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There is consensus from experiments that higher numbers of 
plant species at small scales (α-diversity) contributes to higher 
levels of ecosystem functioning1–6. However, it remains unclear 

whether the variation in communities observed across landscapes 
(β-diversity) and the interplay between diversity at local and land-
scape scales also contributes to the functioning of real-world eco-
systems such as natural and semi-natural grasslands7,8. This is of 
particular concern given that large-scale variation in communities 
is being removed through local species loss9,10 and immigration or 
widespread species replacements leading to homogenization11–13. 
Furthermore, given that ecosystems are managed for multiple func-
tions simultaneously (multifunctionality), and that conservation 
and management actions are usually implemented across different 
scales14, understanding how plant diversity contributes to maintain-
ing multiple functions is needed for all spatial scales15.

Spatial heterogeneity of community composition might contrib-
ute to ecosystem multifunctionality through two main mechanisms. 
First, dissimilarity in functionally important species can maintain 
functioning across landscapes if different species contribute to dif-
ferent functions in different locations7,8,16,17. Second, dissimilarity 
in species composition among local communities can influence 
ecological interactions including the movement of organisms and 
resources important for ecosystem functioning. For example, a local 

community providing habitat for insect species might provide pol-
lination and pest control to neighbouring communities, thereby 
contributing to ecosystem functioning at both local and landscape 
scales18. Although a couple of studies have shown that plant diversity 
contributes to ecosystem multifunctionality at larger spatial scales, 
they were restricted to artificially constructed landscapes based on 
simulations within a single experiment in a grassland8 or within 
a pan-European study in forested ecosystems7. Thus, it remains 
unknown whether multifunctionality relates to biodiversity at larger 
spatial scales in real-world ecosystems composed of interconnected 
local communities.

Here, we assess the relationship between plant diversity and eco-
system multifunctionality at local (1 m2) and larger (>320 m2, hereaf-
ter termed landscape) scales using small local plots and larger spatial 
blocks (landscapes composed of interconnected local plots) within 
65 grassland sites on five continents, from the Nutrient Network col-
laborative experiment19 (Supplementary Fig. 1 and Supplementary 
Table 1). At each site, we sampled naturally occurring plant diversity 
and measured ecosystem multifunctionality using eight ecosystem 
processes and properties3,17 (hereafter ‘functions’): aboveground live 
biomass; resource capture above ground (light interception); resource 
pools below ground (percentage total soil nitrogen and extract-
able soil phosphorus and potassium); soil carbon storage (percent-
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age total soil carbon); litter decomposition; and invasion resistance 
(Methods, Supplementary Table 2). We use the term functions in the 
broad sense to refer to ecosystem processes and properties, includ-
ing pools and fluxes of matter and energy3,16,17,20. Measurements were 
taken in 1 m2 plots grouped into spatial blocks typically spread over 
1000 m2 (most sites had three blocks (range = 1–6) with 10 plots 
(range = 8–12) per study site; Supplementary Table 1).

Results and discussion
We first assessed whether local plant species richness, community 
dissimilarity among local communities, and their interaction were 
associated with ecosystem multifunctionality. We measured species 
richness as the average number of plant species per 1 m2 plot within 
spatial blocks ( ̄α , average α-diversity), and community dissimilarity 
as the mean pairwise difference in plant species composition among 
plots within spatial blocks (β-diversity). The ̄α - and β-diversity 
explanatory variables are both mathematically independent in prin-
ciple and statistically independent in practice (R = 0.076, P = 0.28, 
N = 206), allowing us to consider their independent and interactive 
relationships with ecosystem multifunctionality. We quantified eco-
system multifunctionality using two approaches21 (Methods): the 
‘average multifunctionality’ approach22, which provides a relatively 
interpretable metric; and the ‘multiple-threshold multifunction-
ality’ approach23, which assesses how many functions reach high 
levels. We calculated average multifunctionality as the mean of all 
standardized functions within spatial blocks8, and multiple-thresh-
old multifunctionality as the mean number of functions per plot 
within spatial blocks that exceeded threshold values between 5 and 
95% of the observed maximum value for each function.

We found the interactive effect of local species richness ( ̄α -diver-
sity) and community dissimilarity (β-diversity) to be the strongest 
contributor to average multifunctionality (F1,202 = 8.88, P = 0.003, 
Fig. 1 and Supplementary Figs. 2 and 3). Specifically, average mul-
tifunctionality and local species richness were positively related at 
intermediate to high community dissimilarity but unrelated at low 
dissimilarity (Figs. 1a and 2a). Similarly, average multifunctionality 
and community dissimilarity were positively related at high spe-
cies richness but unrelated at low to intermediate richness (Figs. 1b 
and  2a). These interactions were generally consistent throughout 
habitat types (Fig. 2b). These results indicate that diversity at the 
local ( ̄α ) and landscape (β) scales may synergistically affect multi-
functionality, with higher levels of diversity at one scale amplifying 
the contribution to ecological functions at the other. This also sug-
gests that losing diversity at one scale may have cascading effects 
on the other by weakening its potential to maintain high ecological 
functioning. In other words, the homogenization of biotic commu-
nities could increase the effect of local species loss on ecosystem 
functioning. Our results were independent of the multifunctional-
ity measure chosen; results of our analyses using multiple-thresh-
old multifunctionality did not differ qualitatively from the results 
using average multifunctionality (Supplementary Fig.  4). Future 
studies could more completely consider measuring all ecosystem 
functions related to realistic management objectives and address 
scenarios representing different management objectives by calcu-
lating multifunctionality metrics with different weighting for each 
ecosystem function.

Synergistic effects of ̄α- and β-diversity were similar regard-
less of whether functions were considered separately or together 
(Supplementary Fig. 2). However, in terms of relative contribution 
to explained variation, some ecosystem functions depended mostly 
on ̄α-diversity, whereas others depended mostly on β-diversity 
(Supplementary Figs. 3 and 5 and Supplementary Table 3). Synergistic 
effects contributed the most to aboveground live biomass and litter 
decomposition, ̄α-diversity to soil potassium and invasion resistance, 
and β-diversity to light interception, soil carbon, soil nitrogen and 
soil phosphorus. These results suggest that high levels of diversity at 

any single scale may not maintain all functions at desirable levels, but 
instead that high levels of diversity at multiple scales may be required 
to maintain multiple functions simultaneously.

We used a multimodel inference approach to assess the relative 
importance of ̄α- and β-diversity, their interaction, and key envi-
ronmental covariates including geographic, climatic and edaphic 
variables (Methods) on each individual function and on the average 
multifunctionality. We found that the interactive effect of ̄α- and 
β-diversity was included in the four best and most parsimonious 
models, which explained more than 32% of the variance in multifunc-
tionality. Relative to other environmental predictors, the interactive 
effect of ̄α- and β-diversity was the third best predictor of multifunc-
tionality after mean temperature during the wettest four months and 
mean annual precipitation (Supplementary Fig. 6). The importance 
of the interaction between local and landscape scale diversity further 
manifested through it being a better predictor of multifunctionality 
than many other environmental predictors, including climatic vari-
ables such as mean annual temperature and edaphic variables such 
as soil pH.

Higher multifunctionality was associated with warmer tempera-
tures during the wettest four months, larger variation in temperature, 
and higher precipitation (Supplementary Table 4). The relationship 
between plant diversity and average multifunctionality was generally 
robust across environmental gradients. The slope of the relationship 
between ̄α-diversity and multifunctionality did not vary with our 
environmental predictors, while β-diversity effects on multifunc-
tionality increased with increasing soil silt and clay content (which 
are likely indicators of soil fertility) and decreased with increasing 
variation in both temperature and total soil nitrogen (Supplementary 
Table 5).

Similarly to the multifunctionality analysis, the best and most 
parsimonious model describing individual functions included 
plant diversity ( ̄α  and/or β and/or the interaction) (Supplementary 
Table 4), and a subset of environmental variables, were better predic-
tors of individual functions relative to plant diversity (Supplementary 
Fig.  6). Plant diversity contributed less to invasion resistance  
compared to other environmental factors. Effects of environmental 
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Fig. 1 | Local species richness (α -̄diversity) and community dissimilarity 
(β-diversity) interact to affect average multifunctionality. a, The average 
number of species per plot within spatial blocks (α -̄diversity). b, The 
dissimilarity in species composition among plots within spatial blocks  
(β-diversity). The average level of multiple functions increased with  
α -̄diversity at intermediate (int.) to high β-diversity (slope and 95% 
confidence interval (CI) on the log α  ̄scale = 0.05 (0.021−0.086)), and 
with β-diversity at high α -̄diversity (0.10 (0.015−0.23)), but was unrelated 
to α -̄diversity at low β-diversity (−0.011 (−0.057−0.034)) and to  
β-diversity at low to intermediate α -̄diversity (−0.0044 (−0.051−0.059)).
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variables on individual functions included an association of warmer 
temperatures with lower plant biomass, percentage total soil carbon, 
and invasion resistance and higher light interception, percent total 
soil nitrogen and extractable soil potassium. Similarly, higher precip-
itation was associated with higher plant biomass, light interception, 
percentage total soil carbon and invasion resistance and lower per-
centage total soil nitrogen, extractable soil phosphorus, extractable 
soil potassium and litter decomposition (Supplementary Table 4).

Next, we assessed whether ecological interactions between 
interconnected communities contribute to the positive relation-
ship between plant diversity and ecosystem multifunctionality. 

To do so, we compared the results from our observed landscapes 
composed of interconnected local plots within blocks with results 
of artificially constructed landscapes simulating reduced intercon-
nection between local communities. Each simulated landscape was 
composed of ten plots randomly drawn from local plots belong-
ing either to different blocks within sites (average interconnec-
tion) or to different sites within habitat type (low interconnection); 
and from which ̄α - and β-diversity and average multifunctionality 
were calculated. In our simulated landscapes, local species richness  
( ̄α -diversity) and community dissimilarity (β-diversity) interacted to  
affect the average multifunctionality (simulated landscapes within 
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Fig. 2 | Simulating reduced ecological interactions between local communities did not influence the relationships of plant diversity with average 
multifunctionality. a–d, Standardized regression coefficients of local species richness (α )̄ and community dissimilarity (β) with average multifunctionality 
for observed landscapes (spatial blocks; a,b) composed of interconnected local plots within a site (a) or within a habitat (b), and artificially constructed 
landscapes (c,d) simulating reduced interconnection between local communities within sites (c) or within a habitat (d). Standardized regression 
coefficients are shown with their 95% CI such that diversity effect on multifunctionality is significant when the intervals do not overlap zero.
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sites F1,6496 = 225.26, P < 0.001, N = 6500, simulated landscapes 
within habitats F1,4996 = 30.43, P < 0.001, N = 5000). When compared 
to our observed landscapes (Fig.  2a,b), artificially reducing inter-
connection between communities either within sites (Fig.  2c) or 
within habitats (Fig. 2d) did not influence the relationships of ̄α -  
and β-diversity with average multifunctionality. Similarly to our 
observed landscapes, simulated landscapes generally showed stron-
ger association between species richness and average multifunc-
tionality at high community dissimilarity, and between community 
dissimilarity and average multifunctionality at high species richness.

Finally, we assessed whether dissimilarity in functionally impor-
tant species contributes to ecosystem multifunctionality. We identi-
fied the sets of species most important for maintaining ecosystem 
functioning for each function in each locality (spatial block) at 
each site using three analytical approaches that range in how con-
servative they are in identifying species effects (Methods): step-
wise backward-deletion multiple regression16,17; randomization24; 
and multimodel inference25. For each approach, we quantified the 
degree of functional and spatial overlap between species sets16,17. 
For example, we quantified functional overlap between all pairs of 
functions within spatial blocks. Functional overlap values of one 
or zero would indicate, respectively, that completely identical or 
completely unique sets of species were important for maintaining 
different functions in any particular spatial block. Finally, for each 
site, we quantified the proportion of unique species that main-
tained ecosystem functioning at least once across all combinations 
of functions for each spatial block and across all combinations of 
spatial blocks for each function considered.

We found low functional and spatial overlap in the sets of spe-
cies influencing ecosystem functions (Supplementary Fig. 7). Thus, 
the identity of the species most important for maintaining ecosystem 
functioning differed between ecosystem functions and among local 
communities, resulting in a higher proportion of species required for 
maintaining ecosystem functioning when more functions (Fig. 3a) 
or localities (spatial blocks, Fig. 3b) were independently considered16; 
and explaining why greater overall ecosystem functioning was found 

to be associated with greater local plant species and greater spatial 
heterogeneity in community composition (Fig.  1). These positive 
associations between the proportion of species maintaining func-
tioning and the range of functions or localities considered were 
observed for each of the three approaches investigated (Fig. 3). For 
example, predictions from the most to the least conservative method 
show that between 10 and 28% of the species pool maintained one 
function in one block, while between 19 and 37% maintained the 
same function in three blocks, and between 39 and 54% maintained 
the same function in six blocks simultaneously (Fig. 3b). This sug-
gests that while estimates of the number of species important for 
maintaining functioning may vary with analytical approach, the 
qualitative results are robust to methodology. Analyses using pres-
ence–absence instead of percentage species cover, or using only sites 
with three or fewer spatial blocks, yielded qualitatively similar results 
(Supplementary Fig. 7). Our results indicate that no single plant spe-
cies maintains all ecosystem functions in all locations, but rather that 
more species and greater heterogeneity in species composition across 
the landscape both contribute to and enhance ecosystem multifunc-
tionality (Supplementary Fig.  8). Together, these analyses suggest 
that the effects of diversity on multifunctionality are mainly due to 
species traits and how these traits interact with local environmental 
conditions, and do not point to any additional effects of ecological 
interactions between interconnected communities.

Our results, based on standardized data collected from grass-
lands around the world, provide robust, general evidence that 
plant diversity at the local and landscape scale is associated with 
more reliable functioning of grassland ecosystems, and contrib-
ute to the increasing body of knowledge cautioning about the  
functional consequences of local species loss and biotic homogeniza-
tion7,8,11,16,17,20,22,26–28. Consequently, human activities that simplify eco-
systems through the loss of plant diversity9,11–13 are likely to diminish 
the capacity of natural systems to supply essential ecosystem func-
tions, while the maintenance and restoration of plant diversity at 
local and landscape scales should help ensure the reliable provision 
of ecosystem services.
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Methods
The Nutrient Network experiment. The 65 study sites are part of the Nutrient 
Network Global Research Cooperative (NutNet; Supplementary Fig. 1 and 
Supplementary Table 1; http://nutnet.org/)19. Detailed descriptions of site selection, 
methods and measurements are available in previously published work19. Plots 
at all sites were 5 × 5 m (separated by at least 1 m walkways) spread over an area 
of at least 1,000 m2. Sampling was done in 1 m2 plots grouped into spatial blocks 
spread over 320 m2 (typically three blocks (range = 1–6) of 10 plots (range = 8–12) 
per study site; Supplementary Table 1) and followed a standardized protocol at 
all sites19. The analyses presented here include all NutNet sites that contributed to 
pre-treatment data on community-level functions in all plots and therefore do not 
include either of the nutrient addition or consumer exclosure treatments. Two sites 
that contributed data were excluded from these analyses because they did not lay 
out plots in separate spatial blocks (sevi.us and jorn.us).

Diversity and abundance. A 1 × 1 m area within each plot was permanently 
marked and sampled for species richness during the season of peak biomass.  
α-Diversity was the number of plant species per 1 m2 plot and average α-diversity  
( ̄α ) the average number of plant species per plot within spatial blocks.  
β-Diversity was the dissimilarity in plant species composition among plots within 
spatial blocks (differences in 1 m2 plots among blocks within each site), which is 
the complement to Sørensen’s similarity index (o) (β = 1−o) ranging from  
0 (completely similar, homogeneous) to 1 (completely dissimilar, heterogeneous). 
Percentage cover was estimated independently for each species, so that total 
summed cover can exceed 100% for multilayer canopies.

Ecosystem functions and properties. Aboveground live biomass (g m−2) was 
estimated destructively at growing season peak by clipping at ground level all 
aboveground biomass of individual plants rooted within two 0.1 m2 (10 × 100 cm) 
strips immediately adjacent to the permanent 1 × 1 m subplot. Biomass was sorted 
into current (live and recently senescent material) and previous year’s growth (litter). 
For shrubs and subshrubs, leaves and current year’s woody growth were collected. 
Biomass was dried at 60 °C to a constant mass and weighed to the nearest 0.01 g. 
Resource capture above ground was measured as photosynthetically active radiation 
(PAR) at the same time and in the same 1 × 1 m plot sample for species richness. 
Light readings were taken using a 1 m PAR sensor (Decagon, Apogee) on a cloudless 
day as close to solar noon as possible (11 am to 2 pm). For each plot, we took two 
light measurements at ground level (at opposite corners of the 1 × 1 m plot, diagonal 
to each other) and one above the canopy. The complement to the ratio represents 
the percentage of light intercepted at the ground (percentage of intercepted PAR). 
Adjacent to each plot, resource pools belowground were estimated using 250 g of air-
dried soil. Total soil %C and %N were measured using dry combustion GC analysis 
(COSTECH ESC 4010 Element Analyzer) at the University of Nebraska. Extractable 
soil P and K (ppm) were quantified using the Mehlich-3 extraction method, and 
ppm concentration was estimated using ICP (A&L Analytical Laboratory, Memphis, 
TN, USA). Litter turnover (y−1) (k) as a proxy for litter decomposition was estimated 
using an equation derived from previous work29,30 for deciduous forest decay rates:

= − −

















k log 1 livebiomass
totalbiomass

where live biomass is the standing stock during peak season and total biomass is 
live biomass plus litter collected at the same time30. Although our experimental 
system is not a forested system as modelled in previous work29, both are deciduous 
with annual biomass contributions to the litter pool. Native dominance as a proxy 
for invasion resistance was estimated as the ratio of native to invasive species 
cover. Note that some sites measured only a subset of these eight functions 
(Supplementary Table 1). In the calculation of multifunctionality, we used the 
inverse of soil N, P and K as lower levels of unconsumed resources are consistent 
with higher uptake and lower potential for leaching.

Trade-offs between functions. To investigate potential trade-offs between 
individual functions, we calculated Pearson’s correlation coefficients between each 
pair of individual standardized functions. Of the possible 28 combinations of pairs 
of functions, we found significant positive correlations between eleven pairs and 
significant negative correlations between five pairs (Supplementary Table 2). We 
found a strong negative correlation between our inverse measure of percentage 
total N and total C (−0.96). We kept both variables in our analyses because a 
negative correlation meant that choosing one function or the other would favour 
either a positive or negative impact of diversity on average multifunctionality. 
In contrast, retaining both variables demonstrates a trade-off between them. 
Moreover, our results were qualitatively similar when we used either percent total 
N or the soil C:N ratio. All the other correlations were lower than 0.30.

Community-level analyses. Ecosystem multifunctionality. We quantified ecosystem 
multifunctionality in whole communities of interacting species using two 
methods21: the average and multiple-threshold approaches.

We standardized each function by the maximum observed value across all sites 
to remove the effects of differences in measurement scale between functions21.  

We then calculated block average multifunctionality as the mean of all standardized 
functions within spatial blocks8. The average multifunctionality metric is intuitive 
and easy to interpret, but it does not incorporate potential trade-offs between 
functions that perform at high levels when others perform at low levels.

The multiple-threshold approach8,23,31,32 overcomes this limitation and tests 
whether diversity is associated with higher numbers of functions exceeding discrete 
threshold values considered to be minimal for desirable ecosystem functioning. 
We calculated the number of functions per plot that exceeded a given threshold 
value, expressed as a percentage of each maximum function value. Here, we defined 
maximum level of functioning for each function as the average of the top four 
values for each function across all sites. We then calculated multiple-threshold 
multifunctionality23 as the mean number of functions that exceeded a given threshold 
within spatial blocks. In practice, a range of thresholds is usually explored. We 
calculated the average number of functions exceeding functional thresholds between 
5 and 95% of this maximum per plot. Thus, for each block, 91 values (counts of 
functions) were generated, one for each discrete threshold value between 5 and 95%.

Association between plant diversity and ecosystem functioning (average 
multifunctionality). We explored the direct relationships of plant diversity, 
measured as the average species richness ( ̄α ), community dissimilarity (β) and 
their interaction ( ̄α :β), with each individual standardized function and the average 
multifunctionality across the 65 sites (Fig. 1, Fig. 2a) and within habitat types 
(Fig. 2b) using generalized linear models (GLMs) with a quasibinomial error 
distribution and logit link function. See the section ‘Assessing whether ecological 
interactions between interconnected communities contribute to ecosystem 
multifunctionality’ for a description of how the habitat types were selected. To 
visualize the interactive effect of ̄α - and β-diversity on average multifunctionality, 
we divided the data set into three equal groups corresponding to low, intermediate 
and high levels of ̄α - or β-diversity, and fitted separate models for each group. 
This means that we fitted relationships between ̄α -diversity and average 
multifunctionality at low, intermediate and high levels of β-diversity. Similarly, 
we fitted relationships between β-diversity and average multifunctionality at low, 
intermediate and high levels of ̄α -diversity. Due to similar fit, we subsequently 
grouped the intermediate and high levels (int.–high) of ̄α -diversity and the low 
and intermediate levels (low–int.) of β-diversity (Fig. 1 and Supplementary Fig. 5). 
We also assessed the relative contribution of ̄α -diversity, β-diversity and ̄α :β to 
average multifunctionality by using multivariate models to calculate standardized 
regression coefficients (Supplementary Fig. 2) and the percentage of variance 
explained (percentage of R2; Supplementary Fig. 3) for each diversity metric.

Association between plant diversity and ecosystem functioning (multiple-threshold 
multifunctionality). To assess the relationship between plant diversity and multiple-
threshold multifunctionality, we fitted separate models for each of the 91 discrete 
threshold values between 5 and 95%, and recorded the slope and associated 95% 
CI (Supplementary Fig. 4). Because the responses in each of the 91 models were 
integers (counts of functions exceeding the particular threshold) we used GLMs 
with a quasipoisson error distribution (to account for observed over-dispersion) 
and identity link function21. We rerun the analysis adjusting for the fact that some 
functions were not measured for all sites by measuring the percentage of measured 
functions exceeding a given threshold. Because the responses in each of the 91 
models were percentages we fitted GLMs with a quasibinomial error distribution and 
logit link function21. Results did not qualitatively differ between the two analyses. For 
both analyses, we included environmental variables because the relationship between 
plant diversity and multifunctionality may covary with environmental factors 
correlated to both plant diversity and ecosystem multifunctionality.

Relative importance of plant diversity and environmental predictors. We used a 
multimodel inference approach based on Akaike information criterion (AIC) and 
ordinary least square (OLS) regression to assess the relative importance of ̄α -diversity, 
β-diversity and ̄α :β and key environmental predictors on each individual function and 
on the average multifunctionality (Supplementary Fig. 6 and Supplementary Table 4). 
We fitted separate models for each function and the average multifunctionality 
as response variables and fifteen potential environmental predictors including 
geographic, climatic and edaphic variables. Geographic variables included latitude 
and longitude. Climatic variables were derived from the WorldClim Global Climate 
database (version 1.4; http://www.worldclim.org/)33. Due to multicollinearity between 
many of the climatic variables, we first fitted a principal component analysis (PCA) 
to reduce their number, resulting in a subset of bioclimatic variables representing 
annual trends (mean annual temperature (°C) and precipitation (mm)), seasonality 
(mean annual range in temperature, standard deviation in temperature, coefficient 
of variation of precipitation) and extreme or limiting environmental factors (mean 
temperature during the wettest four months)34. Edaphic variables included pH, bulk 
density, soil nutrient heterogeneity (coefficient of variation in total soil nitrogen, 
extractable soil phosphorus and extractable soil potassium) and soil texture 
(percentage silt, clay and sand). Again due to multicollinearity between soil texture 
variables, we used percentage silt and percentage clay in our analyses.

Relationship between plant diversity and average multifunctionality across 
environmental gradients. To assess whether the relationship between plant diversity 
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and average multifunctionality varied across environmental gradients, we first 
determined the slopes of the relationships of ̄α - and β-diversity with average 
multifunctionality within each site using linear mixed-effects models and site as 
random effect allowing both the intercepts and slopes of the regression to vary 
among sites. We then assessed the relationships between the slopes of relationships 
of ̄α - and β-diversity with average multifunctionality as response variables, and 
each environmental variable as explanatory variables (Supplementary Table 5).

Assessing whether ecological interactions between interconnected communities 
contribute to ecosystem multifunctionality. To assess the contribution of 
ecological interactions to multifunctionality, we constructed artificial landscapes 
from our grassland plots belonging either to different blocks within sites (average 
interconnection) or to different sites within habitats (low interconnection); and 
from which ̄α - and β-diversity and average multifunctionality were calculated as 
described above.

Simulated landscapes within sites. Within each site, we constructed 100 artificial 
landscapes each composed of ten plots randomly selected, without replacement, 
across the different blocks. With 65 sites, this resulted in 6,500 landscapes.

Simulated landscapes within habitats. Within each habitat (Supplementary Table 1), we 
constructed 1000 artificial landscapes each composed of ten plots randomly selected, 
without replacement, across the different sites. The number of sites within each 
habitat was relatively low (ranging between one and eight) and many habitats were 
represented by only a few sites. In order to ensure that our landscape were composed 
of unique plot combinations, we selected the habitats represented by more than 
four sites. Due to their similarity, alpine and montane grasslands were subsequently 
grouped together. This resulted in five habitats with a total of 5,000 landscapes.

For each of the observed and simulated landscapes within sites and within 
habitats, we quantified the standardized regression coefficients of the relationships 
of plant diversity, measured as the average species richness ( ̄α ), community 
dissimilarity (β) and their interaction ( ̄α :β), with average multifunctionality 
using OLS regression. Again, in order to visualize the interactive effect of ̄α - and 
β-diversity on average multifunctionality, we divided the data set into three equal 
groups corresponding to low (Low), intermediate (Int) and high (High) levels of ̄α  
or β diversity and fitted separate models for each group (Fig. 2).

Species-level analyses: assessing whether dissimilarity in functionally important 
species contribute to ecosystem multifunctionality. Identifying sets of species most 
important for maintaining ecosystem functioning. We started by identifying the sets 
of species most important for maintaining ecosystem functioning for each function 
in each spatial block at each site, based on three approaches proposed in the 
ecological literature that range in how conservative they are in identifying species 
effects: stepwise-deletion multiple regression16,17,35, randomization24 and multimodel 
inference25. For each approach, we modeled ecosystem functioning in response to 
the abundance (percent cover, Fig. 3) or the presence-absence of each species in 
each plot (Supplementary Fig. 7). For the presence-absence analysis, some species 
were present in every plot within spatial blocks and could not be included in 
the analyses as their contributions could not be statistically estimated. However, 
all species could be included in analyses using abundance data, as abundance 
values varied among plots for each species. Where the results overlapped with the 
presence/absence data they were qualitatively similar (Fig. 3, Supplementary Fig. 7).

Stepwise-deletion multiple regression identified the most parsimonious set of 
species influencing each ecosystem function based on information criteria36. We 
implemented this procedure using the stepAIC function in the MASS library37 of 
R16,17,35. In stepwise-deletion analyses, multiple models can have nearly equivalent 
support, making it misleading to choose a single best model in that case. Multimodel 
inference addresses this problem by accounting for model selection uncertainty 
and reducing model selection bias38. In this sense multimodel inference is more 
robust and conservative than stepwise-deletion. We implemented multimodel 
inference using the glmulti function in the glmulti R package25. While stepwise-
deletion and multimodel inference require designs that include each species in 
a variety of compositional treatments (typical of most but not all biodiversity 
experiments)21, randomization is advocated for observational studies lacking 
imposed compositional treatments24. The effect of each species on each function is 
measured in multiple plots as the difference between the average of a function in the 
presence and absence of a particular species. The sets of species that show strong 
influences on each function are then identified by randomly reassigning the values 
of the ecosystem function to the different plots for 1,000 iterations24.

Comparing sets of species most important for maintaining ecosystem functioning. 
After identifying the sets of species most important for maintaining ecosystem 
functioning in each plot, we quantified overlap o between species sets for each 
of the stepwise-deletion multiple regression, randomization and multimodel 
inference approaches. To test whether different sets of species maintained 
ecosystem functioning for different functions in different spatial blocks, we 
quantified functional and spatial overlap between species sets. All comparisons 
were made within spatial blocks so that differences between pairs of functions or 
pairs of spatial blocks were not due to sampling from multiple species pools. We 

quantified functional overlap between functions a and b in a particular spatial 
block and spatial overlap between spatial blocks a and b for a particular function 
using a previously published similarity index16,17:

=
∩

. +
o

E
E E0 5( )

a b
E

a b

where ∣ ∣Ea  is the number of species that promoted ecosystem functioning for 
function or spatial block a, ∣ ∣Eb  is the number of species that promoted ecosystem 
functioning for function or spatial block b and ∣ ∩ ∣Ea b

E  is the number of species 
that promoted ecosystem functioning for both functions or spatial blocks. This 
allowed us to test whether identical (overlap = 1), unique (overlap = 0) or somewhat 
different (0 < overlap < 1) sets of species promoted ecosystem functioning for 
different functions at different spatial blocks.

Accumulation of species across functions and spatial blocks. For each approach, we 
then assessed how the proportion of species maintaining functioning changed as 
more functions or spatial blocks were considered. We quantified the accumulation 
of species that maintained ecosystem functioning across all combinations of 
functions for each spatial block and across all combinations of spatial blocks for 
each function considered. For example, to estimate how the proportion of species 
maintaining functioning changed as more functions were considered, we sampled 
all combinations of the eight functions (that is, all pairs, groups of three, and so 
on), and recorded the number of unique species that maintained functioning, the 
total number of species, for each combination. The proportion of species was then 
calculated by dividing the number of species that maintained functioning by the 
total number of species per spatial block. This was repeated for each spatial block, 
at each site. We modelled the relationships between the proportion of species 
that maintained ecosystem functioning and the number of functions or spatial 
blocks, for each of the stepwise-deletion multiple regression, randomization tests 
and multimodel inference approaches, using quasibinomial GLMs including 
‘approaches’ as a factor with three levels. The number of spatial blocks per site 
range between one and six, meaning that the relationship between the proportion 
of species that maintained ecosystem functioning and the number of spatial blocks 
could be driven by the few sites with more than three blocks (Fig. 3). We therefore 
re-ran the analyses using a subset of the data including only sites with three or fewer 
spatial blocks (Supplementary Fig. 7). All analyses were conducted in R 2.15.139.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The data sets generated during and/or analysed during the 
current study are available from the corresponding author on reasonable request.
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    Experimental design
1.   Sample size

Describe how sample size was determined. The 65 grassland sites are part of the Nutrient Network (NutNet) Global Research 
Cooperative, covering a wide range of grassland habitats and relevant gradient of 
fine-scale and site-level variation.

2.   Data exclusions

Describe any data exclusions. Two sites that contributed data were excluded from these analyses because they 
did not lay out plots in separate spatial blocks (sevi.us and jorn.us).

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Not applicable (N/A).

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

We did not use randomization

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable (N/A)

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.



2

nature research  |  life sciences reporting sum
m

ary
June 2017

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

All analyses were conducted in R 2.15.1

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involved research participants
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