardium. 
However, this method was primarily designed to model focal ventricular activation.4-6 
In this study, we introduce a model for the His-Purkinje system, the multi-wave iECG 
method, to improve the non-invasive estimation of normal ventricular activation. 
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To this end, we incorporated physiological and anatomical information about the 
His-Purkinje system in our model wherein the effect of the His-Purkinje system on 
ventricular activation is mimicked by incorporating anatomical structures associated 
with early activation (Figure 2). We then evaluate the performance of multi-wave 
iECG is and compare it to the previously described multi-focal iECG using patient 
specific invasive electro-anatomical mapping (EAM). 

Materials and Methods
Study population
Four subjects referred for a clinical endocardial and epicardial electro-anatomical 
mapping (EAM) procedure were studied. Informed consent was obtained for each 
subject and all underwent iECG as described below. 

Data acquisition 
Each subject underwent imaging, BSPM and invasive endocardial and epicardial 
EAM. Clinical cardiac imaging was performed whereof subject specific geometries 
of the complete ventricular myocardium, the left ventricular blood pool, the right 
ventricular blood pool, the thorax and the lungs were created (Figure 2A/B). The 
surface of the models of the segmented geometries was discretized by a closed 
triangulated surface meshes and created by dedicated software (GeomPEACS).24 
The effect of the volume conductor model was computed using the boundary 
element method, previously described.3,25 Assigned conductivity values were 0.2 
S/m for the thorax and ventricular muscles, 0.04 S/m for the lungs and 0.6 S/m for 
the blood cavities. Electrode positions on the thorax were reconstructed by aligning 
thorax geometries to 3D images of the thorax with electrodes.26 Electro-anatomical 
structures associated with His-Purkinje mediated activation were incorporated in 
the imaging-based ventricular geometries (Figure 2B) as differences in location are 
known to affect QRS morphology.27-29 

Prior to the invasive procedure, 67-electrode BSPM were recorded (sampling 
frequency 2048 Hz, Figure 2A). Recorded BSPM signals were resampled to 1000 Hz 
and baseline drift and 50Hz noise were removed. Per subject, five subsequent normal 
ventricular beats were selected and used as input for both iECG methods. Premature 
ventricular contractions were excluded from analysis. 

Invasive EAM was performed under general anesthesia during sinus rhythm using 
commercial EAM systems (Carto or Ensite Precision) using multi-electrode catheters 
(PENTARAY® or HD Grid). Right ventricular endocardial access was obtained through 
the right femoral vein and left ventricular access was gained through transseptal 
puncture using a steerable sheath. Epicardial access was obtained by percutaneous 
subxiphoid puncture, thereby puncturing the pericardium. Local unipolar and bipolar 
contact electrograms at the endocardial and the epicardial ventricular surface 
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were sequentially recorded during normal ventricular activation with simultaneous 
measurement of the 12-lead ECG. The 12-lead ECG recorded during EAM was used 
as time-reference for both the BSPM signals and recorded electrograms. After the 
procedure, measured electrograms and LAT were manually checked for validity. The 
LAT was set at the maximal absolute amplitude of the bipolar signal, corresponding 
to the maximum downslope (dV/dt) in unipolar signals, and taking into account 
neighboring measurements. Data were exported as raw electrograms with annotated 
LAT, local bipolar voltage and location. 

Alignment of ventricular anatomical models from CT and EAM
Subject specific imaging-based ventricular iECG geometries were aligned to subject 
specific EAM point clouds in MATLAB using endocardial anatomical landmarks. The 
alignment was optimized using a rigid iterative least squares closest point matching 
algorithm.30 LAT and local bipolar voltages were projected onto the nearest triangular 
surface of the imaging-based ventricular geometry. EAM points >10 mm from the 
imaging-based ventricular geometry were excluded from analysis. After projection, 
LAT and local bipolar voltage were averaged on each node of the imaging-based 
ventricular geometries. 

iECG method
EDL-based iECG consists of two steps as the relation between activation time 
and simulated transmembrane potentials is non-linear. First, the required initial 
estimation of the ventricular activation sequence is computed and in the second step, 
local activation timings are mathematically optimized by minimizing the differences 
between recorded and computed BSPM by tuning LAT. In this study, two methods 
to determine the initial estimation were compared; multi-wave iECG and multi-
focal iECG (Figure 2). In the initial estimation step, different activation sequences 
are simulated and corresponding BSPM are computed and directly compared to 
recorded BSPM. The ventricular anatomical model served as the source model 
(EDL) and at each node, the local transmembrane potentials were simulated which 
determined the local source strength. Resulting BSPM were computed per simulated 
activation sequence.31

In short, the multi-wave iECG procedure provided an estimation by mimicking the 
effect of the His-Purkinje system on ventricular activation, multi-focal iECG did not. 
In both methods, ventricular activation sequences with multiple distinct foci and 
initial activation timings were estimated using the fastest route algorithm (FRA).4,32 
For the simulation of activation sequences in both methods, an anisotropy ratio of 
two was used, meaning that the conduction velocity perpendicular to the myocardial 
fibers was two times lower than conduction velocity longitudinal to myocardial 
fibers.33-35 BSPM were then computed using the boundary element method to 
determine to compare to the recorded BSPM.3,25 The activation sequence yielding 
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highest correlation between recorded and computed BSPM was assumed to be the 
activation sequence best explaining the recorded BSPM and was selected as the 
initial estimation and used as input for the optimization procedure. Both methods to 
estimate the initial activation sequence are described in more detail below. 

Multi-focal iECG: Adaptation of principal single focus activation
Multi-focal iECG has been described in several studies.4-6 In short, this method serves 
an additive approach based on the FRA. First the ‘fundamental activation sequence’ 
originating from one focus that achieves the highest correlation between recorded 
BSPM and computed BSPM is determined. Therefore, myocardial conduction velocity 
was set by matching the total activation duration of the ‘fundamental’ activation 
sequence to the QRS duration up to a maximum of 2.5 mm/ms. After determining 
this fundamental activation sequence, up to six foci are iteratively added if adding 
improves the match between recorded and computed BSPM (Figure 2, multi-focal 
iECG). 

Multi-wave iECG: Modeling the effect of the His-Purkinje system
In the novel multi-wave iECG method, the effect of His-Purkinje mediated ventricular 
activation is mimicked by combining activation sequences initiated at endocardial 
regions associated with the His-Purkinje system. Several endocardial regions are 
associated with early ventricular activation; the bases of the two left ventricular 
papillary muscles, the right ventricular moderator band and several septal regions 
(Figure 1/2).10,11,13-19 Of note are the two breakthroughs at the LV septal wall, near the 
mitral valve and near the LV apex. All regions correspond to Purkinje anatomy and 
observed regions of early activation in more recent invasive mapping studies.10,11,13-19 

These anatomical regions were localized in the subject specific imaging-based 
ventricular geometries based on anatomical landmarks (Figure 1/2). Foci were 
localized at the insertion of the two left ventricular papillary muscles and the 
moderator band on the ventricular free wall; all nodes connecting the structure to 
the free wall were treated as focus (e.g. assigned equal activation timings). On the 
septal wall, six regions with a radius of 10 mm were selected containing multiple 
potential foci and per septal region, one focus was selected. At the left ventricular 
septal wall, one region was localized at the inferior one-third from base to apex 
of the septal wall and one region was localized at superior one-third from base to 
apex of the antero-septal wall and two other regions were localized between those 
locations. At the right ventricular septal wall, the localized region was close to the RV 
apex and at the middle of the RV septal wall. 

Activation sequences were calculated using a myocardial conduction velocity of 
0.85 ms-1.10,16,35,36 To account for increased subendocardial conduction velocities, 
myocardial conduction velocity in close vicinity (<15 mm) of foci was set at 1.7 
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m/s.16,17,36 Per region, single focus activation sequences were computed with an initial 
timing ranging between 0-35 ms for the structure regions (e.g. papillary muscles 
and moderator band) and between 0-25 ms for the septal regions.10,11,13-15,19 This 
procedure resulted in nine groups of single focus activation sequences initiated at 
one of the His-Purkinje associated regions with distinct initial activation timings and 
were selected based on the best matching computed and recorded BSPM. 

Normal ventricular activation is affected by inter-individual diversity in His-Purkinje 
anatomy and by structural myocardial disease.18,19 Structural myocardial disease may 
affect the number of active foci at the endocardium and consequently the ventricular 
activation sequence; in right and left bundle branch block less foci are active compared 
to normal ventricular activation. This diversity was incorporated in multi-wave iECG 
by automatically testing all 511(=(2^9)-1 (all foci inactive)) possible permutations of 
merged single foci activation sequences. Merged activation sequences with a total 
activation duration >115% and <85% of measured QRS duration were excluded. The 
activation sequence yielding highest correlation between recorded and computed 
BSPM was selected as the initial estimation. 

Optimization procedure
The initial estimation is further optimized by matching computed BSPM to recorded 
BSPM. Therefore, a dedicated Levenberg-Marquardt optimization procedure was 
used.26 The surface Laplacian of the activation times was used as regularization-
operator and was performed through the iterative minimization of: 

        Eq1

With computed BSPM ( ), based on LAT ( ),  is minimized to the recorded BSPM (V) 
by iteratively adjusting . The operator L represents the numerical form of the surface 
Laplacian operator; by minimizing  a spatially smooth solution is promoted. 
The regularization parameter  was set to a very small value  5∙10-6mV2ms2m-2 and 
chosen such that the optimized activation sequence was regularized to empirically 
to correspond to realistic smoothness.4 We refer to the discussion for the setting of 
the regularization parameter. A maximum of 25 iterations was needed to optimize .

Quantitative analysis 
Ventricular activation timing maps were displayed from early (red) to late (blue) 
activation. Recorded BSPM were compared to the computed BSPM by means of 
the Pearson’s correlation coefficient (CC) and the relative difference. The relative 
difference is calculated by computing the Frobenius normal form of the difference 
between estimated and input BSPM divided by the Frobenius normal form of the 
recorded BSPM.
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surface potential maps (BSPM) data are obtained. B: The initial model parameters are defined for both 
the multi-wave and multi-focal iECG procedure. C: For both the multi-wave and multi-focal iECG pro-
cedure, the cardiac source model uses local transmembrane potentials (TMP) to determine activation 
timing, and using the volume conductor, BSPM are computed. Multi-wave iECG tests 511 combinations 
of the activation sequences and selects the activation sequence with the best matching BSPM based 
on correlation and QRS duration. Multi-focal iECG first defines one focus which best describes overall 
activation sequence and subsequently keeps adding foci which optimizes the match between recorded 
and computed BSP. 
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Results 
Invasive LAT mapping procedure
EAM was performed in one subject who had symptomatic premature ventricular 
contractions originating in the right ventricular outflow tract without structural heart 
disease (male, 21 years, QRS duration 90 ms, Figure 3), the three other subjects had 
recurrent ventricular tachycardias with underlying arrhythmogenic cardiomyopathy 
(male, 59 years, QRS duration 104 ms, Figure 4) or dilated cardiomyopathy (female, 
65 and 61 years QRS duration 142 and 162 ms, Figure 5 and 6). In three subjects 
(Figure 3-5) the epicardium and the right ventricular endocardium were mapped, in 
the last subject (Figure 6) the epicardium and the left ventricular endocardium were 
mapped. 

Table 1. Inter-map comparison
Multi-focal Multi-wave Invasive

Correlation coefficient
   Epicardial 0.31[-0.23,0.83] 0.61[0.41,0.91]
   Endocardial 0.22[-0.13,0.64] 0.54[0.19,0.81]
Absolute difference (ms)
   Epicardial 21[17,27] 14[9,25]
   Endocardial 27[16,52] 20[10,30]
Myocardial conduction velocity (mm/ms)
   Epicardial 1.4±0.3 1.3±0.2 1.2±0.2
   Endocardial 1.4±0.3 1.1±0.2 1.0±0.1
Number of breakthroughs (n)
   Epicardial 2[2,4] 3[2,5] 3[2,3]
   Endocardial 1[1,4] 2[1,3] 2[1,3]
Effect optimization procedure
   Correlation coefficient -0.01[-0.17,0.20] 0.03[-0.11,0.24]
   Absolute difference 0.7[-3.7,6.8] 0.7[-4.8,3.0]

Quantitative inter-LAT map comparison between the invasive local activation (LAT) and the estimated 
LAT maps using both iECG methods. Values are displayed per surface as median[range] or mean ± stan-
dard deviation where appropriate.

Per surface, estimated activation maps were compared to invasive activation maps by 
calculating inter-map CC (Pearson) and mean absolute difference in LAT. Therefore, 
estimated ventricular activation maps were timing-referenced to the same timing-
reference used during the invasive procedure. Per triangle, the myocardial conduction 
velocity was calculated using the triangulation technique.37 In short, the location and 
activation timing of the three nodes forming one triangle at the surface were used. 
The average conduction speed and direction can then be determined, assuming that 
the wavefront is locally planar, and moves with constant speed in the plane of the 
triangle. A detailed description of the method is explained in the Supplementary 
materials (Page 1). Velocities above 5 mm/ms were excluded from analysis. For both 
iECG methods, the computation time was determined. Values are displayed using 
mean ± standard deviation or using median [range] where appropriate.
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Invasive maps consisted of a mean of 5140±1865 epicardial annotated 
electrocardiograms and 1476±368 endocardial annotated electrocardiograms. LATs 
were projected onto the subject specific imaging-based ventricular model. A mean of 
73±8% of the epicardial surface and 61±12% of the endocardial surface was mapped 
with a mapping density (annotations/mm2) of 19.5±7.1 for the epicardial surface 
and 11.8±3.3 for the endocardial surface. In all subjects, the epicardial surface was 
mapped. In three subjects, the right ventricular endocardial surface was mapped and 
in the other subject, the left ventricular endocardial surface was mapped.

Invasive vs. iECG local activation timing maps 
In all four subjects, ventricular activation was estimated with both iECG methods 
and compared to invasively measured LAT (Figure 3-6). Median epicardial inter-
map CC of estimated multi-wave iECG versus multi-focal iECG was 0.61[0.41,0.91] 
versus 0.31[-0.23,0.83] and median endocardial inter-map CC was 0.54[0.19,0.81] 
respectively 0.22[-0.13,0.64]. With increasing QRS duration, inter-map CC stayed the 
same for multi-wave iECG, whereas it increased for multi-focal iECG (Figure 7, upper 
row, left panel). Inter-map CC, absolute difference, number of breakthroughs per 
surface and myocardial conduction velocity for all subjects are displayed in Table 1 
(inter-map comparison). With shorter QRS durations, myocardial conduction velocity 
remains constant in multi-wave iECG, whereas it increases in multi-focal iECG (Figure 
7, middle row, left panel). The optimization procedure did not always improve inter-
map CC and absolute difference for both multi-wave and multi-focal iECG (Table 1).
 
Computed and recorded BSPM were similar between the two iECG methods (multi-
wave vs multi-focal: CC 0.98±0.01 vs 0.98±0.01 and RD 0.17±0.03 vs 0.17±0.04). Per 
subject standard 12-lead ECGs of the recorded and computed BSPM are displayed in 
the Supplementary material (Page 2-5). The number of identified foci decreased with 
increasing QRS duration in multi-wave iECG, but did not in multi-focal iECG (Figure 
7 middle row). Mean computation time was 33±6 seconds for multi-wave iECG and 
1014±726 seconds for multi-focal iECG. 

Discussion 
Modeling the effect of the His-Purkinje system by incorporating endocardial 
electro-anatomical structures in the iECG method improved the accuracy of non-
invasive estimation of His-Purkinje mediated ventricular activation, especially in the 
estimation of normal ventricular activation (Figure 3-7). The overall performance 
of the multi-wave iECG was superior to multi-focal iECG, as is also shown in our 
previously published study in a larger patient cohort.38 

Comparison of EDL-based iECG
A method to mimic the effect of the His-Purkinje system on ventricular activation 
should incorporate all possible variations of His-Purkinje mediated ventricular 
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Figure 3. Invasive vs iECG maps in a QRS of 90 ms. Multi-focal iECG, multi-wave iECG and invasive acti-
vation maps of the epicardial and right ventricular endocardial surface (QRS 90 ms) from red (early) to 
purple (late). The multi-focal iECG map shows one prominent initial site of activation, multi-wave iECG 
map shows six and is comparable to the invasive map. Inter-map correlation coefficient (CC), absolute 
difference (ms), LAT time range (ms) and estimated myocardial conduction velocity (mm/ms) are dis-
played comparing iECG to invasive LAT maps. CC and relative difference between recorded and computed 
BSPM were 0.99±0.00 respectively 0.15±0.00 for multi-focal iECG and 0.98±0.00 respectively 0.15±0.00 
for multi-wave iECG.
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Figure 4. Invasive vs iECG maps in a QRS of 104 ms. Multi-focal iECG, multi-wave iECG and invasive ac-
tivation maps of the epicardial and right ventricular endocardial surface (QRS 104 ms) from red (early) 
to purple (late). Inter-map correlation coefficient (CC), absolute difference (ms), LAT time range (ms) and 
estimated myocardial conduction velocity (mm/ms) are displayed comparing iECG to invasive LAT maps. 
CC and relative difference between recorded and computed BSPM were 0.97±0.00 respectively 0.25±0.01 
for multi-focal iECG and 0.97±0.00 respectively 0.25±0.01 for multi-wave iECG.
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Figure 5. Invasive vs iECG maps in a QRS of 142 ms. Multi-focal iECG, multi-wave iECG and invasive ac-
tivation maps of the epicardial and right ventricular endocardial surface (QRS 142 ms) from red (early) 
to purple (late). Inter-map correlation coefficient (CC), absolute difference (ms), LAT time range (ms) and 
estimated myocardial conduction velocity (mm/ms) are displayed comparing iECG to invasive LAT maps. 
CC and relative difference between recorded and computed BSPM were 0.96±0.00 respectively 0.30±0.01 
for multi-focal iECG and 0.95±0.00 respectively 0.32±0.01 for multi-wave iECG.
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2Figure 6. Invasive vs iECG maps in a QRS of 162 ms. Multi-focal iECG, multi-wave iECG and invasive ac-
tivation maps of the epicardial and right ventricular endocardial surface (QRS 162 ms) from red (early) 
to purple (late). Inter-map correlation coefficient (CC), absolute difference (ms), LAT time range (ms) and 
estimated myocardial conduction velocity (mm/ms) are displayed comparing iECG to invasive LAT maps. 
CC and relative difference between recorded and computed BSPM were 0.94±0.00 respectively 0.35±0.01 
for multi-focal iECG and 0.93±0.00 respectively 0.38±0.01 for multi-wave iECG.
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activation; either healthy or diseased. Multi-focal iECG does not take the effect of the 
His-Purkinje system on ventricular activation into account. In this method, an additive 
iterative search over the complete myocardium is performed where the ‘fundamental’ 
activation sequence dominantly determines the final estimation thereby increasing 
the chance for an erroneous unphysiological activation sequence.4-6 This algorithm 
was found to be the most effective in rather monophasic, simple activation patterns 
like premature ventricular contractions or ventricular tachycardia. In multi-wave 
iECG, diverse His-Purkinje anatomy was taken into account by the incorporation of 
subject specific locations of endocardial electro-anatomical structures associated 
with early ventricular activation. Flexibility was obtained by testing all permutations 
of the anatomically identified foci. Therefore, multi-wave iECG is more restrained in 
foci location, which resulted in more realistic estimations of the ventricular activation 
sequence in normal ventricular activation compared to multi-focal iECG (Figure 
4-5). In broad QRS complexes, the performance of multi-focal iECG improved and 
became equal to the performance of multi-wave iECG, as reflected in inter-map CC 
and absolute difference (Figure 7). Thus, the fundamental difference between both 
methods lies within the first step of the initial estimation; whereas multi-focal iECG 
identifies an activation sequence with one focus best explaining the recorded BSPMs, 
multi-wave iECG provides an estimation with multiple foci (Figure 2). 

Modeling the His-Purkinje system
In our study, an anatomy-based model of the His-Purkinje system was used for 
the estimation of both the initial sites of activation and the myocardial conduction 
velocity. Incorporating a model of the His-Purkinje system has been shown to be 
essential to reliably simulate sinus rhythm.20-23 In our study, a generic model of 
the His-Purkinje system was individualized by segmenting anatomical endocardial 
structures associated with the location of the Purkinje myocardial junctions using 
patient-specific cardiac imaging.  Then, based on the recorded BSPM, location and 
timing of the initial sites of activation were estimated.

Initial sites of activation
Physiologically, with shortening of QRS duration, an increased number of His-Purkinje 
foci will be active, as modeled in multi-wave iECG. With shortening of QRS duration, 
complexity of the estimation increases due to partial cancellation and amplification 
of wavefronts represented in the recorded BSPM. Multi-focal iECG is likely to identify 
an aggregation of near simultaneous wavefronts as the ‘fundamental’ activation 
sequence. Foci could be localized over the complete myocardium and their initial 
timings could range within QRS duration, resulting in inadequate estimated activation 
sequences.10,11,13-15,19

In His-Purkinje system disorders, the complexity of ventricular activation reduces and 
QRS duration increases. The performance of multi-focal iECG improved with increasing 
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Figure 7. Quantitative comparison iECG and invasive methods. Quantitative comparison of multi-wave, 
multi-focal and invasive LAT maps. Diamonds represent the epicardial conduction velocity and dots the 
endocardial conduction velocity; the black color denotes the multi-focal iECG method, the red color the 
multi-wave iECG method and the blue color the invasive. Upper row: Inter-map correlation coefficient (CC, 
left) and inter-map absolute difference (right) per subject per plotted beat plotted against QRS duration. 
With increasing QRS duration, the multi-focal method improves in CC. Middle row: Myocardial conduction 
velocity estimated from the local activation timing (LAT) maps before (left) and after (right) the optimi-
zation procedure per iECG method and for the invasive study per myocardial surface. Bottom row: The 
number of identified foci in the initial estimation (left) and the legend of all displayed plots (right).
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QRS duration as earlier observed in a EPD based iECG validation study.39 However, 
multi-wave iECG showed that its performance was not affected by QRS duration. The 
effect of the His-Purkinje system was mimicked through the identification of nine 
distinct endocardial regions as potential foci. All possible activation patterns were 
tested by comparing computed to recorded BSPM. Additionally, multi-wave iECG 
excluded unrealistically long and short total activation durations referenced to QRS 
duration in the recorded BSPM. This combination resulted in a physiological robust 
non-invasive estimation of ventricular activation.

Myocardial conduction velocity
With decreasing QRS duration, the estimated myocardial conduction velocity 
increased in the initial estimation of multi-focal iECG whereas the number of foci 
increased in multi-wave iECG (Figure 7 middle/lower row). The estimation of multi-
wave iECG is thus more realistic whilst taking normal physiology into account. In 
multi-focal iECG, myocardial conduction velocity was estimated between 0.8 and 
2.0 mm/ms for the myocardium, increasing with decreasing QRS duration whereas 
in multi-wave iECG, myocardial conduction velocity was set. The optimization 
procedure affected the myocardial conduction velocity for both methods to some 
extent (Figure 7 middle row). 

Values up to 2.0 mm/ms equal the conduction velocity of Purkinje fibers and may 
be observed in regions with a high density of Purkinje-myocardial junctions16,17, 
but are physiologically unrealistic for the normal myocardium. The estimated 
myocardial conduction velocities used for the multi-focal initial estimation may 
be physiologically realistic if ventricular activation is initiated by one focus, as the 
estimated myocardial conduction velocity was matched to measured QRS duration. 
If multiple foci contribute to the short QRS duration, myocardial conduction velocity 
increases in multi-focal iECG, which is physiologically unrealistic. Selecting nine foci 
as starting point of ventricular activation remains a simplification of the true dense 
distribution of Purkinje-Myocardial junctions. To account for the effect of this dense 
distribution, conduction velocity was doubled in the regions directly around foci in 
multi-wave iECG. 

Myocardial conduction velocity estimation
In this study, the surface myocardial conduction velocity was computed (Figure 7 
middle row). In the areas of breakthroughs at the epicardium, surface conduction 
velocity may seem to be increased as the wavefront moving from the endocardium 
to the epicardium almost simultaneously activates the epicardium. However, in 
endocardial breakthrough regions the dense distribution of Purkinje-Myocardial 
junctions is active which may realistically contribute to rapid activation of the 
myocardium. To correct for seemingly increased conduction velocities due to 
simultaneous breakthroughs at multiple nodes, estimated values above 3 mm/ms 
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were excluded from analysis. 

Comparison to EPD based iECG
As described by Duchateau et al39, the performance of EPD based iECG during 
sinus rhythm is poor (inter-map CC: 0.03±0.43, absolute difference: 20.4±8.6), 
especially in narrow QRS complexes. With increasing QRS duration, the performance 
of the method improved. The performance of multi-wave iECG showed a higher 
overall performance as reflected in inter-map CC and absolute difference and the 
performance of method seemed to be unaffected by QRS duration.

In contrast to EPD based method, the EDL based method defines the local source 
strength proportional to the transmembrane potential at both epicardium and 
endocardium instead of local electrograms at solely the epicardium. For both source 
models applies that the underlying inverse problem is ill-posed, i.e. completely 
different ventricular activation sequences can generate similar BSPM waveforms. 
Subsequently, the computed BSPM from the EDL based method also depend non-
linearly on the activation and recovery timings. To obtain a realistic estimate for 
ventricular activation and recovery, EDL-based iECG requires an initial estimate which 
can be based on ventricular electrophysiology, in contrast to EPD-based iECG.4,5 In 
multi-wave iECG a several foci are defined for this His-Purkinje mediated activation, 
thereby correctly reflecting cardiac electrophysiology. 

Optimization procedure
Due to the non-linear relation between activation time and simulated potentials, the 
EDL based iECG requires an initial estimation which is then mathematically optimized 
by minimizing the differences between recorded and computed BSPM by tuning LAT 
regularized by the surface Laplacian. The optimization procedure both negatively and 
positively affected the inter-map correlation and absolute differences as compared 
to the invasive maps. Thus, the initial estimation will not extremely change, meaning 
that no foci will appear or disappear as an effect of the optimization procedure. 
However, by optimizing the LAT, modeled local conduction velocity is affected 
thereby possibly negatively affecting the agreement between the invasive and non-
invasive maps. Furthermore, due to proximity effects, wavefronts traveling close to 
electrodes pose a larger effect in the optimization procedure compared to wavefronts 
traveling at the posterior side of the heart. The results in this paper thus emphasize 
both the need for a physiologically realistic initial estimation and necessity of an 
electrophysiological based regularization of the optimization procedure.40 

In comparison to other EDL-based iECG methods, we used a lower value for our 
regularization parameter, meaning that the optimization procedure is less regularized 
by the surface Laplacian. We tested values between 1.5∙10^-4, as used in previous 
studies4, and 5∙10^-8 and we observed that the optimized maps did not differ when 
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using a higher vs lower value. As with the decrease of the regularization parameter 
the optimized activation sequence remained equal, the initial estimation thus needs 
less physiological regularization. 

Computation time
A large difference in computation time was observed between the two iECG methods 
due to the difference in the selection of the initial estimation. This is mostly caused 
by limiting the search space to identify foci by matching computed to recorded 
BSPM. Thus, besides the fundamental difference in the methodology to select the 
initial sites of activation, also the reduction in the computation time favors multi-
wave iECG for clinical implementation.  

Limitations 
In both multi-focal iECG and multi-wave iECG conduction velocity is assumed to be 
only affected by anisotropy. The presence of structural heart disease, as present in 
the included subjects, on the estimation of both iECG methods was not assessed, 
but may be of great importance as conduction velocity is affected by the presence 
of abnormal myocardium and fibrous tissue. If local cardiac remodeling is present, 
a fixed conduction velocity in the iECG method is physiologically not realistic. 
Therefore, future research will focus on the incorporation of abnormal myocardium 
in the cardiac source model and the effect of local cardiac remodeling on cardiac 
conduction velocity and multi-wave iECG estimations. Structural information about 
the cardiac tissue will then be obtained from dedicated cardiac imaging, and per 
underlying substrate the appropriate modeling technique will be investigated. 

In this study, extensive invasive mapping was used as the gold standard sequentially 
recorded beats and electrograms are used to estimate LAT. During both the invasive 
maps and the selection of the beats from the BSPM signals, no respiratory gating 
was used, possibly resulting in error caused by respiration. Visual comparison of the 
maps also shows a distinct difference between the invasive and non-invasive maps, 
where the non-invasive maps are more smoothed compared to the more speckled 
invasive maps. From the LAT maps Durrer presented, a smoother pattern is expected 
(like the iECG estimation), but other invasive LAT maps presented in quantitative 
iECG comparison studies and invasive studies show this more speckled pattern.7,11,39 
This difference is most likely caused by the density of obtained LAT measurements; 
the maps of Durrer et al are constructed using a large inherent smoothing pattern, 
due to the sparsity of the number of needles used to obtain the LAT. However, also 
both inaccuracy in the invasive mapping system or more physiologically based 
variation in the activation of (diseased) myocardial tissue, may contribute to this 
speckled pattern. The contribution of these factors is however yet unknown and 
should be verified as this fundamental difference in pattern will always severely affect 
presented inter-map correlations and absolute differences. 
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The His-Purkinje model used in this study can be optimized to the specific 
patient, however, it remains a crude representation of true cardiac anatomy and 
electrophysiology. In the model one node surrounded by a region of increased 
conduction velocity was used to simulate Purkinje-myocardial junction. However, in 
reality, these junctions are a much more complex system. Therefore, and due to the 
incompleteness of specifically the endocardial maps, we were not able to compare 
the EAM mapped focal sites to our iECG estimated focal sites. 

Conclusion 
Modeling of the effect of the His-Purkinje system in our novel multi-wave iECG 
method provides a physiologically robust estimation of the ventricular activation 
sequence even in normal (narrow QRS) ventricular activation. The computation time 
required by multi-wave iECG was short, crucial for clinical use. Multi-wave iECG 
might thus enable the identification and progression of arrhythmogenic substrates 
in patients with structural heart disease. Future research will be directed towards the 
combination of the novel His-Purkinje model and the incorporation of myocardial 
tissue characteristics, e.g. scar, to improve our iECG method. 
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Abstract 
This study presents a novel non-invasive equivalent dipole layer (EDL) based 
inverse electrocardiography (iECG) technique which estimates both endocardial and 
epicardial ventricular activation sequences. We aimed to quantitatively compare our 
iECG approach with invasive electro-anatomical mapping (EAM) during sinus rhythm 
with the objective of enabling functional substrate imaging and sudden cardiac 
death risk stratification in patients with cardiomyopathy. 

Thirteen patients (77% males, 48 ± 20 years old) referred for endocardial and 
epicardial EAM underwent 67-electrode body surface potential mapping and CT 
imaging. The EDL-based iECG approach was improved by mimicking the effects of 
the His-Purkinje system on ventricular activation. EAM local activation timing (LAT) 
maps were compared with iECG-LAT maps using absolute differences and Pearson’s 
correlation coefficient, reported as mean ± standard deviation [95% confidence 
interval]. 

The correlation coefficient between iECG-LAT maps and EAM was 0.54 ± 0.19 [0.49–
0.59] for epicardial activation, 0.50 ± 0.27 [0.41–0.58] for right ventricular endocardial 
activation and 0.44 ± 0.29 [0.32–0.56] for left ventricular endocardial activation. 
The absolute difference in timing between iECG maps and EAM was 17.4 ± 7.2 ms 
for epicardial maps, 19.5 ± 7.7 ms for right ventricular endocardial maps, 27.9 ± 
8.7 ms for left ventricular endocardial maps. The absolute distance between right 
ventricular endocardial breakthrough sites was 30 ± 16 mm and 31 ± 17 mm for the 
left ventricle. The absolute distance for latest epicardial activation was median 12.8 
[IQR: 2.9–29.3] mm. 

This first in-human quantitative comparison of iECG and invasive LAT-maps on 
both the endocardial and epicardial surface during sinus rhythm showed improved 
agreement, although with considerable absolute difference and moderate correlation 
coefficient. Non-invasive iECG requires further refinements to facilitate clinical 
implementation and risk stratification.
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Introduction 
Non-invasive imaging of cardiac depolarization and repolarization sequences, 
known as electrocardiographic imaging, is based on body surface potentials maps 
and cardiovascular imaging.1-4 Two major methods have been introduced: 1) the 
potential based Equivalent Potential Distribution (EPD) method1,3,5-9, which estimates 
electrograms on the epicardium in a linear relation whereof activation and recovery 
timings are determined on the epicardium, and 2) the wave-front formulation based 
on the Equivalent Dipole Layer (EDL).2,4,10,11 The EDL-based method, used in this study 
and referred to as inverse electrocardiography (iECG), calculates transmembrane 
potentials at both the endocardium and epicardium as a local source, whereof 
activation and recovery times are derived.4,11 More precisely, these transmembrane 
potentials represented in the EDL-based method create currents that are proportional 
to the second derivative of the local transmembrane potentials.12 Since the relation 
between the transmembrane potentials and the body surface potential map is 
nonlinear, an initial estimation of the activation sequence is required.2,4,10 

The implementation of electrocardiographic imaging in clinical practice is limited, 
which may partly be explained by poor results for estimations during sinus rhythm.13 
Whereas estimation of rhythms with a single ventricular focus, i.e. ventricular pacing 
or premature ventricular complexes, is promising.1,6,7,9,10,13 Estimation of ventricular 
activation during sinus rhythm is complicated by the nearly simultaneous initiation 
of activation waves from multiple endocardial sites mediated by the His-Purkinje 
system.14 Quantitative comparison studies during sinus rhythm are limited and have 
shown poor performance, represented by low correlation coefficients between non-
invasive estimations and invasive mapping.7

The proposed iECG method mimics the effects of the His-Purkinje system on the 
initiation of ventricular activation waves to improve accuracy of estimation during 
sinus rhythm.1,4,5,7-9,11 With improved accuracy of estimation during sinus rhythm, 
iECG techniques may enable functional imaging of electroanatomical substrates 
on both the epicardium and endocardium and aid early detection and noninvasive 
risk stratification of patients with cardiomyopathies.15 Therefore, a quantitative 
comparison of this novel iECG method for estimation of ventricular activation during 
sinus rhythm was performed. In this study, invasive endocardial and epicardial high-
resolution local activation timing (LAT) maps obtained during electro-anatomical 
mapping (EAM) were compared to non-invasively estimated activation patterns. 

Methods
Patient population
Patients referred for endocardial and epicardial EAM and ablation were enrolled. 
Epicardial mapping was indicated because of either recurrent ventricular tachycardia 
with a suspected epicardial substrate or symptomatic premature ventricular complexes 
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with a prior failed endocardial ablation. Anti-arrhythmic drugs, except amiodarone, 
were discontinued for a minimum of three half-lives prior to the ablation procedure. 
Amiodarone was continued because of its long half-life. The study protocol was 
approved by the local institutional review board (University Medical Center Utrecht, 
Utrecht, The Netherlands; protocol nr.17/628). The study was conducted according 
to the declaration of Helsinki and all patients gave informed consent prior to non-
invasive and invasive mapping. 

Data acquisition 
The workflow of the study is depicted in Figure 1. Patients underwent 67-electrode 
body surface potential mapping (sampling frequency 2048 Hz, Biosemi, Amsterdam, 
The Netherlands) prior to the invasive mapping procedure and the electrode positions 
were captured using a 3-dimensional camera (Intel Realsense D435, Santa Clara, 
USA).16 Per patient, cardiac computed tomography (CT, Philips Healthcare, Best, The 
Netherlands) was performed to manually create patient specific anatomical models 
of the ventricles with both epicardial and endocardial surfaces, ventricular blood 
pool, lungs and thorax. The ventricular anatomical models were supplemented with 
patient specific endocardial structures associated with early ventricular activation 
through the His-Purkinje system (e.g. the left ventricular papillary muscles and right 
ventricular moderator band).14 Electrode positions were reconstructed by registering 
3-dimensional images to the thorax model. The volume conductor model was 
computed using the boundary element method. Conductivity values of 0.2 S/m for 
the thorax and ventricular tissue, 0.04 S/m for the lungs and 0.6 S/m for the blood 
cavities were used. (Supplementary Methods). 

Signal processing 
Baseline drift and 50 Hz noise were removed from the body surface potential map 
signals. Per patient, five subsequent sinus rhythm complexes were selected to be 
analyzed in the iECG procedure. Premature ventricular complexes and sinus rhythm 
complexes prior to premature ventricular complexes were excluded from analysis. 
The root mean square of all recorded signals was used to annotate QRS onset, 
J-point and T-wave end. One lead from the standard 12-lead ECG was used as timing 
reference to allow comparison of absolute timings between iECG estimations and 
invasive EAM timings.

Inverse ECG procedure
The novel iECG method has been described in more detail in the Supplementary 
Methods.4,11,17,18 In short: the iECG method simulates body surface potential maps 
using the patient specific EDL cardiac source model, the patient specific volume 
conductor model and the estimated ventricular activation sequence. Nine regions 
containing potential foci were localized: four at the left ventricular septum, two at 
the base of both the posterior and anterior papillary muscles of the left ventricle, 
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two at the right ventricular septum and one at the insertion of the moderator band 
at the right ventricular free wall free wall.14 The fastest route algorithm was used 
to compute activation sequences emerging from these locations and combinations 
of foci.4 All possible combinations of foci were tested as the initial estimation 
(Supplementary Methods). The activation sequence from the initial estimation with 
the highest correlation between the simulated body surface potential map and the 
recorded body surface potential map, was selected as input for the optimization step 
(Supplementary Methods).4 The optimized activation sequence was used to assign 
LAT to each node in the patient specific ventricular anatomical model (Figure 1 and 
Supplementary Figure 1).

Invasive electro-anatomical mapping 
Invasive EAM was performed under general anesthesia during sinus rhythm or atrial 
pacing. Ventricular paced complexes and premature ventricular complexes were 
excluded from analysis. Epicardial access was obtained by percutaneous subxiphoid 
approach19 and endocardial access was obtained through the right femoral vein. 
Access to the left ventricle was gained through a transseptal puncture, using a steerable 
sheath (Mobicath, Biosense-Webster Inc. Irvine, USA). Anatomical coordinates, LAT 
maps and voltage maps were automatically created with EAM systems (Carto-3, 

Figure 1. Workflow. The workflow of the study consisted of data recording (left panel), data processing 
(middle panel) and quantitative comparison (right panel). Body surface potential mapping (BSPM) using 
67-electrodes was performed. CT imaging of the thorax and cardiac anatomy was performed and used 
to construct patient specific anatomical models and compute the volume conductor. The EAM anatom-
ical point clouds were registered to the CT-based ventricular anatomy and LAT and bipolar values were 
projected on the CT-based anatomy. EAM-LAT maps were quantitatively compared to iECG-LAT maps.
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Biosense-Webster Inc. Irvine, USA or EnSite Precision, Abbott, Chicago, USA) 
without prior integration of cardiac CT images. Endocardial and epicardial EAM was 
performed with multi-electrode catheters (PENTARAY® catheter, BiosenseWebster 
Inc. Irvine, USA or ADVISOR™ HD Grid mapping Catheter, Abbott, Chicago, USA). 
Unipolar and bipolar electrograms were simultaneously recorded with standard 12-
lead ECG (band pass filters 30 Hz - 500 Hz, sampling frequency 1000 Hz), and one of 
these leads was used as timing reference for electrograms. Post-procedure, bipolar 
and corresponding unipolar electrograms were manually reviewed by investigators 
who were blinded to the information from the corresponding iECG map. LAT was 
set at the maximal amplitude of the bipolar signal, corresponding to maximum 
downslope (dV/dt) in unipolar electrograms (see Figure 2 for examples).20 In case 
of doubt, recordings from neighboring electrograms were taken into consideration 
to determine LAT. Epicardial and endocardial myocardium with abnormal voltage 
electrograms was defined as bipolar voltage amplitude <1.5 mV.  

Comparison of non-invasive mapping and invasive mapping 
Anatomical coordinates with corresponding annotated LAT and bipolar voltage, 
obtained during EAM, were exported (MATLAB-2017a, The Mathworks Inc, Natick, 
USA). These anatomical coordinates were semi-automatically aligned to the CT-based 
ventricular anatomical model, according to anatomical landmarks (right ventricular 
outflow tract and the apex of the ventricles, Figure 1). Endocardial alignment was 
optimized using a closest point matching algorithm.21 Surface Laplacian interpolation 
was used for areas with incomplete EAM, within a distance of 10 mm. To reduce 
misalignment errors, invasively collected datapoints for myocardial surfaces were 
projected onto the nearest node of the CTbased model and all projections per node 
were averaged. iECG-LAT maps were referenced to the same timing reference used 
during the EAM procedure. Pearson’s inter-map correlation coefficient and intermap 
absolute difference in milliseconds (ms) were determined for the epicardium, right 
ventricular endocardium and left ventricular endocardium. Breakthrough of activation 
was defined as nodes with the lowest LAT value, and sites of latest activation were 
defined as the node with the highest LAT value. Euclidian distances between sites 
of earliest and latest activation were determined in millimeters (mm). Myocardial 
conduction velocity over surfaces was calculated as the minimum positive velocity 
between nodes, velocities more than 3 mm/ms were excluded. A relatively high cut-
off of 3 mm/ms was used to account for velocities observed in regions with a high 
density of Purkinje-myocardial junctions as the conduction velocity of Purkinje fibers 
ranges between 2-3 mm/ms. This cut-off was used to take into account that the 
electrical pulse may spread via the Purkinje fibers to the neighboring myocardial 
tissue instead of via the myocardial tissue itself. Ventricular activation sequences 
were presented in right anterior oblique, left anterior oblique and inferior views.22 
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Statistical analysis 
Data were presented as mean±standard deviation or median [interquartile range], 
supplemented with 95% confidence interval (CI). Continuous data were compared 
using (un)paired Student’s t-test or Mann– Whitney U test as appropriate. Differences 
between iECG-LAT maps and EAM-LAT maps were presented as absolute difference 
in ms for timings or absolute difference in mm for differences in sites of breakthrough, 
earliest activation or latest activation. iECG-LAT and EAM-LAT maps were compared 
with Pearson’s linear correlation and presented as correlation coefficient. Agreement 
between iECG and EAM-LAT timings was quantitatively compared by Bland-Altman 
plots. A 2-sided P-value of <0.05 was considered significant. Statistical analysis was 
performed in MATLAB (MATLAB 2017a, The Mathworks Inc, Natick, USA).

Results
Study population 
Thirteen patients (77% males, age 48±20 years) referred for epicardial and 
endocardial mapping and ablation of ventricular tachycardia (n=10) or symptomatic 
premature ventricular complexes (n=3) were included. Patients were diagnosed with 
arrhythmogenic cardiomyopathy (n=5), dilated cardiomyopathy (n=2), symptomatic 
premature ventricular complexes (n=3) or ventricular arrhythmias after healed 
myocarditis (n=3). Patients had either sinus rhythm (n=10) or atrial pacing by an 
implanted permanent pacemaker (n=3) during body surface potential recording 
and the EAM procedure, see Supplementary Table 1 for a summary of the included 
population and Supplementary Table 2 for a detailed description per included 
patient.

iECG procedure quality 
The patient cardiac anatomical models had an inter-node spatial resolution of 8±1 
mm. The QRS complex morphology of the recorded body surface potential maps 
correlated with the QRS complex morphology of the simulated body surface potential 
maps in the iECG procedure (correlation coefficient=0.97±0.02). The QRS morphology 
of the timing reference lead during EAM correlated with the timing reference lead of 
the recorded body surface potential map (correlation coefficient=0.94±0.02).

EAM quality 
Epicardial EAM was performed in all patients, right ventricular endocardial EAM in 
10 patients and left ventricular endocardial EAM in four patients. EAM consisted of 
median 4611[3369-5633] epicardial electrograms, 910[280–1638] right ventricular 
endocardial electrograms and 605[247–1412] left ventricular endocardial electrograms. 
The number of annotations per square mm was 20±11 for the epicardium, 10±5 
for the right ventricular endocardium and 8±4 for the left ventricular endocardium. 
The percentage of EAM per surface was on average 67[range:48-82]% of anatomical 
nodes for the epicardium, 45[range:15-79]% for the right ventricular endocardium 
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and 48[range:22-71]% for the left ventricular endocardium. The anatomical EAM 
model was limited to the locations where the catheter had been positioned during 
the EAM procedure.

Local Activation Timing
Figure 2A shows an example of the comparison of iECG and EAM for LAT maps, and 
the comparison between earliest and latest activated nodes for both the epicardium 
and endocardium. The ranges between earliest and latest ventricular activation were 
not significantly different between iECG-LAT maps and EAM-LAT maps (111±23 vs. 
124±39 ms, p=0.311). The ranges of earliest and latest activation per patient are 
included in Supplementary Table 3. Figure 2B shows an example of the iECG and the 
EAM approach in a patient with a healed myocarditis with right bundle branch block. 
The fast and His-Purkinje mediated activation of the left ventricular myocardium 
is shown in contrast to the relatively slower activation of the right ventricle due 
to the right bundle branch block. Figure 2C shows an example of the activation 
pattern and epicardial electrogram annotation in a patient with arrhythmogenic 
cardiomyopathy. Furthermore, all LAT and voltage maps of each included patient are 
available as Supplementary Figure 1. The mean correlation coefficient between iECG-
LAT maps and EAM-LAT maps was 0.54±0.19; [95% CI:0.49-0.59] for epicardial maps, 
0.50±0.27; [95% CI:0.41-0.58] for endocardial right ventricular maps and 0.44±0.29; 
[95% CI:0.32-0.56] for endocardial left ventricular maps (Table 1). The moderate 
agreement of LAT between iECG and EAM maps is shown in Figure 3A for all included 
electrograms on the epicardium (R=0.632, p<0.001), right ventricular endocardium 
(R=0.597, p<0.001) and left ventricular endocardium (R=0.546, p<0.001). Figure 
3B shows that a prolonged QRS duration of the included complexes did not affect 
correlation coefficient or absolute difference. 

Figure 3C suggest that a higher density of mapped electrograms per mm2 reduces 
the scatter of correlation coefficients. The absolute difference for epicardial LAT maps 
was 17.4±7.2 ms; [95% CI:15.6-19.2], for endocardial right ventricular maps 19.5±7.7 
ms; [95% CI:17.2-21.7], and for endocardial left ventricular maps 27.9±8.7 ms; [95% 
CI:24.2-31.5]. The relation between the percentage of mapped anatomical points 
during EAM and the agreement for LAT values is shown in Figure 3D. The correlation 
coefficient between iECG-LAT maps and EAM-LAT maps was not significantly 
affected by the absolute number of EAM electrograms (p=0.324), the number of 
electrograms with abnormal voltage (p=0.306) or the QRS duration (p=0.485) (see 
Supplementary Figure 2). However, the annotation density and the percentage of 
mapped anatomical points per map affected the agreement between iECG and EAM. 
In maps with a low annotation density or lower percentage of mapped anatomical 
points the correlation coefficients were low (Figure 3 C/D). This may have negatively 
affected the observed correlation coefficients in this study because endocardial 
EAM was often limited to either the right ventricular or left ventricular surface. The 
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iECG estimations were based on five QRS complexes selected from the body surface 
potential maps, but a Bland-Altman analysis did not result in divergent results per 
included QRS complex. These scatter plots and Bland-Altman plots for each included 
patient are available in Supplementary Figure 2.

Localization of earliest breakthrough and areas of latest activation
The number of endocardial breakthrough points was similar when comparing 
iECG-LAT maps and EAMLAT maps: 3.3±0.8 vs 3.2±0.9 for epicardial maps, 
1.8±0.6 vs 2.1±0.6 for right ventricular endocardial maps and 1.8±0.5 vs 1.8±1.0 
for left ventricular endocardial maps (Table 1). These findings were in line with the 
observations of Durrer et al. and the assumptions of the iECG initial estimation. (14) 
Epicardial breakthrough of activation had an absolute difference between iECG-LAT 
maps and EAM-LAT maps of 42.1±18.6 mm; [95% CI:36.7-47.5]. For endocardial 
breakthrough of activation, the absolute difference was 29.9±16.0 mm; [95% CI:25.1-
34.8] for the right ventricular endocardium and 31.0±16.8 mm; [95% CI:23.8–38.1] 
for the left ventricular endocardium. The latest activated nodes had an absolute 
difference between iECG and EAM of 54.1±26.9 mm; [95% CI:47.5-60.7] for epicardial 
maps, 46.7±28.8 mm; [95% CI:38.8-54.7] for right ventricular endocardial maps and 
32.7±17.2mm; [95% CI:25.1-40.4] for left ventricular endocardial maps (Table 1). The 
timing of the latest activated nodes differed 12.8[2.9-29.3] ms; [95% CI:6.4-31.7] for 
epicardial maps, 15.2[10.1-28.7] ms; [95% CI:8.5-32.5] for right ventricular endocardial 
maps and 20.8[10.4-57.3] ms; [95% CI:-12.5–71.4] for left ventricular endocardial 
maps. The myocardial conduction velocity was not significantly different between 
iECG and EAM maps for respectively the epicardium (1.26±0.16 vs 1.26±0.20 m/s, 
p>0.999), right ventricular endocardium (1.13±0.09 vs . 0.94±0.17 m/s, p=0.069) or 
left ventricular endocardium (1.03±0.11 vs. 0.92±0.07 m/s, p=0.968).

Discussion
This is the first study to quantitatively compare non-invasive, EDL-based iECG 
estimation of ventricular activation sequences during sinus rhythm with invasive 
high density endocardial and epicardial EAM in humans. Comparison of agreement 
between iECG-LAT maps with EAM-LAT maps showed moderate agreement. However, 
this observed agreement (correlation coefficient= 0.54±0.19) was remarkably higher 
compared to a recent validation study (correlation coefficient=-0.04±0.3) performed 
during sinus rhythm.7 Mimicking the effects of the His-Purkinje system on ventricular 
activation in the iECG method resulted in activation patterns corresponding 
to observations of Durrer et al. in experiments with explanted human hearts.14 
In contrast to prior EPD-based studies which were limited to estimations on the 
epicardium, estimation of both the endocardial and epicardial activation sequences 
was achieved. Although accuracy and spatial resolution require further improvement 
before implementation of this diagnostic tool in clinical practice, these findings 
may be of clinical importance for functional non-invasive substrate imaging during 
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Table 1. Comparison between iECG and EAM
Parameters Mean ± SD Median [IQR]
Epicardium
Correlation coefficient 54.1 ± 19.0 51.0 [44.0 – 71.5]
Absolute difference (ms) 17.4 ± 7.2 15.1 [12.8 – 19.6]
Absolute difference earliest breakthrough (mm) 42.1 ± 18.6 37.9 [28.4 – 58.5]
Absolute difference terminal site of activation (mm) 54.1 ± 26.9 51.0 [33.4 - 69.6]
Absolute difference timing of latest activation (ms) 19.1 ± 20.9 12.8 [2.9 – 29.3]
EAM breakthroughs (n) 3.15 ± 0.9 3.0 [2.5 - 4.0]
iECG breakthroughs (n) 3.3 ± 0.8 3.4 [2.9 – 4.0]
Right ventricular endocardium
Correlation coefficient 49.6 ± 27.3 55.5 [46.0 – 62.0]
Absolute difference (ms) 19.5 ± 7.7 17.4 [13.2 - 24.4]
Absolute difference earliest breakthrough (mm) 29.9 ± 16.0 28.3 [22.3 - 47.4]
Absolute difference terminal site of activation (mm) 46.7 ± 28.8 37.0 [24.5 - 69.4]
Absolute difference timing of latest activation (ms) 20.4 ± 16.7 15.2 [10.1 - 28.7]
EAM breakthroughs (n) 2.1 ± 0.6 2.0 [2.0 - 2.25]
iECG breakthroughs (n) 1.8 ± 0.6 2.0 [1.2 - 2.3]
Left ventricular endocardium
Correlation coefficient 44.0 ± 28.8 53.5 [13.5 - 65.0]
Absolute difference (ms) 27.9 ± 8.7 27.3 [20.1 - 36.2]
Absolute difference earliest breakthrough (mm) 31.0 ± 16.8 31.1 [14.7 - 47.1]
Absolute difference terminal site of activation (mm) 32.7 ± 17.2 39.2 [14.8 – 44.1]
Absolute difference timing of latest activation (ms) 29.5 ± 26.3 20.8 [10.4 - 57.3]
EAM breakthroughs (n) 1.8 ± 1.0 1.5 [1.0 - 2.8]
iECG breakthroughs (n) 1.8 ± 0.5 2.0 [1.3 - 2.0]

Abbreviations as in manuscript.

sinus rhythm to improve the value of ECG screening and risk stratification of sudden 
cardiac death.15

Quantitative comparison 
Previous quantitative EPD-based validation studies showed higher agreement between 
ventricular paced complexes and EAM, compared to sinus rhythm complexes.7,9 
Duchateau et al. showed poor epicardial inter-map correlation coefficient (-0.04±0.3) 
during sinus rhythm, although correlation coefficients increased with increasing 
QRS duration. This relation is most likely explained by the complexity of multiple 
simultaneous ventricular activation waveforms occurring during sinus rhythm, which 
decreases in rhythms with a single focus.7 In the present study, a considerably higher 
agreement (correlation coefficient 0.54±0.19) between EAM and the novel iECG-LAT 
maps was observed during sinus rhythm. This improved performance is attributed 
to the incorporation of the effects of the HisPurkinje system on the initiation of 
ventricular activation.10 Previously reported absolute difference for breakthrough 
of epicardial pacing was smaller compared to the present study (13.2-20.7 mm vs. 
42.1±18.6 mm).6,9,10 However, previously reported absolute difference for epicardial 
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breakthrough during sinus rhythm was higher compared to our results (75.6±38.1 
mm vs. 42.1±18.6 mm).7 Again, these differences may be explained by estimations 
of rhythms originating from a single ventricular focus and sinus rhythm. Thus, 
spatial resolution observed in this study was comparable to the earlier studies in 
paced complexes.5,6 Due to the complex nature of the His-Purkinje system and the 
Purkinjemyocardial coupling, the implemented methods remain an approximation of 
the true myocardial activation and His-Purkinje physiology.14,23,24 

We observed a high agreement between estimated and measured body surface 
potential maps, whereas the inter-map agreement was less. As the inverse problem 
is ill-posed, completely different ventricular activation sequences can result in similar 
body surface potential map waveforms, consequently we found a high agreement 
between body surface potential maps but a lower agreement in myocardial activation 
patterns. 

The conduction velocities calculated on the epicardial and endocardial surfaces in 
this study for both the EAM-LAT maps and iECG-LAT maps were quite high (>1 m/s). 
However, we note that these conduction velocities are mostly determined by the 
velocity estimated at the surface of the myocardium. Consequently, in a Purkinje 
dense region, surface velocity may appear high because it also reflects the effect of 
the activation spread by the Purkinje fibers and not only by the myocardial tissue at 
the endocardial surface. Furthermore, at the epicardial surface, velocities may appear 
high due to the occurrence of transmural waves.

Modelling the effects of the His-Purkinje system during sinus rhythm 
In this study, initial sites of activation were determined in the iECG method based 
on the observations of Durrer et al and nine possible sites of early activation were 
localized.14 Sets of these initial sites of activation were tested based on the correlation 
coefficient between the computed and recorded body surface potential maps, 
as described in more detail in the Supplementary Methods. This hypothesis was 
partially tested by comparing the EAM-LAT maps to the iECG-LAT maps. However, 
as endocardial EAM-LAT maps were often either of the right or the left endocardial 
surface and also did not cover the complete endocardial surface for each patient, the 
comparison between the number of identified EAM foci and iECG foci was hampered. 
This was also reflected in the absolute difference in location of identified foci of 
approximately 30 mm comparing iECG foci to EAM foci. 

Previous versions of EDL-based methods estimating His-Purkinje mediated activation 
(e.g. sinus rhythm) were based on a multi-focal search algorithm over the complete 
endocardium and epicardium, where the first identified focus was chosen based on 
the highest correlation between recorded and simulated body surface potentials.4,10 
Consequently, this algorithm directly assumed that by using one focus, most of 
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Figure 3. Scatter plots of local activation timing stratified for epicardial and endocardial surfaces. A: For 
each node in the ventricular anatomy the EAM-LAT values (X-axis) are scattered against iECG-LAT values 
(Y-axis). The black line in each plot represents the linear regression line and R-value and p-value are shown 
in each plot. B: Relation between QRS duration (X-axis) for the 5 selected complexes in the iECG procedure 
and correlation coefficient/absolute difference for the LAT values (Y-axis). C: Relation between annotation 
density (X-axis) per mm2 and correlation coefficient/absolute difference for LAT values for the 5 selected 
complexes in the iECG procedure (Y-axis). (D) Relation between percentage of EAM of the total surface 
(X-axis) and correlation coefficient/absolute difference for LAT values (Y-axis).
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the underlying activation sequence could be ‘explained’. However, sinus rhythm, 
and especially narrow QRS complex sinus rhythm is an interplay between multiple 
activation wavefronts. Implementation of the His-Purkinje system excludes these 
unrealistic estimates and provides the possibility to test multiple near simultaneous 
foci. At the same time the initial estimation is restricted to the physiologically realistic 
anatomical areas and the computational burden of the iECG algorithm is minimized.

Post-processing and reference standard 
Post-processing of ECG signals, electrogram signals, and cardiac imaging influences 
iECG accuracy.9,13 To achieve high quality EAM-LAT maps, which were used as gold 
standard for comparison, electrograms derived from multi-electrode catheters 
required re-annotation using bipolar and unipolar signals and timing to a timing 
reference.9,20 However, inhomogeneity in LAT distributions of EAM-LAT maps 
were observed even after re-annotation, which may have influenced the observed 
agreement between iECG and EAM-LAT maps. Both the epicardial and endocardial 
surfaces had an adequate spatial distribution of electrograms as reflected in the 
number of LAT per mm2 (see Figure 3C). Furthermore, the percentage of mapped 
surfaces was variable and some EAM procedures resulted in incomplete endocardial 
EAM anatomical point clouds, which affects calculated inter-map correlation 
coefficient (see Figure 3C/D). 

Clinical implications and future directions 
Despite a considerable improvement of the iECG approach for sinus rhythm, 
the technique requires further adaptations and refinements that will facilitate 
implementation in clinical practice. Further integration of cardiovascular imaging 
techniques may improve performance and spatial resolution.15 Currently, the patient 
specific anatomical models were limited in spatial resolution by the computational 
models of the iECG procedure, allowing at maximum 3000 cardiac nodes, which directly 
affects the resolution of the cardiac anatomical model resulting in an inter-node 
spatial resolution of 8±1mm. Diffuse or local myocardial fibrosis affects ventricular 
activation patterns in structurally diseased hearts. Integration of these structural 
abnormalities in the iECG method and refinement of the cardiac anatomical models 
is likely to improve imaging of electro-anatomical substrates.4,10,15 Since electro-
anatomical substrates are not limited to solely the epicardium or endocardium, 
iECG may allow functional imaging of such 3-dimentional substrates in patients 
with arrhythmias or cardiomyopathy.15 Besides diagnostic implications, non-invasive 
sinus rhythm iECG may play a role in the monitoring of disease progression and in 
sudden cardiac death risk stratification in patients with complex electroanatomical 
substrates, such as inherited cardiomyopathies. Eventually, reducing the number 
of electrodes of the body surface potential map that currently ranges from 67-256 
electrodes, may improve clinical applicability.16 For EDL-based studies, also this 
study, the 64-electrode setup is often used.4,10 Mathematically this setup suffices, 
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as the number of independent signals is adequately captured using this number of 
electrodes and additionally, the electrodes are distributed with a high resolution in 
the high-gradient potential regions on the surface of the thorax.16

Limitations 
This single center study with a small sample size included patients with structural 
heart disease, which may influence the generalizability of the results. Additionally, 
we used a set conduction velocity over the model to determine the initial estimation. 
This assumption may not hold in the presence of pathologies or myocardial scarring 
after prior ablation, but the EDL holds for homogeneous anisotropic tissue.25

 
EAM procedures and body surface potential maps were not simultaneously recorded, 
but in similar conditions especially concerning anti-arrhythmic drugs. During EAM, 
complexes were selected using dedicated Carto/Ensite EAM systems. Furthermore, 
sinus rhythm complexes directly following a premature ventricular complex were 
excluded for analysis in both the EAM and iECG-LAT map. However, a possible 
influence of variations in heart rate, autonomic tonus or general anesthesia cannot 
be excluded. The quality of gold standard EAM may have been influenced by vendor 
specific algorithms within the EAM systems and regional mapping by the operator 
during the procedure. Inherent to invasive electrophysiological studies, EAM maps 
consisted of electrograms recorded from consecutive sinus rhythm complexes, 
whereas iECG maps were derived from five sinus rhythm complexes selected from 
the body surface potential map.

Conclusions
Quantitative comparison of EDL-based iECG during sinus rhythm in patients 
undergoing invasive endocardial and epicardial electro-anatomical mapping showed 
improved agreement when compared to prior validation studies, although with 
considerable absolute difference in both timing and breakthrough of ventricular 
activation. Non-invasive iECG of both the epicardium and endocardium may prove 
valuable as a diagnostic tool for functional imaging of electro-anatomical substrates 
in sinus rhythm where activation always starts at the endocardial surface, to improve 
the value of the ECG in screening for cardiomyopathy and sudden cardiac death 
risk stratification. Future research should focus on improving accuracy and spatial 
resolution before implementation into clinical practice to enable imaging of 
functional electro-anatomical substrates.
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Supplementary Figure 1 – All iECG, EAM maps, and voltage maps.
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Supplementary Methods – Detailed methods section on iECG multi-wave initial 
estimation.

Supplementary Table 1. Study population summary
Study Population Mean ± SD, median [IQR] or n (%)
Demographics
Age (years) 48 ± 20
Male sex 10 (77)
Sustained ventricular tachycardia 10 (77)
Symptomatic premature ventricular complexes 3 (23)
12-lead ECG
Sinus rhythm 10 (77)
Atrial pacing 3 (23)
QRS duration (ms) 112 ± 26
Electroanatomical Mapping
Epicardial mapping (number of electrograms) 4611 [3369 - 5633]
RV endocardial mapping (number of electrograms) 910 [280 - 1638]
LV endocardial mapping (number of electrograms) 605 [247 - 1412]
Carto mapping system 10 (77)
EnSite Precision mapping system 3 (23)
Substrate
Arrhythmogenic cardiomyopathy 5 (39)
Dilated cardiomyopathy 2 (15)
Healed myocarditis 3 (23)
Pathogenic genetic variant* 8 (62)
Treatment prior to ablation procedure
Sotalol 7 (77)
Beta blocker 2 (15)
Beta blocker combined with anti-arrhythmic drugs 3 (23)
Implantable cardioverter defibrillator 10 (77)
Prior failed endocardial ablation 6 (46)
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Supplementary Table 3. Ranges of earliest and latest activation per subject
iECG EAM

ID Total Activa-
tion Timing

Mapped (ms)

Earliest Acti-
vation

Mapped Sur-
faces (ms)

Latest Activa-
tion

Mapped Sur-
faces (ms)

Total Activa-
tion Timing 

Mapped (ms)

Earliest acti-
vation

Mapped Sur-
faces (ms)

Latest activa-
tion

Mapped Sur-
faces (ms)

1 91.6 ± 3.0 -32.0 ± 1.6 58.5 ± 3.5 74 -17 57
2 93.3 ± 8.4 -33.5 ± 0.4 50.5 ± 0.6 90 -22 68
3 111.0 ± 4.7 -30.9 ± 1.9 73.0 ± 4.3 172 -22 150
4 90.9 ± 5.4 -35.6 ± 1.7 50.8 ± 5.2 83 -45 38
5 103.0 ± 1.3 -64.6 ± 0.8 38.1 ± 1.2 124 -85 39
6 101.0 ± 4.1 -37.1 ± 1.3 57.9 ± 2.9 94 -20 74
7 147.0 ± 11.6 -50.4 ± 2.8 92.2 ± 8.7 201 -88 113
8 108.0 ± 2.2 -31.6 ± 8.1 72.7 ± 4.3 104 -36 68
9 82.0 ± 4.5 -32.2 ± 1.2 42.5 ± 1.5 147 -45 102
10 156.0 ± 5.7 -25.3 ± 2.1 118.0 ± 6.0 159 -67 92
11 103.0 ± 5.5 -47.1 ± 3.1 50.5 ± 1.5 110 -47 63
12 107.0 ± 2.8 -34.8 ± 1.3 70.4 ± 2.4 104 0 104
13 145.0 ± 0.9 -71.6 ± 0.9 73.0 ± 1.0 152 -83 69
Total 111.0 ± 23.4 -40.5 ± 13.8 65.1 ± 21.5 124 ± 39 -44 ± 29 80 ± 32

Ranges in total activation duration of both the iECG LAT maps and the invasive LAT maps over all 
invasively mapped surfaces per subject. The timing of the earliest activated node and the latest activated 
node were stated. Abbreviations: iECG = inverse electrocardiography; EAM = electro-anatomical map-
ping.
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Supplementary Figure 2. Factors associated with correlation coefficients and absolute differences. Both 
QRS duration or the surface did not significantly affect the correlation coefficient or absolute differences 
(upper row). There was a trend between the number of annotations and abnormal voltage EGMs of the 
invasive map and the correlation coefficient, low density and percentages were associated with lower CC. 
Legend figure: EGM = electrogram; LV = left ventricle; RV = right ventricle.

Supplementary Figure 1. Multi-wave iECG. First, (cardiac) imaging and body surface potential maps 
(BSPM) data are acquired (Panel A). Using the volume conductor, BSPM are simulated. Multi-wave iECG 
selects the best matching activation sequence by testing 511 combinations of initial activation sequences. 
The output of the procedure is local activation timing maps (D). In Panel D, three examples of the 511 pos-
sible activation maps are shown with respectively six, four or two initial sites of activation. Local activation 
timing is depicted from red (early activation) to (blue latest activation).
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Abstract 
In arrhythmogenic cardiomyopathy (ACM), life-threatening ventricular arrhythmias 
can be the first manifestation of disease. Task Force Criteria (TFC) were established 
to standardize clinical ACM diagnosis, but early diagnosis remains difficult. Non-
invasive local activation imaging with inverse electrocardiographic (iECG) techniques 
may improve our understanding of the underlying ACM substrate. In this proof-of-
concept study, we investigated the potential value of iECG to detect early signs of 
ACM.  

Sixty-nine ACM-associated pathogenic variant carriers and twelve controls underwent 
late gadolinium enhancement cardiac magnetic resonance imaging (LGE-cMR) and 
67-leads body surface potential mapping. The iECG local activation timing (LAT) 
maps were estimated during sinus rhythm and minimal local propagation velocity, 
transmural (T-)LAT and total LAT ranges were determined for the right- and left 
ventricular (RV/LV) free wall. The iECG derived characteristics were compared to TFC-
score and LGE-presence. 

The study population consisted of 81 subjects (40% male, mean age 38±16 years, 
median [range] TFC-score 2 [0;9]). With increasing disease manifestation, RV total 
LAT range significantly increased (102±20 (overt ACM) versus 82±10 ms, p<0.01). 
Presence of RV-LGE was associated with increased RV total LAT range (96±19 versus 
84±14 ms, p<0.01), and increased number of RV T-LAT maxima (10±4 versus 7±2, 
p<0.01) suggesting activation delay as observed by isochronal crowding in iECG 
maps. In the presence of RV-LGE and LV-LGE, the number of local LAT maxima was 
significantly lower (2±1 versus 3±1, p<0.05), suggesting a decreased number of 
separate activation waves. In all pathogenic variant carriers, a significant correlation 
existed between the number of local RV T-LAT maxima and RV total LAT range 
(R2=0.25, p<0.05). Increased (>95 ms) RV total LAT range was observed in 3/19 
ACM-associated pathogenic variant carriers without signs of ACM. 

This proof-of-concept study indicates that iECG enables early identification and 
quantification of local electrophysiological characteristics of the ACM substrate, even 
prior to structural abnormalities.
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Introduction 
Arrhythmogenic cardiomyopathy (ACM) is associated with potentially fatal 
phenotypes.1,2 Historically, ACM was described as a primarily right sided disease 
and called arrhythmogenic right ventricular cardiomyopathy (ARVC); the best 
characterized form of ACM. ARVC is defined by predominant (but not exclusive) right 
ventricular (RV) involvement. To standardize clinical ARVC diagnosis , Task Force 
Criteria (TFC) were established3 and improved4. 

ACM is characterized by defects in the intercalated disc5-7, resulting in altered 
intercellular impulse propagation and progressive fibro-fatty replacement of healthy 
myocardium. The combination of structural and electrical myocardial remodeling 
can result in increased susceptibility for life-threatening ventricular arrhythmias (VA), 
even in the absence of clinical signs of disease.6,7 Due to the structural remodeling, 
local wall thinning and mechanical dysfunction occurs, which may lead to heart failure 
in a more severe stage. Our understanding of the genotype-phenotype relation 
of ACM has improved substantially.5,8 However, phenotypic expression of ACM is 
heterogeneous as illustrated by the incomplete penetrance and high variability in 
disease onset, progression and severity.2 Predictors such as age, sex and the presence 
of T-wave inversion in the inferior leads are associated with adverse events9-11, but 
subtle signs may go unnoticed, as indicated by the occurrence of sudden cardiac 
death in individuals already under clinical follow-up.2,12 This indicates that accurate 
early detection of disease to identify individuals at-risk for life-threatening VA, is still 
beyond the capability of diagnostic tests. 

Criteria based on the 12-lead electrocardiogram (ECG) have a central role in the 
TFC for ACM, as the ECG provides succinct insight in cardiac electrical activity. But 
subtle changes due to slow progressive substrate development may be missed 
when solely using the 12-lead ECG.13 With inverse ECG (iECG) techniques, combining 
patient-specific ≥67-lead body surface potential (BSP) data with patient-specific 
anatomical heart/torso models, detailed insight in local activation sequences can 
be obtained by non-invasively imaging cardiac electrical activity.14-16 With iECG 
techniques, local activation patterns in the substrate consisting of intertwined 
strands of healthy myocardium and fibro-fatty tissue can be imaged. In-depth 
substrate characterization is likely to provide additional information to improve the 
early detection and monitoring of disease progression. Additionally, with detailed 
insight in substrate development, treatment may be initiated or adjusted prior to 
worsening of symptoms and to provide measures to prevent lethal VA. Especially 
in pathogenic variant carriers without any signs of disease, non-invasive iECG may 
provide important insight into ACM substrate development, on top of the information 
obtained using the 12-lead ECG. 

To date, iECG techniques are studied for their application in the identification 
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of suspected origins of VA17,18 or to obtain electrophysiological insight in 
substrates14,16,19,20. However, iECG estimation of local activation timing (LAT) maps 
during normal ventricular activation (e.g., sinus rhythm) is complicated by the 
complex interplay of multiple near simultaneous activation wavefronts initiated at 
the endocardium through the His-Purkinje system.16,21-23] The direct relation between 
recorded BSP and cardiac electrical activity is ‘blurred’ by multiple activation waves 
amplifying or canceling each other, volume conductor effects and wave-proximity 
effects.  Recently, equivalent dipole layer (EDL)-based iECG was optimized to 
image normal ventricular activation by incorporating patient-specific His-Purkinje 
models.24-26 With this improved iECG technique, additional insight in local electrical 
and structural substrates may be obtained during normal ventricular activation, 
thereby possibly providing valuable insight into the ACM substrate. 

In the current proof-of-concept study, we aimed to evaluate whether non-invasive 
EDL-based iECG can uncover the electrical ACM substrate by imaging local activation 
patterns. Characterizing the electrical substrate, may enable early detection and 
monitoring of disease progression to improve risk-stratification in individuals with 
and without detectable structural and/or functional ACM manifestation. To this end, 
iECG estimated LAT-maps during normal ventricular activation in ACM-associated 
pathogenic variant carriers with variable ACM expression were evaluated. iECG LAT 
map derived characteristics were compared to clinical disease manifestation and 
the presence of structural disease as identified using late gadolinium enhancement 
cardiac magnetic resonance (LGE-cMR) imaging to determine the association 
between abnormal electrical activation and the development of a structural ACM 
substrate.

Methods
Study design
We performed a proof-of-concept prospective study at a single tertiary academic 
expert center for ACM. Pathogenic variants in the plakophilin-2 (PKP2) and 
phospholamban (PLN) gene are amongst others associated with the development of 
ACM. Therefore, pathogenic PKP2 and PLN variant carriers, as determined by clinical 
genetic testing, who underwent clinical LGE-cMR imaging were included in this study. 
As a control group, patients with symptomatic premature ventricular complexes or 
atrial tachycardia without structural heart disease, as identified by LGE-cMR imaging, 
were included. After giving informed consent, subjects underwent 67-lead BSP 
mapping and cMR imaging within a two-month period, but preferably on the same 
day. The study protocol was approved by the local institutional review board (UMC 
Utrecht, The Netherlands, protocol nr. 17/628) and conducted according to the 
declaration of Helsinki. The study-workflow is displayed in Figure 1.
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Phenotypic evaluation of included subjects
In this study, we use ACM throughout the manuscript to indicate presence of disease 
as we also include pathogenic PLN variant carriers, who are known for their left 
ventricular (LV) involvement. ACM diagnosis was defined according to the 2010 revised 
ARVC TFC4 in which ≥4 TFC points are required for a definite diagnosis, specifically 
describing ARVC phenotype in all subjects. Major, minor or no TFC fulfillment was 
scored per category: i.e., imaging, tissue, depolarization, repolarization, arrhythmia 
and genetics/family. Besides the official TFC score, we also determined total TFC 
score not taking into account criteria of the family/genetic*  category to only consider 
phenotypic ACM manifestations per subject. We indicated this TFC score as non-
genetic TFC (ngTFC).
* Of note, PKP2 variant carriers were always assigned a major TFC in the family/genetic category as PKP2 
is one of the desmosomal mutations whereas PLN-variant carriers only receive major points based on 
family history.

Figure 1. Study procedure and inverse ECG pipeline. From obtained body surface potential (BSP) maps, 
beats were selected using QRS/QRST-segment template matching. Beats with maximal, average and min-
imal root mean square QRS amplitude (RMS-A) were obtained and averaged. From the patient specific 
cardiothoracic magnetic resonance (cMR) imaging, anatomical models of the ventricles, lungs and torso 
were created. The three averaged beats were selected as input for the inverse ECG procedure to compute 
the non-invasive local activation timing (LAT) maps for the epicardial, left ventricular (LV)- and right ven-
tricular (RV) endocardium.
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BSP signal acquisition and processing
A 67-lead BSP measurement (sampling frequency = 2048 Hz, Biosemi, Amsterdam, 
The Netherlands) was obtained for at least 240 seconds in resting supine position. 
BSP signals were loaded into MATLAB (2017a, The Mathworks, Natick, MA, USA) and 
baseline drift (<0.25 Hz) and high frequency noise (>200 Hz) were removed. Presence 
of powerline artifacts was assessed based on visual inspection and if present, BSP 
signals were additionally filtered using a 50 Hz notch filter. The root mean square 
(RMS) signal was computed wherein one QRST complex was manually segmented 
by annotating P-onset, QRS-onset, QRS-end and T-end. Template matching of 
the complete QRST-segment and QRS-complex was performed by computing the 
relative difference  for each sample  in the RMS-signal:

with  indicating the RMS signal of the complete BSP signal,  the 
selected RMS-QRS or -QRST segment,  the number of samples of the complete 
RMS signal and  the number of samples of the template beat. All samples  with 
a local minimum in <0.035 for the QRS-segment was selected. Subsequently, 
QRS-RMS amplitude was determined and five beats were selected and averaged for 
minimum, maximum and average QRS-RMS amplitude (Figure 1), resulting in three 
average beats used as input for the iECG procedure. 

Image acquisition and processing 
Electrode positions were captured using a 3D camera system during BSP mapping.  
The cMR images were obtained using a 1.5 or 3 Tesla scanner (Philips Medical Systems, 
the Netherlands) according to the standardized clinical ACM protocol. Scout images 
of the torso were obtained in the axial, sagittal and coronal plane to localize the heart 
and position the scan region. Cine-images were obtained in the cardiac short- and 
longitudinal-axes. A single bolus of contrast (0.1 cc gadovist/kg) was injected for 
3 Tesla and a double bolus (0.2 cc gadovist/kg) for 1.5 Tesla and after 10 minutes, 
LGE images were obtained in the short-axis, four-chamber, RV two-chamber and RV 
outflow tract (RVOT) views to assess the accumulation of gadolinium in the ventricular 
myocardium. For the purpose of this study, LGE-presence was determined from the 
clinical report in which it was scored by an experienced cardiovascular radiologist. 
LGE-presence was scored using the 17-segment American Heart Association (AHA) 
model for the left ventricle (LV) and four additional segments (RVOT, basal, mid 
and apical segments) for the RV. LGE-maps were displayed using the 17+4 segment 
model with red denoting segments with LGE-presence. 

Patient specific anatomical models were created with GeomPEACS.27 The anatomical 
models of the ventricles and blood pools were created using cine-images obtained 
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at end-diastole. The LV papillary muscles and RV moderator band were segmented 
as a part of the ventricular model. Anatomical models of the torso and lungs were 
created using the scout images and electrode positions were registered onto the 
torso. All anatomical models were discretized as closed triangulated surface meshes. 

Inverse ECG procedure
In this study, an Equivalent Dipole Layer (EDL)-based iECG technique with 
incorporated His-Purkinje model was used to non-invasively estimate endocardial 
and epicardial local activation timing (LAT) maps during sinus rhythm.24,25 In short, 
LAT maps were estimated by optimizing the match between recorded and computed 
BSP. To compute BSP, (1) a cardiac source model representing local cardiac electrical 
currents and (2) a volume conductor model describing the effect of these currents 
on potentials on the torso were required. Simulated local transmembrane potentials 
generated the local electrical currents, and the effect of these currents on BSP was 
described using the boundary element method. Assigned conductivity values to 
compute the volume conductor model were 0.2 S/m for the thorax and ventricular 
muscles, 0.04 S/m for the lungs and 0.6 S/m for the blood cavities.28,29

Due to the non-linear relation between the transmembrane potentials and BSP, 
the EDL-based iECG procedure consists of two steps. In the first step, an initial 
estimation of the activation sequence is required and in the second step, the 
selected activation sequence is further optimized to match recorded to computed 
BSP. The initial estimate is based on the patient-specific His-Purkinje anatomy in 
combination with the fastest route algorithm. Activation sequences starting at sites 
associated with the His-Purkinje system were only considered and combined to 
obtain a smooth, physiologically realistic activation sequence.21-23 The computed 
initial activation sequence corresponding to the best match (e.g., highest correlation) 
between recorded and computed BSP was selected and used as an input for the 
optimization step. In the optimization step, the estimated activation sequence was 
further optimized by iteratively tuning LAT to minimize the error between recorded 
and computed BSP. Therefore, a dedicated Levenberg-Marquardt optimization 
procedure was used with a maximum of 25 iterations.30 The optimization procedure 
was regularized using the surface Laplacian and the regularization parameter  was 
set to a relatively small value of 5∙10-6mV2ms2m-2 as used previously to correspond to 
realistic spatial smoothness, while focusing on optimization of the match between 
recorded and computed BSP.24 

iECG LAT derived characteristics 
Per subject, three iECG LAT maps were estimated using the three averaged beats as 
input. The LAT map with total activation duration closest to segmented QRS duration 
was selected for further analysis. LAT maps of the epicardial and endocardial surfaces 
were presented in anterior-posterior, posterior-anterior and/or left-lateral views31 
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using the Durrer color map with isochronal lines at 10 ms intervals21. As ACM is 
characterized by diffuse fibro-fatty replacement of healthy myocardium, thereby 
disrupting local activation wavefront propagation, several pathophysiological-based 
characteristics were derived from the iECG LAT maps to quantitatively describe this 
disruption (Figure 1). First, to quantify local activation wave slowing (observed as 
isochronal crowding), epicardial local surface propagation velocity was computed 
using the triangulation method.24,32 From the velocity maps, minimal propagation 
velocity and range were determined. Furthermore, RV and LV total LAT range of the 
ventricular free walls was determined and the fraction of latest 20ms of activation 
on the RV was assessed to quantify whether the terminal activation occurred in the 
LV and/or RV. Additionally, transmural (T-) LAT activation was determined as the 
activation wave traveling from the endocardium towards the epicardium, which is 
likely to be disrupted in the presence of (intramural) diffuse fibro-fatty tissue. From 
these maps, the maximal RV and LV T-LAT value was determined. Furthermore, to 
quantify heterogeneity in LAT and T-LAT maps, the number of local maxima in the 
maps were automatically identified (Figure 1, /) by taking into account all directly 
surrounding nodes.

Statistical analysis
Data were assessed for normality using Shapiro-Wilk’s test. Normally distributed 
variables were reported as mean ± standard deviation and non-normally distributed 
data were reported as median with range. Differences between normally distributed 
data were tested for significance using ANOVA and unpaired students t test. Non-
normal data were compared using Mann-Whitney U test. For categorical data, Fishers 
exact test was used to test for significant differences between groups. A p-value 
<0.05 was considered statistically significant. Subjects were stratified regarding TFC-
fulfillment in two ways. First, we stratified according to total TFC score, not taking 
into account TFC from the family/genetic category, indicated as ngTFC. All subjects 
were stratified in five ngTFC groups; ngTFC=0, ngTFC=1, ngTFC=2, ngTFC=3 and 
ngTFC≥4. Second, we stratified subjects according TFC category (e.g., depolarization, 
repolarization, imaging and arrhythmia) to either having no versus minor/major TFC 
category criterium fulfillment. Additionally, we stratified according to LGE-presence, 
whether it was either present in the RV, LV or both according to the clinical report as 
described above. 

Results 
The study population consisted of 81 subjects (40% male, mean age 38±16 years) 
including 39 pathogenic PKP2 variant carriers, 30 pathogenic PLN variant carriers 
and 12 controls. Their clinical characteristics are shown in Table 1 per subgroup.  The 
median time interval between BSPM and cMR was 0 days (IQR [0;0]) with an overall 
range of 0 to 56 days. No subject included in this study was diagnosed with a dilated 
cardiomyopathy. In the control group, 7/12 subjects had 1 TFC in the arrhythmic 
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category, as they had >500 PVC/24 hours. Created ventricular anatomical models 
had an average inter-node spatial resolution of 5±1 mm. Both in control subjects 
(Figure 2) and pathogenic mutation carriers (Figure 3&4), non-invasively estimated 
activation sequences originated from His-Purkinje associated regions and ended in 
the basal areas. 

Correlation with Task Force Criteria 
Median [IQR] total TFC-score was 2 [0;3] with a total range of 0 to 9 and median 
[IQR] ngTFC was 0 [0;2] with a total range of 0 to 7 for the complete population 
(Table 1). With increasing ngTFC, the RV total LAT range significantly increased from 

Figure 2. Endocardial and epicardial iECG LAT and T-LAT maps in a control subject. Findings from late 
gadolinium enhancement (LGE) cardiac MR imaging are displayed using the 17-segment AHA model 
for the left ventricle (LV) and extended for the right ventricle (RV), with R=right ventricular outflow tract 
(RVOT), B = RV basal area, M = the RV mid segment and A = the RV apical segment. LGE presence is 
indicated in red (no LGE present). A representative beat from the clinical 12-lead ECG is presented with a 
small box indicating 40ms and 0.1 mV. Inverse ECG local activation maps (LAT) maps are displayed using 
the Durrer colormap and isochronal lines with 10 ms spacing. Epicardial LAT maps are displayed in the left 
column and endocardial in the middle column with the upper row showing the RV endocardium and the 
middle and bottom row the LV endocardium. Epicardial transmural LAT (T-LAT) maps are displayed in the 
right column from blue (indicating earlier epicardial than endocardial activation) to red (indicating later 
epicardial than endocardial activation). All maps are displayed in the anterior posterior view (upper row), 
posterior-anterior view (middle row) and left lateral view (bottom row) and the RVOT location is annotated 
as anatomical landmark. 
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82±10 ms (ngTFC=0) to 102±20 ms (ngTFC>3) (p<0.01, Figure 5-A1). Furthermore, a 
significant correlation was observed between terminal activation duration in V1 and 
the RV total LAT range (R2=0.53, p<0.01, Figure 5-A4). In subjects fulfilling TFC in 
the depolarization and/or imaging category, RV total LAT range and the fraction of 
latest activation on the RV were significantly higher (Table 2). Furthermore, a trend 
towards significance in number of RV T-LAT maxima and fraction of latest 20ms of 
total activation time on the RV free wall was observed in subjects with TFC in the 
arrhythmia category (Table 2).

LGE-presence and TFC imaging criteria
With RV-LGE presence, the number of local RV T-LAT maxima was significantly higher 
compared to cases without (10±4 versus 7±2, p<0.01, Figure 5-A3, Table 2). In the 
presence of LV-LGE, the number of local LV LAT maxima was significantly lower (2±1 
vs 3±1, p<0.05, Table 2). As can be appreciated in Figure 3 and 4, isochronal crowding, 
increased T-LAT values and increased total LAT range were observed in regions with 
LGE-presence. When comparing LGE-presence specifically to TFC imaging criteria 
fulfillment (Table 2), a RV total LAT range was significantly higher in subjects with 
RV-LGE presence (96±19 versus 84±14 ms, p<0.01) and in subjects fulfilling TFC 
imaging criteria (100±19 versus 82±11, p<0.01). Additionally, when fulfilling TFC 
imaging criteria (9±4 versus 7±3, p=0.06) a trend towards significance was observed.

Gene specific characteristics to identify (subclinical) ACM progression
In all included pathogenic variant carriers, a significant correlation existed between 
the number of RV T-LAT maxima and RV total LAT range (R2=0.25, p<0.05) and 
between the number of LV T-LAT maxima and LV total LAT range (R2=0.36, p<0.01), 
which was not observed in the control population. The correlation improved when 
excluding the cases with LGE (Figure 5B). A total of 3/19 subclinical (ngTFC=0) PKP2 
variant carriers without LGE presence had a RV total LAT range >95 ms, whereas 
in the control group none were identified meeting this criterium. In PKP2 variant 
carriers, the number of RV T-LAT maxima was significantly higher (9±4 vs 6±3, 
p<0.05) in subjects fulfilling at least one ngTFC (Figure 5C1) when compared to 
subjects without ngTFC fulfillment. In PLN variant carriers, the number of LV LAT 
maxima was significantly lower (2±1 vs 3±1, p<0.01) and RV total LAT range was 
significantly higher (94±22 vs 77±8, p<0.01) in subjects fulfilling at least one ngTFC 
(Figure 5C2&C3) when compared to subjects without ngTFC fulfillment, suggesting 
a role in early detection of subtle activation delay.  

Discussion
This paper describes new iECG LAT map derived characteristics during normal 
ventricular activation to non-invasively image the electrophysiological ACM substrate 
in subjects with and without detectable structural manifestation of disease. ACM is a 
heterogeneous disease and currently, a diagnostic tool to identify the earliest signs 
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Table 1. Baseline characteristics.  
Controls
(n=12)

PKP2 variant 
carriers (n=39)

PLN variant 
carriers (n=30)

Patient characteristics 
Male 1 (8) 19 (49) 12 (40)
Age 36±16 37±16 39±16
Body mass index 25±5 25±5 24±5
ACM diagnosis 0 (0) 11 (28)* 6 (20)
ICD 0 (0) 0 (0) 1 (3)
Proband status 0 (0) 1 (3) 2 (7)
Days between cMR and BSPM 0 [0;0] 0 [0;31] 0 [0;56]
Cardiac medication
ACEi/ARB 0 (0) 4 (10) 3 (10)
Antiarrhythmic 1 (8) 2 (5) 1 (3)
Beta blocker 4 (33) 2 (5)* 2 (7)*
Diuretic 0 (0) 2 (5) 1 (3)
Total TFC score (major+minor) 1 [0;1] 2 [2;9] 0 [0;7]
TFC imaging 0 7 (18) 10 (33)*
TFC tissue 0 0 0
TFC repolarization 0 5 (13) 5 (17)
TFC depolarization 0 7 (18) 3 (10)
TFC arrhythmia 7 (58) 14 (36) 10 (33)
TFC family/genetics 0 39 (100) 3 (10)
ngTFC = 0 5 (42) 20 (51) 17 (57)
ECG characteristics
Heart rate 79±24 66±9* 69±13
QRS duration 89±12 95±15 89±13
QTc time 432±51 414±24 408±23*
QRS axis 54±24 54±53 57±73
Atrial fibrillation 0 (0) 1 (3) 0 (0)
T-wave inversion > 2 leads (V1-6) 0 (0) 5 (13)*± 4 (13)
PVC count/24h 14211±16425 581±1102* 653±1932*
cMR characteristics
LVEDV/BSA (ml/m2) 98±23 90±15 96±15
LVEF 55±7 56±5 53±7
RVEDV/BSA (ml/m2) 99±21 101±30 99±16
RVEF 52±7 51±10 51±8
LGE LV (n) 0 4 (10) 11 (37)
LGE RV (n) 0 8 (21) 5 (17)

Values are presented as either mean ± standard, median [total range] or n (%). * Significant difference 
(p<0.05) with the control group and ± significant difference (p<0.05) with the PLN group. LGE = late 
gadolinium enhancement, ICD = implantable cardioverter defibrillator, ACEi = angiotensin converting 
enzyme inhibitors, ARB = angiotensin receptor blockers,TFC = task force criteria, ngTFC = non-genet-
ic TFC, n = number, LV = left ventricle, RV = right ventricle, EDV = End Diastolic Volume, BSA = Body 
Surface Area (Dubois&Dubois), EF = ejection fraction, cMR = cardiac Magnetic Resonance, BSM = body 
surface potential mapping. 
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of disease is lacking. The results presented in this study indicate that with iECG, 
early signs may be detected, even prior to the identification of abnormalities on 
echocardiography, ECG or MRI imaging. Local irregularities in the activation sequence 
were imaged with the technique, suggesting the potential of iECG to detect subtle 
signs of disease progression. In pathogenic variant carriers, several iECG derived 
characteristics were associated to the typically observed findings in right-sided 
ACM (ARVC); as indicated by TFC fulfillment in the depolarization-, arrhythmia- and 
imaging category and RV-LGE presence. These findings indicate that findings in iECG 
LAT maps adhere to disease manifestation in the sub-tricuspid region (Figure 3). By 
monitoring both LAT and T-LAT maps, the presence of mid-mural fibrous tissue may 
be revealed using the non-invasive iECG technique. 

Transmural activation assessment
The number of local T-LAT maxima was significantly higher in subjects that were 
assigned TFC in the depolarization category and in the presence of RV-LGE* (Table 
2). Additionally, for both the LV and RV, a significant weak-to-moderate correlation 
between the number of T-LAT maxima and the total LAT range was observed in all 
pathogenic variant carriers (Figure 5B). These findings indicate that in the presence 
of structural remodeling of the RV, local activation waves slowing is indicated by 
increased total LAT range, and heterogeneous (transmural) propagation of activation 
becomes apparent through an increased number of T-LAT maxima.33 

In invasive LAT mapping studies, mid-myocardial scar is difficult to identify during 
sinus rhythm.34 Anisotropic transmural activation is present in the healthy heart, but 
in the presence of diffuse (mid-)myocardial fibro-fatty tissue, transmural activation 
patterns progressively become more heterogeneous as observed in pacing 
studies.35,36 In the current study we found that evidence suggesting the presence of 
mid-myocardial fibrosis may also be detected during sinus rhythm by assessing total 
LAT range and the number of local T-LAT maxima. This theory is further substantiated 
in cases with RV LGE-presence, where we observed a significant higher number of 
T-LAT maxima (Figure 3, T-LAT maps, Figure 5A1). Presence of fibrofatty tissue likely 
manifests in this manner due to the thin-walled structure of the RV, resulting in T-LAT 
map heterogeneity, increased total RV LAT range and decreasing maximal RV T-LAT 
timing as an effect to RV-wall thinning, which is typically observed in severe ACM.6 
In the LV, we observed other changes in LAT maps in the presence of structural 
remodeling. In these cases, less LV LAT maxima (Table 2) and steep LV T-LAT 
gradients (Figure 4) were observed in the presence of LV-LGE. This finding indicates a 
rather homogeneous epicardial activation wavefront which may be dissociated from 
endocardial activation, as also observed during invasive electro-anatomical mapping 
procedures in the presence of advanced structural remodeling. Furthermore, T- LAT 
heterogeneity may be associated with increased risk of VA, as it may set the stage for 
* Of note, the presence of LGE is not part of the 2010 TFC.
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reentrant circuits. We observed a trend towards significance in subjects fulfilling TFC 
in the arrhythmia category having an increased T-LAT heterogeneity, indicating the 
potential incremental value of iECG regarding risk-stratification to prevent sudden 
cardiac death. 

Relationship between iECG derived characteristics and cardiac repolarization 
The presence of structural heart disease may cause disturbances in the interplay 
between depolarization and repolarization which may increase vulnerability for life-
threatening VA.20,37 A significantly higher minimal LV propagation velocity and a 
trend towards significance for RV propagation velocity were observed in individuals 
fulfilling TFC repolarization criteria. Therewith, a possible relation between local 
activation wavefront propagation and repolarization abnormalities may have been 
identified, which may be related to increased VA vulnerability. This should however 
be further investigated by characterizing both depolarization and repolarization 
iECG maps. 

Previous and current iECG studies in structural heart disease
Previous iECG studies in ACM patients were conducted in subjects fulfilling at least 
two minor TFC for ACM and/or in the presence of structural heart disease.16,19,38-40 
In these studies, equivalent potential distribution (EPD)-based iECG was used to 
reconstruct cardiac potentials at the epicardial surface, thereby not providing insight 
in transmural activation sequences. Although the performance of EPD-based iECG 
decreases in narrow QRS complexes16, the studies observed regions of low-voltages, 
fragmented cardiac potentials and non-uniform conduction in the iECG maps of 
pathogenic variant carriers.  In subjects in the early stage of disease, non-uniform 
conduction and fractionated cardiac potentials were observed and with increasing 
disease severity, ventricular activation sequences prolonged. These findings all 
adhere to findings also observed during invasive electroanatomical mapping in 
ACM patients. In the current study, we specifically observed an increase in total RV 
LAT range in subjects with more severe disease manifestation (Figure 5A1), thereby 
adding information to the iECG techniques previously studied. The findings indicate 
that iECG derived characteristics correspond to the expected findings in more severe 
cases of ACM (i.e., increased TFC score, Figure 5A1&A4). Whereas LAT and velocity 
iECG maps provide important insight in local wave propagation on the surface, mid-
myocardial fibrofatty replacement may however still be missed. The assessment of 
T-LAT maps, as done in the current study, provides a first step towards the three-
dimensional characterization of the ACM substrate, enabling the detection of mid-
myocardial structural disease, and provides much needed additional insight in all 
stages of ACM substrate development.  

Initial estimation and optimization procedure
In EDL-based iECG, an initial estimation is required due to the non-linear relation 
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between activation time and simulated potentials. In order to obtain a physiologically 
realistic initial estimate during sinus rhythm, we used patient specific anatomy-based 
His-Purkinje models. For the optimization procedure, we used a small regularization 
parameter value, meaning that the optimization procedure is almost unregularized 
by the surface Laplacian. The optimized LAT maps still showed activation originating 
from the regions associated with His-Purkinje anatomy21 and stayed smooth over the 
surface. However local T-LAT differences and isochronal crowding became apparent 
after optimization, indicating local myocardial disease. These observations indicate 
that by combining a His-Purkinje regularized initial estimation with the relatively 
unregularized optimization procedure, a physiologically realistic estimation of local 
activation is obtained also uncovering local activation pattern abnormalities in the 
ACM substrate.  
 
The potential role of iECG techniques in current clinical practice
In ACM, early detection and risk-stratification remains challenging. With the 
development of imaging techniques based on both echocardiography and cMR early 
signs of structural and/or mechanical dysfunction in ACM were uncovered, even prior 
to identifiable pathological changes in the 12-lead ECG.41-44 These findings indicated 
that the standard 12-lead ECG may not be sensitive enough to detect subtle signs of 
disease progression. With iECG techniques, detailed electrophysiological and imaging 
data can be combined to provide additional insight in ACM development and uncover 
subtle signs of ACM development. In combination with more advanced cMR imaging 
techniques like T1-mapping to image diffuse structural myocardial remodeling, 
further in-depth characterization of both the electrical and structural substrate is 
enabled.41,42 Ultimately, by combining findings from echocardiography, cMR imaging 
and iECG, complementary insight into the onset and progression of ACM is obtained 
to assess electrical, structural and functional disease manifestation in both ventricles. 
To date, the optimal set of diagnostic tools to identify subtle disease progression 
in ACM remains unknown and the potential role of iECG substrate characterization 
to improve diagnosis and risk-prediction in individuals with and without detectable 
structural and/or functional manifestation of ACM should be further investigated in 
prognostic studies. 

With non-invasive iECG, additional insight into ACM progression and specifically 
the underlying electrophysiological substrate can be obtained. Imaging the ACM 
substrate and combining this with information about ACM progression, treatment 
choices and clinical outcomes, may provide additional information regarding 
treatment effect. After careful evaluation, this information may be used to evaluate 
and guide treatment. For example, the choice for a certain treatment regimen (e.g., 
medication, ablation or ICD implantation) can be substantiated and evaluated and 
where needed the regimen can be adjusted. Additionally, invasive and non-invasive 
ablation procedures may be guided using the information obtained from iECG maps. 
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Figure 5A/B. Relation between iECG derived characteristics and task force criteria (TFC) fulfillment and 
LGE-presence. Statistical significance is denoted with * p-value <0.05 and ** p-value < 0.01, in the box-
plots, median (red line), 25th and 75th percentiles (blue box), extreme outliers not considered outliers 
(dashed lines) and outliers (red plus) are indicated. Of note: in the figures non-genetic TFC (ngTFC) is 
indicated, thus not taking into account a TFC point for the TFC category family/genetics. A: differences 
and correlations in the complete population (variant carriers and controls) with increasing TFC and LGE 
presence related to the increase in LV and RV local activation timing (LAT) range and number of maxima 
in transmural-LAT (T-LAT). Linear regression was computed between the total RV-LAT range and terminal 
activation duration (measured in the clinical 12-lead ECG). B: Stratification according to TFC fulfillment and 
the assignment of either a major (2), minor (1) or no (0) assigned TFC. 
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On top of that, as implied by the difference in underlying genetical substrate, different 
iECG derived characteristics may be associated with disease progression in either 
pathogenic PKP2 or PLN variant carriers (Figure 5C).43,44 Whereas our sample size is 
small, the observed findings warrant a gene-specific approach in the identification of 
new iECG derived parameters, but findings should be confirmed in a larger cohort. 

Future studies 
In the current study, a relatively large group of subclinical subjects was included, 
partially also displaying iECG characteristics as observed in cases fulfilling TFC. 
Specifically, we observed >95 ms total RV LAT range in 3/19 pathogenic PKP2 variant 
carriers without any detectable structural and/or functional manifestation of ACM 

Figure 5C. Relation between iECG derived characteristics and task force criteria (TFC) fulfillment and LGE-
presence. Statistical significance is denoted with * p-value <0.05 and ** p-value < 0.01, in the boxplots, 
median (red line), 25th and 75th percentiles (blue box), extreme outliers not considered outliers (dashed 
lines) and outliers (red plus) are indicated. Of note: in the figures non-genetic TFC (ngTFC) is indicated, 
thus not taking into account a TFC point for the TFC category family/genetics. C: Stratification according 
to type of variant carrier either having (≥1) or no (0) assigned TFC. Linear regression was computed 
between the total RV-LAT range and the number of local T-LAT maxima in all pathogenic variant carriers 
without LGE presence.
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(ngTFC = 0 and no LGE-presence), possibly indicating a first sign of disease (Figure 
5A, Table 2). Future follow-up studies, preferably including iECG re-mapping and 
in collaboration with the Netherlands Arrhytmogenic Cardiomyopathy Registry45, 
should be performed to estimate the prognostic relationship between iECG derived 
characteristics and the occurrence of life-threatening VA. Furthermore, the proposed 
theories explaining the observations in iECG maps should be further investigated and 
most importantly, where possible, also compared to other modalities, for example 
cMR T1-mapping observations.41

When combining findings of both EDL- and EPD-based iECG techniques, in-depth 
electrophysiological substrate characterization in complex substrates is likely to 
be improved even further. The application of such a patch-work technique creates 
the opportunity to combine the strengths of different iECG methods, thereby likely 
improving the accuracy of the non-invasive estimation of LAT maps.46 Additionally, 
both EDL- and EPD-based iECG methods are physics-based models regularized with 
electrophysiological information. By combining insights from such physic-based 
models with insights from data-driven models, accurate iECG characterization of 
substrates may be improved even further.47,48 

Limitations
The presence of diseased myocardium breaks the equivalence of the dipole layer 
used in EDL-based iECG. Therefore, the non-invasive estimation in severely diseased 
myocardium may be less reliable. The incorporation of a method to represent 
myocardial disease in the iECG method may therefore further improve the accuracy 
of non-invasive LAT estimation, specifically in cases of severe ACM. Whereas EDL-
based iECG is mainly known for the estimation of local activation timings, local 
voltages can also be estimated. Such non-invasively estimated local voltage maps 
potentially may also be of added value in the characterization of the ACM substrates 
but the accuracy of these voltage maps should be first evaluated in comparison to 
invasive measurements.49,50 In this single center study, the total number of included 
patients is relatively small and part of the control subjects fulfilled one minor TFC in 
the arrythmia category and were prescribed beta blockers (Table 1). These controls 
mimicking ACM phenotype could be differentiated from pathogenic mutation 
carriers, but results should be affirmed in a larger study. 

Conclusion
This proof-of-concept study shows that with EDL-based iECG, local electrophysiological 
characteristics of the ACM substrate can be imaged. With the technique, additional 
electrophysiological information of the substrate is obtained in subjects with and 
without a ACM phenotype. With the iECG LAT derived characteristics, potential 
metrics to improve diagnosis and risk-stratification in individuals at-risk for ACM 
were identified. The results suggest the incremental value of iECG for the early 
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detection and monitoring of the electrical ACM substrate, which should be confirmed 
in future studies. Specifically, future studies should focus on the repolarization phase 
and investigate the prognostic role of the iECG techniques in both ACM and ARVC 
diagnosis and accurate risk-stratification for life-threatening VA.
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Abstract 
Electrical activity of the myocardium is recorded with the 12-lead ECG. ECG 
simulations can improve our understanding of the relation between abnormal 
ventricular activation in diseased myocardium and body surface potentials (BSP). 
However, in equivalent dipole layer (EDL)-based ECG simulations, the presence 
of diseased myocardium breaks the equivalence of the dipole layer. To simulate 
diseased myocardium, patches with altered electrophysiological characteristics were 
incorporated within the model. The relation between diseased myocardium and 
corresponding BSP was investigated in a simulation study. 

Activation sequences in normal and diseased myocardium were simulated and 
corresponding 64-lead BSP were computed in four models with distinct patch 
locations. QRS-complexes were compared using correlation coefficient (CC). The 
effect of different types of patch activation was assessed. Of one patient, simulated 
electrograms were compared to electrograms recorded during invasive electro-
anatomical mapping. 

Hundred-fifty-three abnormal activation sequences were simulated. Median QRS-
CC of delayed versus dyssynchronous were significantly different (1.00 vs. 0.97, p < 
0.001). Depending on the location of the patch, BSP leads were affected differently. 
Within diseased regions, fragmentation, low bipolar voltages and late potentials 
were observed in both recorded and simulated electrograms. 

A novel method to simulate cardiomyopathy in EDL-based ECG simulations was 
established and evaluated. The new patch-based approach created a realistic relation 
between ECG waveforms and underlying activation sequences. Findings in the 
simulated cases were in agreement with clinical observations. With this method, our 
understanding of disease progression in cardiomyopathies may be further improved 
and used in advanced inverse ECG procedures.
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Introduction 
The ECG provides valuable insight into the electrical activity of the heart.1 In clinical 
practice, interpretation of changes in the ECG due to pathology are mainly based on 
ECG-based pattern recognition.2-4 General understanding of the effect of abnormal 
electrical activity in diseased myocardium on intracardiac and body surface 
potentials (BSP) is obtained with invasive electro-anatomical mapping (EAM) studies 
and ECG simulation studies. Through ECG simulation, better understanding of the 
electrophysiological behavior of myocardial substrate can be achieved.5 For example, 
the effect of different types and locations of diseased myocardium on simulated BSP 
may provide valuable clinical information about disease onset and/or progression. 

However, the relation between abnormal ventricular activation and the corresponding 
ECGs still requires more fundamental understanding. Specifically on the relation 
between ECG waveform changes and the pathological wave propagation in the 
presence of structural myocardial disease. Invasive mapping procedures have already 
provided a lot of information about local electrical dysfunction of the myocardium. 
The presence of late potentials, low bipolar and unipolar voltages and fractionation of 
local electrograms is directly related to the disruption of the activation sequence due 
to the presence of fibrous or fibrofatty tissue.6,7 Additionally, the voltage of unipolar 
signals is shown to be related to the presence of epicardial and/or transmural scar 
tissue.8-10

The relation between abnormal ventricular activation and ECG waveforms can also 
be investigated by ECG simulation. To simulate the ECG, two types of models are 
required. The first model is the cardiac source model, representing the electrical 
currents generated by the myocardial cells. And second, the volume conductor model, 
which describes the effect of these generated currents on potentials throughout the 
torso. A well-known interactive ECG simulation program is ECGsim11,12; a program 
based on the equivalent dipole layer (EDL) cardiac source model and boundary 
element method-based volume conductor. The EDL source model is based on 
work by Wilson and shown to be also valid in homogeneous anisotropic tissue 
by Geselowitz.13,14 He observed that potentials generated outside the heart by the 
electric activity of all myocardial cells is proportional to the potentials generated by 
a simulated dipole layer at the surface of that mass, with the dipole layer strength 
proportional to the upstroke of the local transmembrane potential provided we can 
assume homogeneous anisotropy ratios. The EDL is positioned at the endocardial 
and epicardial surface bounding the myocardium. At each element of this surface 
model, local source strength is defined by the local transmembrane potential. 
Adjusting the local timing of depolarization or repolarization result in changes in the 
simulated BSP. 

The presence of diseased myocardium, such as scar, within the myocardial mass, 
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breaks the equivalence of the dipole layer. In order to restore the equivalence, 
the boundary between normal and diseased myocardium must be included in the 
model. In earlier studies, old myocardial infarctions were simulated by removing 
parts of the ventricular anatomical model, thereby creating a hole in the anatomy.15 
This method can be used for cases of homogeneous transmural scar without any 
surviving myocardium, as is often the case in ischemic heart disease. However, in 
other cases of ischemic heart disease, surviving tissue is present within dense scarred 
regions. Furthermore, in case of progressive fibrofatty myocardial scarring, as in 
some inherited cardiomyopathies, strands of normal and fibrofatty myocardium are 
intermingled in diseased areas. Thus, diseased regions remain partially electrically 
active which consequently affects recorded potentials. The aim of this study was to 
evaluate a new method to incorporate local electrical abnormalities into the EDL 
simulation method. In this simulation study, we studied the effect on corresponding 
simulated BSP. Additionally, we compared simulations with our method to recordings 
in one patient who underwent an invasive EAM.  

Materials and Methods
EDL-based simulation of potentials
EDL-based ECG simulation relates the electrical activity at the endocardial and 
epicardial surface to potentials within and at the body surface (Figure 1). In the EDL-
source description, the potential ( ) generated at any location  and time t on 
and within the body surface is given by:

With  the upstroke of the transmembrane potential at position  on the 
surface of the ventricular myocardial mass ( ) at time t,  the solid angle 
of the infinitesimal surface element  observed from .  denotes the 
transfer matrix that expresses the effect of the volume conductor. A model of the 
volume conductor is typically obtained from MR or CT imaging. The surfaces of all 
anatomical structures are discretized as closed triangulated surface meshes.  is 
computed using the boundary element method from each triangle of the discretized 
ventricular surface towards each observation point at or within the torso16,17 

The electric activity at the myocardial surface at position  follows the local 
transmembrane potential waveform.18,19 At each node, the source strength is 
proportional to the local transmembrane potentials. Based on the observation that 
the potential step across the activation wavefront within the myocardium is 40 mV, 
the dipole layer strength is calibrated such that a completely activated equivalent 
source element generates the same potential drop.20,21 The local potential step 
across a uniform dipole layer is equal to the dipole layer strength (in A/m) divided 
by the conductivity value of the heart (in S/m).22 With a potential step of 40 mV and 
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conductivity value of 0.2 S/m, the normal dipole layer strength is 8 µA/mm. 
In the research described in this paper, we specifically studied the effect of activation 
wave changes on simulated BSP, thus focusing on the depolarization phase. The 
local potential  is defined as a step function where the local potential ( ) in 
the depolarized state was set to one and in the resting state to zero. The local body 
surface potential is described as a function of the local depolarization ( ) time at the 
surface is given by: 

To reflect the propagation of depolarization over each discretized triangle elements 
at the surface of the myocardium, the source strength at time t of a triangle partially 
activated is weighted with the fraction of the triangle that is activated at t, as 
previously described.17

Simulating diseased ventricular myocardium: the patch
Because the presence of fibrofatty tissue breaks the equivalence of the dipole layer 
at the myocardial surface, we divided our segmented ventricular model into separate 
parts wherein we either simulate normal or diseased myocardium. By specifically 
including these as separate components within the segmented ventricular model, 
the equivalence of the EDL is restored (Figure 2A). This provides the opportunity 
to represent both electrically active and passive myocardial cells within the specific 
region, similarly to a fibroblast model. The parts representing diseased, non-activatable 
myocardium are hereafter called patches. Different activation characteristics were 

Figure 1. Schematic overview of the computation of potentials. The simulated activation sequences, con-
structed transmembrane potentials and the boundary element method compute the volume conductor 
effect to compute cardiac and body surface potentials. Activation timing is displayed from red (early) to 
blue (late), corresponding local potential states were displayed for 3 sites of interest with the color of the 
displayed potential corresponding to the local activation timing with ɗ denoting local activation timing. 
Computed cardiac and body surface potentials were displayed with the height of the black bar indicating 
1 mV. The displayed body surface potentials are taken from the 64-lead setup, specifically lead 12 posi-
tioned two intercostal spaces above V1, lead 22 positioned at the lower sternum and lead 57 positioned 
at the right side of the back are displayed.
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Figure 2. Ventricular patch model overview and simulation characteristics. A: The four different patch 
locations used for the simulation studies are displayed. The location of the patch is indicated by the blue 
region on the epicardium. Where indicated with endo- and epicardial patch, an opposing endocardial is 
present with the same size as the displayed epicardial patch. B: Patches (red, endocardial and blue, epi-
cardial) were embedded within the ventricular tissue (gray), thereby not changing the outer shape of the 
ventricular model. C: Different types of activation sequences (delayed, dyssynchronous, continuous and 
discontinuous) of the patches are displayed as local activation timing maps from red (early) to blue (late) 
with isochrone steps of 10 ms. The isolating layer between the ventricles and patch is indicated in black 
on the inside of the patch. The ventricular activation sequence of the myocardium (excluding the patch) 
used in this study was equal for all models.
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assigned to patches to represent different types of diseased myocardium. The patches 
were embedded within the segmented ventricular model so that the outer shape of 
the ventricular model remains intact to a model without patches, but creating a mid-
myocardial border between normal and diseased parts. At the location of the patch, 
the nodes of the normal ventricular model are pushed inward, creating a local dent 
(Figure 2B). The inner surface of the patch is an exact copy of the nodes at the patch-
ventricular border so the nodes were exactly opposing each other. Separate volume 
conductor models were computed per source (e.g. ventricles and/or patch(es)).

Cardiac CT was used to create patient specific anatomical models of the ventricular 
myocardium, blood pools, lungs and torso in the current study. The assigned 
conductivity values were 0.2 S/m for the thorax, patch and ventricular myocardium, 
0.04 S/m for the lungs and 0.6 S/m for the blood cavities.21,23-25 To generate the local 
potential, we set the local potential to 0 (resting) or 1 (depolarized) depending on the 
local depolarization timing (Figure 1). The contribution of currents generated by each 
part (healthy and diseased) on BSP was accounted for based on the superposition 
principle.

Figure 3. Effect of patch incorporation within the ventricular model. For both the original model and three 
of the models with patch, normal ventricular and patch activation were computed. Activation sequences 
were displayed from red (early) to blue (late). All simulated BSP signals overlap, as can be observed in the 
presented standard 12-leed ECG. One cube in the 12-lead ECG corresponds to 40 ms (width) and 0.5 mV 
(height) as also indicated in lead II.       
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Simulation study 
To assess the effect of different types of patch activation sequences on BSP, one 
patient specific (male, 57 y.o.) anatomical model was created using GeomPEACS.26 
The anatomical model contained the triangulated surface meshes of the ventricular 
myocardium, blood pools, torso and lungs. Using this set, three subsets of ventricular 
models with endocardial and opposing epicardial patches at different locations in 
both the right and left ventricle and one model with only an epicardial patch in the 
right ventricular outflow tract (RVOT) were created (Figure 2A). 

Simulating normal ventricular activation
A case of normal ventricular activation (e.g. sinus rhythm) with an intact His-
Purkinje network was simulated by using a set of seven distinct foci  (four on the 
left ventricular (LV) and three on the right ventricular (RV) endocardium) as starting 
points of activation and the fastest route algorithm.27 A constant propagation 
velocity of 0.85 m/s along the myocardial surface was selected, and a 2.5 times 
slower propagation perpendicular to the wall (Figure 2C). For all anatomical models, 
the normal ventricular activation sequence was the same.

Simulating patch activation 
The fastest route algorithm was also used to compute the patch activation sequences, 
with a set propagation velocity and additional characteristics depending on the type 
of simulated substrate. When using the same propagation velocity for the patch 
and the ventricles, simulated BSP were the same as the original model (Figure 3), as 
expected.  

Three distinct types of abnormal patch activation sequences were simulated to 
assess their effect on simulated BSP (Table 1): (1) delayed patch activation due to 

Table 1. Summary of patch simulation characteristics
Patch simulation type Affected patch Type of patch 

activation
Patch simula-

tion character-
istics

Connection 
patch/healthy

Delayed patch activation Endocardial
Epicardial

Homogeneous 0.25-0.65 m/s
0 ms random

Inner patch 
surface 100%

Delayed type 1 patch 
activation

Endocardial
Epicardial

Homogeneous 0.25-0.65 m/s
0 ms random

Outer ring 100%

Delayed type 2 patch 
activation

Endocardial
Epicardial

Homogeneous 0.25-0.65 m/s
0 ms random

Outer ring 25%

Dyssynchronous patch 
activation

Endocardial
Epicardial

Inhomogeneous 0.45 m/s
30-90 ms ran-

dom

Inner patch 
surface 100%

Dyssynchronous type 1 
patch activation

Endocardial
Epicardial

Inhomogeneous 0.45 m/s
30-90 ms ran-

dom

Outer ring 100%

Dyssynchronous type 2 
patch activation

Endocardial
Epicardial

Inhomogeneous 0.45 m/s
30-90 ms ran-

dom

Outer ring 25%
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homogeneous activation wave slowing, (2) dyssynchronous patch activation due 
to inhomogeneous myocardial substrate and (3) discontinuous patch activation by 
simulating an isolating layer between normal ventricular and patch myocardium. 
For the delayed patch simulations, propagation velocity ranged between 0.85 m/s 
(normal) and 0.25 m/s (severe disease). To simulate dyssynchronous patch activation, 
a gaussian noise generator (rand function MATLAB) was used with activation times 
that differed 0-90 ms from normal. Three types of discontinuous patch activations 
were simulated (Figure 2C): the part of the patch in direct contact with the myocardium 
was either fully connected with the normal ventricular model, or only the outer ring 
of the patch was connected to the ventricular model (type 1), or only the latest 25% 
of the outer ring were connected to the ventricular model (type 2). Depending on the 
electrical connection between ventricular and patch tissue (Figure 2C), nodes directly 
in contact with the ventricular model were assigned the same activation timing as 
the ventricular nodes.

To account for the presence of fibrofatty tissue, we assumed that with increasing 
amount of fibrofatty tissue, the percentage of electrically active cells within the region 
decreases linearly. At some distance, this corresponds to an activation wavefront with 
a dipole layer strength of less than the normal 8 mA/m. Consequently, the strength 
of equivalent dipole layer at the surface of the patch was heuristically scaled by the 
simulated percentage of healthy myocardium within the patch.

Statistical analysis
To compare different simulations to the case without any patch (i.e. assumed as 
normal), the effect on signal amplitude, QRS duration and QRS morphology was 
assessed. Furthermore, the most affected leads were determined using a 64-lead 
BSP simulation setup where the most affected lead was determined as the lead with 
the lowest Pearson’s correlation coefficient (CC) comparing abnormal to normal 
QRS. Normally distributed variables were reported as mean ± standard deviation 
and non-normally distributed data were reported as median with interquartile range. 
Differences between normally distributed data was tested for significance using 
unpaired students t test and non-normal data were compared using Mann-Whitney 
U test.  

Clinical case - Invasive electro-anatomical mapping
One patient (male, 65 y.o.)  referred for invasive EAM and ablation was enrolled. The 
EAM procedure was clinically indicated because of recurrent ventricular arrhythmia 
due to structural myocardial disease (arrhythmogenic cardiomyopathy). The patient 
is a carrier of a pathogenic plakophilin-2 mutation, which is associated with the 
development of arrhythmogenic cardiomyopathy. As a part of the clinical workup 
prior to the EAM procedure, the patient underwent cardiac computed tomography 
imaging. For study purposes, 64-lead BSP mapping was performed on the day prior to 
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Figure 4. Effect of delayed patch activation on body surface potentials. Representative example of the 
effect of delayed patch activation reducing the propagation velocity through the patch. Activation se-
quences of the patches and ventricles are displayed from red (early) to blue (late) with isochrone steps of 
10 ms. All simulated BSP are displayed in the simulated 12-lead ECG and the 64-lead BSP. The colors in 
the ECG correspond to the colors stated in the left column with the simulation characteristics. Within the 
64-lead BSP, maximum changes in QRS complex were observed in the leads indicated with the red box. 
Electrode position of the 12-lead ECG was indicated by the black dashed boxes. One cube in the 12-lead 
ECG corresponds to 40 ms (width) and 0.5 mV (height) as also indicated in lead II.       
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EAM. The study protocol was approved by the local institutional review board (UMC 
Utrecht, The Netherlands, protocol nr. 17/628). The patient gave informed consent 
prior to BSP mapping and the study was conducted according to the declaration 
of Helsinki. During EAM, the epicardium and RV endocardium were mapped using 
a cardiac mapping system with the multipolar HD-grid catheter (AdvisorTM, Ensite 
Precision, Abbott). 

Patient specific anatomical models of the ventricular myocardium, blood pools, lungs 
and torso were created and electrode positions captured with a 3D camera were 
registered to the torso model. A patch at the basal region of the RV endocardium was 
created, in the same region as abnormal electrograms were observed during EAM. 
Normal ventricular activation with an intact His-Purkinje network was simulated using 
a set of 8 foci in combination with a tuned propagation velocity of 1 m/s. Location 
of the foci and propagation velocity were tuned to ensure that the simulated QRS-
complex waveform in the extremity leads was similar to patient specific recorded QRS-
complex waveforms and QRS duration (100 ms). Arrhythmogenic cardiomyopathy 

Figure 5. Effect of dyssynchronous patch activation on body surface potentials. Representative example 
of the effect of dyssynchronous patch activation. Activation sequences of the patches and ventricles are 
displayed from red (early) to blue (late) with isochrone steps of 10 ms. Simulated BSP are displayed as 
12-lead ECG. The colors in the ECG correspond to the colors stated in the left column with the simulation 
characteristics. Isochronal crowding that is observed on the patch increases by increasing the amount 
of added jitter. One cube in the 12-lead ECG corresponds to 40 ms (width) and 0.5 mV (height) as also 
indicated in lead II.        
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is characterized by defects in intercellular connections, e.g. the intercalated discs, 
resulting in a combination of altered intercellular impulse propagation and progressive 
fibro-fatty replacement of healthy myocardium. Therefore, dyssynchronous patch 
activation was simulated using a propagation velocity of 0.85 m/s and adding 
random noise within the range of 0-50 ms. To represent the presence of fibrofatty 
tissue, a uniform source strength of 50% (4 mA/m) was used for the patch.

Epicardial and endocardial electrograms 
After the procedure, all electrograms obtained prior to ablation were manually 
checked for validity. The local activation timing was determined at the maximal 
absolute amplitude of the bipolar signal, which corresponds to the maximum 
downslope (dV/dt) in unipolar signals. Data were exported as raw electrograms with 
location, annotated local activation timing and bipolar voltage. For the simulated case, 
local activation timing was set as the time instance of upstroke of transmembrane 
potential amplitude. Bipolar electrograms were computed by subtracting the unipolar 
electrogram of direct neighboring nodes. Per node, bipolar voltage was calculated as 
the maximum potential difference between the node and any of its neighbors. For 

Figure 6. Effect of discontinuous patch activation on body surface potentials. Representative example 
of the effect of different types of discontinuous patch activations on body surface potentials. Activation 
sequences of the patches and ventricles are from red (early) to blue (late) with isochrone steps of 10 ms. 
All simulated BSP are displayed in the simulated 12-lead ECG. The colors in the ECG correspond to the 
colors stated in the left column with the simulation characteristics. With different patch simulations, most 
changes were observed in V1, where the magnitude of the effect differed between simulations. One cube 
in the 12-lead ECG corresponds to 40 ms (width) and 0.5 mV (height) as also indicated in lead II.        
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both the recorded and the simulated case of the same patient, local activation timing 
maps and bipolar voltage maps were constructed. 

Results 
Simulation study
Hundred-fifty-three patch activation sequences were simulated for each of the 
different types; delayed (Figure 4), dyssynchronous (Figure 5) and discontinuous 
(Figure 6) with the same underlying normal ventricular activation sequence. By only 
slowing down the propagation velocity over and through the patch (Figure 4), the 
overall activation wave remains similar to normal ventricular activation, while the 
activation timing range over the patch increases. In case of dyssynchronous patch 
activation (Figure 5), the total patch activation timing increased and the effect of 
an inhomogeneous substrate is observed by increasing local activation timing 
differences. Discontinuous patch activation due to an ‘isolating’ layer between patch 
and normal ventricular myocardium, resulted in a patch activation initiated at the 
edge of the patch (Figure 6). The direction of activation through the patch differed 
depending on the connection between the ventricular myocardium and the patch. 

Figure 7. Effect of endocardial vs epicardial disease on body surface potentials. Representative example 
of the effect of diseased endocardial and/or epicardial patch activation on body surface potentials. Acti-
vation sequences of the patches and ventricles are displayed from red (early) to blue (late) with isochrone 
steps of 10 ms. All simulated BSP are displayed in the simulated 12-lead ECG. The colors in the ECG cor-
respond to the colors stated in the left column with the simulation characteristics. With endocardial vs 
epicardial patch location, the effect in leads with maximum effect was opposed. One cube in the 12-lead 
ECG corresponds to 40 ms (width) and 0.5 mV (height) as also indicated in lead II.    
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Abnormal patch activation affects both QRS morphology (fragmentation, amplitude 
changes) and/or QRS duration. Median [range] total activation duration for the 
simulation of the activation sequence was 114 [88;279] ms with the RV free wall patch, 
117 [88;269] ms with the LV free wall patch, 114 [88;211] ms with the RV tricuspid 
valve patch and 130 [88;273] ms with the RVOT patch. For the severely prolonged 
activation sequences, observed amplitude at end-QRS was low. Overall QRS-CC 
was 0.99 [0.98;1.00], and a significant difference (p<0.001) between delayed versus 
dyssynchronous and continuous versus discontinuous patch activation was observed 
(Table 2). Compared to dyssynchronous patch activation (Figure 5), homogeneous 
delayed patch activation (Figure 4) showed limited effect on the simulated BSPs. The 
effect of the different types of discontinuous patch activation resulted in variable 
effect within the QRS complex when assessing the onset and duration of abnormal 
BSP (Figure 6). When comparing discontinuous type 1 to type 2, the effect on QRS 
morphology is less for type 1. In type 2, there are clear signs of late activation in 
the simulated BSP after complete ventricular activation. In epicardial vs endocardial 

Figure 8. Effect of decreasing source strength on body surface potentials. Representative example of 
the effect of source strength reduction body surface potentials. Activation sequences of the patches and 
ventricles are displayed from red (early) to blue (late) with isochrone steps of 10 ms. All simulated BSP are 
displayed in the simulated 12-lead ECG. The colors in the ECG correspond to the colors stated in the left 
column with the simulation characteristics. With decreasing source strength, the magnitude of effect on 
the BSP reduced. One cube in the 12-lead ECG corresponds to 40 ms (width) and 0.5 mV (height).    
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Figure 9. The effect of patch location on simulated body surface potentials. A: The mean ± standard 
deviation of correlation coefficient (CC) per BPS lead between normal and diseased BSP. Each lead is 
represented by a dot with the color representing average CC (range 0.6-1) and size representing the 
magnitude in standard deviation of CC. The heart contour (light grey) with patch (dark grey) is displayed 
within the torso. B: Representative example of the effect of patch location on BSP. Activation sequences 
of the patches and ventricles are displayed from red (early) to blue (late) with isochrone steps of 10 ms. 
Simulated BSP are displayed for the standard 12-lead ECG. The colors in the ECG correspond to the colors 
stated in the left column with the simulation characteristics. One cube in the 12-lead ECG corresponds to 
40 ms (width) and 0.5 mV (height).    
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disease (Figure 7), the effect on the BSP of the abnormal activation sequence 
is opposite. Heuristically decreasing source strength of the patches resulted in a 
decrease in amplitude of the potentials generated by the patch on the BSP (Figure 
8). The lead position in which the BSP waveform is affected most is directly related 
to the location of the diseased myocardium (Figure 9A). Furthermore, the vicinity of 
the patch to a site of early ventricular activation is related to the timing of initial QRS 
morphology changes (Figure 9B).

Clinical case - Invasive electro-anatomical mapping 
Invasive recorded and simulated local activation timing maps and bipolar voltage 
maps were created (Figure 10). For the recorded and simulated EAM, spacing between 
unipolar electrograms was 3 mm and 5±1 mm, respectively. The recorded and 
simulated local activation times ranged between 0-130 and 0-132 ms, respectively. 
All electrograms considered were obtained prior to ablation. Median bipolar voltage 
of these EAM electrograms was 0.5 versus 4.5 mV in the regions within and outside 
the diseased area. For the simulated maps, median bipolar values were 7.1 mV and 
11.8 mV within and outside the simulated diseased area, respectively. In both the 
recorded and simulated cardiac electrograms, fractionation and late potentials were 
observed in the diseased areas (Figure 10). 

In the included patient (QRS duration 100 ms) who underwent EAM, fragmentation 
and low-QRS amplitude was observed in the recorded BSP in leads located at the 
right anterior side of the chest. The morphology of the QRS complexes comparing 
recorded to simulated (Figure 10), were similar and fragmentation at end-QRS was 
observed. 

Discussion
In this article we introduce a new method to simulate local myocardial disease and its 
effect on simulated EDL-based potentials. This new method enables the simulation of 
activation sequences in myocardium with strands/islands of surviving and fibrofatty 
tissue. Different types of myocardial disease with specific activation characteristics 
(delay, dyssynchrony, discontinuity) can be simulated which directly gives insight into 
the effect on simulated BSP which can in turn be related to different cardiac diseases. 

Table 2. Overview of simulation characteristics and resulting QRS-CC.  
Patch simulation type Median IQR1 IQR3 Min Max
Delayed patch activation 1.00 0.99 1.00 0.20 1.00
Delayed type 1 patch activation 1.00 1.00 1.00 0.96 1.00
Delayed type 2 patch activation 1.00 1.00 1.00 0.96 1.00
Dyssynchronous patch activation 0.97 0.92 0.99 -0.28 1.00
Dyssynchronous type 1 patch activation 0.98 0.93 1.00 -0.09 1.00
Dyssynchronous type 2 patch activation 0.98 0.95 1.00 0.12 1.00

IQR1 = interquartile range lower quartile, IQR3 = upper quartile, min = minimum value, max = maxi-
mum value.
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The findings from the simulation study were substantiated by the invasive EAM case 
of a patient with arrhythmogenic cardiomyopathy. The incorporation of structural 
defects with partially surviving myocardium in EDL-based ECG simulation is relatively 
easy to implement. The technique not only can aid teaching in the context of ECG 
waveform changes due to specific pathology, but might also be used in the non-
invasive inverse estimation of activation in the presence of inhomogeneous scar, as 
occurs in for example arrhythmogenic cardiomyopathy or Brugada syndrome. 

Effect of structural abnormalities on potentials
This new EDL method increases the understanding of ECG waveform changes due to 
diseased myocardium with distinct activation sequences. By changing the simulation 
characteristics like propagation velocity, activation wave dyssynchrony/discontinuity 
and source strength, the effect of abnormal patch activation can be investigated 
and related to waveform changes in both electrograms and BSP. With the described 
method, the general effect of a substrate consisting of both fibrofatty and healthy 
myocardium is modeled, thereby capturing the overall effect of a certain substrate 
on observed potentials. The patch may also be used to represent scar with small 
channels of viable tissue, which may provide isthmuses for reentry. By adjusting 
the connection between patch and ventricular tissue, such a scar can be modeled, 
providing also the possibility for a mid-myocardial point of reentry. 

Figure 10. Clinical EAM case. Recorded and simulated electro-anatomical map (EAM).  Local activation 
timing and bipolar voltage maps of the RV endocardium are displayed from red (early/low) to blue (late/
high). Recorded and simulated bipolar cardiac electrograms are displayed for healthy and diseased re-
gions. Within diseased regions (dashed circles), fragmentation and late potentials occur in recorded and 
simulated electrograms. Ablation was performed and indicated with the white dots. Recorded and simu-
lated body surface potentials. The BSP is displayed per lead for the QRS complex for the precordial signals 
V1-V6 from the standard 12-lead ECG. One cube in the 12-lead ECG corresponds to 40 ms (width) and 
0.5 mV (height).        
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In regions with severe scarring, low-voltage, late and fragmented potentials are 
observed during EAM procedures6-10 as well as in our simulations (Figure 10). 
However, the presence of myocardial disease cannot always be identified in recorded 
BSP, possibly due to the anatomical location of the substrate, its vicinity to an 
early site of activation (Figure 5) or due to the low local changes in potentials28,29, 
resulting in relatively small, possibly mid-QRS changes30. Whereas such pathological 
changes may not be as apparent as fragmentation31 or prolonged terminal activation 
duration32, they still may be highly relevant to monitor disease progression. The 
presence of scarred tissue can be assessed using late gadolinium enhancement 
(LGE)-CMR imaging.33 Regions with LGE are associated with the presence of abnormal 
electrocardiograms during EAM and ventricular arrhythmias.34 By also taking into 
account areas with LGE presence, patient specific EDL-based modeling and risk-
stratification may be further improved. 

Clinical implications to monitor disease progression
In this study, we observed that subtle changes in the cardiac activation were not 
always visible in the standard 12-lead ECG (Figure 5). In inherited cardiomyopathies, 
subtle changes in cardiac activation may however be a sign of disease progression 
and increased risk for ventricular arrhythmias. For instance; in arrhythmogenic 
cardiomyopathy, most structural and electrical signs of myocardial disease are 
observed in the basal area of the RV free wall.35-37 When modeling this type of disease, 
the largest changes in BSP occurred in leads not included in the standard 12-lead 
ECG (Figure 5). A previous study using echocardiography38 observed early structural 
signs of disease in the absence of ECG abnormalities in the 12-lead ECG. This may 
be explained by the fact that the standard 12-lead ECG inadequately images (subtle) 
ECG changes due to substrate location. Furthermore, the current task force criteria for 
arrhythmogenic cardiomyopathy mainly focuses on end-QRS ECG abnormalities.36 
However, depending on the location of the substrate and its vicinity to early sites of 
activation, changes throughout the QRS complex (e.g. changing RS-amplitude ratio) 
may be an important indicator of disease progression.

Identification of new ECG features to identify disease
The importance of the identification of subtle ECG changes to detect disease is 
also demonstrated within the field of ECG-based artificial intelligence. With deep 
neural networks, low ejection fraction39, LV hypertrophy40, early signs of inherited 
cardiomyopathy41 and electrolyte imbalance42,43 can be identified from the apparently 
normal 12-lead ECG. Furthermore, atrial fibrillation44,45 and life-threatening ventricular 
arrhythmias40 can be predicted using the 12-lead ECG during sinus rhythm. The 
findings of ECG-based deep neural networks may be further substantiated through 
ECG simulation. By focusing on the underlying pathology, observed pathological 
waveform changes in the 12-lead ECG may be explained by systematically evaluating 
the effect of substrates on QRS morphology. Thus, together with ECG-based 
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artificial intelligence, the new ECG simulation technique may aid the discovery of yet 
unidentified pathological waveform changes to detect and monitor disease onset 
and progression.

Patch simulation characteristics
To demonstrate the effect of different types of patch activations on BSP, patch source 
strength was set equal to ventricular source strength and propagation velocities to 
simulate delayed activation were set far below (0.25 m/s) real physiological values 
(0.85 m/s). With the simulation of an isolating mid-myocardial layer (discontinuous 
activation type 1&2), a mid-myocardial line of block was simulated and activation 
sequences and BSPs were both clearly affected (Figure 6). Without this isolating 
layer, changes in BSP were observed in the initial part of the QRS complex. With 
an isolating layer, the type of connection determined the effect on simulated BSP; 
for type 1 disconnection, the effect on BSP was difficult to distinguish from normal, 
whereas the effect of type 2 was clearly observed in the ST-segment as fragmentation.

Whereas simulated propagation velocity values, the homogeneous isolating mid-
myocardial layer and used source strength were not completely realistic for in-
human substrates, the effect of abnormal activation sequences on simulated BSP 
was clearly distinguishable. In reality, source strength of diseased myocardium is 
lower compared to healthy myocardium due to the presence of fibrofatty tissue10,29. 
By decreasing patch source strength, the presence of fibrofatty tissue was accounted 
for, directly resulting in less evident effect on the BSP (Figure 8). This finding is in line 
with observations during clinical EAM; where fragmented and late potentials can be 
observed without evident pathological signs in recorded BSP.  

Comparison to other EDL-models of disease
The fundamental difference between our new method and the method to simulate 
transmural scar by creating a hole in the ventricular anatomical model, is the ability to 
model the presence of partially- versus completely electrically inactive myocardium.15 
While creating a hole in the segmented ventricular anatomical model is appropriate 
to simulate a region that is completely electrically inactive, it is not for partially active 
substrates.7,10,28,29 With patches, the presence of diseased and healthy myocardium 
within the same region was modeled, similarly to incorporating a fibroblast model. This 
method thus serves as a more adequate representation of myocardium in e.g. border 
zones of old myocardial infarctions or substrates in inherited cardiomyopathies. In 
the current study we embedded epicardial and endocardial patches, which cannot 
represent transmural scar. In future studies, we aim to combine both methods by 
creating a hole and filling this hole with a patch representing locally transmurally 
diseased tissue.  
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Enhancing our understanding of pathological BSP 
Nowadays, thorough understanding of the relation between pathological cardiac 
electric activity and corresponding BSP requires extensive electrophysiological and 
anatomical training within the field of electrophysiology. However, for teaching 
purposes, a tool to demonstrate this relation provides important insight in the basic 
aspects of electrocardiography. By interactively testing the effect of different disease-
types on the activation sequence in the well-known known ECGsim-tool11,12, their 
effect on corresponding BSP can be directly observed and teaching of the aspects of 
electrocardiography is further improved. Furthermore, from insights obtained from 
ECG simulations, non-invasive inverse estimation of activation sequences can be 
further optimized to further improve early detection and disease risk-stratification.
  
Limitations
In this study, we used a ventricular activation sequence initiated at six different sites 
with an average myocardial conduction velocity of 0.85 m/s as our normal reference 
to study the effect of different patch activation on the QRS wave. We are aware that 
this ventricular activation sequence resulted in ECG patterns clinically categorized 
as abnormal (e.g. V1 RS pattern, prominent S in V6, aVR QS pattern and aVL QR 
pattern). These observations are likely to be the consequence of the relatively simple 
representation of normal ventricular activation, compared to complex true activation 
sequence. As the main goal of this study is to demonstrate the change by the 
presence of scar tissue, this does not compromise the conclusions of the study. The 
new method described in this article was not strictly validated in the current study. 
The comparison shown in Figure 3-8 and the comparison with clinical data (Figure 
10) give strong evidence, that the new method produces reasonable results. Future 
studies will focus on testing the validity of this new EDL approach for modeling 
different cardiac diseases. Depending on the type of substrate and disease severity, 
the most appropriate method to model the local activation wavefront can be chosen.

When embedding a patch in the ventricular model a local dent was created 
consequently affecting the ventricular distance matrix. As activation sequences 
were computed using the fastest route algorithm, the local dent directly affected 
computed activation sequences and corresponding BSP. In tissue surrounding 
diseased areas, a decrease in activation times is not expected as anisotropy is likely 
to more pronounced in this tissue beneath the patches (e.g. diseased tissue). We 
therefore assumed that when embedding a patch, waveform propagation locally 
slows in ventricular tissue. To model this, the distance matrix computed for a model 
without patches was used to compute ventricular activation sequences also in the 
ventricular model with embedded patches. From a physiological point of view, we 
effectively increased local anisotropy. 
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Conclusion
A new method to describe the effect of (partially) electrically active substrate in EDL-
based ECG simulation was established. Changes in cardiac activation sequence were 
directly related to changes in BSP. Insights obtained from the simulation study were 
in agreement with the presented clinical cases. With this new method, further in-
depth understanding of the effect of pathological activation sequences on BSP can 
be obtained. The method will be incorporated into the next generation of ECGsim 
and thus be available to everybody. With these insights, risk-stratification and 
understanding of disease progression in cardiomyopathies may be further improved.
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Abstract 
Ventricular conduction disorders can induce arrhythmias and impair cardiac function. 
Bundle branch blocks (BBBs) are diagnosed by 12-lead electrocardiogram (ECG), 
but discrimination between BBBs and normal tracings can be challenging. CineECG 
computes the temporo-spatial trajectory of activation waveforms in a 3D heart 
model from 12-lead ECGs. Recently, in Brugada patients, CineECG has localized the 
terminal components of ventricular depolarization to right ventricle outflow tract 
(RVOT), coincident with arrhythmogenic substrate localization detected by epicardial 
electro-anatomical maps. This abnormality was not found in normal or right BBB 
(RBBB) patients. This study aimed at exploring whether CineECG can improve the 
discrimination between left BBB (LBBB)/RBBB, and incomplete RBBB (iRBBB).

We utilized 500 12-lead ECGs from the online Physionet-XL-PTB-Diagnostic ECG 
Database with a certified ECG diagnosis. The mean temporo-spatial isochrone 
trajectory was calculated and projected into the anatomical 3D heart model. We 
established five CineECG classes: ‘Normal’, ‘iRBBB’, ‘RBBB’, ‘LBBB’, and ‘Undetermined’, 
to which each tracing was allocated. We determined the accuracy of CineECG 
classification with the gold standard diagnosis. A total of 391 ECGs were analysed 
(9 ECGs were excluded for noise) and 240/266 were correctly classified as ‘normal’, 
14/17 as ‘iRBBB’, 55/55 as ‘RBBB’, 51/51 as ‘LBBB’, and 31 as ‘undetermined’. The 
terminal mean temporal spatial isochrone contained most information about the 
BBB localization.

CineECG provided the anatomical localization of different BBBs and accurately 
differentiated between normal, LBBB and RBBB, and iRBBB. CineECG may aid clinical 
diagnostic work-up, potentially contributing to the difficult discrimination between 
normal, iRBBB, and Brugada patients. 
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Introduction 
Normal ventricular activation is mediated through the His-Purkinje system, which 
rapidly distributes the electrical depolarization wave to the left ventricular (LV) and 
right ventricular (RV) endocardium.1-4 The His-bundle system originates at the AV-
node and directly divides into several major branches. These major branches divide 
numerously and terminate in a dense distribution of Purkinje fibres, distributed in a 
large part of the ventricular endocardium. Conduction defects in one (or more) of 
these mayor branches regionally delay activation. Ventricular conduction disorders 
may induce arrhythmias5 and may impair cardiac function, due to the asynchronous 
ventricular activation.6,7 Intra-ventricular conduction disorders are typically referred 
to as bundle branch blocks (BBBs) and are currently identified using the standard 12-
lead electrocardiogram (ECG).

The diagnostic value of the standard 12-lead ECG is limited by the difficulty of 
linking the ECG data directly to cardiac anatomy. Furthermore, mechanical noise, 
and inconsistency and variability in electrode positioning may significantly influence 
recorded ECG waveforms, thereby directly affecting ECG interpretation.8-10 These 
factors may contribute to the challenges of the discrimination between BBB and 
normal tracings. For many decades, the vectorcardiogram (VCG) was thought 
to overcome these issues as it represents the direction of cardiac activity, either 
depolarization or repolarization.11 However, the relation between the VCG and 
cardiac anatomy remains complex. Therefore, the identification of BBB using the 12-
lead ECG remains cumbersome, even for expert ECG-readers.

Complete and incomplete BBB are identified by specific 12-lead ECG waveform 
characteristics. However, incomplete BBBs may be difficult to detect as the late 
activated area is relatively small resulting in subtle ECG waveform changes.12 
Moreover, while in the past, incomplete right bundle branch block (iRBBB) and 
right bundle branch block (RBBB) were typically thought to be benign findings in 
young adults, more recent studies suggest that they may be associated with severe 
disease, in both symptomatic and asymptomatic patients.13 Thus, patients found 
to have such abnormalities should undergo careful examination to exclude cardiac 
disease. Furthermore, iRBBB waveform characteristics may resemble non-diagnostic 
waveform abnormalities detected in patients with suspect Brugada syndrome (BrS), 
referred to as Type 2 or 3 BrS patterns. Often, even expert cardiologists do not 
agree on ECG interpretations of BrS patterns, providing inconsistent and discordant 
diagnostic conclusions.14 Therefore, the correct identification of iRBBB, is of major 
clinical relevance.

The CineECG method, computes the mean temporo-spatial isochrone (mTSI) 
trajectory of ECG waveforms and projects this into a 3D heart model, thereby 
representing the mean trajectory of the ventricular electrical activation at any time 
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interval related to ventricular anatomy.15,16 Recently, in Brugada patients, both with 
spontaneous or with Ajmaline-induced Type 1 pattern, CineECG has localized the 
terminal components of ventricular depolarization to the right ventricle outflow tract 
(RVOT). This localization coincided with the anatomical arrhythmogenic substrate 
location detected by epicardial potential–duration maps. This abnormality was not 
found in normal subjects or in RBBB patients. CineECG may be a useful tool to more 
accurately identify conduction disorders in specific areas of the heart, such as LV, 
septum, or RV, overcoming the challenges of the standard 12-lead ECG interpretation.

This study aimed at exploring whether abnormalities of the mTSI trajectory computed 
by CineECG can allow a simple and precise identification of bundle branch conduction 
defects, thereby providing a more objective and reproducible discrimination between 
normal, left BBB (LBBB), RBBB, and iRBBB compared with the standard interpretation 
of the 12-lead ECG. 

Methods
CineECG method
CineECG relates electrical cardiac activity to cardiac anatomy by computing the 
mTSI trajectory. In summary, the mTSI trajectory is derived from the VCG, computed 
from 12-lead ECG while taking into account the electrode positions on the thorax. 
Subsequently, a constant conduction velocity is used to project the location of the 
mTSI trajectory per time interval inside the heart model (Supplementary material 
online, Methods).17 The mTSI trajectory thus describes the mean direction of all 
simultaneous ventricular electrical activity during the activation and recovery of 
the heart, where cardiac activation is related to cardiac anatomy (Figure 1).15,17 In 
this study, the MRI-based heart/torso anatomical model of a 58-year-old male 
with standard electrode positions was used in all cases.17 The mTSI was computed 
according to the standard CineECG method.15,17 The origin of the mTSI trajectory is 
located in the LV septum.18 

The root mean square (RMS) curve from all recorded ECG leads was used to identify 
the onset and end of ventricular activation. Two fiducial points are identified: QRS 
onset (Figure 1, white line) and QRS end (Figure 1, red line). The mTSI trajectories 
were displayed by the standard four-chamber view, the right and left anterior oblique 
views (Figure 2).18 This enables the quantification of the relation between cardiac 
anatomy and the mTSI. Establishing the relation between the cardiac anatomy and 
the (terminal) direction of the mTSI, allows depiction of the region of latest activation 
during depolarization.

Per recording, one template beat was selected and semi-automatically QRS onset 
and QRS end were determined (Figure 1, left panel). Then, up to eight eligible beats 
were automatically selected based on similarity of the QRS complex to the template 
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beat (QRS correlation >0.99 and relative difference <0.15). For all selected beats, the 
mTSI trajectory was computed.

Electrocardiogram data and validation of the database
A total of 500 EGCs were utilized from the certified classified Physionet XL PTB 
Diagnostic ECG Database (500 Hz, https://physionet.org/content/ptb-xl/1.0.1/, Table 
1). To comply with the CineECG data structure, signals were resampled to 1000 Hz 
using linear interpolation. ECGs were classified as either no conduction disturbances 
(normal), iRBBB, complete right bundle branch block (RBBB), complete left bundle 
branch block (LBBB), or other conduction disturbances. ECGs with other conduction 
disturbances [e.g. left anterior fascicular block (LAFB), left posterior fascicular block 
(LPFB), unspecified intra-ventricular conduction disturbance (IVCD), or bifascicular 
blocks] were excluded from analysis.

Due to inconsistencies in the PTB database classification observed prior to the 
CineECG analysis, two trained experts (B.N.H. and M.J.B.) independently re-evaluated 
all ECG classifications according to the AHA Guidelines.19 The classifications of B.N.H. 
and M.J.B. were combined, inconsistencies identified and consensus was reached 
from a definitive classification. Compared with the PTB database-classification, a 
total of 151 ECGs were reclassified. A total of 109 ECGs were excluded from analysis 
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Figure 1. The computation of the mean temporal spatial isochrone (mTSI) trajectory. First, the standard 
12-lead electrocardiogram (ECG, left box) is used to compute the vectorcardiogram. Subsequently the 
mTSI locations are computed with starting point at the center of the ventricular mass projected into the 
LV septum (right box, arrow starting point) by taking into account electrode positions and the anatomical 
location of the heart. The mTSI trajectory is constructed as the 3D location of activation per millisecond 
moving with a velocity of 0.7 m/s. The QRS complex is segmented using the white and red line. These 
colors correspond to the colors in the vectorcardiogram and mTSI trajectory, which is displayed in two-di-
mensional view and three-dimensional view (3D CineECG view). Trajectories are either displayed in the 
four-chamber view (4-chamber), the left anterior oblique view (LAO), the right anterior oblique view (RAO) 
or the anterior posterior view (AP).
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as those were classified as either noise, LAFB, LPFB, IVCD, or bifasicular blocks. The 
definitive classification was used as gold standard.

CineECG parameters
For all 2993 beats from the included 391 ECGs, the following CineECG parameters 
were computed to describe the mTSI trajectory:

Three-dimensional area
The 3D mTSI area is defined as the area encapsulated by the mTSI trajectory. The QRS 
area is defined as the area under the X, Y, and Z leads which are used to compute 
the VCG.20

Mean temporal spatial isochrone location
For each mTSI 1 ms time interval, the mTSI location is determined; e.g. inside 
the septum, the LV, or the RV. The initial (first 25 ms), average, and terminal (last 
25 ms) locations of the mTSI are determined. Each time interval location is labelled 
to one of the designated areas and displayed as the ratio per area class. During 
normal activation, a trans-septal activation wavefront is expected to be present as 
activation is first initiated at the LV septum and then moves towards the RV. If the 
initial trajectory is located >10 ms inside the septum, a trans-septal initial vector is 
classified as present.

Mean temporal spatial isochrone direction
The main direction is identified as the ratio of activation directed from anterior to 
posterior, right to left, or apex to base with respect to the cardiac anatomy, different 
from the traditional azimuth, and elevation known from VCG analysis which are 
referenced to the thorax. This ratio is calculated by determining per time interval the 
direction of the mTSI trajectory. A positive direction indicates movement towards 
the posterior, left, or basal area, respectively. A value of zero indicates no movement 
towards the denoted area. The more positive or negative the value; the more the 
mTSI trajectory moves towards, respectively, away from the area. The initial (first 
25 ms), average and terminal (last 25 ms) mTSI trajectory direction was determined.

Trans-cardiac ratio
The trans-cardiac ratio (TCR) is the ratio of the 3D distance between the location of 
QRS onset and QRS end and heart-model size.16 The minimal TCR is the ratio of the 
3D distance between the location of QRS onset and the closest point of the mTSI 
trajectory to the onset after 60% of the QRS duration and heart-model size.

Heart axis
A frontal and transversal heart axis were defined by calculating the angle between 
the left to right axis and a predefined location in the mTSI trajectory. An initial (25 ms), 
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average, and terminal (QRS end) location in the mTSI trajectory were computed.

CineECG classification
Relevant CineECG parameter and cut-offs were identified using scatter plots, where 
the relevant parameter (y-axis) was scattered against QRS duration (x-axis). Based 
on this analysis and a previous study, all beats were classified using the CineECG 
parameters using the following criteria17:

1. Normal: QRS duration < 110 ms, TCR 2–40%, terminal-mTSI location RV < 50%, 
and the terminal transversal heart axis between −100° and 150°.

2. RBBB: QRS duration ≥ 120 ms, TCR > 8%, terminal-mTSI location RV, or septum 
> 0. Terminal transversal heart axis <−50° or >50°.

3. iRBBB QRS duration ≥100 and < 120 ms, minimal TCR < 15%, mTSI location in 
RV. Terminal transversal heart axis <−75° or >75°.

4. LBBB: QRS duration ≥120 ms, TCR > 35%, average transversal HA terminal QRS 
between 0 and 100, complete mTSI location >70% inside the LV.

5. Undetermined: any other value for the above-mentioned CineECG parameters.

If in a given ECG, different beats were allocated to different CineECG classes, the 
final CineECG class of the complete ECG was determined by identifying the most 
frequently assigned CineECG class over all considered beats.

Statistical analysis
All statistical analysis was performed using MATLAB (2017a). The percentage of 
correctly classified ECGs was determined as well as sensitivity, specificity, negative 
predictive value, positive predictive value, accuracy, and F1-score were determined 
per subgroup. Baseline characteristics were tested for statistically significant 
difference using one-way ANOVA or Chi-squared tests for continuous, respectively, 
categorical variables. A value of P < 0.05 was considered statistically significant.

Results 
The clinical, ECG, and CineECG characteristics of the 391 cases grouped by their 
clinical diagnosis are provided in Table 1. As can be observed, the age between 
clinical groups differed significantly (P < 0.0001). Furthermore, all CineECG-derived 
parameters differed significantly per group (P < 0.0001).

Mean temporal spatial isochrone trajectory by each clinical group
The average mTSI trajectories from all 2993 beats per clinical group are shown 
in Figure 2. Per time interval, the average mTSI location was computed (Figure 2, 
solid red line) and the standard deviation was calculated as the mean 3D distance 
between the average mTSI trajectory and individual mTSI trajectories (Figure 2, grey 
tubular envelope). A clear distinction between normal, RBBB, and LBBB activation 
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can be observed. In RBBB activation, the initial part of the mTSI is similar to normal 
activation whereas in LBBB activation the initial trans-septal direction is not present. 
Differences between iRBBB and normal activation are less pronounced compared 
with the complete blocks.

Normal activation
In the 266 cases defined on the basis of the 12-lead ECG classification as normal, the 
mTSI trajectory was compact (Figure 2). The initial direction of the mTSI trajectory was 
mainly trans-septal, crossing the septal wall from left to right (Table 1). Thereafter, 
the main direction was towards the middle/basal area of the LV-free wall. Overall, 
the mTSI of the QRS stayed close to or inside the septum and terminated in the LV.

Incomplete bundle branch block activation
In the 17 cases defined as iRBBB, the mTSI trajectory was even more compact compared 
with the normal mTSI trajectory (Figure 2). The first part of the mTSI trajectory is 
similar to the normal mTSI trajectory. After the initial trans-septal movement, the 

Table 1. The clinical, electrocardiographic and CineECG characteristics of the 391 cases grouped by their 
clinical diagnosis. 
Clinical characteristics Normal iRBBB RBBB LBBB p-value
Cases (n) 266 17 55 51
Beats (n) 2065 126 409 393
Age (years) 47±19 47±20 69±14 74±9 <0.0001
Gender (% male) 54% 35% 42% 59% 0.132
CineECG characteristics
QRS duration (ms) 87±10 108±5 141±13 144±14 <0.0001
QT duration (ms) 395 ±34 411 ±42 439 ±58 431±54 <0.0001
TCR (%) 21 ±9 18 ± 8 41 ± 9 48 ± 4 <0.0001
Minimal TCR (%) 18 ± 10 11 ± 9 21 ± 15 48 ± 4 <0.0001
Transseptal vector present (%) 95 97 87 47 <0.0001
Angle transseptal initial vector (%) 129±28 134±23 123±30 82±37 <0.0001

Values are displayed as mean ± standard deviation, a p-value <0.05 was considered statistically signifi-
cant. Abbreviations: iRBBB = incomplete right bundle branch block, RBBB = right bundle branch block, 
LBBB = left bundle branch block, QRS = QRS complex, QT = Q-wave to end T-wave, TCR = trans cardiac 
ratio. 

Table 2. The overall performance of the CineECG classification scheme for the classification of ECGs. 
CineECG characteristics Normal iRBBB RBBB LBBB
Sensitivity 90.2 82.4 100 100
Specificity 99.2 96.5 100 100
Negative predictive value 82.4 99.2 100 100
Positive predictive value 99.6 51.9 100 100
Accuracy 94.7 63.6 100 100
F1-score 93.1 95.9 100 100

Values are displayed as percentages. Ranges of confidence intervals were equal to the mean presented 
in this table. Abbreviations: iRBBB = incomplete right bundle branch block, RBBB = right bundle branch 
block, LBBB = left bundle branch block.



127

Conceptual validation CineECG method

6

mTSI starts moving towards the apex and back through the septal wall towards the 
LV. The terminal part points mostly towards the septal wall, indicating late activation 
in the RV. This compactness was reflected in a lower TCR and minimal TCR and the 
mTSI location was high for the septum.

Right bundle branch block activation
In the 55 cases defined as RBBB, the mTSI trajectory differed from the normal mTSI 
trajectory in its terminal QRS direction which was directed towards the right basal 
area (Figure 2), reflecting late ventricular activation in this region. Compared with 
normal TCR, the TCR was increased and increased mTSI location inside the RV was 
observed. The trans-septal vector was less present compared with normal and iRBBB 
mTSI trajectories (Table 1).

Left bundle branch block activation
In the majority of the 51 cases defined as LBBB, a trans-septal vector was absent 
in the mTSI trajectory. In these subjects, the mTSI moved from the LV septal wall 

Four chamber view Apical view

RB
BB

iR
BB

B
N

or
m

al
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BB

Figure 2. The average CineECG mTSI trajectories according to ECG diagnosis. For all four groups: normal, 
incomplete right bundle branch block (iRBBB), right bundle branch block (RBBB) and left bundle branch 
block (LBBB), mTSI trajectories are displayed in the four-chamber view (left column) and apical view (right 
column). The standard deviation around the average mTSI trajectory is indicated by the black tubular 
envelope and the mean mTSI direction is indicated in red.
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towards the LV-free wall, which was reflected in the mTSI location. The terminal mTSI 
of the QRS was directed to the LV-free wall (b), with a large TCR (Table 1), the mTSI 
was never located in the RV, and a trans-septal vector was less present (Table 1).

CineECG classification output
All 2993 beats (from 391 ECGs) were classified according to the CineECG criteria as 
either ‘normal’, ‘iRBBB’, ‘RBBB’, ‘LBBB’, or ‘undetermined’, and these classifications 
were used to determine the definitive CineECG class per ECG. Two-dimensional 
scatterplots were used to determine the relevancy and cut-off values per CineECG 
parameter (Figure 3A). In 41 ECGs, beats of one ECG were assigned to two or more 
CineECG classes, either to the ‘normal’, ‘iRBBB’, or ‘undetermined’ group and thereof 
27 ECGs were classified correctly. Table 2 shows the detailed diagnostic performance 
of the CineECG classification for the different clinical groups. A high performance 
was obtained for normal, RBBB, and LBBB groups. For iRBBB activation, sensitivity 
was lower compared with the other groups. For RBBB and LBBB groups, the CineECG 
classification and the clinical diagnosis were always coincident (Figure 3B). Vice 
versa, less consistency between CineECG and clinical diagnosis was observed in 
discriminating between iRBBB from normal, especially in beats with a QRS duration 
between 100 and 110 ms.

Discussion
This is the first study utilizing CineECG to characterize ventricular activation defects 
and classify BBB by using 3D anatomical characteristics of the mTSI trajectory. Using 
CineECG criteria, all RBBB and LBBB tracings, and most IRBB and normal tracings, were 
classified correctly in accordance with standard 12-lead clinical classification. CineECG 
provides an easy-to-use tool to obtain a comprehensive insight into the relation 
between ventricular activation and anatomy and is therefore helpful for clinicians to 
accurately discriminate between different conduction disorders. However, between 
iRBBB and normal activation, overlap exists between the clinical groups, particularly 
between 100 and 120 ms QRS duration. A clear distinction between the types of 
blocks can be visually observed in the average mTSI trajectories (Figure 2). The 
terminal vector of the mTSI trajectory points towards the area of latest activation, 
thereby indicating the location of the block. However, the differentiation between an 
iRBBB and a normal pattern remains challenging and requires further optimization.

The relation between mean temporal spatial isochrone and bundle branch block 
location
The average mTSI trajectories observed in this study, clearly show distinct patterns 
for different types of BBB (Figure 2). For the complete BBB, a clearly deviating 
pattern from the normal can be observed. While in LBBB activation patterns, the 
mTSI trajectory mainly moves leftwards and inside the LV cavity, in RBBB activation 
patterns, the mTSI trajectory initially moves towards the LV cavity whereafter it 
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moves towards the RV basal area (Figure 2). Thus, while the mTSI trajectory of LBBB 
solely moves leftwards, the mTSI trajectory for RBBB starts leftwards, and then goes 
rightwards. This may be explained by the larger amount of LV myocardial mass, 
with respect to the RV myocardial mass, and thus LV activation is likely to conceal 
activation occurring in the RV. Since CineECG takes cardiac anatomy into account, 
mTSI trajectories might be viewed as a more reliable alternative to identifying 
BBB than the current ECG strict criteria for LBBB and RBBB, also considering inter-
individual age and gender variation.6,12

Clinical classification of incomplete right bundle branch block
QRS duration is one of the main clinical characteristics to differentiate between normal, 
incomplete, and complete RBBB. An iRBBB is identified when QRS-duration ranges 

Figure 3. A: Setting the CineECG BBB classification criteria. A representative example of a two-dimension-
al scatterplot of all selected beats where the mTSI location parameter is scattered against QRS duration 
(x-axis). The dots in all plots designate measured mTSI location per beat plotted as a function of QRS du-
ration, classified as either normal (blue), incomplete right bundle branch block (iRBBB, green), right bundle 
branch block (RBBB, black) or left bundle branch block (LBBB, red).  As can be observed for LBBB, the mTSI 
location is most of the time located inside the left ventricular cavity and never in the right ventricular 
cavity, whereas for RBBB it is mainly located inside the right ventricular cavity. Such two-dimensional 
scatterplots were used to identify the relevancy and cut-off values of CineECG parameters. Mentioned 
CineECG criteria were set by a combination of data obtained in a previous study 17 and observations 
made in the current study. B: CineECG BBB Classification. The beat adjudication according to the CineECG 
criteria (x-axis) against QRS duration (y-axis) to show overlap between QRS duration but were assignment 
to a different group. Colors of the dots indicate the clinical group. The dots in all plots indicate measured 
values per beat plotted as a function of QRS duration, diagnosed as either normal (blue), right bundle 
branch block (iRBBB, black), incomplete RBBB (green) or left bundle branch block (LBBB, red).
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between 110 and 120 ms, but may be wrongly classified in cases of incorrect manual 
or machine interpretation of the 12-lead ECG, further magnified due to inter-lead 
QRS duration differences. Therefore, a coherent way to measure the QRS duration is 
of utmost importance in order to correctly differentiate between normal and iRBBB 
activation. CineECG is likely to overcome these difficulties. In case of iRBBB, the 
mTSI trajectory is compact and stays within the septum and clearly differs from both 
normal and RBBB activation (Figure 2). Thus, (i) the temporo-spatial location of the 
mTSI trajectory contains all information about the direction and timing of ventricular 
depolarization and (ii) the mTSI terminal direction indicates the anatomical location 
of the block, by pointing towards the latest site of activation. With increasing QRS 
duration in iRBBB cases, a clear shift of the terminal mTSI direction towards the RV 
base was observed, becoming more similar to the RBBB mTSI trajectory (Figure 2).

Comparison with standard 12-lead electrocardiogram assessment
In this study, we validated our CineECG method with the clinical 12-lead ECG 
assessment. However, ultimately, the comparison of CineECG classification with 
standard 12-lead ECG clinical assessment through invasive electro-anatomical 
activation mapping should be performed. Through invasive mapping, the true 
location of the BBB may be identified and the ability of CineECG and standard clinical 
12-lead to identify these BBBs correctly can then be assessed.

Starting point mean temporal spatial isochrone trajectory
In CineECG, the starting point of the mTSI trajectory was set at the left side of the 
septal wall closest to the ventricular centre of mass. During normal activation, a trans-
septal wavefront of activation moves from the LV side of the septum towards the 
right. However, in LBBB cases the trans-septal vector is reversed and thus classified 
as not present in 53% (Table 1). Therefore, this starting point may inadequately 
represent the true start of LBBB activation, as such activation starts at the RV septum 
or RV-free wall. Furthermore, due to intra-individual differences in bundle branch 
anatomy, this starting point may inadequately represent the true starting point of 
ventricular activation. The starting point therefore serves as a general starting point, 
but as shown in this study, CineECG provides an accurate concise way to assess 
average ventricular activation related into cardiac anatomy, where the starting point 
does not yet seem to be a constraint for the CineECG classification.

Limitations
The use of a standardized heart torso model, rather than a personalized model, may 
limit the accuracy of the presented results. The use of the standard torso/heart model 
enables the direct projection of the mTSI to the cardiac anatomy, but differences in 
heart anatomy and orientation, thorax anatomy and lead position are not accounted 
for. With age, the shape, position, and orientation of the heart in the torso may 
change. In this study, we used a standard anatomical heart/torso model based on 
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a 58-year-old male, which may adequately represent adult RBBB and LBBB male 
cases (Table 1) but may be inadequate for the younger iRBBB and normal cases 
and more generally, for female cases. Using a standardized heart/torso model may 
result in a larger CineECG parameter variation, caused by intra-individual variation in 
cardiac anatomy. Thus, the distribution of mTSI-derived parameters per BBB group 
encompass larger standard deviations as activation is referenced to a cardiac anatomy 
with an incorrect size, shape, and/or orientation, also relative to the thoracic model 
and electrode locations. Therefore, using a 3D camera to localize the ECG electrodes 
and the torso dimensions might increase the accuracy of our method.21–23 These 
factors may be particularly relevant for the more accurate identification of iRBBB.

In PTB database, the number of IRBB cases was very small. Besides, we found some 
inconsistencies in the PTB database classification, particularly regarding iRBBB cases. 
Therefore, we revised all the included ECG and upon agreement of two independent 
experts, we came to a definitive classification of the PTB tracings which we used for the 
statistical analysis. Given the clinical relevance of analysis of the late depolarization 
signals, we plan to perform a prospective study studying CineECG characteristics of 
patients with different intra-ventricular conduction disorders.

Future perspectives
Ambiguity in the standard 12-lead ECG classification can be caused by the presence 
of intra-individual differences in cardiac anatomy (size, shape), cardiac orientation 
(due to age, effects of breathing, thoracic shape), bundle branch anatomy, the 
presence of cardiac disease (scar, myocarditis, fibrofatty tissue), and inconsistency in 
the placement of electrodes relative to the heart. All these factors may contribute to 
determine the ECG waveform morphology and 12-lead ECG diagnostic criteria of BBB 
may be present in the 12-lead ECG in the absence of a true BBB. Through CineECG, a 
more comprehensive view is given on the cardiac electrical activity using the 12-lead 
ECG, thereby providing a tool less prone to intra-individual characteristics. Further 
testing and optimization of this technique are still required. For example, the effect of 
the presence of scar or ischaemia, or more generally myocardial structural diseases, 
should be assessed in future studies. Furthermore, the ability of CineECG to correctly 
discriminate between iRBBB, RBBB, LBBB, unspecified intra-ventricular conduction 
disorders and left anterior and posterior hemiblocks, or even the coexistence of 
these conduction disturbances should be assessed.

Conclusions
The advanced interpretation of the 12-lead ECG through the CineECG method proved 
to be a robust technique to differentiate between different intra-ventricular bundle 
branch conduction defects. The mTSI trajectory relates cardiac activation to cardiac 
anatomy, thereby directly identifying the anatomical location of the BBB, mostly 
indicated by the terminal part of the mTSI trajectory. The CineECG classification 
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was able to accurately discriminate between normal, RBBB, and LBBB cases. Further 
optimization of the classification algorithm may enhance the CineECG classification 
of iRBBB. The CineECG method, directly derived from 12-lead ECG, can be viewed 
as a non-invasive mapping tool and may improve the early recognition and the 
monitoring of the progression of intra-ventricular bundle branch conduction defects.
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Abstract 
The standard 12-lead electrocardiogram (ECG) is a diagnostic tool to asses cardiac 
electrical activity. The vectorcardiogram is a related tool that represents that activity 
as the direction of a vector. In this work we investigate CineECG, a new 12-lead ECG 
based analysis method designed to directly estimate the average cardiac anatomical 
location of activation over time. 

We describe CineECG calculation and a novel comparison parameter, the average 
isochrone position (AIP). In a model study, fourteen different activation sequences 
were simulated and corresponding 12-lead ECGs were computed. The CineECG was 
compared to AIP in terms of location and direction. In addition, 67-lead body surface 
potential maps from ten patients were used to study the sensitivity of CineECG to 
electrode mispositioning and anatomical model selection. Epicardial activation maps 
from four patients were used for further evaluation.

The average distance between CineECG and AIP across the fourteen sequences was 
23.7±2.4 mm, with significantly better agreement in the terminal (27.3±5.7 mm) 
versus the initial QRS segment (34.2±6.1 mm). Up to four cm variation in electrode 
positioning produced an average distance of 6.5±4.5 mm between CineECG 
trajectories, while substituting a generic heart/torso model for a patient-specific one 
produced an average difference of 6.1±4.8 mm. Dominant epicardial activation map 
features were recovered. 

Qualitatively, CineECG captured significant features of activation sequences and was 
robust to electrode misplacement. CineECG provides a realistic representation of 
the average cardiac activation in normal and diseased hearts. Especially the terminal 
segment of the CineECG might be useful to detect pathology.  
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Introduction 
The 12-lead ECG is one of the fundamental diagnostic tools in clinical practice 
to gain insight into cardiovascular abnormalities and arrhythmias. However, the 
interpretation of the ECG requires training and clinical expertise and is subject to 
considerable inter- and intra-clinician variability.1-3 Additionally, the diagnostic value 
of the standard 12-lead ECG is limited by the difficulty of linking it directly to cardiac 
anatomy. The 12-lead ECG is also susceptible to human errors such as variability in 
electrode positioning4-6, which can significantly affect recorded ECG waveforms and 
consequently their interpretation by a clinician.2,7-9 The clinical vectorcardiogram (VCG) 
was introduced as an approach to overcome this problem.10 Furthermore, standard 
ECG-derived characteristics (e.g. QRS duration, axis or morphology) may indicate 
pathology give only a crude description of the global activation pattern, leaving out 
the temporo-spatial movement of cardiac activation.11,12 In the VCG, the magnitude 
and direction of cardiac electrical activity are represented by a vector which changes 
in magnitude and angle rotating around a fixed location thereby giving a simple 
3D representation of the cardiac electrical activity related to the thorax. However, 
in clinical use the VCG is difficult to relate to cardiac anatomy since it requires 3D 
rotation of the VCG from torso to heart axis. Moreover, the VCG still suffers from the 
large differences in amplitude, and remains sensitive to electrode positioning.13,14 In 
particular, the fact that the origin of the VCG vector is assumed to be constant limits 
its ability to adequately describe the temporo-spatial anatomical patterns of cardiac 
activation, as well as the changes in those activation patterns due to localized tissue 
and conduction defects. Other approaches that explain cardiac activation through 
the reconstruction of a single moving dipole have showed promising results in the 
localization of the origin of ventricular tachycardias, but these methods required the 
use of a larger number of ECG electrodes15-17 or have not yet been tested in normal 
ventricular activation18,19. In this study we investigate a novel approach by adding 
cardiac anatomy-based temporo-spatial variation to the computation of the VCG 
vector. We call this approach CineECG, in analogy to CineMRI. 

CineECG attempts to image key temporo-spatial features of the activation 
sequence that are difficult to obtain reliably from direct ECG or VCG interpretation 
by employing a simplified anatomical model and a vector direction-oriented 
approach.20-22 One approach towards obtaining temporo-spatial information 
from body surface potentials that has recently gained increasing attention is ECG 
Imaging (ECGI), including the dipole-based methods mentioned previously. ECGI 
generally solves some version of the inverse problem of electrocardiography to 
non-invasively reconstruct a complete characterization of cardiac electrical activity 
from body surface potential measurements. However, ECGI techniques require the 
acquisition of many more than 12 leads, are expensive and time-consuming, and 
again are sensitive to errors in electrode positions. With CineECG, a lightweight and 
less complex alternative to ECGI is provided as 1) the additional physical burden 
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on electrode number and placement is minimized and 2) the use of sophisticated 
and computationally expensive numerical techniques is not required. Specifically, 
CineECG is designed to estimate the ‘average position’ of cardiac activity1 at each 
time instant at which the ECG is sampled, directly coupled to cardiac anatomy, from 
standard clinical 12-lead ECGs.22,23 In previous studies, starting in 2017, we reported 
on a preliminary version of CineECG, which we called the mean Temporo-Spatial-
Isochrone or mean-TSI trajectory. In these earlier studies, CineECG was shown to be a 
robust technique to detect substrates in Brugada Type-I patients20 and to differentiate 
between different intraventricular bundle branch blocks21 and the ‘normal’ CineECG 
was determined24.  

However, a thorough methodological study and conceptual validation of the CineECG 
method has not yet been carried out. In this paper, we study both the accuracy of 
CineECG and its sensitivity to both electrode placement and to inaccuracy in the 
anatomical model when it is applied to a wide variety of cases of sinus rhythm. 
For this purpose, we used both simulated data and data from a cohort of patients 
obtained in a clinical setting. In our simulation study we take advantage of the known 
ground truth to study the relationship between cardiac isochrones and CineECG. 
To characterize an “average position of cardiac electrical activity” even when there 
are multiple wavefronts in sinus rhythm, we developed a measure of the average 
isochronal position (AIP) of the activation trajectory and compared it to trajectories 
constructed by CineECG. Using the patient data, we tested the effect on CineECG of 
electrode positioning variation and of the use of individualized versus standardized 
anatomical modeling. Additionally, we report on four of those clinical examples 
where epicardial mapping was available to further illustrate the relationship between 
CineECG and the recorded maps during sinus rhythm.

Method 
The CineECG method
CineECG uses the 12-lead ECG to estimate the average position of cardiac activation 
waveforms within an anatomical 3D heart model (Figure 1). To compute the CineECG, 
three inputs are required: 1) a 3D anatomical heart model, 2) ECG electrode locations 
on the torso with respect to the heart model, and 3) the standard 12 lead ECG. The 
anatomical model is typically created using cardiothoracic imaging, either CT-based 
or MRI-based, onto which the electrode positions are registered2. Then the 12-lead 
ECG is used to compute the CineECG.20-22, 24

In short, the CineECG computation starts with an initialization step which specifies a 
starting point in space and time that is used to start the recursive CineECG calculations 
1 We use the phrase ‘average position of cardiac activation’ to represent the anatomical center of mass 
of all simultaneously active cardiac cells at a given time (that is, those cells undergoing a change in 
transmembrane potential at that time).
2 In contrast to ECGI, we only need an anatomical model to cover the pre-cordial electrodes with respect 
to the cardiac anatomy
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Figure 1. Schematic overview of the CineECG calculation in general (Panel A) and per time interval (Panel 
B). The heart/torso anatomical model, electrode positioning and the 12-lead ECG are the three inputs of 
the CineECG calculation. The cardiac anatomy and electrode positioning inputs can be either generic or 
subject specific, the ECG input is always case specific. The CineECG is computed each time sample of one 
millisecond. Using the electrode vector field (indicated with the arrows in the grey torso), ECG amplitude 
at the time interval and the augmentation factor (ɑel), the VCG is computed to determine the direction 
of the CineECG (Equation 1). Thereafter, the current CineECG location is calculated using a set constant 
speed of 0.7 m/s from the previous CineECG location in the direction indicated by VCG(t). The CineECG 
is calculated from mid QRS in a forward and backward fashion. The resulting VCG (A, second panel) and 
CineECG (A, third panel) are displayed from white (start QRS) to red (end QRS), and in addition the starting 
point is indicated in the CineECG panel.
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(Figure 1). In the original CineECG method, this starting point was chosen in space as 
the closest point on the left septal wall to the center of mass of the heart and in time at 
the beginning of the QRS.20-22 After further empirical consideration by taking cardiac 
electrophysiology into account, we now set the CineECG starting point spatially to 
the center of mass of the anatomical 3D heart model itself and temporally at mid-
QRS. This change was made based on the assumption that at mid-QRS, half of the 
ventricular mass is activated and thus the location of the average wavefront at mid-
QRS is approximated well by the center of mass, and that generally the largest mass 
of tissue is activated around this point in time. From that starting point the average 
cardiac activation position is propagated through the cardiac anatomy with a two-
step procedure. In the first step a modified version of the VCG is computed from the 
12-lead ECG at a given time sample using the current CineECG location. In the second 
step the direction of this VCG is used to determine the direction in which the average 
cardiac activation position will move from that location at a speed determined based 
on physiological propagation assumptions. The calculation proceeds recursively in 
this time-step-wise fashion until the entire activation sequence has been localized. 

Computation of the CineECG position over time
To propagate the CineECG, we start the bi-directional recursive computation from 
the CineECG starting point in both space and time. For simplicity we will describe the 
computation going in the forward direction in time; the backward computation is 
essentially the same. At each time instant t we first compute the average direction of 
activation at time instance t (Equation 1, denoted as ) using time-dependent 
lead vectors which point from the previous (time t-1) CineECG location to each of 
the electrode locations, denoted - .  points from the origin to the elth 
electrode and  points from the origin to the (t-1) CineECG location. We then 
normalize each lead vector by its length so that we have a set of nine unit vectors, 
one for each ECG electrode. The average direction of activation at time t,  
is then calculated as a weighted vector sum of these nine unit-vectors, where the 
weights are the amplitude of the unipolar ECG signals of the 12-lead ECG along with 
a scale correction factor :

       Equation 1

where  is used to account for differences in the distance from the heart to the 
elth electrode. In practice, we set the elth scale factor to 1 for the precordial leads and 
to 2 for the unaugmented extremity leads (Vr, Vl, and Vf). As a further refinement, 
we project the unaugmented extremity leads onto the frontal plane by setting the 
components of those lead vector in the anterior-posterior direction to 0 and only 
using the frontal (left-right and superior-inferior) components; this modification 
adds robustness as the anterior-posterior direction is most influenced by whether 
the extremity leads are placed according to the standard ankle-wrist location or the 
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adapted emergency Mason-Likar position.  In summary,  is a vector sum over 
unit vectors pointing from the most recent CineECG location to the electrodes, where 
each unit vector is weighted by the value of the ECG on that electrode along with an 
additional geometric scale factor. Note that in effect, we assume that a reasonable 
origin for the ECG amplitudes is represented by an effective electrical center of 
the heart that changes with time as the activation wavefronts move through the 
myocardium. In effect we estimate that origin at each time step as 
which we then use to compute .

In the second step of CineECG, starting from the CineECG location at time (t-1), 
 is calculated by moving parallel to  at a constant propagation 

speed. We use speed = 0.7 m/s as the assumed speed to balance the combination 
of 1) faster longitudinal propagation speed of about 0.85 m/s25-27,  2) 0.35 m/s for 
transmural propagation26,28, and 3) a higher speed in regions with a high density of 
Purkinje-myocardial junctions27 that results in the sudden activation of regions near 
where these junctions are located. Writing this out moving in both directions in time 
we have, for the calculation that moves forward in time:

        Equation 2.1

and for the calculation that moves backward in time: 

        Equation 2.2

Note that the last term in each equation normalizes the length of the directional 
change to 1, thus assuring that the propagation speed is determined by the chosen 
value of speed. This procedure is repeated forwards and backwards until all time 
instants in the QRS complex have been used. A detailed schematic overview of the 
calculation is displayed in Figure 1B.

Ground truth characterization: Average isochrone position (AIP)
To compare the CineECG to the simulated activation sequences, where we have full 
ground truth, we need to characterize the “average location” of all simultaneous 
activation wavefront isochrones in the heart to provide a direct comparison between 
cardiac isochrones and the CineECG, since that average location is what CineECG is 
designed to estimate from the ECG. To the best of our knowledge, this kind of metric 
over multiple simultaneous activation wavefronts has not been published before. 
Therefore, we developed a method to calculate an “average isochrone position” (AIP) 
sequence for cardiac activation. The AIP is based on the average location, per 5 ms 
interval, of the cardiac tissue activated during that interval. At each such interval, the 
AIP location is calculated by identifying the coordinates of all nodes with an activation 
time within the time interval and averaging those node locations, each multiplied by 
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a weight equal to the wall thickness at that node (Supplement A, slide 2). As a further 
refinement, the distance between two subsequent AIP locations was restricted to 
no more than 1.5 times the distance between the previous two AIP locations. This 
restriction was set to prevent unphysiologically large jumps between subsequent AIP 
locations which otherwise occurred in some cases when slight imbalances between 
the progression of activation in the left and right ventricles caused large jumps in the 
AIP. As a test, the AIP was calculated as described for a simulated case of a premature 
ventricular beat. In this case (Supplement A, slide 2), the AIP pathway approximated 
a straight line from the initial site of activation towards the latest site of activation. 
For more complex activation sequences like sinus rhythm, the AIP trajectory became 
more compact, as would be expected, reflecting the existence of multiple local 
wavefronts moving in different directions. 

Experimental methods
Simulation Study
For the simulation study we calculated 14 His-Purkinje mediated activation sequences; 
six without, and eight with, a simulated conduction block in the bundle branch 
system. The fastest route algorithm29,30 was used to simulate activation sequences 
with two to six foci located at multiple endocardial locations associated with His-
Purkinje mediated ventricular activation25,31. Different sets of locations were chosen 
to simulate cases with (e.g. left or right) and without conduction block (Supplement A, 
slides 7-20). These calculations were carried out using the ECGsim software package 

Figure 2. Schematic overview of the ECG simulation protocol. The patient specific heart/torso model and 
simulated activation sequences are used for the 12-lead ECG computation. Activation sequences were 
simulated by determining several foci (indicated with a ) at the anatomical heart model where the acti-
vation sequence start. Using the fastest route algorithm, a set anisotropy ratio of 2,5 and set conduction 
velocity of 0.85 m/s, actuation sequences were computed. The average isochrone position (AIP) was then 
calculated from these activation sequence using time intervals of 5 ms. Colors of the AIP trajectory and 
local activation timings correspond to the same time instance.  These results are shown in the left panel, 
where the heart is shown in two orientations for greater clarity. Using the Boundary Element Method with 
the reference anatomy as described in the text, ECGs were simulated for all simulated activation sequenc-
es. In this figure, the RBBB activation sequence (normal left ventricular activation and delayed right ven-
tricular free wall activity) is displayed as a representative example; all the simulated activation sequences 
are displayed in Supplement A. 
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(Figure 2).32-34 Specifically, to simulate the activation sequences, a constant velocity 
of 0.85 m/s longitudinal to the myocardial muscle fibers was used with an anisotropy 
ratio of 2,5.25-28 In close vicinity of foci (<1.5 cm), the velocity was set to 1.7 m/s at the 
endocardial surface to account for increased conduction velocities as seen in regions 
with a high density of Purkinje-myocardial junctions.27 Among the set of activation 
sequences with conduction blocks, complete left and right bundle branch blocks 
(LBBB/RBBB) and incomplete BBB; left anterior/posterior fascicular block (LAFB/LPFB) 
and incomplete RBBB (iRBBB were simulated. Once the activation sequences were 
calculated, synthetic 12-lead ECG data to use as input for the CineECG calculations 
was computed using the Boundary Element Method (Figure 2). A CT-based single 
patient specific model of the ventricles, lungs and torso (male, 21y) was used as the 
input geometry model. A volume conductor model for this geometry was computed 
with assigned conductivity values of 0.2 S/m for the thorax and ventricular tissue, 0.04 
S/m for the lungs and 0.6 S/m for the blood cavities. The computed ECG data, the 
patient specific model used to simulate the ECG data and the standard 12-lead ECG 
precordial electrode positions were then used as input for the CineECG calculation. 

The AIP and CineECG trajectories were compared per 5 ms interval for each 
simulated beat by computing 1) the distance between the average locations of the 
two trajectories in each interval, 2) the angle between their directions, 3) the closest 
distance of the trajectories to the septal wall and 4) the percentage of the trajectory 
located in the left and right ventricular cavities. Finally, average values of first three 
metrics for the complete QRS and the initial (first 25 ms) and terminal (last 25 ms) 
segments were determined. 

Patient study
Ten patients referred for invasive electroanatomic catheter mapping (EAM) and 
ablation were enrolled in this study. The EAM procedure was clinically indicated 
because of either recurrent ventricular arrhythmia due to structural myocardial 
disease (prior myocarditis (three patients), arrhythmogenic cardiomyopathy (three 
patients) or dilated cardiomyopathy (two patients) or for symptomatic premature 
ventricular contractions (two patients). As a part of the clinical workup prior to the 
EAM procedure, all patients underwent clinical CT imaging. For study purposes, a 
67-lead body surface potential mapping procedure was performed on the same day 
as the clinical CT imaging. The study protocol was approved by the local institutional 
review board (UMC Utrecht, Utrecht, The Netherlands, protocol nr. 17/628). All 
patients gave informed consent prior to body surface potential mapping procedure 
and the study was conducted according to the declaration of Helsinki. The measured 
in-vivo data in all patients were used to study the sensitivity of CineECG to shifts in 
electrode location and variation in the anatomical model with real ECG measurements.
 



144

Chapter 7

CT-based patient specific model of the ventricles, lungs and torso were created for all 
ten patients. Electrode positions were captured using a 3D camera setup and merged 
with the CT-based patient specific model of the torso.35 To conduct these studies, 
several 12-lead ECGs were taken from the simultaneously measured 67-lead body 
surface potentials. Precise electrode positions of measured signals were determined 
based on the patient specific anatomical models (Figure 3, All setups). To assess the 
sensitivity of the CineECG computation to the anatomical model and case specific 
electrode placement, three different sensitivity studies were performed (Figure 3, 
Comparisons) which are further explained in the following sections. The electrode 
placement study was conducted to assess the sensitivity of the CineECG computation 
to possible electrode misplacement or disease specific electrode placement.2,4-9 The 
following specific changes electrode positions were chosen as in clinical practice 
electrode misplacement mostly occurs by a higher or lower placement of the 
precordial electrodes. Furthermore, in women lead V3-V6 are often placed below 
the breasts, which is lower compared to the standard precordial lead placement. The 
Brugada electrode setup was chosen as this is a commonly used setup to determine 
whether the patient has Brugada syndrome. Specifically, the following three studies 
were conducted. 

Patient specific anatomical model and case specific electrode positions
In the first study, patient specific modeling was used and five different but simultaneous 
ECGs were obtained from five different subsets of body surface electrodes as shown 
in the middle panel of Figure 3. Each of these five subsets of ECGs were used to 
compute the CineECG with the same individualized model (Figure 3, all sensitivity 
test setups). This study was used to specifically investigate the effect of different 
electrode positioning with corresponding 12-lead ECGs on the CineECG locations. 
For comparison purposes, the trajectories computed using the different electrode 
setups were compared to the trajectory computed using the patient specific standard 
electrode setup (Figure 3, blue setup).

Generic anatomical model and case specific electrode positions
In the second study, a generic anatomical model (male, 58 y, not one of the patient 
cases) was used, and the case specific electrode positions were registered to that 
model by registering the sternal line of the torso to the sternal line in the 3D camera 
images. This study was used to assess the effect of using a generic anatomical 
model instead of an individualized one. The trajectories computed in this study 
were compared to the trajectory computed using the patient specific anatomical 
model with the patient specific standard electrode setup (Figure 3, blue setup). To 
quantitatively compare the CineECG trajectories computed using subject specific vs 
generic anatomical models (and consequently starting point), all trajectories were 
aligned based on the starting point and then the comparisons were computed. The 
distance in starting point using the generic or subject specific model was determined. 
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Figure 3. Schematic overview of the in-patient study setup. Cardiac CT or MRI were used to generate pa-
tient-specific heart/torso models while 3D camera photos were used to registered electrode positions on 
the chest. Using the electrodes, 67-lead body surface potential measurements were acquired (all shown 
in left panel) and five sets of 12-lead ECG configurations were extracted from those maps (middle panel). 
Specifically, the extremity leads were the same, but precordial positioning differed between the lead sets. 
This setup was used to conduct the three comparisons shown on the right, which are further elaborated 
in the text.
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Generic anatomical model and generic electrode positions
In the third study, the 12-lead ECGs obtained using the five different electrode 
location sets were used in combination with a generic anatomical model but with the 
standard, unmodified locations for the electrodes (Figure 3, blue setup). This study 
was used to specifically investigate the effect of using a generic anatomical model 
together with generic ECG electrode positions in the CineECG computation. The 
trajectories computed in this study were compared to the trajectory computed using 
the patient specific anatomical model with the patient specific standard electrode 
setup (Figure 3, blue setup). To quantitatively compare the CineECG trajectories 
computed using subject specific vs generic anatomical models (and consequently 
starting point), all trajectories were aligned based on the starting point and then the 
comparisons were computed.

CineECG compared to invasive catheter local activation time mapping procedure 
In four patients who were included in the in-patient study, a high density near 
complete (>70% of the CT-based epicardial surface and >50 nodes containing 
information about the last 25 ms of activation) epicardial local activation catheter 
map (5307±400 local activation timing measurements) was made during sinus 
rhythm. Endocardial maps were not used as the local activation timing maps on the 
endocardium was only acquired for <70% (range 25%-65%) of endocardial surface 
and consisted on average of only 540±487 local activation timing measurements. 
The epicardial maps acquired in these four cases were qualitatively compared to the 
CineECG trajectories computed from the ECGs. Ventricular models from the invasive 
mapping system were registered to the CT based models and the last 25 ms of 
activation in these maps were displayed in the heart model along with the CineECG. 
To obtain a quantitative measure, the distance between the average location of the 
last 25 ms of the mapped invasive points (weighted to wall thickness) was compared 
to the average location of the corresponding CineECG time interval. 

Statistical analysis and presentation of results
Data are presented as mean ± standard deviation or median [interquartile range 
(IQR)] as appropriate and the data are compared statistically using an (un)paired 
Student’s t-test. A 2-sided P-value of <0.05 was considered significant. For the 
simulation study, differences between the location of the CineECG and AIP per 5 
ms time intervals are presented as distances in mm and differences in direction 
as angles in degrees. For the in-patient study, differences between the location of 
the CineECG trajectory calculated using the patient specific anatomical model or 
with patient specific standard precordial electrode positioning and other CineECG 
trajectories per millisecond are also presented as distances in mm and differences 
between directions as angles in degrees. 
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For all studies, local activation timing maps were color mapped from red (earliest 
activation) to blue (latest activation) in both the four-chamber view and the apical 
view with the local activation times displayed. CineECG trajectories were colored 
from white (earliest activation) to red (latest activation) and AIP trajectories from 
white (earliest activation) to blue (latest activation), also in both the four-chamber 
and apical views.
Table 1. Results simulation study. 

Cases without con-
duction block (n=6)

Cases with (partial) 
right conduction 

block (n=3)

Cases with (partial) 
left conduction 

block (n=5)
A. Location AIP/CineECG 
trajectory AIP CineECG AIP CineECG AIP CineECG

Distance between septum and 
complete trajectory (mm) 7±4 3±3 15±12 4±4 6±9 9±8

Distance between septum and 
initial segment (mm) 6±2 1±2 8±3 2±2 1±2 4±4

Distance between septum and 
terminal segment (mm) 7±7 1±1 29±16 7±5 18±12 17±10

Percentage trajectory >5mm 
away from septal wall (%) 67±10 24±10 14±5 5±1 7±2 11±3

Percentage trajectory located in 
the right cavity (%) 15±8 2±5 31±8 27±25 18±22 2±5

B. Comparison AIP to CineECG 
Number of active foci (n) 6 4-5 2-5
Total activation duration (ms) 83±4.1 97±14 96±12
Distance between AIP/CineECG 
complete segment (mm) 24±1 26±3 22±2

Distance between AIP/CineECG 
initial segment (mm) 35±6 31±1 37±8

Distance between AIP/CineECG 
middle segment (mm) 13±3 17±2 11±2

Distance between AIP/CineECG 
terminal segment (mm) 27±1 31±5 20±2

Angle between AIP/CineECG 
complete trajectory (degrees) 76±3 70±5 78±4

Angle between AIP/CineECG 
initial segment (degrees) 113±15 101±10 108±18

Angle between AIP/CineECG 
middle segment (degrees) 66±14 54±10 86±13

Angle between AIP/CineECG 
terminal segment (degrees) 59±5 53±10 44±3

Data are presented either range (number of active foci) or as mean ± standard deviation. The initial 
segment corresponds to the first 25 ms of the denoted trajectory, the middle segment to 25 ms around 
mid-QRS and the terminal segment to the last 25 ms of the trajectory. Distances are calculated between 
the locations of corresponding time intervals and angles are calculated between the normalized vectors 
indicating the direction of the trajectory. In cases with simulated conduction block, foci corresponding 
to specific sites at the left ventricular or right ventricular endocardial surface were not used. Simulated 
cases were incomplete and complete right bundle branch block, incomplete (e.g., left anterior or poste-
rior fascicular block) or complete left bundle branch block with different left ventricular septal foci (See 
Supplement A for detailed information).
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Results
Simulation Study
The AIP trajectories derived from different simulated activation sequences were 
quantitatively and qualitatively compared to the CineECG derived from the simulated 
ECGs computed from the same activation sequences. The CineECG of simulated 
activation sequences without conduction block (Supplements A, without conduction 
block 1-6) stayed closer to the septal wall compared to cases of simulated conduction 
blocks (Table 1A); specifically, the terminal segment was located further from the 
septum compared to the initial segment. In all cases, both the terminal CineECG 
and the terminal AIP were directed towards the latest activated area. For most of 
the cases both with and without conduction blocks, the CineECG trajectory stayed 
within the left ventricular cavity, except for the two cases where the focus at the 
right ventricular free wall was not present (Supplements A, iRBBB2 and RBBB) and 
consequently a higher percentage of the complete CineECG trajectory was located in 
the right ventricular cavity (Table 1B). Compared to the location of the CineECG, the 
AIP moved further from the septal wall and a higher percentage of the trajectory was 
located in the right ventricular cavity; for cases with left conduction blocks this was 
true for the initial AIP segment and for cases without conduction blocks or with right 
conduction block for the terminal AIP segment. 

Figure 4. Representative example of a CineECG in a case without conduction block. To better visualize 
both reconstructions we show three columns of figures; each column shows one or two of the three 
quantities. The top and bottom rows show different views of the heart (four chamber and apical view) as 
described in the Methods. In the left panels we show local activation times throughout the heart along 
with the AIP calculated from them. In the middle panels we repeat the AIP and also show the CineECG 
trajectory for the same case. In the right panels we show just the CineECG for greater clarity. The QRS 
duration is 75 ms and the different time scales range from the start of the QRS to the end of the QRS for 
all three quantities as indicated in the legends.
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A representative example of simulated activation without conduction block is 
displayed in Figure 4.  All fourteen simulated activation sequences and CineECG and 
AIP trajectories are reported in Supplement A. Both the number and location of 
simulated foci affected the shape of the CineECG. For example, when comparing 
the AIP and CineECG displayed on slide 8 and 9 in Supplement A, both the CineECG 
and AIP are visually observed to be more compact when a high septal focus is 
present (Supplement A, slide 8) compared to when this focus is located at the mid-
septum (Supplement A, slide 9).  Decreasing the number of initial sites of activation 
(Supplement A, LBBB & RBBB) resulted in less compact CineECG in which the initial 
and terminal segments were located further away from the septum. The terminal 
segment of both the AIP and CineECG were directed towards the latest site of 
activation for all simulated activation sequences. Moreover, the first 15 ms of the 
CineECG was consistent with a transseptal vector directed towards the side of the 
septal wall which was activated second, that is, for simulated LBBB it pointed from 
right to left ventricle, while for all other activation sequences it pointed from left to 
right.

Quantitatively comparing CineECG to AIP, the average distance between the 
CineECG and AIP trajectories was 23.7±2.4 mm; in general, the terminal (last 25 ms 
of the trajectory) segment was statistically significantly closer to the AIP than the 
initial (first 25 ms of the trajectory) segment (34.2±6.1 vs 27.3±5.7 mm, p=0.015). 
The average angle between the CineECG and AIP direction per time step was 76±5 
degrees; similarly, to the distances, the terminal segments of CineECG and AIP were 
significantly better aligned than the initial segments (107±15 vs. 51±9 degrees, 
p<0.001). During the course of the activation, the directional differences between 
the AIP and CineECG decreased, whereas the distances between AIP and CineECG 
were lowest in the middle QRS segment (Table 1B). We note that the average initial 
difference, that is the average distance between the CineECG starting location (center 
of mass of the heart) and the AIP at the same time instant, precisely mid-QRS, was 
9.8±3.2 mm. 

Patient study
Representative examples of CineECG trajectories for two patients are shown in Figure 
5; a patient with a normal narrow QRS complex (Figure 5A) and a patient with a 
pathologically wide QRS complex (Figure 5B). Whereas the trajectory in Figure 5A 
is more compact and has a clear initial transseptal movement, the CineECG for the 
pathological QRS complex moves from left to right, thereby clearly indicating the 
RV as the latest site of activation. For the rest of the ten patients, the results are 
displayed in Supplement B, Part A. 

Patient specific anatomical model and case specific electrode positions
The use of body surface potential map derived ECG signals from different electrode 
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positions on the patient specific models (Figure 3, comparison 1) resulted in 
generally similar CineECG trajectories based on visual inspection; the trajectories all 
had comparable shapes (Figure 5A&B). For all patients, the median [IQR] distance 
between the trajectory computed using the standard electrode positions and those 
at the other electrode positions was 5.2[3.3;8.4] mm and the angle between the 
trajectories was 23[14;30] degrees. The Brugada electrode configuration (Figure 3, 
purple setup) resulted in the highest deviation in CineECG; a median difference in 
location of 9.9[7.2;12.8] mm and difference in direction of 39[32;43] degrees were 
found and the initial and terminal segments of the CineECG showed the highest 
deviation from the CineECG computed using the standard 12-lead ECG (Supplement 
B, Part A). Especially in Cases 5 and 7 (Supplement B, Part A) where the latest activation 
is localized in the RV, the terminal direction of the Brugada CineECG is more skewed 
towards the RVOT compared to the other trajectories as all electrodes are positioned 
on top of the RV and consequently, cardiac activity at the LV free wall or apex is not 
captured as well in the recorded ECG. 

Generic anatomical model and case specific electrode positions 
When replacing the patient specific model with a generic anatomical model, but 
retaining the case specific electrode positioning (Figure 3, Comparison 2), the 
median differences in distance reduced were 5.1[3.0;7.5] mm and angle differences 
were 18[14;20] degrees (Supplement B, Slide 3&4). The difference in starting point 
of the subject specific anatomical models and the generic anatomical model was on 
average 52±20 mm. The overlap in models is displayed in Supplement B, slide 5&6. 
There seemed to be a relation between the distance between the starting points 
and the error observed in the comparison of the CineECG trajectories (Supplement 
B, slide 7); specifically, when the distance increased, the differences between the 
trajectories also increased.

Generic anatomical model and generic electrode positions
When using a generic anatomical model with the standard electrode positions, 
but using the different 12-lead ECGs obtained from the body surface potential 
mapping procedure as the input for the CineECG computation, the median [IQR] 
distance between the trajectories was 5.0[2.2;7.7] mm and the average difference in 
direction was 20[11;30] degrees. The use of a generic anatomical model (Figure 3, 
Comparison 3) thus produced similar differences in distance and angle compared to 
the trajectories where patient specific information was used (Figure 3, Comparison 
1).  

Comparison of CineECG to invasive mapping 
Results from the four patients with invasive epicardial maps are shown in Supplement 
B, Slide 19-23 Two patients (Patient 05 & 07) have three prominent areas of early 
activation (indicated with the white arrow) on the epicardial surface (Supplement B, 
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Figure 5. Effect of different electrode positions and the use of a standard model. A&B: Two representa-
tive examples of the CineECG calculated using different ECG electrode positions and a generic model are 
displayed. C: The mean (standard deviation) error in distance of the CineECG trajectories computed using 
different electrode positions per patient (x-axis) with respect to the CineECG calculated using the patient 
specific model with standard electrode positioning is displayed. D: the mean (standard deviation) error 
in direction per patient measured by the angle between vectors of the calculated VCG is displayed. The 
colors of the CineECG in Panel A and B correspond to the legends shown in Panel C and D. 
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Slide 22&23), whereas the other two (Patient 01 & 02) have only one (Supplement 
B, slide 20&21). When visually comparing the invasive maps and the CineECG, a 
larger total area of early activation at the epicardial surface corresponded to a more 
compact initial segment of the CineECG in the septal area, whereas in the cases with 
smaller early epicardial activation the CineECG was less compact and was directed 
from the site with early activation towards the site of late activation. In all cases the 
terminal segment of the CineECG trajectory was directed towards the latest site of 
activation. Quantitatively, the distances between the average location of the last 25 
ms of the invasive mapped points and the terminal 25 ms of the CineECG was 35 mm 
for Patient 01, 24 mm for Patient 02, 17 mm for Patient 05 and 32 mm for Patient 07.

Discussion 
This is the first study evaluating the relationship between the 12-lead ECG based 
CineECG technique and cardiac activation sequences. Our results show that the 
CineECG is able to relate clinically meaningful components of cardiac activation to 
the cardiac anatomy. The relationship between cardiac activation isochrones and 
CineECG is especially clear during 1) the terminal segment of the QRS, where the 
CineECG moved towards the area of latest activation and 2) the initial segment, 
where the CineECG reliably corresponded to the direction of the transseptal vector 
of the QRS. Overall the AIP and CineECG trajectories corresponded well visually. 
Within limits, the CineECG is robust to electrode misplacement and even to model 
inaccuracies. The CineECG trajectories were similar when using a generic heart/torso 
model versus the patient specific anatomy and electrode positions were relatively 
close to the standard 12 lead ECG positions. 

Evaluation of the AIP as an averaged representation of cardiac isochrones
In the simulation study, the AIP was constructed from the simulated cardiac activation 
isochrones to determine an average position and direction of cardiac activation. 
Thus, the AIP could be used to quantitatively compare activation sequences with the 
CineECG. Our simulation results show that the AIP trajectory is a useful representation 
of that aspect of cardiac activation, although the initial transmural activation direction 
is captured with less accuracy. The cases without conduction blocks showed the most 
compact trajectories, close to the septum, whereas incomplete and complete bundle 
branch block trajectories showed a more elongated configuration, with increasing 
QRS duration. Typically, multiple activation wavefronts are present in the initial 2/3 
of the cardiac activation, whereas in the terminal activation several of these waves 
have collided and tend to move in a single direction. This behavior is reflected in 
the computed AIP trajectories, as the initial segment remained within the center of 
the heart but the terminal segment moved in the average direction of remaining 
activation waves towards the latest activation sites. As the number of initial sites 
of activation decreased from 6 to 2, we observed that the initial segment of the 
AIP trajectory changed gradually from being more randomly oriented in the septal 
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center of the heart to moving more clearly in a single direction away from the average 
earliest site(s) of activation. 

To the best of our knowledge, this approach to compute a trajectory to describe 
overall cardiac activation location and direction is novel. This information is normally 
assessed qualitatively by clinicians when interpreting the 12-lead ECG, but not 
computed explicitly in a quantitative manner. In this study it provided a useful 
comparison to both location and direction of the CineECG results.

Comparison of CineECG to AIP
When comparing the AIP to the CineECG, the initial segment of these trajectories 
were consistently further apart than the terminal segments of the trajectories. 
Indeed, the initial segment of the AIP stayed within the center of the heart generally 
moving in different directions compared to the CineECG, which had one consistent 
direction (Supplement A, SR1-SR6). The initial segment of the CineECG correctly 
indicated the direction of the septal activation, which is activated from left to right 
for activation sequences with the earliest site of activation at the left ventricular 
septum (Supplement A, all activations except LBBB3). Compared to the CineECG, 
the AIP trajectory did not show such a clear direction in the initial segment of the 
QRS, but rather stayed in the center of the heart. The variation in the number and 
location of initial sites of activation affect both the AIP and the CineECG. Decreasing 
the number of initial sites (e.g. comparing without vs with conduction block) resulted 
in a less compact CineECG and AIP trajectory. The location of high vs low septal foci 
in cases without conduction disorder (Supplement A, SR2&3) produced elongated 
shapes of both the CineECG and AIP.  

A striking feature of the CineECG is a clear kink in the trajectory near mid QRS, 
suggesting a clear change in the average direction of activation. This kink close 
to mid-QRS is observed in both the CineECGs calculated in the simulation study 
(SR1-6, (i)RBBB) and the in-patient study (Patient 1,3 & 5-9). We believe that this 
kink is most likely accurately reflects a change in direction of activation; in cases 
without a conduction block from the initial dominant downward movement mainly 
over the septal wall to the upwards movement towards the basal area at end QRS 
(Supplement A, SR1-6). As for a simulated RBBB, the initial movement of the CineECG 
is dominated by the left ventricular activation whereas the terminal movement is 
dominated by a rightward movement, also resulting in a kink in the trajectory. This 
kink is less present for cases of LBBB, where the movement is clearly dominated 
from right to left during the complete activation cycle. This behavior is also present 
in the in-patient data, for example when comparing Patient 9 to Patient 10, where 
also a clear relation in QRS duration seems to exist. This observation also indicates 
the minor effect of the cardiac shape, size and orientation (within reasonable limits, 
e.g. not including dextrocardia) on the CineECG computation, as was also indicated 
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by the results found when substituting the patient-specific anatomy with a generic 
anatomical model. 

The distance between the AIP and CineECG at mid-QRS was lower compared to the 
average distance over the complete trajectory (average distance 9.8±3.2 vs 18.0±3.1 
mm, Figure 3B), indicating accurate estimation of the average location at mid-QRS 
as the center of mass for both narrow and prolonged QRS durations. Relating these 
distances to the size of the human heart (approximately 120x85x60 mm), we believe 
it is fair to say that this error is relatively small. To further investigate the sources 
of error in the CineECG, we repeated the CineECG calculation after correcting the 
starting point of the CineECG to the mid-QRS AIP location. However, the variation 
in distance between the CineECG and AIP trajectory remained similar to without this 
correction, suggesting that the error in starting point did not have a major effect on 
the discrepancies between CineECG and AIP. Based on these results, we believe that 
our choice to set the starting point of the CineECG calculation to the center of mass 
at mid-QRS (instead of on the LV septal wall at QRS onset, as in our previous reports) 
is appropriate.       

The terminal segments of the AIP and CineECG aligned better in direction than 
the initial segments; a higher variability was found in both angle and distance of 
the initial segments of the AIP and CineECG compared to the terminal segments. 
(Table 1, Supplements A slide 3). Indeed, it is perhaps not surprising that the greater 
complexity of propagation during the initial segment of cardiac activation produced 
a decrease in agreement. In terms of CineECG, we note that in the initial segment, 
when multiple activation wavefronts are contributing to the recorded ECG signals and 
the number of wavefronts is generally larger, information about cardiac activation 
measured with ECG is more complex. Factors that influence the resulting ECGs are not 
only the number of wavefronts but also their directions and geometric relationships 
(i.e. whether they amplifying or canceling each other), volume conductor effects, and 
proximity effects (i.e., the distance between electrodes and activation wavefronts). To 
conclude, both the AIP and CineECG are intended to represent the average pathway 
of activation and when taking into account these factors, the agreement of CineECG 
and the AIP is reasonably good. 

Comparison of CineECG to the clinical VCG and ECG
There are several ways in which we can consider comparisons of the CineECG with the 
VCG. With the VCG, the direction of average cardiac activation is explicitly imaged per 
time instance in the thoracic compartment10. The VCG can be directly computed from 
the ECG signals using dedicated weighing factors per ECG lead that are constant in 
time. The ECG amplitude that affects the VCG is determined by a combination of 
the area of the depolarizing surface and its geometric relationship to the electrodes. 
Thus, the activation of small areas in the heart is represented by a small amplitude 
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vector in the VCG and consequently may, in the case of subtle cardiac pathology, 
be overlooked. The CineECG direction is computed as a normalized vector, and thus 
small amplitude signals captured by the 12-lead ECG may become visible in this 
new representation. Additionally, the translation of the VCG to cardiac anatomy is 
left to the interpreter, in marked contrast to the CineECG which provides a direct 
localization in that anatomy.13,14,36 Another way of conceptualizing CineECG is that it 
rotates the VCG from the body coordinate system to a heart coordinate system by 
redefining the tail location of the lead vectors at each time instant and then tracking 
the movement of the tail through cardiac activation. In effect, the fixed coefficients 
that related the ECG to the standard VCG vary in time in the CineECG as the estimated 
average activation location moves within the cardiac anatomy. Thus, with CineECG, 
additional temporal and spatial information about the direction and location of 
cardiac activation, compared to the VCG, is directly related to cardiac anatomy. In 
this sense, CineECG provides a more detailed view into cardiac activation and may 
therefore be able to identify subtle differences between activation sequences. 

In current clinical practice, the clinical 12-lead ECG is most often to identify and 
describe cardiac abnormalities but interpretation of the 12-lead ECG is subject 
to inter- and intra-clinician variability and highly depends on the experience 
of the reader. For the average ECG reader, CineECG provides a fast way to gain 
insight into the direct relation between cardiac electrical activity and anatomy, 
thereby aiding interpretation of the 12-lead ECG. Furthermore, for example in 
the emergency department, subtle changes in cardiac electrical activity may be 
recognized earlier using CineECG to prevent serious acute cardiac deterioration. For 
the more experienced ECG reader, CineECG can provide a way to identify subtle 
signs of disease. The use of CineECG in clinical practice may be expanded to guide 
lead positioning in cardiac resynchronization therapy or to identify ischemic areas 
to guide percutaneous coronary interventions. Furthermore, as the technique is 
designed to image subtle changes in the cardiac activation sequence, the technique 
may be useful for clinical follow-up in genetic cardiomyopathies to identify the early 
onset of disease. In summary, the technique may be used to identify heterogenous 
conduction in diseased hearts to guide treatment strategies. 

Comparison of CineECG to ECG imaging  
CineECG can also be viewed as a lightweight and less intrusive alternative to ECGI 
in both a physical (e.g. number of electrodes) and a computational (e.g. algorithm 
complexity) sense, by capturing the activation of the heart with fewer technical 
requirements using a simplified model. The tradeoff is that CineECG only provides 
a summary representation of cardiac activation, in contrast to the locally imaged 
potential distributions and/or activation sequences obtained with ECGI. However, 
CineECG has a much lower cost in terms of algorithmic complexity and computation 
time, and, perhaps most important, does not need the large numbers of body surface 
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electrodes and the detailed patient specific cardiothoracic imaging and modelling 
generally required for ECGI. CineECG only uses the standard 12-lead ECG, a simple 
geometrical anatomical model and a computationally inexpensive mathematical 
model, which may thus be well suited for a variety of clinical settings. As CineECG is 
a fast technique designed to detect subtle changes in the average cardiac activation 
sequence, the technique could provide direct clinical additional insight in the critical 
care unit or the emergency department to detect acute cardiac deterioration.  

Heuristically, CineECG can be related to ECGI methods that estimate the position 
and direction of single dipoles. Here the computed VCG signal is tuned by the 
-coefficient (Equation 1), instead of the detailed volume conductor models that are 
typical with ECGI. Specifically,  represents a rough approximation of the relationship 
between the proximity of limb lead and precordial electrodes to the heart, effectively 
substituting for ECGI’s regularized or other inversion of a forward model, itself 
computed by solving the underlying partial differential equations. Another major 
difference is that CineECG aims to localize the average activation of the heart, using 
the VCG direction rather than the ECG amplitude. It is well known that ECGI solves 
an inverse problem that is ill-posed, resulting in very high sensitivity to errors in the 
forward model.37-40  Our results with CineECG may be an indication that using a model 
eliminating the effect of amplitude, but concentrating on accurate reconstruction of 
the average direction of propagation as measured on the body surface, may have 
certain advantages. It may, for example, provide clinically relevant parameters to 
distinguish different bundle branch blocks or structural cardiac pathology while also 
providing significant robustness to at least some level of electrode misplacement 
and model error. We believe that our CineECG results may motivate some interesting 
future analyses of this relationship between amplitude, direction, and robustness to 
ill-posedness.

Robustness of CineECG to lead positioning 
In clinical practice, QRS morphology interpretation in specific leads is used to get 
an impression of the underlying cardiac activation sequence, but QRS morphology 
interpretation relies heavily on accurate electrode placement. The clinically accepted 
range of variation in electrode positioning is 20 mm; greater electrode misplacement 
may result in misdiagnosis.2,4,7,8,41 In the present study, 67-lead body surface mapping 
was used to simulate differences of up to 40 mm in electrode positioning from the 
standard electrode position to assess the effect on the calculated CineECG (Figure 
3). With the various electrode setups, we observed variation in location (distance: 
6.5±4.5 mm) and direction (angle: 24±12) in the calculated CineECG, but the trajectory 
position and shape remained similar to the CineECG trajectory calculated using 
standard electrode positions (Figure 5C&D). The CineECG thus was robust in terms 
of varying electrode positioning in our tests, as the computed CineECG trajectory 
had the same shape for variations around standard precordial electrode positioning, 
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with the noted exception of the Brugada electrode positioning. Performance was 
however improved when simply adding the known electrode positions with respect 
to the heart, even if they were not in the standard location. These results indicate that 
the CineECG, poses added value in terms of ECG interpretation and that localizing 
electrodes on the torso, e.g. with the simple use of a 3D camera, considerably 
improves the robustness of the CineECG.35,42

Robustness of CineECG to heart/torso anatomy model errors
Anatomical differences between individuals may result in ECG variability, caused for 
example by differences in torso anatomy, age and weight.43-46 Additional factors, like 
ECG acquisition just after a meal47,48, during respiration49,50 and during pregnancy51, 
may also contribute to differences in the measured ECG because these factors 
all contribute to the position of the heart in the torso, and thus with respect to 
the electrodes, and also to the inhomogeneous conductivity of the intervening 
volume conductor and thus potentially affect both the acquired ECG and its derived 
parameters.52,53

In the present study, we tested for robustness to model inaccuracy by comparing 
a generic vs patient specific heart/torso model. When we substituted the generic 
model, the resulting variation in the CineECG was similar in distance to that from 
electrode mislocation using the patient specific model (Figure 5C&D). This may 
partly be explained by the difference in the starting point, relative to the electrode 
positions on the torso, between the generic and the subject specific anatomical 
model (Supplement B, slide 5-7). However, when we registered patient specific 
electrode positions to the generic anatomical model, this variation in the computed 
CineECG decreased substantially (Supplement B, slide 3&4). Thus capturing the 
patient specific electrode positions, again for example using a 3D camera setup, 
provides low-cost lightweight patient specific information about torso size and 
electrode position and could potentially be used with a generic anatomical 
model for the CineECG computation in the absence of patient specific anatomical 
imaging8,9,35,42, circumventing the need for expensive and time costly patient-specific 
cardiothoracic imaging and anatomical modeling. Additional accuracy might be 
obtained by creating a database of several generic anatomical hear/torso models, 
where the closest to a ‘patient specific’ generic anatomical model could be used 
for the CineECG computation to improve the accuracy of patient specific features 
derived from the CineECG. However, this suggestion needs to be further investigated 
in a bigger population prior before drawing any conclusions with regards to clinically 
sufficient accuracy. 

Invasive mapping study
Reasonably accurate correspondence of local activation timings from the invasive 
EAM data to the CineECG trajectory were observed. In particular, the CineECG clearly 



158

Chapter 7

indicated the region of latest activation (Supplement B, slide 19-23). Furthermore, 
when an increased number of early sites of activation were present at the epicardium, 
the initial segment of the CineECG was more compact compared to the cases with 
fewer early sites of epicardial activation. Although sufficient measurements of the 
endocardium were not available to directly compare to the CineECG trajectories, 
inferences about endocardial activity from epicardial measurements were consistent 
with the findings in our simulation study; with an increasing number of foci, the initial 
CineECG was more compact. This observation increases somewhat our confidence 
that CineECG also correctly imaged the endocardial activity.  

Limitations 
As our results and discussion show, the CineECG only recovers some parameters of 
cardiac activation that are useful for characterization of specific features of activation 
patterns, such as presence/absence or type of bundle branch blocks, location of 
terminal activation, and direction of initial activations. The key is that these have to 
be features specified by a trajectory of a spatial average of activation through QRS, 
CineECG is not intended as a replacement for either invasive mapping or full results 
from ECGI. 

A limitation of the current CineECG method described here is that a constant speed 
of 0.7 m/s was used to compute the CineECG, determined based on balancing 
longitudinal and transverse propagation speed in myocardial muscle fibers (Section 
2.1). However, in diseased hearts this assumption of a constant speed may be 
inadequate due to the (local) presence of scar or fibrofatty tissue. Additionally, as 
noted earlier, activation waves collide during the course of ventricular activation, 
which can lead to decreased velocity of the “average wavefront” if these waves 
annihilate each other. Further insight into the velocity of the ‘average’ activation 
waves from high density endocardial and epicardial local activation timing maps, 
perhaps using the proposed AIP, could be obtained for the different phases (presence 
of multiple vs collided waves) of cardiac activation to see if a more sophisticated 
method for determining speeds to use in CineECG would be useful. 

Due to the spatial resolution of the anatomical heart model, the computation of the 
AIP trajectory using time intervals of one millisecond resulted in a jagged trajectory. 
The shape of the AIP trajectory was more affected by the spatial resolution of the 
model than the simulated activation sequence was. Increasing the time interval to 10 
ms resulted in the loss of resolution in shape of the AIP trajectory and thus its ability 
to represent the cardiac activation pattern. To balance both the effect of the shape 
model resolution and to adequately represent the activation sequence, a time interval 
of five milliseconds was used for the computation of the AIP trajectory. Another 
limitation is that we used a simplified approach for the -coefficients, crudely 
correcting the volume conductor effects, i.e. using two constants weight values 
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(Equation 1) for limb versus precordial electrodes. During the course of the activation 
sequence, the relationship between the proximity of, especially, precordial leads and 
the average activation location may change significantly. One direction for future 
work is to focus on the incorporation of dynamic -coefficients using information 
from the changing electrode vector field, similar to what we do when computing the 
VCG. A second direction for future work related to the -coefficients is comparison 
between the use of Mason-Likar limb electrodes and foot-wrist electrodes on the 
CineECG computation. First the effect of this difference in limb electrode positioning 
on the CineECG computation should be investigated and secondly, more accurate 

-coefficients could perhaps be determined per limb-lead set-up. 

Finally, a more comprehensive study with high density invasive maps (left and right 
endocardium and epicardium) is required to compare the AIP directly to the CineECG, 
providing perhaps a more complete evaluation of CineECG utility. 

Conclusion
We present and evaluate CineECG, a novel approach to determining the average 
activation location in the heart as a function of time from the 12-lead ECG and a 
simple anatomical model. With CineECG, a realistic representation of the average 
cardiac activation is provided and significant features of underlying cardiac activation 
isochrones were recovered that could be directly related to cardiac anatomy. Especially 
the terminal segment of the CineECG was observed to be useful for the reliable 
detection of areas of late activation in the ventricles. CineECG was relatively robust 
even when electrodes were shifted up to 40 mm from standard electrode positions 
and when a generic heart/torso model was used instead of a patient specific model. 
Our results corresponded well to cardiac invasive mapping in a small study limited 
to only the epicardium. In summary, CineECG directly relates a VCG-like sequence 
of propagation directions to the cardiac anatomy and provides a robust and stable 
mapping tool which may turn out to be broadly useful in the early recognition of 
cardiac structural abnormalities. 
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Abstract 
Longitudinal monitoring of sometimes subtle waveform changes of the 12-lead 
electrocardiogram (ECG) is complicated by patient-specific and technical factors, 
such as the inaccuracy of electrode repositioning. This feasibility study uses a 3D 
camera to reduce electrode repositioning errors, reduce ECG waveform variability 
and enable detailed longitudinal ECG monitoring.

Per subject, three clinical ECGs were obtained during routine clinical follow-up. 
Additionally, two ECGs were recorded guided by two 3D cameras, which were used 
to capture the precordial electrode locations and direct electrode repositioning. 
ECG waveforms and parameters were quantitatively compared between 3D camera 
guided ECGs and clinical ECGs. Euclidian distances between original and repositioned 
precordial electrodes from 3D guided ECGs were measured.

Twenty subjects (mean age 65.1 ± 8.2 years, 35% females) were included. The ECG 
waveform variation between routine ECGs was significantly higher compared to 3D 
guided ECGs, for both the QRS complex (correlation coefficient = 0.90 vs 0.98, p 
< 0.001) and the STT segment (correlation coefficient = 0.88 vs. 0.96, p < 0.001). 
QTc interval variation was reduced for 3D camera guided ECGs compared to routine 
clinical ECGs (5.6 ms vs. 9.6 ms, p = 0.030). The median distance between 3D guided 
repositioned electrodes was 10.0 [6.4–15.2] mm, and did differ between males and 
females (p = 0.076).

3D guided repositioning of precordial electrodes resulted in, a low repositioning 
error, higher agreement between waveforms of consecutive ECGs and a reduction 
of QTc variation. These findings suggest that longitudinal monitoring of disease 
progression using 12-lead ECG waveforms is feasible in clinical practice.
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Introduction 
The standard 12-lead electrocardiogram (ECG) is one of the fundamental diagnostic 
tools in clinical medicine.1 The ECG visualizes the electrical activity of the heart by 
recording body surface potentials using electrodes positioned on the thorax of 
the patient. These electrode positions are standardized and based on anatomical 
landmarks.2 In routine clinical practice, the ECG is used to diagnose both acute 
cardiac diseases such as acute coronary syndrome, and for longitudinal monitoring 
of cardiac diseases such as progression of cardiomyopathy.

During longitudinal follow-up, monitoring of sometimes subtle waveform changes by 
consecutive ECG recordings is complicated by patient specific factors and technical 
errors, thereby compromising day-to-day comparison of ECG waveforms (Figure 
1).3,4 ECG waveforms are influenced by heart rhythm, heart rate, cardiac anatomy, 
ventricular wall thickness, cardiac electrophysiology and cardiovascular disease.5 
Other factors vary only limited over time but may also influence ECG waveforms 
such as the orientation of the heart in the thorax and the shape of the thorax.6-8 
Furthermore, electrode (mis)placement is a major technical error source when 
recording ECGs in clinical practice.9 Although minor shifts in precordial electrode 

Figure 1. Effect of electrode position variation on ECG waveforms. Using simultaneous recordings of a 
64-lead body surface potential map, the effect of electrode positioning of QRS and STT segment wave-
forms can be observed. Precordial leads were measured 4 cm upward (blue) or downward (red) referenced 
to the standard 12-lead electrode positioning (black). Limb leads were not displayed. The body surface 
potential map is a simultaneous measurement and thus the displayed beats were recorded simultane-
ously.
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positions up to 10 mm have a mild influence, shifts of >20 mm significantly affect 
the ECG waveform morphology possibly resulting in misdiagnosis.10-12 Variability in 
electrode positioning between consecutive ECG measurements is common and limits 
the applicability of the ECG during longitudinal monitoring of cardiovascular disease 
over time.10,13,14 Therefore, achieving identical electrode positions during longitudinal 
follow-up measurements is likely to enhance the diagnostic value of long-term ECG 
monitoring.

For this purpose, a 3D camera application was developed to capture the position 
of precordial ECG electrodes and to allow for accurate electrode repositioning for 
consecutive 12-lead ECG recordings15,16,17. In this feasibility study the 3D camera 
algorithm was tested in a clinical setting. The accuracy of 3D camera guided electrode 
repositioning was assessed, and the variation in the ECG waveforms and parameters 
were compared between routine clinical practice and 3D camera guided electrode 
repositioning.

Material and methods
Patient population
Patients referred for routine clinical follow-up after a recent ablation procedure 
for paroxysmal or permanent atrial fibrillation (AF) or atrial flutter were enrolled 

Figure 2. Study workflow. Workflow of the study. Panel A shows the routine follow-up and moments of 
ECG acquisition. Panel B depicts the ECG waveform comparisons between routine ECGs and 3D camera 
assisted ECGs using Pearson correlation coefficient and the root mean square. Panel C shows the com-
parison of two 3D photos with electrode positions form which the coordinates of the electrodes were 
compared. The 3D camera views, markers and electrode positions are shown in Panel D. The anterior view 
captures both anatomical makers and predominantly leads V1–4 and a lateral view captures leads V5–6. 
Panel E. shows an overview of the two 3D cameras positioned on the camera arm.



169

3D-camera guided ECG electrode (re)placement

8

in this study. Each subject underwent standard clinical follow-up after the ablation 
procedure and additionally two consecutive 3D camera guided ECG measurements 
were performed. The workflow of the study is described in Figure 2. The study 
protocol was approved by the local institutional review board (UMC Utrecht, Utrecht, 
the Netherlands, protocol nr.19/065). The study was conducted according to the 
declaration of Helsinki and all subjects gave informed consent.

Data acquisition
For each subject, five ECGs were obtained (Figure 2): three routine clinical ECGs (GE 
Healthcare, MAC5500, Chicago, Illinois, USA, 0.67 Hz high-pass filter, 50 Hz notch 
filter, 150 Hz low pass filter, 500 Hz sampling frequency) with electrodes positioned 
according to routine clinical practice and two 3D camera guided ECGs (Mortara 
WAM, Welch Allyn, Skaneateles Falls, NY, USA, 0.05 Hz high-pass filter, 50 Hz notch 
filter, 150 Hz low pass filter 1000 Hz sampling frequency). The technicians recording 
the routine clinical ECGs were blinded to whether subjects participated in this study. 
Subjects with persistent AF at the moment of ECG recording were excluded from the 
analysis as this may affect QRS complex and STT segment waveform morphology 
(Figure 3). ECGs were recorded without cessation of or changes in antiarrhythmic 
drug therapy. The raw data were extracted from the data acquisition module and the 
median beat incorporated in this data was used for analysis.

3D camera ECGs
During the first study visit, a manubrium marker was placed on the thorax surface 
directly below the jugular notch and a xiphoid marker was placed directly below the 
xiphoid process (Figure 2). Ten ECG electrodes were positioned according routine 
clinical care using the ACC/HRS recommendations.2 Precordial electrode positions 

Figure 3. Flowchart with included and excluded patients. Flowchart showing the patients suitable for 
recruiting and the number of patients that were included in the final analysis.
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were captured using two 3D cameras (Intel Real Sense D435) through a dedicated 
3D camera software tool (QRS-VISION, PEACS BV, version 2).2,15,16 The 3D cameras 
were mounted on a custom-made frame that was attached to the examination table 
to ensure a stable camera position. A standard 12-lead ECG recording was obtained 
(Figure 2). Limb electrodes were positioned at both wrists and the left leg, according 
to clinical standard practice. During offline analysis, captured 3D photos were fitted 
to a standard thoracic model and the precordial electrode positions were segmented 
based on both 3D photos (anterior and lateral, Figure 2). Precordial electrode 
locations were exported as six 3D vertices. 

During the second study visit, the manubrium and xiphoid marker were repositioned 
as during the first visit. After capturing these anatomical markers and the thorax 
using 3D photos, the standard thoracic model was fitted to the 3D photos. Thereafter, 
precordial electrode positions from the first visit were projected onto the live 3D 
image stream on a tablet located above the patient (Figure 2, panel E). Next, the ECG 
electrodes were repositioned based on this live visualization and a second standard 
12-lead ECG (Mortara) was obtained. 

Routine practice ECGs
Prior to ablation, two 12-lead ECGs (GE) were obtained per subject according to 
routine clinical practice. The ECG electrodes were positioned by the ECG technician 
without the use of the 3D camera. After the second study visit, a third 12-lead ECG 
was obtained, also according to routine clinical practice.

Offline ECG analysis
For each subject, raw ECG data were exported from the ECG machines. From the 
raw data, the median beat computed by the ECG machines was used for analysis. 
Furthermore, ECG annotations of P wave onset, P wave end, QRS onset, QRS end, 
T-wave onset and T-wave end annotated by the automated ECG machine system 
were used. Thereof, RR interval, PR interval, P wave duration, QRS duration and QT 
interval were computed and used for analysis of ECG characteristics. The QT interval 
was then corrected (QTc) using the Bazett’s formula.

Comparison of ECG waveforms
Two ECG waveform comparisons were performed: (1) between routine 12-lead ECGs 
performed at the outpatient clinic before and after ablation, and (2) the ECGs with 
electrode positons recorded by the 3D camera during the first and second visit 
(Figure 2, Panel B). To enable ECG waveform comparison, consecutive waveforms 
were aligned on the onset of the QRS complex. To allow for quantitative STT 
segment comparison and to enable waveform morphology comparison, the STT 
segments were normalized in time. The Tpeak was determined from a method 
proposed by van Oosterom18, based on the dominant T-wave signal represented by 
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the root mean square of the STT segment of the ECG signals (Figure 4). Median beats 
were automatically aligned by minimizing the relative difference between the QRS 
complexes, where after STT segments were normalized. 

Comparison of electrode positions using the 3D Camera
Median electrode positioning error between the first and second 3D camera guided 
ECGs was determined. Euclidian distances between precordial electrodes were 
measured using the electrode segmentations of the first and second 3D guided ECG 
(Figure 2, Panel C).

Statistical analysis
Data were presented as mean ± standard deviation (SD) or median and interquartile 
range (IQR) as appropriate. Categorical variables were presented as numbers 
with percentages. Differences between electrode locations and ECG parameters 
were compared using a Student t-test, One-way ANOVA, Mann-Whitney U test, 
Kruskall Wallis test with Tukey or Dunn’s correction for multiple comparisons as 
appropriate. For all subjects, the variation in QTc intervals of ECGs guided by the 
3D camera (two QTc measurements per subject) and routine clinical ECGs (three 
QTc measurements per subject) was approximated by the variance of QTc values for 
each single subject over multiple measurements. The standard deviation for both 
sets of QTc measurements was calculated for all patients and compared between 
3D guided ECGs and routine clinical ECGs using the Student t-test. A lower averaged 
standard deviation was expected when the 3D camera ECGs resulted in more 
consistent QTc measurements. ECG waveform morphologies were compared using 
Pearson’s correlation coefficient (CC) and root mean square error (RMSE). Analysis 
was performed using GraphPad Prism (v8.3.0, La Jolla, California, USA) and R (v3.5.1, 
Foundation for Statistical Computing, Vienna, Austria). Two-tailed p-values of ≤0.05 
were considered statistically significant. 

Figure 4. Alignment of ECGs.The alignment of median beats of two subsequently recorded ECGs using 
the RMSE signal of both QRS aligned (dotted line) waveforms. The STT segment of both signals are nor-
malized, thereby enabling waveform comparison.
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Results
Population
Twenty subjects (mean 65.1 ± 8.2 years old, 35% females) were included in the 
study (Table 1). The majority (n = 18, 90%) of subjects were in sinus rhythm at the 
moment of ECG recording, one (5%) had atrial pacing and one (5%) had ventricular 
pacing. Two patients were excluded from electrode positioning analysis because of 
software failure (Figure 3). Furthermore, due to the COVID-19 pandemic, 3D camera 
measurements were obtained within different time intervals, with a median of 16 
[15–67] days.

Comparison of ECG parameters
The comparison of ECG parameters is shown in Table 2. The RR intervals were 
significantly different when comparing 3D camera guided ECGs and routine clinical 
ECGs (p = 0.020). Median values for QRS duration and QT interval did not differ 
significantly. Also, the median value for the QTc interval did not significantly differ 

Table 1. Baseline characteristics.  
Avg ± SD or N (%)

Age (yrs) 65.1 ± 8.2
Female 7/20 (35%)
Length (cm) 178.6 ± 8.8
Weight (kg) 85.6 ± 10.3
BSA (m2) 2.05 ± 0.2
BMI (kg/m2) 26.9 ± 3.7
Rhythm baseline
Sinus rhythm 18 (90)
Atrial pacing 2 (10)
Ablation procedure indication
Atrial Fibrillation 19 (95)
Atrial Flutter 4 (20)
Comorbidity
CHA2DS2 - VASc score 1.6 ± 1.3
Sick Sinus Syndrome 3 (15)
Hypertension 7 (35)
Diabetes Mellitus 0 (0)
Hypercholesterolemia 3 (15)
Coronary Artery Disease 4 (20)
LVEF (%) 54.9 ± 7.5
Medication
Betablocker 6 (30)
Flecainide 10 (50)
Sotalol 5 (25)
Calcium antagonist 5 (20)
Amiodaron 0 (0)

Baseline characteristics of all subjects included in the study. Abbreviations: BMI = body mass index; BSA 
= body surface area; LVEF = left ventricular ejection fraction.
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Table 2. Comparison of ECG parameters
3D vs 3D ECGs Routine vs Routine ECGs P-value

RR interval (ms) 914 [779 - 1045] 839 [740 - 1000] 0.020
PR interval (ms) 169 [80 – 281] 156 [72 – 272] 0.458
P-wave duration 113 [97 – 123] 108 [64 – 172] 0.117
QRS duration (ms) 100 [92 - 108] 94 [88 - 100] 0.995
QT interval (ms) 403 [371 - 428] 404 [378 - 422] 0.999
QTc (ms, *) 401 [389 - 435] 429 [409 - 467] 0.450

Comparison of ECG parameters between ECGs performed with either assistance of the 3D camera or 
ECG performed during routine clinical practice. * = ECG machine vendor derived QT interval correction 
for the RR interval using Bazett correction, ms = milliseconds.

Figure 5. QTc interval and ECG waveform comparison. Panel A shows the measurement error within 
subjects for the QTc interval, stratified between 3D camera guided ECGs and routine clinical ECGs. Panel 
B shows the correlation coefficients between 3D camera guided ECGs (blue) and Panel C shows the 
correlation coefficients between routine clinical ECGs (red), stratified for the QRS complex and the STT 
segment. Panel D compares the correlation coefficients between 3D camera guided ECGs and routine 
clinical ECGs, stratified for the QRS complex (p < 0.001) and the STT segment (p < 0.001).
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between 3D camera ECGs and routine ECGs. The consistency of ECG parameters 
during consecutive recordings in a single subject was evaluated by comparing the 
variation in standard deviation of the QTc intervals. A significantly smaller variation 
in QTc interval measurements was found within subjects comparing 3D guided to 
routine clinical ECGs (5.6 ms vs. 9.6 ms, p = 0.030, Figure 5A).

Comparison of electrode positions
The median distance between 3D camera guided repositioned electrodes was 10.0 
[6.4–15.2] mm with the highest variation in V4 (Figure 6 and Table 4). There was no 
significant difference between specific precordial electrode positions (p = 0.751). No 
significant difference between males and females (10.2 [7.5–16.9] vs. 8.7 [5.5–11.3], 
p = 0.076) was observed. One subject was excluded from this analysis due to offline 
software malfunctioning and one was excluded due to subject mix-up.

Table 4. Differences for repositioned precordial leads electrode positions guided by the 3D camera.
Leads Median distance (mm)
V1 9.3 [7.3 – 13.3]
V2 8.1 [3.7 – 13.6]
V3 10.1 [5.8 – 12.9]
V4 11.0 [7.3 – 20.2]
V5 10.1 [5.6 – 13.7]
V6 9.6 [8.2 – 17.6]
Overall (V1-6) 10.0 [6.4 – 15.2]
Overall males 10.2 [7.5 – 16.9]
Overall females 8.7 [5.5 – 11.3]
Overall sinus rhythm 10.1 [6.4 – 16.5]
Overall paced rhythms 8.6 [5.9 – 11.4]

Differences in millimeters (mm) between the electrode position coordinates from the 3D camera guided 
ECGs. Values are displayed as median and interquartile range.

Figure 6. Distances between 3D Camera guided Repositioned Electrodes. Distances between the electrode 
position coordinates of 3D camera guided ECGs, stratified for the specific precordial leads and for all the 
overall distance between electrodes. Values are displayed as median (line in box) and interquartile range 
(error bars).
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Table 3. Waveform comparison 

3D vs 3D ECGs Routine vs Rou-
tine ECGs

CC 3D 
vs. 

Routine 
ECGs

RMS 
3D vs. 

Routine 
ECGs

P-wave CC RMS [mV] CC RMS [mV] P-value P-value

V1 0.65 [0.11 – 0.90]
(0.51, -0.80 – 0.99)

0.07 [0.03 – 0.17]
(0.10, 0.01 – 0.35)

0.50 [0.01 – 0.88]
(0.87, -0.75 – 1.0)

0.08 [0.03 – 0.13]
(0.11, 0.01– 0.52) 0.361 <0.001

V2 0.60 [0.11 – 0.90]
(0.47, -0.78 – 0.99)

0.10 [0.06 – 0.32]
(0.18, 0.01 – 0.57)

0.52 [0.08 –  0.85]
(0.95, 0.78 – 1.0)

0.15 [0.04 – 0.25]
(0.18, 0.01– 0.83) 0.503 <0.001

V3 0.69 [0.16 – 0.91]
(0.54, -0.61 – 0.99)

0.13 [0.06 – 0.41]
(0.21, 0.01 – 0.69)

0.54 [-0.04– 0.83]
(0.81, -0.77 – 1.0)

0.19 [0.06 – 0.27]
(0.21, 0.01– 0.74) 0.106 <0.001

V4 0.63 [0.15 – 0.91]
(0.52, -0.66 –0.99)

0.16 [0.06 – 0.31]
(0.21, 0.01 – 0.59)

0.61 [-0.08– 0.88]
(0.91, -0.34 – 1.0)

0.16 [0.06 – 0.26]
(0.20, 0.01– 0.84) 0.318 <0.001

V5 0.59 [-0.02 – 0.86]
(0.45, -0.46 – 0.99)

0.11 [0.04 – 0.29]
(0.20, 0.02 – 0.65)

0.58 [-0.09– 0.86]
(0.94, 0.47 – 1.0)

0.16 [0.06 – 0.22]
(0.17, 0.01 –0.95) 0.762 <0.001

V6 0.59 [0.09 – 0.93]
(0.47, -0.61 – 0.98)

0.09 [0.03 – 0.24]
(0.14, 0.01 – 0.42)

0.60 [-0.13– 0.85]
(0.94, 0.23 – 1.0)

0.09 [0.04 – 0.15]
(0.11, 0.01– 0.61) 0.430 <0.001

V1-V6 0.62 [0.26 – 0.90]
(0.50,-0.80 – 0.99)

0.11 [0.03 – 0.27]
(0.17, 0.01 – 0.65)

0.56 [-0.05– 0.86]
(0.41, -0.92 – 1.0)

0.13 [0.04 – 0.22]
(0.16, 0.01– 0.95) 0.208 <0.001

QRS 
complex CC RMS [mV] CC RMS [mV] P-value P-value

V1 0.99 [0.97 – 0.99]
(0.98, 0.93 – 1.00)

5 [3 – 29]
(20, 2 – 81)

0.98 [0.91 – 0.99]
(0.87, -0.75 – 1.0)

14 [7 – 64]
(51, 1 – 438) 0.685 0.120

V2 0.99 [0.97 – 1.00]
(0.99, 0.91 – 1.00)

9 [5 – 51]
(37, 3 – 241)

0.97 [0.93 –  0.99]
(0.95, 0.78 – 1.0)

23 [10 – 88]
(63, 1 – 308) 0.583 0.643

V3 0.99 [0.98 – 1.00]
(0.99, 0.96 – 1.00)

12 [5 – 44]
(28, 3 – 122)

0.98 [0.88 – 0.99]
(0.81, -0.77 – 1.0)

27 [13 – 79]
(80, 3 – 461) 0.025 0.173

V4 1.00 [0.98 – 1.00]
(0.93, -0.28 –1.00)

15 [6 – 31]
(34, 2 – 211)

0.99 [0.96 – 1.00]
(0.91, -0.34 – 1.0)

22 [12 – 45]
(54, 2 – 384) 0.424 >0.999

V5 1.00 [1.00 – 1.00]
(0.99, 0.94 – 1.00)

15 [3.9 – 44.6]
(29, 2 – 164)

0.99 [0.95 – 1.00]
(0.94, 0.47 – 1.0)

19 [10 – 60]
(61, 2 – 454) <0.001 0.710

V6 1.00 [0.99 – 1.00]
(0.96, 0.97 – 1.00)

9.7 [3.5 – 38.3]
(20, 2 – 72)

0.99 [0.97 – 1.00]
(0.94, 0.23 – 1.0)

17 [9 – 60]
(45, 2 – 248) 0.004 0.085

V1-V6 0.99 [0.98 – 1.00]
(0.98,-0.28 – 1.00)

11 [4 – 39]
(38, 2- 241)

0.98 [0.94 – 1.00]
(0.90, -0.75 – 1.0)

21 [10 - 64]
(60, 1 – 461) <0.001 <0.001

STT 
segment CC RMS [mV] CC RMS [mV] P-value P-value

V1 0.98 [0.93 – 0.99]
(0.95, 0.55 – 1.00)

2 [1 – 36]
(15, 1 – 60)

0.97 [0.87 – 0.99]
(0.89, -0.19 – 1.0)

5 [3 – 39]
(31, 1 – 222) 0.700 0.659

V2 0.98 [0.98 – 0.99]
(0.99, 0.95 – 1.00)

3 [4 – 56]
(27, 2 – 112)

0.98 [0.95 – 0.99]
(0.93, -0.15 – 1.0)

10 [4 – 75] 
(40, 2 – 226) 0.234 0.680

V3 0.98 [0.98 – 0.99]
(0.98, 0.96 – 1.00)

5 [3 – 56]
(27, 1 – 94)

0.97 [0.95 – 0.99]
(0.95, 0.53 – 1.0)

9 [4 – 81] 
(41, 1 – 151) 0.107 >0.999

V4 0.99 [0.96 – 0.99]
(0.98, 0.92 – 1.00)

5 [2 – 57]
(25, 1 – 106)

0.96 [0.92 – 0.98]
(0.91, 0.20 – 1.0)

11 [4 – 54] 
(36, 1 – 182) 0.009 >0.999

V5 0.98 [0.88 – 0.99]
(0.93, 0.47 – 1.00)

4 [1 – 37]
(23, 1 – 99)

0.94 [0.82 – 0.97]
(0.76, -0.66 – 1.0)

11 [4 – 57] 
(32, 1 – 160) 0.009 >0.999

V6 0.98 [0.93 – 0.99]
(0.96, 0.72 – 1.00)

2 [1.2 – 31]
(16, 1 – 68)

0.95 [0.86 – 0.97]
(0.86,-0.13 – 0.99)

7 [3 – 35] 
(20, 1 – 90) 0.002 >0.999

V1-V6 0.98 [0.96 – 0.99]
(0.96, 0.43 – 1.00)

4 [2 – 45]
(22, 1 – 112)

0.96 [0.91 – 0.98]
(0.88, -0.66 – 100)

9 [3 – 55] 
(33, 1 – 226) <0.001 0.001

The correlation and root mean square of ECG waveforms. For the P-wave, QRS complex and STT seg-
ment, stratified for the precordial leads and an overall comparison which included leads V1-6. Values are 
displayed as median and [interquartile range], and (mean, full range). Abbreviations: CC = correlation 
coefficient, RMS = root mean square, ECG = electrocardiogram, 3D = three-dimensional.



176

Chapter 8

Comparison of ECG waveforms
The overall CC and RMSE for QRS complexes and the STT segments were significantly 
lower for the 3D camera guided ECGs compared to routine ECGs (average, median, 
interquartile range and full ranges are reported in Table 3 and Figure 5 Panel B-D). 
QRS waveforms of repeated 3D camera guided ECGs had an average CC of 0.98, with 
a range between −0.28 to 1.00. The QRS complexes of repeated ECGs derived from 
routine clinical practice had an average CC of 0.90 with a broader range between 
−0.75 to 1.00. The sensitivity of ECG signals to electrode misplacement, was shown in 
several cases. For example, in patient 11 the V4 electrode was misplaced by 11.4 mm, 
as determined by the 3D camera images, which resulted in a CC between repeated 
ECG waveforms of −0.28. The STT segments of 3D camera guided ECGs had an 
average CC of 0.96, ranging between 0.43 and 1.00, while the STT segments of routine 
clinical practice ECGs had an average CC of 0.88. with a broader range between −0.66 
to 1.00. The variation in QRS waveforms and STT segments was significantly higher 
between repeated routine clinical ECGs compared to repeated 3D camera guided 
ECGs (p < 0.001 for QRS complexes and p < 0.001 for STT segments). 

Discussion
The main findings of this study are: (1) 3D camera guided electrode (re)positioning 
is feasible, (2) the correlation between consecutive 3D camera guided ECGs was 
significantly higher (on average 8%) compared to consecutive ECGs performed 
during routine clinical practice, (3) the variation in QTc interval values was significantly 
smaller for 3D guided ECGs compared to routine clinical ECGs, and (4) median 
distances between 3D camera guided repositioned electrodes were well below the 
clinically accepted deviation (20 mm) for electrode repositioning.10,19,20 These findings 
suggest that implementation of the described 3D camera algorithm may increase the 
diagnostic value of longitudinal monitoring of (subtle) ECG changes during clinical 
follow-up.

Agreement between ECG waveforms
The variation in ECG waveforms of both the QRS complex and the STT segment 
was significantly higher in ECGs performed during routine clinical practice compared 
to 3D camera guided ECGs (Table 3, Figure 5D). Errors in positioning of the 
electrodes most likely have contributed to this difference as the interval between 
ECG measurements was rather short (median 16 days) and were not influenced by 
changes in drug therapy. This was also supported by the finding that rather small 
electrode repositioning errors, as determined by the 3D camera, already resulted 
in a significant low correlation value (−0.27 in patient 11) when comparing ECG 
waveforms. Furthermore, comparison of P wave morphology showed no significant 
difference in variation between 3D camera guided ECGs and routine clinical practice, 
which may be explained by rather small P wave signals in the precordial leads. 
Reducing errors in electrode repositioning is relevant because the treating physician 
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needs to assess whether observed variations in ECG waveforms are due to newly 
developed cardiovascular disease, progression of cardiomyopathy, variations in 
cardiovascular physiological status or simply an effect of electrode (mis)placement. 
The implementation of the 3D camera to reduce errors in electrode positioning may 
enable this longitudinal monitoring of changes in ECG waveforms.

Accuracy of repositioned electrodes
To the best of our knowledge, this is the first study evaluating 3D camera guided 
12-lead electrode (re)positioning.19 Based on prior studies evaluating electrode 
positions using a panel of clinical experts, electrode shifts up to 20 mm were shown 
to produce clinically acceptable changes in ECG waveforms. Also, positioning of the 
lateral leads (V5–6) and positioning of precordial leads in female subjects was less 
accurate.19 Earlier studies showed misplacement of electrode positions V2 and V3 had 
the largest effect on ECG waveforms.10,20 In the present study, when using 3D camera 
guided electrode repositioning, a median distance of 10.0 mm was observed for all 
precordial leads which is favorable when performing longitudinal ECG monitoring 
of patients. The largest median distance in electrode repositioning was found in 
lead V4, this might be due to the location as the electrode was not positioned in full 
frontal view of both camera’s and the image may be slightly distorted. Importantly, 
no significant differences in electrode distances were observed between sexes or 
specific leads thereby resulting in a more appropriate screening method.

Clinical applications of the 3D camera method
Prior studies that evaluated the repositioning of electrodes during consecutive 
measurements lacked an objective reference for comparison of electrode 
replacement.19 Our study provided a clinical reference standard for comparison of 
electrode positions using acquired 3D images. Furthermore, the variation in ECG 
waveforms and ECG parameters of the 3D guided ECGs was remarkably small during 
serial measurements, even for serial QTc measurements within a single patient. 3D 
camera guided repositioning of electrodes may prove valuable when monitoring 
QTc interval variability in patients participating in a (pre-)clinical drug trials, during 
longitudinal monitoring of patients with cardiovascular disease or individuals with 
a presumed increased risk of developing cardiovascular disease. Furthermore, this 
technique may enable patients to reproduce electrode positions during ECG home 
monitoring using portable monitoring devices with a camera application.

Challenges for clinical implementation
Nowadays, the 12-lead ECG is a quickly and easily available diagnostic tool 
during acute situations like acute myocardial infarction or cardiac arrhythmias. 
This important character of the technique needs to be preserved, however aiding 
longitudinal monitoring using ECG waveforms requires further reduction in technical 
errors. To improve the accuracy of electrode positioning, the use of patches with 
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multiple integrated electrodes has been proposed. For example, a new electrode 
design with pre-positioned electrodes and pre-connected wires, was recently 
validated and showed reproducible ECGs. However, also in this study the differences 
in thorax shape remained a challenge.21 The technique to (re)position electrodes 
presented in our study still requires anatomical landmarks during ECG acquisition, 
but the results of the present study show that repositioning of electrodes during 
follow-up is feasible and is less susceptible to differences in thorax shape.

The current study was performed in supine resting-position. Therefore, differences in 
body position on the performance of the 3D algorithm when utilized at the intensive 
care unit or coronary care unit were not accounted for in this study and must be 
assessed in subsequent studies.22

Limitations
The small sample size, due to the COVID-pandemic, may influence the generalizability 
of the results. The electrode positions of the limb leads were not captured by 
the 3D camera, however, shifts of limb lead electrodes have shown to have less 
influence on the precordial ECG waveforms.10,20 Of note, the limb lead electrodes 
were positioned on the shoulders for the first series of 10 patients whereas the last 
series of 10 patients had their limb lead electrodes positioned on the ankle and wrist. 
We included ECGs performed with ECG machines from two different ECG machine 
vendors with different sampling frequencies, which may have influenced the results 
of the study due to hardware and automated analysis differences in for example QRS 
onset detection. However, clinical difference in absolute values for QRS duration and 
QTc interval calculation remain small between vendor’s algorithms.23 Furthermore, 
the effects of variability in heart rate on QRS complex waveforms is yet unknown. 
Although variability in heart rate may affect QRS duration, a correction for heart rate 
on QRS duration was not performed, in line with standard clinical practice.24

Conclusion
The 3D camera guided precordial electrode repositioning proved to be clinical 
feasible. Repositioning of electrodes guided by the 3D camera significantly reduced 
the variation of ECG waveforms and derived parameters such as the QTc interval, 
compared to routine clinical ECGs. The use of the 3D camera thus enables the 
longitudinal monitoring of the ECG waveforms, which may increase the diagnostic 
value of the ECG for patients with progressive cardiovascular disease or those 
individuals who are at risk of developing cardiovascular disease.
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Abstract 
The combination of big data and artificial intelligence (AI) is having an increasing 
impact on the field of electrophysiology. Algorithms are created to improve the 
automated diagnosis of clinical ECGs or ambulatory rhythm devices. Furthermore, 
the use of AI during invasive electrophysiological studies or combining several 
diagnostic modalities into AI algorithms to aid diagnostics are being investigated. 
However, the clinical performance and applicability of created algorithms are yet 
unknown. In this narrative review, opportunities and threats of AI in the field of 
electrophysiology are described, mainly focusing on ECGs. Current opportunities are 
discussed with their potential clinical benefits as well as the challenges. Challenges 
in data acquisition, model performance, (external) validity, clinical implementation, 
algorithm interpretation as well as the ethical aspects of AI research are discussed. 
This article aims to guide clinicians in the evaluation of new AI applications for 
electrophysiology before their clinical implementation. 
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Introduction 
Clinical research that uses artificial intelligence (AI) and big data may aid the prediction 
and/or detection of subclinical cardiovascular diseases by providing additional 
knowledge about disease onset, progression or outcome. Clinical decision-making, 
disease diagnostics, risk prediction or individualised therapy may be informed by 
insights obtained from AI algorithms. As health records have become electronic, 
data from large populations are becoming increasingly accessible.1 The use of AI 
algorithms in electrophysiology may be of particular interest as large data sets of 
ECGs are often readily available. Moreover, data are continuously generated by 
implantable devices, such as pacemakers, ICDs or loop recorders, or smartphone 
and smartwatch apps.2-6

Interpretation of ECGs relies on expert opinion and requires training and clinical 
expertise which is subjected to considerable inter- and intra-clinician variability.7-12 
Algorithms for the computerised interpretation of ECGs have been developed to 
facilitate clinical decision-making. However, these algorithms lack accuracy and may 
provide inaccurate diagnoses which may result in misdiagnosis when not reviewed 
carefully.13-18

Substantial progress in the development of AI in electrophysiology has been made, 
mainly concerning ECG-based deep neural networks (DNNs). DNNs have been 
tested to identify arrhythmias, to classify supraventricular tachycardias, to predict 
left ventricular ejection fraction, to identify disease development in serial ECG 
measurements, to predict left ventricular hypertrophy and to perform comprehensive 
triage of ECGs.6,19-23 DNNs are likely to aid non-specialists with improved ECG 
diagnostics and may provide the opportunity to expose yet undiscovered ECG 
characteristics that indicate disease.

With this progress, the challenges and threats of using AI techniques in clinical 
practice become apparent. In this narrative review, recent progress of AI in the field 
of electrophysiology is discussed together with its opportunities and threats.

A Brief Introduction to Artificial Intelligence
AI refers to mimicking human intelligence in computers to perform tasks that are 
not explicitly programmed. Machine learning (ML) is a branch of AI concerned 
with algorithms to train a model to perform a task. Two types of ML algorithms 
are supervised learning and unsupervised learning. Supervised learning refers to ML 
algorithms where input data are labelled with the outcome and the algorithm is 
trained to approximate the relation between input data and outcome. In unsupervised 
learning, input data are not labelled and the algorithm may discover data clusters in 
the input data.
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In ML, an algorithm is trained to classify a data set based on several statistical and 
probability analyses. In the training phase, model parameters are iteratively tuned 
by penalising or rewarding the algorithm based on a true or false prediction. Deep 
learning is a sub-category of ML that uses DNNs as architecture to represent and 
learn from data. The main difference between deep learning and other ML algorithms 
is that DNNs can learn from raw data, such as ECG waveforms, in an end-to-end 
manner with extraction and classification united in the algorithm (Figure 1a). For 
example, in ECG-based DNNs, a matrix containing the time-stamped raw voltage 
values of each lead are used as input data. In other ML algorithms, features like heart 
rate or QRS duration are manually extracted from the ECG and used as input data for 
the classification algorithm.

To influence the speed and quality of the training phase, the setting of 
hyperparameters, such as the settings of the model architecture and training, is 
important. Furthermore, overfitting or underfitting the model to the available data 
set must be prevented. Overfitting can occur when a complex model is trained using 
a small data set. The model will precisely describe the training data set but fail to 
predict outcomes using other data (Figure 1b). On the other hand, when constraining 
the model too much, underfitting occurs (Figure 1b), also resulting in poor algorithm 
performance. To assess overfitting, a data set is usually divided into a training data 

Figure 1. Traditional Machine Learning and Deep Learning with a Schematic Representation of Fitting a 
Model to a Data Set.
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set, a validation data set and a test data set, or resampling methods are used, such 
as cross-validation or bootstrapping.24

To train and test ML algorithms, particularly DNNs, it is preferable to use a large 
data set, known as big data. Performance of highly dimensional algorithms – e.g., 
algorithms with many model parameters such as DNNs – depends on the size of the 
data set. For deep learning, more data is often required as DNNs have many non-
linear parameters and non-linearity increases the flexibility of an algorithm. The size 
of a training data set has to reasonably approximate the relation between input data 
and outcome and the amount of testing data has to reasonably approximate the 
performance measures of the DNN.

Determining the exact size of a training and testing data set is difficult.25,26 It 
depends on the complexity of algorithm (e.g. the number of variables), the type of 
the algorithm, the number of outcome classes and the difficulty of distinguishing 
between outcome classes as inter-class differences might be subtle. Therefore, size 
of the data set should be carefully reviewed for each algorithm. A rule of thumb for 
the adequate size of a validation data set is 50–100 patients per outcome class to 
determine overfitting. Recent studies published in the field of ECG-based DNNs used 
between 50,000 and 1.2 million patients.6,19,21,27

Prerequisites for AI in Electrophysiology
Preferably, data used to create AI algorithms is objective, as subjectivity may 
introduce bias in the algorithm. To ensure clinical applicability of created algorithms, 
ease of access to input data, difference in data quality in different clinical settings as 
well as the intended use of the algorithm should be considered. In this section, we 
mainly focus on the data quality of ECGs, as these data are easily acquired and large 
data sets are readily available.

Technical Specifications of ECGs
ECGs are obtained via electrodes on the body surface using an ECG device. The 
device samples the continuous body surface potentials and the recorded signals 
are filtered to obtain a clinically interpretable ECG.28 As the diagnostic information 
of the ECG is contained below 100 Hz, a sampling rate of at least 200 Hz is required 
according to the Nyquist theorem.29-33 Furthermore, an adequate resolution of at 
least 10 µV is recommended to also obtain small amplitude fluctuations of the ECG 
signal. In the recorded signal, muscle activity, baseline wander, motion artefacts and 
powerline artefacts are also present, distorting the measured ECG. To remove noise 
and obtain an easily interpretable ECG, a combination of a high-pass filter of 0.67 Hz 
and a low-pass filter of 150–250 Hz is recommended, often combined with a notch 
filter of 50 Hz or 60 Hz. The inadequate setting of these filters might result in a loss 
of information such as QRS fragmentation or notching, slurring or distortion of the 
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ST segment. Furthermore, a loss of QRS amplitude of the recorded signal might be 
the result of the inappropriate combination of a high frequency cut-off and sampling 
frequency.28,34 ECGs used as input for DNNs are often already filtered, thus potentially 
relevant information might already be lost. As DNNs process and interpret the input 
data differently, filtering might be unnecessary and potentially relevant information 
may be preserved. Furthermore, as filtering strategies differ between manufacturers 
and even different versions of ECG devices, the performance of DNNs might be 
affected when ECGs from different ECG devices are used as input data.

Apart from applied software settings, such as sampling frequency or filter settings, 
the hardware of ECG devices also differs between manufacturers. Differences in 
analogue to digital converters, type of electrodes used, or amplifiers also affect 
recorded ECGs. The effect of input data recorded using different ECG devices on the 
performance of AI algorithms is yet unknown. However, as acquisition methods may 
differ significantly between manufacturers, the performance of algorithms are likely 
to depend on the type or even version of the device.35 Testing the performance of 
algorithms using ECGs recorded by different devices would illustrate the effect of 
these technical specifications on performance and generalisability.

Figure 2. The Effect of Shifting Precordial Electrodes Upward or Downward. The effect of shifting precor-
dial electrodes 4 m upward (blue) or downward (red) from standard 12-lead electrode positioning (black). 
Displayed signals were simultaneously recorded using a 64-electrode measurement set-up.
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ECG Electrodes
The recorded ECG is affected by electrode position with respect to the anatomical 
position of the heart and displacement of electrodes may result in misdiagnosis 
in a clinical setting.36,37 For example, placement of limb electrodes on the trunk 
significantly affects the signal waveforms and lead reversal may mimic pathological 
conditions.38–41 Furthermore, deviations in precordial electrode positions affect QRS 
and T wave morphology (Figure 2). Besides the effect of cardiac electrophysiological 
characteristics like anisotropy, His-Purkinje anatomy, myocardial disease and cardiac 
anatomy on measured ECGs, cardiac position and cardiac movement also affect the 
ECG.42–45

Conventional clinical ECGs mostly consist of the measurement of eight independent 
signals; two limb leads and six precordial leads (Figure 3b). The remaining four limb 

Figure 3. Standardised Clinical Visualised Signals. A: Three simultaneously recorded 2.5 second measure-
ments and raw signals. B: A 10-second measurement and median beats of all recorded leads. Displayed 
signals are acquired using a General Electric Healthcare MAC 5500 ECG device.
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leads are derived from the measured limb leads. However, body surface mapping 
studies identified the number of signals containing unique information up to 12 for 
ventricular depolarisation and up to 10 for ventricular repolarisation.46 Theoretically, 
to measure all information about cardiac activity from the body surface, the number 
of electrodes should be at least the number of all unique measurements. However, 
conventional 12-lead ECG is widely accepted for most clinical applications. An 
adjustment of a lead position is only considered when a posterior or right ventricle 
MI or Brugada syndrome is suspected.27,47-50

The interpretation of ECGs by computers and humans is fundamentally different and 
factors like electrode positioning or lead misplacement might influence algorithms. 
However, the effect of electrode misplacement or reversal, disease-specific electrode 
positions or knowledge of lead positioning on the performance on DNNs remains 
to be identified. A recent study was able to identify misplaced chest electrodes, 
implying that the effect of electrode misplacement might be able to be identified 
and acknowledged by algorithms.51 Studies have suggested that DNNs can achieve 
similar performance when fewer leads are used.50

ECG Input Data Format
ECGs can be obtained from the electronic database in three formats – visualised 
signals (as used in standard clinical practice), raw ECG signals or median beats. Raw 
signals are preferable for input for DNNs as visualised signals require digitisation, 
which results in a loss of signal resolution. Furthermore, raw ECG signals often 
consist of a continuous 10-second measurement of all recorded leads, whereas 
visualised signals may consist of 2.5 seconds per lead with only three simultaneously 
recorded signals per 2.5 seconds (Figure 3). A median beat per lead can also be used, 
computed from measured raw ECG signals or digitised visualised signals. Using the 
median beat might reduce noise, as noise is expected to cancel out by averaging all 
beats. Therefore, subtle changes in cardiac activation, invisible due to noise might 
become distinguishable for the algorithm. The use of the median beat may allow 
for precise analysis of waveform shapes or serial changes between individuals but 
rhythm information will be lost.

Opportunities for Artificial Intelligence in Electrophysiology
Enhanced Automated ECG Diagnosis
An important opportunity of AI in electrophysiology is the enhanced automated 
diagnosis of clinical 12-lead ECGs.8,11,12,20,52-54 Adequate computerised algorithms are 
especially important when expert knowledge is not readily available, such as in pre-
hospital care, non-specialist departments, or facilities that have minimal resources. 
If high-risk patients can be identified correctly, time-to-treatment can be reduced. 
However, currently available computerised ECG diagnosis algorithms lack accuracy.11 
Progress has been made in using DNNs to automate diagnosis or triage ECGs to 
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improve time-to-treatment and reduce workload.19,55 Using very large data sets, 
DNNs can achieve high diagnostic performance and outperform cardiology residents 
and non-cardiologists.6,19 Moreover, progress has been made in using ECG data for 
predictive modelling for AF in sinus rhythm ECGs or for the screening of hypertrophic 
cardiomyopathy.56-58

Combining Other Diagnostic Modalities with ECG-based DNN
Some studies have suggested the possibility of using ECG-based DNNs with other 
diagnostic modalities to screen for disorders that are currently not associated with 
the ECG. In these applications, DNNs are thought to be able to detect subtle ECG 
changes. For example, when combined with large laboratory data sets, patients with 
hyperkalaemia could be identified, or when combined with echocardiographic results, 
reduced ejection fraction or aortic stenosis could be identified. The created DNNs 
identified these three disorders from the ECG with high accuracy.21,50,59 As a next step, 
supplementing ECG-based DNNs with body surface mapping data with a high spatial 
resolution (e.g. more than 12 measurement electrodes), inverse electrocardiography 
data or invasive electrophysiological mapping data, may result in the identification 
of subtle changes in the 12-lead ECG as a result of pathology.

Artificial Intelligence for Invasive Electrophysiological Studies
The application of AI before and during complex invasive electrophysiological 
procedures, such as electroanatomical mapping, is another major opportunity. By 
combining information from several diagnostic tools such as MRI, fluoroscopy or 
previous electroanatomical mapping procedures, invasive catheter ablation procedure 
time might be reduced through the accelerated identification of arrhythmogenic 
substrates. Also, new techniques such as ripple mapping may be of benefit during 
electroanatomical mapping studies.60 Recent studies suggest that integration of 
fluoroscopy and electroanatomical mapping with MRI is feasible using conventional 
statistical techniques or ML, whereas others suggest the use of novel anatomical 
mapping systems to circumvent fluoroscopy.61-64 Furthermore, several ML algorithms 
have been able to identify myocardial tissue properties using electrograms in vitro.65

Ambulatory Device-based Screening for Cardiovascular Diseases
One of the major current challenges in electrophysiology is the applicability of 
ambulatory rhythm devices in clinical practice. Several tools, such as implantable 
devices or smartwatch and smartphone-based devices, are becoming more widely 
used and continuously generate large amounts of data which would be impossible 
to evaluate manually.66 Arrhythmia detection algorithms based on DNNs trained on 
large cohorts of ambulatory patients with a single-lead plethysmography or ECG 
device have shown similar diagnostic performance as cardiologists or implantable 
loop recorders.2,3,6 Another interesting application of DNN algorithms are data from 
intracardiac electrograms before and during the activation of the defibrillator. Analysis 
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of the signals before the adverse event might provide insight into the mechanism of 
the ventricular arrhythmia, providing the clinician with valuable insights. Continuous 
monitoring also provides the possibility of identifying asymptomatic cardiac 
arrhythmias or detecting post-surgery complications. Early detection might overcome 
serious adverse events and significantly improve timely personalised healthcare.6,19

A promising benefit of smartphone applications for the early detection of 
cardiovascular disease is in early detection of AF. As AF is a risk factor for stroke, 
early detection may be important to prompt adequate anticoagulant treatment.67-69 
An irregular rhythm can be accurately detected using smartphone or smartwatch-
acquired ECGs. Even predicting whether a patient will develop AF in the future 
using smartphone-acquired ECGs recorded during sinus rhythm has been recently 
reported.69,70 Also, camera-based photoplethysmography recordings can be used 
to differentiate between irregular and regular cardiac rhythm.71,72 However, under-
detection of asymptomatic AF is expected as the use of applications requires active 
use and people are likely to only use applications when they have a health complaint. 
Therefore, a non-contact method with facial photoplethysmography recordings 
during regular smartphone use may be an interesting option to explore.70,73,74

Apart from the detection of asymptomatic AF, the prediction or early detection of 
ventricular arrhythmias using smartphone-based techniques are potentially clinically 
relevant. For example, smartphone-based monitoring of people with a known 
pathogenetic mutation might aid the early detection of disease onset. In some 
pathogenetic mutations, this may be especially relevant as sudden cardiac death 
can be the first manifestation of the disease. In these patients, close monitoring to 
prevent these adverse events by starting early treatment when subclinical signs are 
detected may provide clinical benefit.

Threats of Artificial Intelligence in Electrophysiology
Data-driven Versus Hypothesis-driven Research
Data from electronic health records are almost always retrospectively collected, 
leading to data-driven research, instead of hypothesis-driven research. Research 
questions are often formulated based on readily available data, which increases 
the possibility of incidental findings and spurious correlations. While correlation 
might be sufficient for some predictive algorithms, causal relationships remain of 
the utmost important to define pathophysiological relationships and ultimately for 
the clinical implementation of AI algorithms. Therefore, big data research is argued 
to be in most cases solely used to generate hypotheses and controlled clinical 
trials remain necessary to validate these hypotheses. When AI is used to identify 
novel pathophysiological phenotypes, e.g. with specific ECG features, sequential 
prospective studies and clinical trials are crucial.75
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Input Data
Adequate labelling of input data is important for supervised learning.18,76,77 
Inadequate labelling of ECGs or the presence of pacemaker artefacts, comorbidities 
affecting the ECG or medication affecting the rhythm or conduction, might influence 
the performance of DNNs.13–18 Instead of true disease characteristics, ECG changes 
due to clinical interventions are used by the DNN to classify ECGs. For example, a 
DNN using chest X-rays provided insight into long-term mortality, but the presence 
of a thoracic drain and inadequately labelled input data resulted in an algorithm 
that was unsuitable for clinical decision-making.77–80 Therefore, the critical review of 
computerised labels and the identification of important features used by the DNN 
are essential.

Data extracted from ambulatory devices consist of real-time continuous monitoring 
data outside the hospital. As the signal acquisition is performed outside a standardised 
environment, signals are prone to errors. ECGs are more often exposed to noise due 
to motion artefacts, muscle activity artefacts, loosened or moved electrodes and 
alternating powerline artefacts. To accurately assess ambulatory data without the 
interference of artefacts, signals should be denoised or a quality control mechanism 
should be implemented. For both methods, noise should be accurately identified 
and adaptive filtering or noise qualification implemented.81-83 However, as filtering 
might remove information, rapid real-time quality reporting of the presence of noise 
in the acquired signal is thought to be beneficial. With concise instructions, users can 
make adjustments to reduce artefacts and the quality of the recording will improve. 
Different analysis requires different levels of data quality and through classification 
recorded data quality, the threshold for user notification can be adjusted per 
analysis.84,85

Generalisability and Clinical Implementation
With the increasing number of studies on ML algorithms, generalisability and 
implementation is one of the most important challenges to overcome. Diagnostic 
or prognostic prediction model research, from simple logistic regression to highly 
sophisticated DNNs, is characterised by three phases:

 > Development and internal validation.
 > External validation and updating for other patients.
 > Assessment of the implementation of the model in clinical practice and 

 its impact on patient outcomes.86,87

During internal validation, the predictive performance of the model is assessed 
using the development data set through train-test splitting, cross-validation or 
bootstrapping. Internal validation is however insufficient to test generalisability 
of the model in ‘similar but different’ individuals. Therefore, external validation of 
established models is important before clinical implementation. A model can be 
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externally validated through temporal (same institution, later period), geographical (a 
different institution with a similar patient group) or domain (different patient group) 
validation. Finally, implementation studies, such as cluster randomised trials, before 
and after studies or decision-analytic modelling studies, are required to assess the 
effect of implementing the model in clinical care.86,87

Most studies in automated ECG prediction and diagnosis performed some type of 
external validation. However, no study using external validation in a different patient 
group or implementation study has been published so far. A study has shown 
similar accuracy to predict low ejection fraction from the ECG using a DNN through 
temporal validation as in the development study.88 A promising finding was a similar 
performance of the algorithm for different ethnic subgroups, even if the algorithm 
was trained on one subgroup.89 As a final step to validate this algorithm, a cluster 
randomised trial is currently being performed. This might provide valuable insight 
into the clinical usefulness of ECG-based DNNs.90

Implementation studies for algorithms using ambulatory plethysmography and ECG 
data are ongoing. For example, the Apple Heart Study assessed the implementation 
of smartphone-based AF detection.5 More than 400,000 patients who used a mobile 
application were included, but only 450 patients were analysed. Implementation 
was proven feasible as the number of false alarms was low, but the study lacks 
insight into the effect of smartphone-based AF detection on patient outcome. 
Currently, the Heart Health Study Using Digital Technology to Investigate if Early 
AF Diagnosis Reduces the Risk of Thromboembolic Events Like Stroke IN the Real-
world Environment (HEARTLINE; NCT04276441) is randomising patients to use the 
smartwatch monitoring device. The need for treatment with anticoagulation of 
patients with device-detected subclinical AF is also being investigated.4

A final step for the successful clinical implementation of AI is to inform its users 
about adequate use of the algorithm. Standardised leaflets have been proposed 
to instruct clinicians when, and more importantly when not, to use an algorithm.91 
This is particularly important if an algorithm is trained on a cohort using a specific 
subgroup of patients. Then, applying the model to a different population may 
potentially result in misdiagnosis. Therefore, describing the predictive performance 
in different subgroups, such as different age, sex, ethnicity and disease stage, is of 
utmost importance as AI algorithms are able to identify these by themselves.89,92-94 
However, as most ML algorithms are still considered to be ‘black boxes’, algorithm 
bias might remain difficult to detect.

Interpretability
Many sophisticated ML methods are considered black boxes as they have many model 
parameters and abstractions. This is in contrast with the more conventional statistical 
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methods used in medical research, such as logistic regression and decision trees, 
where the influence of a predictor on the outcome is clear. The trade of complexity of 
models and interpretability for improved accuracy is important to acknowledge; with 
increased complexity of the network, interpretation becomes more complicated. 
But interpretability remains important to investigate false positives and negatives, 
to detect biased or overfitted models, to improve trust in new models or to use 

Figure 4. Important Regions for the Deep Neural Network to Predict Whether an ECG is Normal, Abnor-
mal or Acute. ECG leads II and V1 with a superimposed guided Grad-CAM visualisation showing regions 
important for the deep neural network to predict whether an ECG is normal, abnormal or acute. A and B: 
Normal ECGs with focus on the P wave, QRS-complex, and T wave, while correctly ignoring a premature 
ventricular complex. C: Abnormal ECG with a long QT interval and a focus on the beginning and end of 
the QT-segment. D and E: Acute ECGs with an inferior ST-segment elevation MI (D) and a focus on the 
ST-segment and with a junctional escape rhythm (E) and a focus on the pre-QRS-segment, where the P 
wave is missing. Source: van de Leur et al. 2020.19 Reproduced from the American Heart Association, Inc., 
by Wiley Blackwell under a Creative Commons (CC BY-NC-ND 4.0) licence.
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the algorithms as a feature detector.95 Within electrophysiology, few studies have 
investigated how the AI algorithms came to a certain result. For DNNs, three recent 
studies visualised individual examples using Guided Grad-CAM, a technique to show 
what the networks focus on. They showed that the DNN used the same segment of 
the ECG that a physician would use (Figure 4).19,27,96-98

Visualisation techniques may provide the ECG locations which the algorithms find 
important, but do not identify the specific feature. Therefore, the opportunity to 
identify additional ECG features remains dependent on expert opinion and analysis 
of the data by a clinician is still required. Visualisation techniques and their results are 
promising and help to increase trust in DNNs for ECG analysis, but additional work is 
needed to further improve the interpretability of AI algorithms in clinical practice.99,100

Uncertainty Estimation
In contrast to physicians or conventional statistical methods, DNNs struggle to inform 
their users when they do not know and to give uncertainty measures about their 
predictions. Current models always output a diagnosis or prediction, even if they have 
not seen the input before. In a real-world setting, clinicians acknowledge uncertainty 
and consult colleagues or literature but a DNN always makes a prediction. Therefore, 
methods that incorporate uncertainty are essential before implementation of such 
algorithms is possible.101

Ideally, the algorithm provides results only when it reaches a high threshold of 
certainty, while the uncertain cases will still be reviewed by a clinician.101 For DNNs, 
several new techniques are available to obtain uncertainty measures, such as 
Bayesian deep learning, Monte Carlo dropout and ensemble learning, but these have 
never been applied in electrophysiological research.102 They have been applied to 
detect diabetic retinopathy in fundus images using DNNs, where one study showed 
that overall accuracy could be improved when uncertain cases were referred to a 
physician.103 Another study suggested that uncertainty measures were able to detect 
when a different type of scanner was used that the algorithm had not seen before.35 
Combining uncertainty with active or online learning allows the network to learn 
from previously uncertain cases, which are now reviewed by an expert.104

Ethical Aspects
Several other ethical and legal challenges within the field of AI in healthcare are yet to 
be identified, such as patient privacy, poor quality algorithms, algorithm transparency 
and liability concerns. Data are subjected to privacy protections, confidentiality and 
data ownership, therefore requiring specific individual consent for use and reuse 
of data. However, by increasing the size of the data set, anonymisation techniques 
used nowadays might be inadequate and eventually result in the identification 
of patients.105,106 As large data sets are required for DNNs, collaboration between 
institutions becomes inevitable. To facilitate data exchange, platforms have been 
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Table 1. Systematic Overview of Relevant Threats of AI Algorithms in Electrophysiology
Domain Key points Questions
Algorithm inputs Subjects Is an appropriate data source used with clean in- and 

exclusion criteria?
Data Is the (ECG) data of sufficient quality?

Concerning ambulatory data; is continuous assess-
ment of quality of data performed?

Algorithm performance Robustness How does the model perform?
Was there a reasonable number of subjects?
Were ECGs equally sampled per subject? 

Overfitting and 
optimism

Was overfitting assessed using internal validation 
with train-test splitting, cross-validation or bootstrap-
ping?
Was the validation dataset of sufficient size (>100 
participants with the outcome)?

External validation Are there external validation studies in different tem-
poral, geographical or domain patient groups?

Subgroups Is subgroup analysis provided to minimize the risk of 
poor performance in subgroups?
Is bias based on ethnicity, gender or other demo-
graphic factors present?

Algorithm implementation Subjects Is the population to use the algorithm similar to the 
(external) validation population?
Is the disease prevalence similar?

Data Is the algorithm evaluated on the used diagnostic 
device of a specific manufacturer?
Was data standardized according to general agree-
ments?   

Implementation 
studies

Are there implementation studies (such as RCTs or 
before-after studies) performed?
Does implementation of the model positively influ-
ence patient outcomes?

Interpretation and 
uncertainty

Are there possibilities to check the predictions of the 
model in clinical practice (using visualizations)?
Does the model provide uncertainty measures?
How does the model deal with ECG noise or elec-
trode misplacements?
Is there a clear flowchart to refer specific uncertain 
cases to a physician?

Ethical and legal Are the ethical and legal aspects sufficiently ad-
dressed?

RCT = randomised controlled trial.

established to allow for safe and consistent data-sharing between institutions.107 
However, these databases may still contain sensitive personal data.54,108 Therefore, 
federated learning architectures are proposed that provide data-sharing while 
simultaneously obviating the need to share sensitive personal data. An example of 
this is the anDREea Consortium (andrea-consortium.org).

Another concerning privacy aspect is the continuous data acquisition through 
smartphone-based applications. In these commercial applications, data ownership 
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and security are vulnerable. Security between smartphones and applications is 
heterogeneous and data may be stored on commercial and poorly secured servers. 
Clear regulations and policies should be in place before these applications can enter 
the clinical arena.

Data sets contain information about medical history and treatment but may also 
encompass demographics, religious status or socioeconomic status. Apart from 
medical information, sensitive personal data might be taken into account by 
developed algorithms, possibly resulting in discrimination in areas such as ethnicity, 
gender or religion.54,108-110

As described, DNNs are black boxes wherein input data is classified. An estimate of 
the competency of an algorithm can be made through the interpretation of DNNs 
and the incorporation of uncertainty measures. Traditionally, clinical practice mainly 
depends on the competency of a clinician. Decisions about diagnoses and treatments 
are based on widely accepted clinical standards and the level of competency is 
protected by continuous intensive medical training. In the case of adverse events, 
clinicians are held responsible if they deviated from standard clinical care. However, 
the medical liability of the DNN remains questionable. Incorrect computerised 
medical diagnoses or treatments result in adverse outcomes, thereby raising the 
question: who is accountable for a misdiagnosis based on an AI algorithm.

To guide the evaluation of ML algorithms, in particular DNNs, and accompanying 
literature in electrophysiology, a systematic overview of all relevant threats discussed 
in this review is presented in Table 1.

Conclusion
Many exciting opportunities arise when AI is applied to medical data, especially 
in cardiology and electrophysiology. New ECG features, accurate automatic ECG 
diagnostics and new clinical insights can be rapidly obtained using AI technology. 
In the near future, AI is likely to become one of the most valuable assets in clinical 
practice. However, as with every technique, AI has its limitations. To ensure the 
correct use of AI in a clinical setting, every clinician working with AI should be able 
to recognise the threats, limitations and challenges of the technique. Furthermore, 
clinicians and data scientists should closely collaborate to ensure the creation of 
clinically applicable and useful AI algorithms.
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The electrocardiogram (ECG) plays an important role in the systematic assessment 
of cardiac electrical (dys)function within current clinical practice. Through waveform 
morphology assessment, important insight in underlying cardiac pathology can be 
obtained. But with the ECG only a rather distant view on cardiac electrical activity 
is provided, as it displays the potential resulting from the spatial summation of 
all electrical activity. Within this thesis we focused on non-invasive ECG-based 
techniques to obtain additional information on cardiac electrical activity. Subtle 
changes in cardiac electrical activity, due to for example slow disease progression 
as observed in inherited cardiomyopathies, may be uncovered by linking cardiac 
electrical activity measured with the ECG to cardiac anatomy. However, currently 
available techniques require optimization to improve the estimation during normal 
ventricular activation. 

Inherited cardiomyopathies are associated with a broad spectrum of potentially 
lethal phenotypes characterized by structural and electrical myocardial remodeling. 
Nowadays, extensive clinical work-up is carried out to identify any phenotypic ACM 
expression. With the TFC, several clinical characteristics with a high specificity for 
ACM were identified to guide clinical diagnosis and monitoring.1 However, due to 
heterogeneous disease penetrance and slow disease progression, risk-stratification 
in phenotype-negative individuals remains challenging. With the development of 
new diagnostic tools, the detection of subtle signs of disease may be enabled. 

Recently, a lot of progress has been made to identify structural and mechanical defects 
in ACM. With MRI-based feature mapping, T1-mapping and echocardiography-
based deformation imaging early mechanical signs of ACM can be identified, even 
prior to identifiable pathological changes in the 12-lead ECG.2-4 This is unexpected 
as from a pathophysiological point-of-view, both electrical and structural signs 
are expected to develop in parallel due to the cell-to-cell adhesion defects.5 These 
observations imply that the 12-lead ECG may not be sensitive enough to uncover the 
first electrical signs of disease. 

In this thesis, we described the optimization of equivalent dipole layer (EDL)-
based iECG for normal ventricular activation (chapter 2), compared this to invasive 
measurements (chapter 3) and evaluated the iECG method in ACM variant carriers 
with a broad clinical manifestation of disease (chapter 4) for its ability to identify 
subtle signs of disease progression. Additionally, the firsts step towards accurate 
disease modeling in EDL-based ECG simulations was described (chapter 5). We 
also methodologically reviewed CineECG (chapter 6), a mathematically lightweight 
and less intrusive iECG procedure and conceptually validated it in individuals with 
a bundle branch block (chapter 7). A new method to improve the diagnostic yield 
of the ECG (chapter 8) was described and opportunities and challenges of ECG-
based artificial intelligence (AI, chapter 9) were set out. To conclude the thesis, I will 
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describe and discuss potential future research directions and clinical applications of 
the techniques described in this thesis in the current chapter.  

Electrophysiological regularization of EDL-based iECG 
The incorporation of an anatomy based His-Purkinje model in the iECG technique 
provided a first step towards a more accurate, physiologically based, estimation of 
a realistic cardiac activation sequence.6-10 In the local activation timing (LAT) maps, 
estimated myocardial propagation velocity stayed within a physiological range and 
activation sequences were the result of several activation sequences arising from 
distinct, His-Purkinje related, regions. In narrow complexes, the number of initial 
sites of activation was higher, thereby providing a physiologically realistic estimation. 
When comparing the iECG LAT maps to invasive measurements, the non-invasive 
estimation in narrow QRS complexes matched the complex underlying activation 
pattern better compared to other methods.11,12 

However, we are not there yet. Whereas the incorporation of the His-Purkinje 
model improved the non-invasive estimation of LAT maps, the presence of diseased 
myocardium breaks the equivalence of the used dipole layer. As a proof-of-concept, 
the new iECG method was applied in ACM variant carriers with a broad clinical 
manifestation of disease (chapter 5). Early-stage ACM, shows none to very limited 
structural defects and thus the underlying myocardium can be assumed homogeneous 
in electrical properties, i.e. the tissue is not likely to break the equivalence of the dipole 
layer. With the iECG method, iECG parameters that may be suitable to identify early 
disease which adhere to clinically observed disease progression. When evaluating 
RV iECG LAT maps in severe ACM cases, physiologically relevant (and expected) 
parameters like isochronal crowding, transmural LAT heterogeneity and regions of 
late activation were colocalized in regions with LGE-presence. This indicated the ability 
of the current iECG method to cope, at least to some extent, with this myocardial 
disease. Prognostic studies to evaluate the clinically added value and role of iECG in 
risk-stratification and early detection of ACM are however warranted. Whereas the 
findings obtained in the proof-of-concept study are promising, the incorporation of 
additional prior knowledge regarding structural defects is likely to provide a more 
reliable estimation of the cardiac electrical activity. Taking into account findings 
from LGE-cMR imaging, regions with myocardial disease requiring altered source 
parameters can be identified. Within these regions, the interplay between diseased 
and healthy regions may be more accurately modeled by implementing a patch-
based EDL-based method (chapter 5). 

A more technical optimization of the iECG method is proposed to reduce the error 
introduced by cardiac source sampling (i.e., the number of samples used to discretize 
the ventricular anatomical model). Due to spatial source undersampling, applied to 
reduce computational cost, a numerical error is introduced in the computation of 
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BSP.13 Therefore, a filter is used to remove this error possibly also removing parts 
of the signal not caused by cardiac undersampling. In our modeling study (chapter 
5), we used a triangle-based weighing method to remove this error in the BSP 
computation. Especially to correctly image large differences in local propagation 
velocity, this method is likely to further improve the numerical accuracy of EDL-
based iECG. To implement this into the iECG procedure, the regularization operator 
used in the optimization procedure must be adapted, which is now based on the 
surface Laplacian14, taking into account the distance and angle between nodes. As 
the new BSP computation method is triangle based, the surface Laplacian can no 
longer be used as there are no distance/angles between triangles. Therefore, a new 
regularization operator, possibly taking into account the distance between adjacent 
nodes of the ventricular model, is required. 

In the current iECG method, the shape of the transmembrane potential is approximated 
using two analytical sigmoidal functions based on the dominant T-wave.15 For 
normal ventricular repolarization, this method may be accurate, but in the presence 
of cellular pathology a more sophisticated method is required. Ultimately, a cellular-
based model underlying the generation of the local transmembrane potential would 
provide the opportunity to incorporate disease specific cellular pathology in the 
iECG method. Furthermore, cell-to-cell interactions and the presence of different 
cell types (e.g. healthy and disease) within a region can be modeled. The resulting 
average transmembrane potential in a region may then be used in EDL-based iECG. 
Whereas such cellular models are computationally expensive, additional important 
insight in the development of the cardiac substrate can be obtained. Furthermore, 
the interaction between activation and repolarization, and consequently possible 
increased susceptibility to arrhythmias16, can be investigated more thoroughly. 

Current clinical work-up and iECG techniques 
To date, risk-stratification in both phenotype-positive and -negative individuals 
remains challenging. A potential (synergistic) role of known and constantly improved 
ECG-, cMR-, echocardiographic- and biomarker-based techniques will likely provide 
improved diagnosis, monitoring and risk-stratification to titrate individualized 
treatment in both phenotype-positive and -negative individuals. Ultimately, by 
assessing inter-modality correspondence, further in-depth characterization of 
disease progression and the underlying pathophysiological process is obtained. With 
iECG techniques, additional information regarding the electrophysiological substrate 
may be obtained. Insight in substrate changes may provide additional information 
on treatment effect and may be used as a surrogate outcome for clinical trials. 
Furthermore, the identification and characterization of the substrate may be used 
to guide and evaluate treatment regimen choices (e.g., medication, ablation or ICD 
implantation) and guide invasive electrophysiological mapping studies. 
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Both CineECG and EDL-based iECG may provide additional insight in cardiac 
electrical activity next to the 12-lead ECG. Whereas CineECG is a lightweight iECG 
technique providing merely a summary of cardiac electrical activity, EDL-based 
iECG is complex providing detailed insight of the electrophysiological substrate. In 
current clinical practice, CineECG can be more easily applied when using its generic 
anatomical model and its clinically added value may be already evaluated by using 
retrospective 12-lead ECG data. Small changes in the standard 12-lead ECG may 
become identifiable using the technique.17 But still, as is the case with the 12-lead 
ECG, clinicians, possibly helped by AI-techniques, should learn how to interpret the 
CineECG and consequently the interpretation is dependent on the reader experience. 
The technique is very promising and future studies will determine the diagnostic 
yield and role of the CineECG in the acute setting and in regular clinical follow-up.18

For EDL-based iECG, incorporation in the clinical workflow may be more complicated 
as the technique requires the use of extensive (>67-leads) BSP measurements and 
subject specific anatomical model segmentation. Furthermore, overall robustness 
of iECG techniques to variation in cardiac segmentation and ECG prepossessing 
techniques are currently investigated.19,20 With the development of mathematical 
methods to determine both positional and geometrical information from the ECG, 
iECG methods are further improved.21,22 With these techniques, the eventual error 
introduced by these effectors can be reduced, to improve clinical applicability of 
iECG techniques. 

The application of a patch-work iECG method, combining different techniques to 
one, creates the opportunity to combine the strengths of different iECG methods, 
consequently likely to improve the accuracy of iECG methods.23,24 A more detailed and 
robust characterization of electrophysiological properties in complex substrates may 
be enabled. Another exciting opportunity is the application of data-driven models. 
The well-known iECG techniques are mostly physics/electrophysiology-based 
models. Data-driven models to regularize iECG estimations may potentially improve 
the iECG estimation, as current studies have shown that such models outperform 
Tikhonov regularization methods.25,26 Furthermore, with variational auto encoders we 
may partially, but hopefully completely, uncover the complexity of the true volume 
conductor resulting in recorded BSP to further optimize the models used to compute 
BSP. Additionally, data-driven models may also be used to predict the occurrence of 
arrhythmic events.27,28 However, as solely data-driven models may ignore underlying 
physics and electrophysiology, frameworks capable to understand underlying physics 
(e.g. patient specific geometry) may further improve such methods.29,30

Enhancing 12-lead based ECG-based diagnostics 
The ECG contains a lot of information, more than currently used/accessible in clinical 
practice. This is also indicated by the recent developments in the field of 12-lead 
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ECG-based artificial intelligence (AI). With just the 12-lead ECG, it is possible to 
estimate reduced LV ejection fraction31, LV hypertrophy32, early signs of inherited 
cardiomyopathy33 and hyperkalemia34.  Furthermore, atrial fibrillation35 and patient 
outcomes36,37 can be predicted using the 12-lead ECG during sinus rhythm.

It is however important to realize that these models work with the probability of 
developing an event, based on the given population and employing only the variables 
selected by the model from this particular group. With a slight change in population, 
the model will inherently change and on an individual level the prediction may 
change radically whereas overall model performance remains equal. The population 
of the model is therefore very important; in an individual with an indefinite number of 
variables (not all contained in the model), there is a probability of having reduced EF 
based on the variables selected by the model, thereby not taking into account other 
variables the individual has. Consequently, when putting the same individual several 
times in the same situation again and again, the number of times this individual will 
have a reduced EF is not the same as the probability thereof predicted by the model; 
the individual simply has a reduced EF or not. Therefore, the ECG may indicate that 
there is a high probability of having reduced EF. But if the interpreter believes that 
is wrong based on an observation in that particular individual which is not included 
in the model, the interpreter is probably right. Thereby of course keeping in mind 
that this again is based on a probability calculation clinicians perform subconsciously 
through years of experience, much like AI.

Keeping this in mind, in order to further optimize AI-based algorithms, all possible 
available data should be collected and models should continue learning with this 
new data. To facilitate this, it is important to develop pipelines for data structuring 
and preprocessing, to provide generalized infrastructures to share data and to 
provide the opportunity for federated learning and external validation. Furthermore, 
developments in natural language processing will provide access to even more 
data and data collected during day-to-day activities will further provide additional 
information. Besides using real-world patient data, datasets consisting of synthetic 
patient data and ECG signals based on a combination of real-world data and 
mathematical modeling, may further support AI-based research. With the AI-based 
techniques, novel parameters to monitor disease onset and progression may be 
identified in a more objective way.33 Developed AI-algorithms however remain to 
be a black box and currently advancements are made to explain the model-based 
decision to identify ECG-based features which can be used in clinical practice.33,38-41

Another way to improve the diagnostic yield of the ECG is to reduce the most 
common error during ECG acquisition; electrode repositioning.42-46 Using 3D camera 
guided electrode positioning, consecutive ECG acquisition is stabilized and more 
subtle changes in the cardiac activation sequence may be detected. Furthermore, as 
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recent studies suggest that not all information regarding cardiac electrical activity 
is captured with the 12-lead ECG, disease specific electrode positioning may be 
warranted.47-50 With the use of 3D camera guided electrode (re)positioning, adherence 
to such a disease specific electrode position is most likely improved, therewith further 
improving the diagnostic yield of the 12-lead ECG.

Concluding remarks and future perspectives
Both CineECG and EDL-based iECG may provide complementary information to the 
other tools currently used in ACM diagnosis. The EDL-based in-depth characterization 
of the electrophysiological substrate in ACM may enhance treatment titration and 
risk-stratification. As CineECG only requires a 12-lead ECG, the technique may also 
be employed at home, therewith possibly enabling earlier detection of disease. In 
future studies, the added value and role of the promising techniques in the current 
diagnostic work-up and risk-stratification techniques in ACM should be determined. 
Furthermore, by combining physics, electrophysiology and data-driven models, iECG 
methods can be further optimized.   In combination with new echocardiographic and 
cMR techniques, risk-stratification in ACM patients can be further improved. 

With the new advancements in the field of ECG-based AI, a lot of new exciting 
opportunities for future research are opening up. By combining findings from ECG-
based techniques and tools to assess cardiac structure and mechanical function, 
risk-stratification in ACM of both phenotype negative and positive individuals will 
likely be further enhanced. Also, when combining findings from the 12-lead ECG, 
CineECG and AI based predictions, these findings may together prove valuable in the 
identification of individuals at risk for events. 

Scientists are curious and, in their curiosity, they try to understand and describe 
physical processes in the world using for example mathematical models. With regards 
to iECG techniques, a lot of advancements were already made within the past and are 
still ongoing. With each step made, the accurate non-invasive estimation of cardiac 
activity comes more and more within reach. With the research described in this thesis 
we hope to have also contributed a bit to this purpose. But the most basic law in 
science will always remain; with each question answered, (luckily) at least three new 
ones are generated. 
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English summary 
The electrocardiogram (ECG) plays an important role in systematically assessing 
cardiac electrical function, but the standard 12-lead ECG only provides only a distant 
view on cardiac electrical activity. Using non-invasive inverse ECG techniques, 
additional information on cardiac electrical activity can be obtained by linking 
cardiac electrical activity to cardiac anatomy. This may enable the identification 
of subtle disease progression in cases of arrhythmogenic cardiomyopathy during 
normal ventricular activation.

Arrhythmogenic cardiomyopathy is characterized by structural and electrical 
myocardial remodeling and can manifest as a broad range of lethal phenotypes. 
Historically, arrhythmogenic cardiomyopathy was described as a predominant 
(but not exclusive) right-sided disease and called arrhythmogenic right ventricular 
cardiomyopathy; the best characterized type of arrhythmogenic cardiomyopathy. 
Increased awareness, identification of genes associated with arrhythmogenic 
cardiomyopathy and improved genetic cascade screening leads to more genotype-
positive, yet phenotype-negative individuals to be evaluated and followed up. 
The predictive value of genetic testing is limited by incomplete penetrance and 
high variability in disease onset, progression and severity. In arrhythmogenic 
cardiomyopathy, electrical remodeling can precede structural and functional changes 
and sudden cardiac death can be the first disease manifestation. This highlights the 
need for accurate screening and risk-stratification strategies. Task Force Criteria (TFC) 
were established to standardize clinical diagnosis of arrhythmogenic right ventricular 
cardiomyopathy but risk-stratification remains challenging. In this thesis, several 
ECG-based techniques are described which may have the potential to improve the 
diagnostic process in the identification and risk-stratification of arrhythmogenic 
cardiomyopathy, as described in Chapter 1. 

The first part of this thesis focusses on describing the optimalization of a traditional 
inverse ECG technique. With this inverse ECG technique, non-invasive insight in 
endocardial and epicardial cardiac electrical activity can be obtained by combining 67-
lead ECG data with patient specific CT/MRI-based anatomical models. The application 
of such an inverse ECG technique in individuals at risk to develop arrhythmogenic 
cardiomyopathy may improve current clinical practice. Reconstructing ventricular 
activation in paced beats and premature ventricular complexes using the inverse ECG 
techniques described in literature already yielded reasonable accuracy. However, 
during normal ventricular activation (e.g., sinus rhythm), utility of these inverse 
ECG techniques are limited. To be able to identify early signs of arrhythmogenic 
cardiomyopathy development, accurate imaging of sinus rhythm is of importance. 
Therefore, in Chapter 2, we report on our work regarding the optimization of 
the inverse ECG technique for the estimation of sinus rhythm and report on its 
performance. With the incorporation of a subject-specific anatomy-based model 
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of the His-Purkinje system a physiologically realistic and robust estimation of the 
ventricular activation sequence is obtained. Subsequently, in Chapter 3, we describe 
the performance of the optimized inverse ECG technique by comparing the estimated 
ventricular activation maps to invasively measured maps. Overall, estimated activation 
sequences had good agreement with the invasively measured activation maps, 
including those of narrow QRS complexes. The optimized inverse ECG technique 
detected local abnormalities in the activation sequence in pathogenic variant carriers 
with and without any clinical signs of disease, as described in Chapter 4. The proof-
of-concept study indicated that with the optimized inverse ECG technique, local 
electrophysiological characteristics of the arrhythmogenic substrate may be non-
invasively identified and quantified. Besides insight in activation patterns over the 
surface, also insight in transmural activation patterns is obtained. By combining 
this information, the presence of mid-myocardial scar may be revealed. Future 
studies should focus on the prognostic value of inverse ECG derived characteristics 
on clinical outcomes. Although the results are very promising, the accuracy and 
resolution of inverse ECG techniques still remains debatable. To further optimize 
the performance of the inverse ECG technique, we present a new method to model 
myocardial disease in ECG simulation in Chapter 5. With this approach, (partially) 
electrically active substrate was modelled and the effect of the substrate on the ECG 
was assessed. The new patch-based approach created a realistic relation between 
ECG waveforms and underlying activation sequences. Such a method can contribute 
to improved understanding of the effect of cardiomyopathy on obtained ECG, both 
for educational and clinical purposes. 

Traditional inverse ECG techniques are mathematically complex and computationally 
demanding. They require many more leads to obtain an accurate estimation of 
the activation sequence than the standard 12-lead ECG, which in application is 
expensive and time-consuming. With CineECG, a new method was introduced in an 
attempt to image key features of the activation sequence that are difficult to reliably 
obtain from the ECG. Additional information is obtained as CineECG relates cardiac 
electrical activity to cardiac anatomy. The technique uses just the standard 12-lead 
ECG thereby minimizing the additional burden of electrode numbers. In Chapter 
6 CineECG was conceptually validated in cases of bundle branch blocks and the 
CineECG indicated the anatomical location of the bundle branch block, whereby 
the terminal part of the CineECG contained the most information. After further 
evaluation, the method was optimized and validated through a simulation study, as 
described in Chapter 7. Overall, CineECG captured significant features of activation 
sequences and is robust for electrode misplacement and use of generic anatomical 
model. The obtained CineECG was recovered dominant features of invasively 
measured activation sequences. The study indicated that CineECG provides succinct 
but realistic information regarding the average activation sequence.

English summary
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The most widespread use of the standard 12-lead ECG in current clinical practice 
is to asses cardiac rhythm, investigate waveform morphology and conduction 
times by performing standardized measurements. Specifically in the detection of 
arrhythmogenic cardiomyopathy, changes in the complete waveform morphology 
are of interest, but currently only changes at the end of the QRS complex and global 
changes of the T-wave are used to monitor disease progression. Other signs of disease 
progression may be contained within the captured ECG, but accurate assessment of 
such subtle changes is limited as inconsistencies in electrode positioning also result 
in ECG waveform changes. In such cases, it remains uncertain whether differences 
between subsequent ECGs are due to pathology or electrode (mis)placement. To 
this end, we introduce a method to reduce electrode placement misplacement 
(Chapter 8). The application of a 3D-camera reduced the variation in obtained ECG 
waveforms and its derived measurements compared to current clinical practice. With 
this new technique, the identification of subtle changes in the QRS complex during 
arrhythmogenic cardiomyopathy follow-up may be improved. Subtle sings of disease 
are present in the ECG but currently undetectable by the human eye, as indicated 
by the recently developed ECG-based artificial intelligence algorithms. In Chapter 
9, we describe how such algorithms may aid current clinical practice together with 
its potential benefits and challenges. New ECG features, automatic ECG diagnostics 
and improved clinical insight can be obtained using artificial intelligence techniques. 
With such algorithms, the complex nature of disease progression in arrhythmogenic 
cardiomyopathy may be further unraveled. But to ensure the correct use of artificial 
intelligence in a clinical setting, explainability of methods should be improved and 
end-users should be able to recognize the limitations of the technique. 

To conclude the thesis, the application of techniques presented in this thesis to 
enhance diagnosis and risk-stratification in arrhythmogenic cardiomyopathy is 
described in Chapter 10. The techniques are viewed within the context of possible 
fields of application in current clinical practice. The described inverse ECG techniques 
(Part I and II) may provide complementary information by providing in-depth 
characterization of the arrhythmogenic substrate (Part I) or a global view on cardiac 
activation (Part II) linked to anatomy. The added value of these techniques in the 
current diagnostic work-up and risk-stratification for arrhythmogenic cardiomyopathy 
should be investigated in future studies. By further enhancing the diagnostic yield 
of the 12-lead ECG (Part III), early detection and risk-stratification in arrhythmogenic 
cardiomyopathy of will likely be further enhanced. 
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Het electrocardiogram (ECG), ook wel hartfilmpje genoemd, speelt een belangrijke 
rol in het systematisch beoordelen van de electrische activiteit van het hart. Het 
standaard 12-kanaals ECG geeft hierin echter alleen een globaal inzicht. Met niet-
invasieve inverse ECG-technieken kan extra informatie worden verkregen over de 
electrische hartactiviteit door deze te koppelen aan de hart anatomie. Hiermee 
kunnen mogelijk subtiele tekenen van ziekteprogressie worden gedetecteerd 
bij patiënten met aritmogene cardiomyopathie, ook wanneer er verder nog geen 
uitingen van ziekte zijn gevonden. 

Aritmogene cardiomyopathie wordt gekenmerkt door zowel een structurele- als 
electrische veranderingen in hartspierweefsel en kan zich uiten in verschillende, 
mogelijk ook fatale, vormen. Aritmogene cardiomyopathie werd eerder beschreven 
als een ziekte die voornamelijk, maar niet alleen, het rechterventrikel aantast en werd 
daarom aritmogene rechterventrikel cardiomyopathie genoemd; de best omschreven 
vorm van aritmogene cardiomyopathie. Een verhoogd besef van het bestaan van 
aritmogene cardiomyopathie in combinatie met de ontwikkelingen binnen genetisch 
onderzoek heeft ervoor gezorgd dat er bij steeds meer mensen een erfelijke aanleg 
voor aritmogene cardiomyopathie wordt vastgesteld zonder dat ze tekenen van ziekte 
hebben. Bij hen bestaat de kans dat aritmogene cardiomyopathie zich ontwikkelt, 
maar het is onbekend wanneer, in wat voor vorm en hoe ernstig de ziekte zich zal 
uiten. Daarom worden deze mensen klinisch regelmatig gecontroleerd op uitingen 
van aritmogene cardiomyopathie. Electrische veranderingen in de hartspier kunnen 
voorafgaan aan structurele en mechanische veranderingen en plotse hartdood 
kan het eerste teken zijn van ziekte. Daarom is adequate vroeg-detectie en risico-
stratificatie erg belangrijk. De Task Force Criteria voor aritmogene rechterventrikel 
cardiomyopathie zijn opgesteld om klinische diagnose te standaardiseren, 
maar adequate risico-stratificatie blijft een uitdaging. In dit proefschrift worden 
verschillende op het ECG gebaseerde technieken omschreven die mogelijk adequate 
vroeg-detectie en risico-stratificatie bij aritmogene cardiomyopathie kunnen 
verbeteren, zoals omschreven in Hoofdstuk 1.  

In het eerste deel van dit proefschrift wordt de optimalisatie van een traditionele inverse 
ECG techniek omschreven. Met deze techniek wordt op een niet-invasieve manier 
gedetailleerd inzicht verkregen in de electrische hartactiviteit door een 67-kanaals 
ECG te combineren met patiënt specifieke anatomische modellen. Het gebruik van 
deze inverse ECG techniek bij mensen met een erfelijke aanleg voor aritmogene 
cardiomyopathie zou de huidige klinische diagnostiek en risico-stratificatie kunnen 
verbeteren. Met de inverse ECG technieken omschreven in de wetenschappelijke 
literatuur kan een goede schatting worden gemaakt van de electrische hartactiviteit 
bij ventriculaire pacing of een prematuur ventriculair complex. Maar voor het 
schatten van normale electrische hartactiviteit (sinusritme), zijn deze inverse ECG 
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technieken echter niet accuraat genoeg. Om vroege tekenen van aritmogene 
cardiomyopathie te kunnen detecteren, is nauwkeurige beeldvorming van sinusritme 
juist erg belangrijk. In Hoofdstuk 2 beschrijven we ons werk over de optimalisatie 
van de inverse ECG techniek voor het schatten van sinusritme en laten we zien hoe 
goed de nieuwe techniek normale electrische hartactiviteit kan schatten. Door een 
patiënt-specifiek, op anatomie gebaseerd model van het His-Purkinje systeem toe te 
voegen aan de inverse ECG techniek, wordt een fysiologisch realistische en robuuste 
schatting van normale electrische hartactiviteit verkregen. In Hoofdstuk 3 wordt de 
overeenstemming tussen de niet-invasieve met inverse ECG geschatte en invasief 
gemeten electrische hartactiviteit beschreven. Over het algemeen kwamen de met 
inverse ECG geschatte activatiepatronen goed overeen met de invasief gemeten 
patronen, ook bij smalle QRS-complexen. Met de geoptimaliseerde inverse ECG 
techniek werden lokale afwijkingen in electrische hartactiviteit ontdekt bij mensen 
met een erfelijke aanleg voor aritmogene cardiomyopathie zonder tekenen van 
ziekte uiting, dit is omschreven in Hoofdstuk 4. Deze proof-of-concept studie 
geeft de indicatie dat we met de geoptimaliseerde inverse ECG techniek op een niet 
invasieve manier inzicht kunnen krijgen in lokale elektrofysiologische karakteristieken 
van het aritmogene substraat. Naast inzicht in de electrische hartactiviteit over de 
hartwand heen, kan ook inzicht worden verkregen in electrische hartactiviteit door 
de wand heen. Door deze informatie te combineren kan de aanwezigheid van ziek 
hartspierweefsel middenin de hartwand mogelijk ook worden ontdekt. Verdere studies 
zijn nodig om de prognostische waarde van het gebruik van de geoptimaliseerde 
inverse ECG techniek op klinische uitkomsten uit te wijzen. De resultaten van deze 
studie zijn veelbelovend, maar de nauwkeurigheid en resolutie van de inverse ECG 
techniek blijft discutabel. Om de nauwkeurigheid van de inverse ECG techniek verder 
te optimaliseren beschrijven we in Hoofdstuk 5 een methode om hartspierziekte 
te modelleren in ECG-simulaties. Met deze methode werd (gedeeltelijk) electrisch 
actief hartspierweefsel gemodelleerd en het effect op het ECG werd onderzocht. 
Met de nieuwe methode werd een realistische relatie tussen ECG-golfvormen en 
electrische hartactiviteit gerealiseerd. Met de methode kan een beter begrip van het 
effect van hartspierweefselziekte op het opgenomen ECG worden verkregen, zowel 
voor educatieve als klinische doeleinden. 

Traditionele inverse ECG technieken zijn wiskundig complex en vergen veel 
rekenkracht. De technieken hebben veel meer ECG-afleidingen nodig om een accurate 
inschatting te maken van de electrische hartactiviteit dan de standaard 12-kanaals 
ECG, waardoor de toepassing van deze technieken in de klinische praktijk duur en 
tijdrovend is. CineECG is een nieuwe methode die belangrijke kenmerken van de 
electrische hartactiviteit in kaart probeert te brengen die lastig uit het ECG af te leiden 
zijn. Deze extra informatie is verkregen doordat CineECG de electrische hartactiviteit 
relateert aan de hart anatomie. De techniek maakt gebruik van het standaard 
12-kanaals ECG, waarmee het electoden aantal wordt geminimaliseerd. In Hoofdstuk 
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6 wordt CineECG conceptueel gevalideerd in patiënten met een bundeltakblok en 
de CineECG gaf inzicht in de anatomische locatie van dat bundeltakblok. Het laatste 
deel van de CineECG bevatte daarvoor de meeste informatie. De methode werd 
verder geoptimaliseerd en gevalideerd in een simulatiestudie, zoals beschreven 
in Hoofdstuk 7. Met CineECG werden belangrijke kenmerken van de electrische 
hartactiviteit vastgelegd en de uitkomst was bestand tegen electrode plaatsing en het 
gebruik van een algemeen anatomisch model. Dominante kenmerken van invasief 
gemeten electrische hartactiviteit waren aanwezig in de CineECG. Uit de studie bleek 
dat CineECG beknopte maar realistische informatie geeft over de globale electrische 
hartactiviteit.  

In de huidige klinische praktijd wordt het standaard 12-kanaals ECG gebruikt 
voor het beoordelen van het hartritme, golfvorm morfologie en geleidingstijden 
door gestandaardiseerde metingen te doen. Om aritmogene cardiomyopathie te 
detecteren is het observeren van (subtiele) veranderingen van de ECG golfvorm van 
belang, momenteel worden echter alleen veranderingen aan het eind van het QRS-
complex of globale veranderingen in de T-golf gebruikt voor monitoring. Tekenen 
van ziekteprogressie kunnen aanwezig zijn in het opgenomen ECG, maar momenteel 
wordt nauwkeurige beoordeling van zulke subtiele veranderingen gelimiteerd door 
variatie in ECG electrode positie, wat direct effect heeft op de opgenomen ECG-
golfvormen. Hierdoor is het onzeker of golfvorm verschillen tussen ECG’s worden 
veroorzaakt door ziekteprogressie of afwijking in ECG electrode positie. Daarvoor 
wordt in Hoofdstuk 8 een methode geïntroduceerd om de variatie in electrode 
herplaatsing te verkleinen. Het gebruik van de 3D-camera gebaseerde techniek 
verminderde de variatie in opgenomen ECG-golfvormen en de daarvan afgeleide 
metingen in vergelijking tot de methode die momenteel wordt gebruikt in de kliniek. 
Met de nieuwe techniek kan inzicht worden verkregen in subtiele veranderingen 
van ECG-golfvormen, waarmee de detectie van ziekteprogressie kan worden 
verbeterd. Dat er subtiele tekenen van hartspierziekte aanwezig zijn in het ECG die 
niet altijd duidelijk waarneembaar zijn wordt geïmpliceerd door recent ontwikkelde 
op ECG-gebaseerde kunstmatige (artificial) intelligentie algoritmen. In Hoofdstuk 
9 beschrijven we hoe dergelijke algoritmen de huidige klinische praktijk kunnen 
ondersteunen en wat potentiële voordelen en uitdagingen zijn bij het gebruik van 
zulke algoritmen. Met behulp van kunstmatige intelligentie technieken zouden 
nieuwe ECG kenmerken, automatische ECG diagnose en extra klinische kennis 
kunnen worden verkregen. De complexe aard van ziekteprogressie bij aritmogene 
cardiomyopathie kan hiermee verder worden ontrafeld. Om een juist gebruik van 
zulke technieken te verzekeren in de klinische setting is het echter van belang om te 
onderzoeken waarop een algoritme een beslissing maakt en moeten eindgebruikers 
de beperkingen van de techniek kunnen herkennen. 
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Ter afsluiting van de thesis wordt in Hoofdstuk 10 de toepassing van de tecnhieken 
beschreven voor de verbeting van de diagnose en risico-stratificatie bij aritmogene 
cardiomyopathie. De technieken worden bediscussieerd in de context van de 
mogelijke toepassing in de klinische praktijk. Verder worden suggesties gedaan 
voor toekomstig onderzoek om de technieken verder te verbeteren. De beschreven 
inverse ECG-technieken (Deel I en II) kunnen aanvullende informatie geven over het 
aritmogene substraat (Deel I) en het globale beeld van de electrische hartactiviteit 
(Deel II) gekoppeld aan de hartanatomie verduidelijken. Er worden suggesties 
gedaan voor toekomstige studies ter verbetering van deze technieken. De 
toegevoegde waarde van de technieken binnen het huidige diagnostich onderzoek 
zal in toekomstige studies verder moeten worden onderzocht. Verbetering van de 
diagnostische waarde van het 12-leads ECG (deel III) kan de vroeg-detectie en risico-
stratificatie bij aritmogene cardiomyopathie waarschijnlijk verbeteren.
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