The Influence of {Ba²⁺}:{SO₄²⁻} Solution Stoichiometry on BaSO₄ Crystal Nucleation and Growth in Aqueous Solutions

Sergěj Y. M. H. Seepma*, a Bonny W. M. Kuipers, ab Mariette Wolthersa

^a Utrecht University, Department of Earth Sciences, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands

^b Utrecht University, Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Padualaan 8,

3584 CH Utrecht, The Netherlands

Abstract

The impact of solution stoichiometry, upon formation of $BaSO_4$ crystals in 0.02 M NaCl suspensions, on the development of particle size was investigated using Dynamic Light Scattering (DLS). Measurements were performed on a set of suspensions prepared with predefined initial supersaturation ($\Omega_{\text{barite}} = \{Ba^{2+}\}\{SO_4^{2-}\}/K_{\text{sp}} =$ 1000) and dissolved ion activity stoichiometries ($r_{aq} = {Ba^{2+}}: {SO_4^{2-}} = 0.01, 0.1, 1, 10 \text{ and } 100$), at a pH of 5.5 to 6.0, and ambient temperature and pressure. At this Ω_{barite} and set of r_{aq} , the average apparent hydrodynamic particle size of the largest population present in all suspensions grew from ~ 200 nm to ~ 700 nm within 10 to 15 minutes. This was independently confirmed by TEM imaging. Additional DLS measurements conducted at the same conditions in flow confirmed that the BaSO₄ formation kinetics were very fast for our specifically chosen conditions. The DLS flow measurements, monitoring the first minute of BaSO₄ formation, showed strong signs of aggregation of prenucleation clusters forming particles with a size in the range of 200 - 300 nm for every r_{aq} . The estimated initial bulk growth rates from batch DLS results show that BaSO₄ crystals formed fastest at near stoichiometric conditions and more slowly at non-stoichiometric conditions. Moreover, at extreme SO₄-limiting conditions barite formation was slower compared to Ba-limiting conditions. Our results show that DLS can be used to investigate nucleation and growth at carefully selected experimental and analytical conditions. Additional SEM imaging on formed BaSO₄ crystals for a range of initial conditions of Ω_{barite} (i.e. 31, 200, 1000 and 6000), r_{aq} (0.01, 0.1, 1, 10 and 100) and different background electrolytes (i.e. NaCl, KCl, NaNO₃, MgSO₄ and SrCl₂) confirms that $\{Ba^{2+}\}$: $\{SO_4^{2-}\}$ impacts the growth rate significantly in different directions for the different background electrolytes at the different Ω_{barite} -values. Furthermore, the BaSO₄ crystal morphology varies with r_{aq} and the type of background electrolyte. The combined DLS, TEM and SEM results imply that solution stoichiometry should be considered when optimizing antiscalant efficiency to regulate BaSO₄ (scale) formation processes.