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1
A Brief History of

Gravitational-Wave Physics
For years, Newtonian gravity was used to describe the planets’ motions. However, it
had some shortcomings, such as the impossibility to explain the advance of Mercury’s
perihelion. Therefore, and based on the observation that Newton’s gravitational laws
are incompatible with Maxwell’s equations for electrodynamics, Einstein proposes his
Special Relativity [1] in 1905. Later, based on this first step to a novel theory for gravity,
Einstein postulates his theory of General Relativity (GR) [2]. Einstein’s depiction of
gravity is fundamentally different from Newton’s since the gravitational force is replaced
by the curvature of the spacetime manifold. However, despite the different bases of the
theories, in the case of weak curvature and low velocities, GR reduces to Newtonian
mechanics.

Since its description by Einstein, GR has faced many tests, passing each of them. The
first test for GR was to explain the precession of Mercury’s perihelion. Deriving the
planet’s motions using this theory, one finds that its orbital motion is an ellipse with a
small deviation corresponding to the precession effect. More than just solving existing
problems, GR also makes some predictions of new phenomena one can expect. Among
other examples, it predicts the gravitational redshift of light, the deflection of light
around massive objects – called gravitational lensing – the existence of black holes (BHs),
and the emission of gravitational waves (GWs). The observation of these phenomena
would add to the validity of GR. Some of these predictions were already made by Einstein
(like lensing and GWs). However, he was often confused by them, mainly because the
objects known at that time were not dense enough to lead to observable phenomena.
Giving more details on the above examples in turn, when an electromagnetic (EM)

wave or a photon travels out of (resp. in) a gravitational potential it seems to lose (resp.
gain) energy, corresponding to a decrease (resp. increase) in the wave frequency, leading
to gravitational redshift (resp. blueshift). While this effect was already predicted by
Einstein when he published his full theory of relativity, it was observed for the first
time in the Pound-Rebka experiment in 1959, by looking at the change in energy from a
gamma-ray photon between its observation at the top and the bottom of a tower [3].
A bit earlier, in 1919, Eddington used a solar eclipse to measure the deflection of

light due to massive objects. His observation was that the deflection angle was twice
that predicted by Newtonian gravity, corresponding to the value predicted by GR [4].
Nowadays, the lensing of EM signals is commonly used in astronomy to study our
Universe. For example, it is used to discover exoplanets [5, 6], probe dark matter [7–



2 1. A Brief History of Gravitational-Wave Physics

9], study the cosmological parameters [10–13], and investigate the nature of distant
objects [14, 15]. As will be discussed later in this thesis, lensing is not unique to EM
signals, GWs may also experience it.

In the 1960s, one found the first evidence of the existence of BHs – crucial for testing
GR – thanks to the development of radio astronomy. These astrophysical objects are so
dense that within a certain distance of their center, called the event horizon, nothing,
not even light, can escape (hence the name). In a BH, one can find a location with
infinite density, called the singularity. Since infinite density does not make much sense,
this prediction from GR is often seen as the breaking point of the theory, and extra
motivation to develop quantum-gravity theories. Such objects can be formed in different
ways, the details of which have not yet been fully discovered. Depending on their mass,
they could originate from the collapse of a star, the accretion of additional matter
(including other BHs) by a BH, or even overdensities in the primordial Universe. While
the first hints to the presence of BHs were determined by the impact they had on stars’
motion in their vicinity, we are now in an exciting era where the first images of a BH
have been made1 [16–20].
Before detailing the next GR prediction mentioned previously, namely GWs, let us

first recall that other dense objects exist in the Universe. Important objects for the
development of GR are neutron stars (NSs). They originate from stellar collapse and
are objects with such high density that the matter they contain is a kind of plasma
where protons and neutrons are squeezed together very tightly, making an important
laboratory to study the interactions under extreme conditions. In addition, these objects
can have important magnetic and electric fields on top of the large gravitational field
induced by their density. As we will see later, these objects play a role in the emission
of GWs.
Finally, as a consequence of GR, when a massive object is accelerated, the resulting

distortions of spacetime create a wave propagating at the speed of light in the fabric of
spacetime. These are GWs. This was already known by Einstein [21]. However, the lack
of knowledge about compact objects led him to believe this would never be detected.
In principle, sources of GW emission are numerous. One can think of stars exploding
asymmetrically, an NS with a mountain rotating around its own axis, binaries made of
compact objects, . . . The latter is the most promising as the GW emission is a faint
effect, and in particular, even for very dense and massive objects such as orbiting BHs
and NSs, the GW amplitude remains extremely small. However, this does not mean
that the detection is impossible.

The first step to prove the emission of GWs was made by indirect measurement. The
observations of the Hulse-Taylor binary in 1975 [22], consisting of a pulsar2 and an NS
enabled Hulse and Taylor to show a decay in the orbital period. Confronting this decay

1The image was obtained through the Event Horizon Telescope, and it corresponds to a massive BH
at the center of the M87 galaxy [16–20].

2Pulsars are rapidly spinning NSs emitting a jet which can periodically point towards Earth and be
detected.
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with the prediction of GR accounting for GW emission showed that the two were in
good agreement. Therefore GW emission would be expected to be occurring within this
system3 [23].
In addition to indirect detections, one would also like to make a direct detection of

GWs. To accomplish this, the development of precision instruments started as early as
the 1960s, with two main types of detectors being considered: resonant-mass detectors
and interferometers. The first is a solid object resonating with the passage of a GW. So
far, they have not led to any detection [24]. The other type of detectors has been more
successful as they correspond to the design followed by the LIGO (Laser Interferometer
Gravitational-wave Observatory) [25] and Virgo [26] detectors, which were at the origin
of the observations kick-starting GW astronomy. Areal pictures of the LIGO-Hanford4

and Virgo detectors are shown in the top row of Fig. 1.1. While the basic design of these
detectors was quite well settled in the 1970s, a lot of work still needed to be done before
detection was possible. In principle, the idea is to send a laser onto a mirror, which splits
it in between the two arms. It is then reflected in the readout. If the two arms have the
same length, no light is observed as the two wavefronts interfere destructively; else, light
is observed. The passage of a GW would squeeze and stretch the arms differentially,
leaving an imprint in the recorded data. Fig. 1.2 represents a simplified design for such
a detector.

To even think about detecting a GW signal from compact binary coalescences (CBCs,
binaries made of two compact objects like BHs and NSs), one has to have the capacity to
measure a relative difference in arm-length ∆L

L
∼ 10−21 [24]. To achieve such sensitivity,

important efforts were made in identifying the noise sources. Some of the implementations
enhancing the simple Michelson interferometer are the addition of Fabry-Pérot cavities —
which extend artificially the length of the detectors, the use of power-boosted lasers, and
the operation at high vacuum to avoid interference with dust particles [24]. One also
wants to dodge external noise such as seismic activities. If one can detect motions small
enough to find GWs, one can also detect the motion of the tectonic plates or human
activities. This is avoided by suspending the mirrors to a system of pendulums and using
active damping [24]. An additional way to isolate the detector is to go underground,
as has been done for the Japanese KAGRA detector [27–29], and is planned for the
upcoming Einstein Telescope (ET) [30, 31]. The bottom row of Fig. 1.1 shows an artist
representation of ET.
To finally get to the first direct GW observation, years of development have been

necessary, both on the theoretical and the technological side. As a result of these,
in September 2015, the first GW event ever was detected: GW1509145 [33], seen in
coincidence by the two LIGO detectors (LIGO-Hanford and LIGO-Livingston). This

3This discovery led to a Nobel Prize for Hulse and Taylor in 1993.
4There are two LIGO detectors. One is situated in Hanford and the other in Livingston. They are
built with the same design and technology.

5GW events detected by the LIGO and Virgo collaboration follow the naming convention GWYYM-
MDD, where YY is the year, MM the month, ad DD the day, up to the third observing run. From
there on, it is also followed by the UTC observation time.
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Figure 1.1: Upper left: Areal picture of the LIGO-Hanford detector (credits: Cal-
tech/MIT/LIGO Lab). Upper right: Areal picture of the Virgo detector (credits: Virgo
Collaboration). Bottom: Artist representation of Einstein Telescope (credits: Nikhef).

observation of two merging BHs represents a breakthrough for GR science6. It is the
first direct observation of GWs, but also additional proof of the existence of BHs and
binary BHs (BBHs), showing that these objects can form and make binaries in a time
smaller than the age of the Universe. The nature of the objects present in this binary
also enabled the scientific community to study the behavior of GR in the strongest
regime ever detected, not finding any deviation [34].
While this first observation already represented a major discovery, it still needed to

be cross-validated. By August 2017, 7 BBH mergers had been observed by the two
LIGO detectors [35], and the Virgo detector joined the detector network. Soon after,
GW170814 was detected as the first triple detection [36]. Since GWs are localized by
comparing the time and phase upon arrival between the interferometers, the addition of
a third detector leads to a major improvement in the event’s sky location. In addition, it
enables one to probe more than two polarizations and perform novel tests of gravity [36].
Regardless of the novelties brought by this triple detection, it is the GW170817 event [37]
that makes history. It is identified as a binary NS (BNS) merger and was observed for
about 100 s by the LIGO detectors. A representation of the signal’s time-frequency map

6In 2017, Rainer Weiss, Barry Barish, and Kip Thorne were awarded the Nobel Prize for their
contribution to the direct detection of GWs.
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Figure 1.2: Simplified representation of a GW interferometer. The laser is sent to a beam-
splitting mirror and gets reflected before being reconstructed. If the arms have the same
length, the reconstruction is destructive, else it is constructive. The arm-lengths are artificially
increased by the use of recycling mirrors so that the light bounces back several times in the
cavity. Other enhancements have been implemented to reduce the noise sources and enable
the first detection of GWs. Illustration taken from [32].
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Figure 1.3: Left: Representation of the time-frequency map for the GW170817 event. One
sees a clear signature in the two LIGO detectors. The signal is absent from the Virgo detector,
reducing the possible sky location to blind spots of the detector [37]. Right: 90% confidence
sky location for the GW, gamma ray, and optical signals and a picture of the host galaxy
(NGC 4993) before and after the merger [38].

in the different detectors is given in the left panel of Fig. 1.3. Despite its loudness, it was
not seen by the Virgo detector, which was online at that time. This absence of detection
helped improve the sky localization even more, by reducing the possible locations to
Virgo’s blind spots (see the right panel in Fig. 1.3). The masses could be inferred from
the GW data and showed agreement with most of the predicted NS equations of state
(EoS) [37].

Contrary to BBH mergers, BNS mergers are expected to emit EM radiation. Therefore,
after the public alert for GW170817 was issued, astronomers made a global effort to
find a counterpart to the merger. Thanks to the reduced sky location offered by
the GW detector network, and by cross-correlating with possible EM sources, it was
possible to link the BNS merger to a short gamma-ray burst (GRB). Afterward, a
counterpart was found in all other EM bands. In the ultraviolet, optical and infrared
bands, the observation of the kilonova7 led to the identification of the host galaxy: NGC
4993, while the observation of the radio and X-ray emission helped study the binary’s
environment [38]. The joint detection of GW and EM information provides new tests

7A transient surge of EM radiation about 1000 times brighter than a nova.
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Event name Brief description
GW190412 Asymmetric masses (∼ 30M� and ∼ 8M�) leading to the observation

of higher harmonics [41].
GW190425 Low component masses (ranging from 1.12 to 2.52 M�), consistent with

NS masses, but heavier than any other NS observed [42].
GW190521 Unusually high masses (∼ 85 M� and ∼ 66 M�), one of the components

is probably in the mass gap, and the final BH is an
intermediate-mass BH [43]

GW190814 Asymmetric masses (∼ 23 M� and ∼ 2.6 M�) with the observation of
higher harmonics, and no confident identification of the nature of
the lightest component [44].

GW200105 Observation of a NS-BH merger (∼ 8.9 M� and ∼ 1.9 M�) [45].
GW200115 Observation of a NS-BH merger (∼ 5.7 M� and ∼ 1.5 M�) [45].

Table 1.1: Overview of the outstanding events seen during the third LVK observing run.

of GR and cosmology by comparing the information obtained in the two observation
channels [39]. Along with opening new avenues to study such events in our Universe,
this constitutes additional proof that the GW detections are genuine by independently
observing related phenomena. It also marks the start of the multi-messenger astronomy
(MMA) era, where several independent observation channels can be used to study a
given physical process.

All the events mentioned up to now are part of the early stages of direct GW detection,
being observed during the first and second observation runs, where each GW observation
was exceptional on its own. Together, the runs spanned from September 2015 to August
2017, with a gap from January to November 2016 to upgrade the detectors. Over this
period, 10 BBHs and 1 BNS were detected [35], enhancing the confidence in direct GW
detection. Even more recently, the detection of GWs has become more common, with
about 90 CBCs observed after the third observation run (extending from the 1st of April
2019 until the 27th of March 2020, with a one-month gap in October 2019 for detector
upgrade) completed [40]. While many events were detected, a few were of particular
interest since they led to the observation of novel effects. They are summarized in
Table. 1.1.

On top of the discoveries brought by the analysis of exceptional events, the amount of
observations also makes the statistical analysis of the events possible. A representation
of all the events detected by the LIGO-Virgo-KAGRA (LVK) collaboration8 is given
in Fig. 1.4, where one sees the masses of the progenitors and the mass of the final
object. Combining the information from all the observed CBC coalescences, one can
study the population of compact binaries present in our Universe, probing their merger

8For the two first observation runs, KAGRA had not yet joined the collaboration. From the third
observation run on, it is included in the network, “upgrading” the collaboration from LIGO-Virgo
to LIGO-Virgo-KAGRA (LVK) collaboration.
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Figure 1.4: Representation of all the CBCs observed by the GW detection network and
showing the initial masses of the components and the final mass of the resulting object. In
blue and orange are the BHs and NSs observed by the LVK collaboration, while in red and
yellow, one has the electromagnetically observed ones.

rate up to a redshift of 1, and constructing their mass and spin distributions [46]. In
addition, one can stack the observed events to look for deviations from GR [47] and
probe cosmology [48].
Whilst many breakthroughs have been achieved thanks to the current network of

detectors, it is important to continue improving them to discover even more novelties. In
that light, the detectors are regularly upgraded between observation runs to reach higher
sensitivities. Current detectors, called second-generation (2G) detectors, are not yet at
their maximal potential, and the next observing run should make the observation of
CBC coalescences even more routine. In addition, since detectors have off-periods (due
to noise for example), it is important to have more detectors to maximize the chances of
having a large enough active detector network when interesting GW signals reach the
Earth. Therefore, an additional LIGO detector, called LIGO-India is being built in the
Dudhala village in the Hingoli district of Maharashtra [49]. Upgrades and additional
detectors will lead to improved rates and probably the observation of new phenomena.
One such avenue, treated in this thesis, is the gravitational lensing of GWs. However,
there are fundamental limitations to the detectors, due to their size and design, making
it impossible to observe some predicted science cases (for example higher mass BHs,
the merger and post-merger parts of an NS signal) and probably also some unknown
phenomena. Therefore, the next generation of detectors (called 3G detectors) is also
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planned.
For the ground-based detector network, there is the European ET [30, 31] and the

American Cosmic Explorer (CE) [50, 51]. While the currently planned design for the
two detectors is quite different, they will both have much larger sizes than the current
detectors, with ET planned to be a triangular detector with 10 km sides, and CE being 2
L-shaped detectors with arm lengths between 20 and 40 km. This, and other technological
improvements, should push the reach of the detectors to the cosmic dawn for BBHs,
making it able to probe periods where only primordial BHs can exist [52]. Thanks to
improved low-frequency sensitivity, ET will also have the capacity to detect many more
higher-mass systems, leading to greater opportunities to observe intermediate-mass BHs
(IMBHs) [52]. A representation of the horizon redshift as a function of mass for ET and
CE is given in Fig. 1.5.
Another planned detector is the Laser Interferometer Space Antenna (LISA) [53],

a space-based detector with a triangular configuration trailing the Earth in its orbit
around the Sun. While the ground-based detectors have inherent noises, limiting their
sensitivity range from 1 Hz9 to thousands of Hz, LISA will focus on the range from
10−5 Hz to 1 Hz. Therefore, it will probe other types of objects. To cite only a few
examples, it would see super-massive BBH mergers, extreme mass ratio inspirals, and
white dwarf binaries far from merger. It has also the capacity to detect wider orbits for
lower mass BBHs, opening the possibility to perform multi-band GW observations, by
first tracking the evolution in the LISA band, and later following the merger in the 3G
detectors [53].
To complete the current and future methods to probe GWs, pulsar timing arrays

(PTAs) are also used to search for GWs (for example, see [54] for an overview). Here,
millisecond pulsars are used as astronomical clocks. Owing to their stable rotation period,
if a GW passes, it will modify the time of arrival of the EM pulses. Using different pulsars
as a baseline and checking the differential modification, one has a much longer baseline,
probing even lower frequencies than with LISA. In 2021, the NANOGrav Collaboration
released its 12.5 years of data resulting from the observation of 47 pulsars [55]. This was
used, for example, to constrain individual super-massive BHs [56], put constraints on
the GW background (GWB) [57, 58], search for cosmological phase transitions [59], and
test GR by looking for additional polarizations not predicted by the theory [60]. One of
the main recent results is the one on GWB as the first signs of the background have
been detected, and confident detection is forecast within 5 years [57, 58]. A comparison
of the different frequency ranges probed by the different methods is shown in Fig. 1.6.
One sees that by combining all of them, we can probe frequencies from ∼ 10−10 Hz to
∼ 104 Hz, covering a wide range of objects and processes.

Because GW astronomy is successful and developing, one may start wondering what
science goals will be feasible. However, the increase in the number of detections, as
well as the duration of the signals (larger frequency range means that the signal stays
longer in-band), will put considerable stress on the analysis pipelines, requiring both

9This is the best-case scenario for the ET. LIGO detectors cannot go under 10 Hz.



10 1. A Brief History of Gravitational-Wave Physics

1 10 100 1000 10 000
Total source-frame mass [M�]

0.1

1

10

100

R
ed

sh
if

t
Horizon
10% detected
50% detected

2019–02–05

aLIGO
ET
CE

Figure 1.5: Horizon redshift for the different masses for the ET and the CE. The redshift
extends up to cosmic dawn for some masses. Figure from [52].

Figure 1.6: Overview of the sensitive frequency range for the different GW detection methods
with examples of the objects that can be probed. Figure generated with GWPlotter [61].
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enhancement of current methods and the introduction of new ones. Such methods would
then still need to keep a high precision as having errors in the analysis step would lead
to biases in the extracted information. To circumvent some of these issues, machine
learning (ML)-based frameworks are growing in the context of GWs as their speed after
training would be a major advantage in the future (see Ref. [62] for a review). Overall,
though, progress still needs to be made on the theoretical and data analysis sides to use
all of these instruments optimally.

In this thesis, several aspects of GW science are treated. We show the development of
a data analysis tool for the detection of GW strong lensing. We also expose some of
the issues one can face when analyzing 3G detector data and suggest some solutions.
In Part. I, we give the various theoretical concepts required to understand the results
presented in this thesis. More precisely, in Chapter 2, we give the main GR concepts
needed to understand the generation and propagation of GWs and derive the latter. In
Chapter 3, we discuss waveforms, a representation of GW signals for CBC mergers, and
indispensable for their analysis. Then, in the next chapter, we discuss how one analyzes
GW data. In Chapter 5, we explain lensing and how it should manifest itself in GW
data. Chapter 6 introduces the various ML concepts used in this thesis. The three
main topics studied in this thesis are then represented in the different parts. Part II
explains the various lensing studies performed, going from the development of a new and
more efficient analysis pipeline (Chapter 8) to an investigation of the science potential
(Chapter 9), to the study of the false-alarm probability related to them (Chapter 10).
Part. III shows results concerning the use of ML for GW early alerts. In Chapters 12
and 13, we show how ML identify incoming BNS signals before their merger, and in
Chapter 14, we show how it can rapidly provide sky maps. In Part IV, we look at
possible issues in the data analysis for 3G detectors. First, in Chapter 16, we start by
establishing that overlapping signals will happen, before showing the biases they can
lead to. Then, in Chapter 17, we propose Bayesian analysis methods to avoid biases. In
Chapter 18, we show how ML approaches can be used to analyze overlapping signals.
Finally, in Part. V, we give an overview of the thesis, and concluding remarks.





Part I
Introduction to Gravitational
Waves, Related Phenomenology,
and Other Useful Tools





2
General Relativity and

Gravitational Waves
In this chapter, we give a brief reminder on GR, focusing on the aspects needed to
understand GW physics and the research carried out in this work. After reminding the
reader of the main ingredients of GR, we turn to various scenarios outlining the emission,
propagation, and detection of GWs.

2.1 The Main Ingredients of General Relativity

In GR, spacetime is described by a 4-dimensional manifold with a metric tensor gµν1

giving it its geometrical structure. The metric tensor can be used to define an invariant
length element

ds2 = gµνdxµdxν , (2.1)

where we use Einstein’s summation convention2. The metric tensor is also such that
gµνg

να = δαµ , and it can be used to lower and raise indices.
For a given situation, the square root of the line element will serve as a measure in

spacetime. We define different types of interval depending on ds2: time-like intervals
if ds2 > 0, light-like intervals if ds2 = 0, and space-like intervals if ds2 < 0. Putting
ourselves in the Minkowski metric, corresponding to a flat spacetime with the metric
tensor η = diag(−1, 1, 1, 1), the two first intervals are physically motivated as they
correspond to an object moving at a speed smaller than the speed of light, or a photon
(or other massless particles) moving at the speed of light. On the other hand, the last
scenario would require the particle under consideration to move faster than the speed of
light, which would break causality and is not physical.

In curved spacetime, the metric will also define a first-order derivation operator, or a
connection, acting on the tensor field. It is called the covariant derivative, written ∇α,
and obeys the compatibility requirement with the metric

∇αgµν = 0 . (2.2)
1As is customary, we denote spacetime indices with Greek letters and space components with Roman
letters.

2Each time an index is repeated in an “up” and “down” position, the summation is implied.
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The covariant derivative is related to the coordinate derivatives ∂
∂xα

= ∂α (where xα
represents the coordinate system) as

∇αu
β = ∂αu

β + Γβαδxδ , (2.3)

with
Γβγδ = 1

2g
βρ(∂δgγρ + ∂γgδρ − ∂ρgγδ) , (2.4)

the Christoffel symbols. These are symmetric in their lower indices.
The covariant derivative leads to the notion of parallel transport, describing how a

field changes along a curve. If ~U is the vector tangent to a curve C, then a field T is
parallel transported along C if

∇~UT = 0 , (2.5)

with ∇~U = Uα∇α.
When a curve parallel transports its tangent vector, it is called a geodesic. So a curve
C(λ) with a tangent vector ~U is a geodesic if

∇~U
~U = 0 , (2.6)

which in terms of components and coordinates is

d2xµ

dλ2 + Γµαβ
dxα
dλ

dxβ
dλ = 0 . (2.7)

This is a second order differential equation for xµ and has a unique solution when the
initial conditions xµ(λ0) and (dxµ/dλ)(λ0) are specified. For a flat space, this reduces
to a straight line. From a physical perspective, geodesics are important as time-like
geodesics are the spacetime trajectories of free-falling particles.
In GR, the motion of particles depends on the structure of spacetime. Its geometry

is related to the matter distribution within it through the Einstein Field Equations
(EFEs):

Gαβ = −8πG
c4 Tαβ , (2.8)

where c is the usual constant speed of light, and G is the gravitational constant. On the
left-hand side, Gαβ is the Einstein Tensor representing the spacetime geometry. It is
made of the metric tensor and derivatives of the Christoffel symbols. It vanishes when
considering a flat spacetime. On the right-hand side, Tαβ is the stress-energy tensor,
respecting the conservation law ∇αT

αβ = 0 and representing the effect of matter. The
equations can be derived from principles similar to those used in Newtonian gravity,
where the Einstein tensor plays the role of the field, and the stress-energy tensor plays
the role of the density. The EFEs are such that they reduce to the usual Newtonian
Poisson equation in the weak-field limit. Eq (2.8) represents ten coupled second-order
non-linear partial differential equations governing the behavior of matter and spacetime.
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They generally do not have analytical solutions, except in a few cases, where one can
use symmetries to simplify the problem.

2.2 First Hints of Gravitational Waves

Based on the ingredients presented in the previous section, we can derive the basics
of GW generation, propagation, and detection. Therefore, we start by looking into
linearized GR. This will have solutions that can be viewed as waves in spacetime.

2.2.1 Linearized General Relativity

Because gravitation is a weak effect in the absence of dense objects, it is often possible to
describe the metric tensor as the sum of a background metric (η̃) and a small perturbation
(h). If we are far away from any source, the metric is decomposed as

gαβ = η̃αβ + hαβ , (2.9)

where ||h|| � 1, and we neglect effects of the order O(h2). Therefore, η̃αβ can be used
to raise on lower indices, and we have

gαβ = η̃αβ − hαβ , (2.10)

from applying η̃ on Eq. (2.9), and noting hαβ = η̃αγ η̃βδhγδ.
In this regime, if η̃ = η, the Minkowski tensor, we look at the evolution of the tensor

field h on a flat background spacetime. This is the situation we consider here. Then,
defining the trace h = hαα and the d’Alembertian operator 2 = ∂αα , the Einstein tensor,
at first order in h, reduces to

Gαβ = 1
2
(
∂γ∂βh

γ
α + ∂γ∂αh

γ
β + ηαβ2h− ∂α∂βh−2hαβ − ηαβ∂γ∂δhγδ

)
, (2.11)

which can directly be used in Eq. (2.8) to give the linearized EFEs at the first order in h.
However, we can make the expression easier to use by performing a gauge transforma-

tion. Under the assumption that hαβ is a small perturbation, we are allowed to make an
infinitesimal change in coordinates

x′α = xα + ξα(xβ) , (2.12)

provided ∂βξ
α ≤ |hαβ|. Indeed, under this coordinate transform, the perturbation
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changes as
h′αβ = hαβ − (∂αξβ + ∂βξα) , (2.13)

showing that we need the ∂βξα ≤ |hαβ| condition to be respected. Such a transformation
is called a gauge transformation.

In parallel to the local one, global transformations, such as the Lorentz transformation,
can be applied:

x′α = Λα
βx

β. (2.14)

Using the Lorentz transformation and the gauge choice, we can compute a simplified
version of the EFEs. Therefore, we first define and work with the trace-reversed
perturbation tensor h̄. By definition, h̄αα = −h so that

h̄αβ = hαβ − 1
2η

αβh̄ . (2.15)

Starting from an arbitrary h̄old perturbation such that Eq. (2.9) is respected, we can
apply the gauge transformation from (2.12), and take the divergence

∂βh̄
new,αβ = ∂βh̄

old,αβ − ∂βξαβ . (2.16)

If we want a gauge where ∂βh̄new,αβ = 0, we need to impose the condition 2ξα = ∂βh̄
old,αβ.

This condition is an inhomogeneous wave equation and always has a solution. Therefore,
we can always find ξα leading to a gauge where ∂βh̄αβ = 0. Such a gauge is called the
Lorenz (or de Donder) gauge.

Placing ourselves in the Lorenz gauge, the linearized EFEs (2.11) take the form

2h̄αβ = −16πG
c4 Tαβ . (2.17)

While this expression is already simplified, we can place ourselves in an even more
advantageous gauge. Indeed, the condition ∂αh̄βα = 0 gives four constraints, and h̄βα
has ten possible components3. Therefore, one has 6 degrees of freedom left and can
use them to simplify the problem a bit further. One can impose 2ξα = 0, which gives
4 more constraints. This leaves only 2 degrees of freedom for h̄. These are physical
degrees of freedom and cannot be further simplified. So, there are only two independent
components for h̄αβ. As we will see, this will lead to two polarizations for GWs. If we are
far from any source of gravitation, one can fix these two remaining degrees of freedom
by demanding (i) h̄0α = 0, and (ii) imposing a traceless property h̄αα = 0. Defining
u = (c, 0, 0, 0), the 4-velocity of a time-like observer, (i) can be recast as uαh̄αβ = 0,
meaning that information will propagate in a direction perpendicular to the worldline
of the observer. Imposing the conditions presented above brings us to the transverse
traceless gauge (TT-gauge).

3Strictly speaking it should be 16. This reduces to 10 independent components when accounting for
symmetry.
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2.2.2 Let There be Waves

Far away from any source, we may assume vacuum (Tαβ = 0). In this case, Eq.(2.17)
becomes

2h̄αβ = 0 , (2.18)

which corresponds to a wave equation. It admits a general solution of the form

h̄αβ = R
(
Cαβe

ikγxγ
)
. (2.19)

In this expression, Cαβ represents the components of a tensor, while kγ are the components
of a 4-vector. To satisfy the wave-equation, this 4-vector needs to be k = (ω,~k), with
ω = c|~k|.

Using the Lorenz gauge condition, kαCαβ = 0, and using the traceless gauge, Cα
α = 0,

implies that C0α = 0.
Choosing a coordinate system such that the z-axis points in the wave’s direction of

propagation, the wave vector k takes the form (ω, 0, 0, ω). The Lorenz gauge condition
then implies Cαz = 0, and we are left only with the x and y components of C. Since we
are also working in the traceless gauge, Cxx = −Cyy, and because the tensor is symmetric,
Cxy = Cyx. Therefore, we end up with two components with a physically-important
meaning: Cxx and Cxy. Explicitly, the plane-wave solution in the TT gauge is

h̄TT(t, z) =


0 0 0 0
0 Cxx Cxy 0
0 Cxy −Cxx 0
0 0 0 0

 cos
(
ω(t− z/c)

)
. (2.20)

To understand how such a wave interacts with matter, one needs the expression for
the remaining components.

2.2.3 Basic Effects of Gravitational Waves on Matter

Considering a plane-wave propagating along the z axis, the metric in presence of a GW
is gαβ = ηαβ + h̄TT

αβ , and the line element (see Eq. (2.1)) reduces to

ds2 =− c2dt2 +
[
1 + Cxx cos

(
ω(t− z/c)

)]
dx2 +

[
1− Cxx cos

(
ω(t− z/c)

)]
dy2

+ 2Cxy cos
(
ω(t− z/c)

)
dxdy + dz2 . (2.21)
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Figure 2.1: Representation of the plus (2nd line) and cross-polarization (3rd line) of a GW,
with their evolution over a period. The GW is assumed to propagate in the ẑ direction. For
this representation, one sets the complementary polarization to zero. However, in reality, the
GW is made of the superposition of the two polarizations. Figure adapted from [63].

Taking Cxy = 0 and Cxx 6= 0, the physical distances in the x and y direction stretch
and squeeze periodically, in an opposite way, for the two directions. If one takes a ring
particle, it means that it becomes elongated in the x direction at one time, and half
a periord later, it is elongated in the y direction. So, the deformation has a +-shape,
and one writes Cxx = h+. This periodic deformation is represented in the middle row of
Fig. 2.1, where the GW propagates along the z axis. On the other hand, if one takes
Cxx = 0 and Cxy 6= 0, the deformation happens the same way but rotated by 45◦ 4.
Therefore, the same sort of periodic squeezing and stretching happens for the circle of
particles. This time it has a ×-shape in the (x, y) coordinates, and one writes Cxy = h×.
This scenario is depicted in the lower panel of Fig. 2.1.

4This can be shown by mapping the (x, y) to (x′, y′) coordinates using a 45◦ rotation around the z
axis.
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2.2.4 Premises of Detection

The deformation induced by a passing GW already suggests how to detect them. Indeed,
if instead of a ring of particles, one takes an L-shaped interferometer with its arms aligned
along the x-axis and a test mass at their extremity, one can measure the +-polarization
through the arms’ squeezing and stretching. Similarly, a detector rotated by 45◦ would
detect the ×-polarization. If the interferometer has an arbitrary position, it would detect
a mixture of the two polarizations.

We assume an L-shaped detector with arm-lengths L, aligned along the x and y axes.
For LIGO and Virgo, as mentioned in Chapter 1, these lengths would be 4 and 3 km,
respectively. Using Eq. (2.21), one can show that the test masses fixed at the end of the
detectors would have a displacement

δLx(t) = h+(t)L2 (2.22)

δLy(t) = −h+(t)L2 . (2.23)

The measured strain at the output of the detector is the relative difference in arm length

h(t) = δLx(t)− δLy(t)
L

, (2.24)

which for this particular detector set up is h+(t). If we rotate the detector by 45◦, we
would instead measure h×(t).

More realistically, the detector will have an arbitrary orientation compared to the
incoming GW. Therefore, we need to translate the change in distances induced by the
wave from the GW-frame (x′, y′, z′) to the detector-frame (x, y, z) coordinates. Placing
the detector arms along x and y, and the GW direction of propagation in the z′-direction,
one can find the projection factors F+ and F× such that

h(t) = F+h+(t) + F×h×(t) , (2.25)

where we have not yet specified the dependencies for F+,×. It is easy to see that the
angles contributing to the projection are the sky location of the source (θ, φ), which
describes how the origin of the axes are situated the one with respect to the other, and
an angle that translates the extra rotation required to match the axes. This angle is the
polarization angle ψ. A representation of the different angles is given in Fig. 2.2. Using
each of these angles to perform a rotation enables one to go from one frame to the other.
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Figure 2.2: Representation of the angles linking the detector-frame axes (êx, êy, êz) and the
GW-frame axes (êRx , êRy , êRz ). Adapted from [64].

Applying these three successive rotations to h+,×(t), we get:

F+(θ, φ, ψ) =
(

1 + cos2(θ)
2

)
cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ) (2.26)

F×(θ, φ, ψ) =
(

1 + cos2(θ)
2

)
cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ) , (2.27)

the antenna pattern response functions for an L-shaped detector.
Other designs have been envisaged for future detectors. For example, ET is proposed

to be made of three V -shaped detectors with an opening angle α = 60◦. There is a direct
relationship between its antenna patterns and those for an L-shaped interferometer, with
FV

+,×(θ, φ, ψ) = sin(α)F+,×(θ, φ, ψ).

2.3 Generation of Gravitational Waves

We now turn to the description of the generation of GWs. Starting from Eq. (2.17), the
properties of the d’Alembertian mean this equation has the generic solution

h̄αβ(x) = −16πG
c4

∫
d4x′G(x− x′)Tαβ(x′) , (2.28)
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where x represents the measurement’s place, and x′ is at the source. G(x − x′) is a
Green’s function. By imposing boundary conditions, we can select a specific function.
Imposing that no radiation is incoming from infinity, one gets the retarded Green’s
function:

G(x− x′) = − 1
4π|~x− ~x′|

δ(t0ret − x′0) , (2.29)

where we have defined the retarded time t0ret = t− |~x− ~x′|/c.
Plugging this into Eq. (2.28) yields

h̄ij(x) = 4G
c4

∫
d3~x′

Tij(t0ret, ~x
′)

|~x− ~x′|
. (2.30)

In Eq. (2.30), the temporal components T0α of the stress-energy tensor are not present
anymore. While this can look like an issue at first glance, it is not since the conservation
law between energy and momentum

∂αT
αβ = 0 (2.31)

links the temporal and spatial components of the tensor.
We can also project the solution found on the TT gauge using the projector

Λijkl = PikPjl −
1
2PijPkl , (2.32)

where Pij = δij − ninj, and ni is the normal in the direction of propagation of the wave.
Using this projector enables one to get the components in the TT gauge

hTT
ij (x) = 4G

c4 Λijkl

∫
d3~x′

T kl(tret, ~x′)
|~x− ~x′|

. (2.33)

This expression is useful to derive more intuitive solutions to the linearized EFEs.

2.3.1 Multipole Expansion

To know what the GW generated by a fluctuating stress-energy tensor looks like, one
needs to solve Eq. (2.33). In all generality, this equation cannot be solved analytically.
However, when far away from the source i.e. at a distance r much larger than the
characteristic size of the source, one can approximate |~x − ~x′| by r. Then, Eq. (2.33)
becomes

hTT
ij (x) = 4G

c4r
Λijkl

∫
d3~x′ T kl(tret, ~x′) , (2.34)

where the retarded time is now tret = t− r/c.
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Using the conservation law ∂αT
αβ = 0, one can show that∫

d3~x T ij = 1
c2

∫
d3~x T̈ 00xixj −

∫
d3~x T ij , (2.35)

where the overdot represent the time derivative. Then, defining the mass quadrupole
moment

M ij = 1
c2

∫
d3~x T 00xixj , (2.36)

the integral of the stress-energy tensor (2.35) can be re-expressed as∫
d3~x T ij = 1

2M̈
ij , (2.37)

and the observed GW becomes

hTT
ij (x) = 2G

c4r
ΛijklM̈

kl(tret) . (2.38)

This expression is the leading-order effect of the GW emission. Alternatively, it can be
recovered by Taylor expanding the stress-energy tensor and keeping the leading order.

As was done in the previous section, without loss of generality, we choose the coordi-
nates so that the z-axis points toward the observer and Eq. (2.38) becomes

hTT
ij =

 h+ h× 0
h× −h+ 0
0 0 0

 . (2.39)

Choosing the normal along z means P11 = P22 = 1 and P12 = P21 = Pj3 = 0 in
Eq. (2.32). Then, defining

Aij = ΛijklM̈
kl , (2.40)

one can show that Aj3 = 0, and

A11 = −A22 = M̈11 − M̈22

2 (2.41)

A21 = A12 = M̈12 . (2.42)

Completing this with the prefactor from Eq. (2.34) and comparing with the elements
from Eq. (2.39), one finds

h+ = G

rc4

(
M̈11 − M̈22

)
(2.43)

h× = 2G
rc4M̈

12 , (2.44)

which is a generic form for the GW emission at leading order.
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Figure 2.3: Representation of a binary system made of two point-mass particles on a fixed
circular orbit. The coordinates are such that the z-axis points to the observer and the angle
between the plane of the orbit and the line of sight is ι. The origin is placed at the center of
mass of the system. The two masses are at a fixed distance R and have an orbital frequency ω.
Figure adapted from [65].

2.4 Gravitational-Wave Emission from Rotating Objects

As a prelude to more complex emission schemes, let us consider two point-mass particles
m1 and m2 moving along a circular orbit5. The particles orbit each other at a distance
R with orbital frequency ω. We work in coordinates where the z-axis points towards the
observer, and define the inclination angle ι –the angle between the plane of the orbit
and the line of sight. Fig. 2.3 gives a representation of the situation.

If we also choose the coordinates so that the origin is aligned with the center of mass
of the system, the position of the particles ~x1(t) and ~x2(t) are

~x1(t) = µR

m1
ê(t) (2.45)

~x2(t) = −µR
m2

ê(t) , (2.46)

where ê(t) =
(

cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)
)
is the unit vector pointing from m2

to m1 for our particular choice of coordinates, and µ = m1m2/(m1 +m2) is the reduced

5We momentarily neglect the energy carried away by GWs.
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mass.
As an approximation, we consider only the quadrupole emission (2.36). If the two

masses are still far away and non-relativistic, the quadrupole moment is

M ij(t) = 1
c2

∫
d3~x T 00(t, ~x)xixj =

∫
d3~x ρ(t, ~x)xixj

=
∫

d3~x

m1δ

(
~x− µR

m1
ê(t)

)
+m2δ

(
~x+ µR

m2
ê(t)

) = µReiej , (2.47)

where ρ is the mass density, expressed in terms of a Dirac delta function using the point
mass particle’s coordinate.
Performing the time derivative of M̈11, M̈12 and M̈22, plugging them into Eq. (2.43)

and evaluating the quadrupole at the retarted time, the polarizations of the emitted
GW are

h+(t) = −4µGR2ω2

rc4

(
1 + cos2(ι)

2

)
cos(2ωtret) ,

h×(t) = −4µGR2ω2

rc4 cos(ι) sin(2ωtret) . (2.48)

Under the approximation that the masses are far from each other, Kepler’s third law

ω2 = GM

R3 , (2.49)

can be used to related ω, R and the masses. Also defining the chirp mass

Mc = (m1m2) 3
5

(m1 +m2) 1
5
, (2.50)

the polarizations take the form

h+(t) = −4
r

(
GMc

c2

) 5
3
(
ω

c

) 2
3
(

1 + cos2(ι)
2

)
cos(2ωtret) ,

h×(t) = −4
r

(
GMc

c2

) 5
3
(
ω

c

) 2
3

cos(ι) sin(2ωtret) . (2.51)

These equations show that the GWs are emitted with twice the orbital frequency of
the two test masses, and the period of the GW is half that of the orbiting binary. The
strength of the observed polarization depends on the inclination angle. If ι = 90◦, we see
the binary from the edge, and only the +-polarization is observable. On the other hand,
when the plane of the binary is perpendicular to the line of sight, the two polarizations
have the same contribution.
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2.5 Inspiraling Objects

While the derivation done in the previous section already brings important information
about GW emission from objects rotating around each other, it neglects many effects.
In particular, it disregards the energy carried away by the GW, which should lead to a
shrinking distance between the particles and an increased orbital frequency.
As an illustrative example, we can consider the case of two point masses. Defining

Φ(t) the time-dependent angle swept by the line connecting the two point masses over
time, we have

ω(t) = Φ̇(t) , (2.52)

and the positions of the two particles over time

~x1(t) = µR(t)
m1

ê(t) ,

~x2(t) = −µR(t)
m2

ê(t) , (2.53)

where ê(t) =
(

cos(Φ(t)), cos(ι) sin(Φ(t)), sin(ι) sin(Φ(t))
)
is the unit vector pointing from

m2 to m1, which now accounts for the change in frequency over time.
We assume the orbit to be slowly decaying. So, for each revolution, the trajectory can

be approximated by a circle. Using this adiabatic assumption, Eq. (2.51) becomes

h+(t) = −4
r

(
GMc

c2

) 5
3
(
ω(tret)
c

) 2
3
(

1 + cos2(ι)
2

)
cos(2Φ(tret)) ,

h×(t) = −4
r

(
GMc

c2

) 5
3
(
ω(tret)
c

) 2
3

cos(ι) sin(2Φ(tret)) , (2.54)

where we account for the time-dependency of the different quantities.
We know that the system is losing energy through the radiation of GWs. The origin

of this energy is the system’s orbital energy (Eorb). Therefore,

dEorb

dt = −dE
dt , (2.55)

where E is the energy of the GW.
Assuming non-relativistic particles so that we may use the Newtonian formalism,

Eorb = 1
2m1v

2 + 1
2m2v

2 − Gm1m2

R
. (2.56)
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Using Kepler’s third law (2.49) and

vi = µRωi
mi

, (2.57)

where i = {1, 2}, we find
Eorb = −1

2(G2M5
cω

2) 1
3 , (2.58)

where the dependence on the orbit’s size has been eliminated.
For the GW power emitted, one can show that in the TT gauge, it takes the form [24]

dE
dt = c3r2

16πG

∫
dΩ

〈
ḣ2

+ + ḣ2
×

〉
t

= 32c5

5G

(
GMcω

c3

) 10
3

, (2.59)

where we have used Eq. (2.54) for h+,×(t).
Defining the GW frequency fgw = 2forb, and using Eqs (2.58) and (2.59), Eq. (2.55)

becomes a differential equation for the frequency

ḟgw(tret) = 96π 8
3

5

(
GMc

c3

) 5
3

f
11
3gw(tret) , (2.60)

with the solution

fgw(t) = 1
π

(
GMc

c3

)− 5
8
(

5
256(tc − t)

) 3
8

. (2.61)

tc is the coalescence time and is a constant of integration. In particular, fgw → ∞
when t → tc. However, this would imply a null distance between the two objects. In
reality, it is more representative of the moment when the simplifying approximation
breaks. Real mergers are systems containing finite-sized objects like BHs and NSs,
and the inspiral would terminate before the distance is zero. It could be when the
objects touch, but in fact, it can be even earlier than that. This can be shown only
by using a full GR derivation; here we give a rough argument. Eq. (2.61) shows an
inspiraling motion such that the frequency increases, and it does so faster and faster,
leading to a runaway process, seemingly leading to this infinite frequency. However,
using Schwarzchild geometry, one can compute a distance, RISCO, corresponding to
the innermost stable orbit of the particles, hence the smallest stable orbit possible. In
fact [24]

RISCO '
6GM
c2 , (2.62)

where M = m1 + m2 is the total mass of the system. This represents the distance
at which the quasi-circular orbit approximation breaks down. Once reached, the two
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objects plunge toward each other and merge.
Inserting Eq (2.62) in Kepler’s third law (2.49), we find the GW frequency for which

the approximation breaks down [24]

fISCO = c3

6 3
2πGM

. (2.63)

Defining Φgw = 2Φ, and integrating Eq. (2.61) yields

Φgw(t) = −2
(

5GMc

c3

)− 5
8

(tc − t)
5
8 + Φc , (2.64)

where Φc is a constant of integration corresponding to the phase when tc = t.
Using Eq. (2.64), the final form of the GW polarization is

h+(t) = −4
r

(
GMc

c2

) 5
3
(
πfgw(tret)

c

) 2
3
(

1 + cos2(ι)
2

)
cos(Φgw(tret)) ,

h×(t) = −4
r

(
GMc

c2

) 5
3
(
πfgw(tret)

c

) 2
3

cos(ι) sin(Φgw(tret)) . (2.65)

Qualitatively, GW inspirals due to CBC mergers in GR have the same behavior.





3
Waveforms: Key to Analysis of

the Data
In Chapter 2, we have seen how from the basic components of GR, one can arrive at
inspiraling point masses. However, it has also been explained that the approximations
used have their limits and cannot describe the GW behavior further than the ISCO
frequency (2.63). In addition, the main objects studied throughout GW emissions are
CBCs made from two dense bodies circling each other, losing energy through GW
emission before merging. In particular, at the time of writing, detected GW signals
correspond to BBH, BNS, and NSBH mergers [40]. Their inspiral is qualitatively the
same as the one described by Eq. (2.65), but a more complete approach is needed to
describe the system from inspiral to after its merger.

Typically, the evolution of the CBC will undergo three phases. The first phase is the
inspiral, and is roughly the same for all the objects: the two bodies are in quasi-circular
orbit and lose energy through GW emission. In first approximation, it lasts until the
system reaches the ISCO. Then, there is the merger, where the two objects collide and
form the final object, followed by the post-merger regime, which depends on the final
object’s nature. For BBH mergers, the remnant body is a Kerr BH. It is left in an excited
state and undergoes ring-down, where the BH loses energy through GW emission. For
an NSBH, the final object is also a Kerr BH, but the expected ring-down is well outside
of the LVK detection band [66]. For BNSs the remaining object is either a massive NS
or a BH. If it is a BH, then the ring-down occurs, whilst a resultant NS will also lose
energy by other processes dependent upon the NS EoS.

The evolution of binaries is described using waveform approximants1. Computing all
the details of the process requires solving the EFEs (2.8) entirely through numerical
means. This is computationally very expensive. Therefore, one uses other simplifications
to describe the GW emission from the binary with a given accuracy, leading to different
waveform approximant families.

Before plunging into the details, let us note that a spinning BBH is described typically
by 15 parameters: two mass parameters, 6 spin parameters, the luminosity distance, the
phase of coalescence, the merger time, the inclination, 2 angles giving the sky location
(typically the right ascension and declination), and the polarization angle. For each NS
present in the binary (at least) one extra parameter is needed: tidal deformability. It

1While it is well understood that these are approximations, we loosely call them waveforms or waveform
approximants without distinction.
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describes how the matter that the NS is composed of is affected by the gravitational
fields in the system. Because the relation between the tidal deformability and the mass
is determined by the EoS, measuring them accurately for such systems would help
constrain the EoS and unravel how matter behaves under these extreme conditions. So,
for precessing NSBHs, one has (at least) 16 parameters, and (at least) 17 parameters
are required for BNSs.

This chapter explains the principal waveform families used to analyze GWs, outlining
the approximations used to describe the GW emission in the different cases.

3.1 Modeling the Inspiral: the Post-Newtonian Formalism

The inspiral part of the signal can be represented more accurately by using the post-
newtonian (PN) formalism [67–69]. The main idea is to develop the phase and time (or
related quantities, such as their derivatives) in terms of increasing power of v/c and
compute the coefficients for each power.

For the time domain, one starts from the energy E and the luminosity L (see Ref. [70]
for their expression) expanded in terms of x = (GMω/c3), the characteristic frequency of
the binary. The energy is known up to 3.5 PN order, and the luminosity up to the third
PN order, where the nth PN order corresponds to a term in x2n. From these relations,
one can describe the phase and time evolution of the binary using different truncated
expansions and equations, leading to a sum of coefficients describing the phase and time
evolution as a function of x. In essence, each of the methods develops the energy and the
luminosity – separately or together by taking the ratio F/(dL/dx) –, and truncates the
expression at the desired order. One then transforms the equations to obtain a system
of equations describing the binary evolution as a sum of coefficients with increasing PN
contributions. For example, one can directly have [70]

φApprox
PN (x) = φApprox

ref + φApprox
N

PN∑
k=0

φ̂k(x)xk (3.1)

tApprox
PN = tApprox

ref + tApprox
N

PN∑
k=0

t̂k(x)xk , (3.2)

where φApprox
ref and tApprox

ref are reference quantities, φApprox
N and tApprox

N are prefactors
to the sum, and φ̂k(x) and tk(x) are the coefficients one seeks to compute. All these
quantities depend on the waveform approximant, and the truncation methods used. The
expressions given in Eqs. (3.1) and (3.2) correspond to those used for the TaylorT2
waveform approximant, and the coefficients are known up to 3.5 PN order [70]. This
waveform is part of the larger Taylor waveform family where each waveform approximant
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is denoted TaylorXN 2, where X can be T or F depending on whether the waveform is
computed in the time or the frequency domain, and N is a number differentiating the
different ways to solve the equations determining the phase and time evolution [70]. We
refer the reader to Ref. [70] for a more in-depth explanation of the Taylor waveforms,
with other approximants found with different resummation methods.

The method outlined above is applied in the time domain. However, GW data
analyses are generally performed in the frequency domain. Doing the computation
in the time domain and then performing a Fourier transform to get to the frequency
domain is inefficient. Therefore, it is preferable to directly perform the PN expansion in
the frequency domain. Doing this by transforming the expressions for TaylorT2 into
usable ones in the frequency domain leads to the TaylorF2 waveform approximant. It is
obtained through the stationary phase approximation (SPA) [72]. In this approximation,
one employs the fact that when integrating a function of the form Ae−ig(t)x over t, the
main contribution to the integral comes from the part where the phase is stationary,
hence ġ = 0. When going from a time-domain waveform h(t) to a frequency-domain
waveform h̃(f) using the SPA, the mean contribution for a given f corresponds to
the saddle point time ts(f) defined by the condition Φ̇(ts(f)) − 2πf = 0. Under this
approximation, the waveform takes the generic form [70]

h̃(f) '
√
π

2
A(ts(f))√
Φ̈(ts(f))

eiΨ(f) , (3.3)

where Ψ(f) = 2πfts(f)− Φ(ts(f))− π/4. Both A and Ψ can be expressed as function
of E and L (or their derivatives). As for TaylorT2, one expends L/(dE/dx) and
truncates it at the 3.5 PN order. This gives an expression for the waveform where
A ∝ g(α, δ, ι, ψ)M5/6

c f−7/6, where (α, δ) are the right ascension and declination, ι is the
inclination of the binary’s plane compared to the line of sight, ψ is the polarization
angle, andMc is the chirp mass (2.50), and the phase term Ψ(f) is known up to 3.5
PN order (see Ref. [70] for the full coefficients). Knowing these terms, Eq. (3.3) can be
solved to have a frequency-domain representation of the waveform.
Additionally, one can also want to include spin effects in the waveform (neglected in

the explanations and approximants introduced above). Spins are dynamic variables, and
they will undergo precession, leading to the precession of the angular momentum to
compensate for that of the spins. In turn, this leads to a modulation of the inclination
angle over time, and one sees amplitude modulations in the signal’s polarization. These
effects lead to additional terms in the various expressions accounting for spin-orbit
interactions, the coupling between the spins, and the self-interaction for individual
spins [71]. For example, such effects are accounted for in the SpinTaylorT4 [70] and
SpinTaylorF2 [73] waveforms, in the time and the frequency domain, respectively. A
comparison between a non-precessing and a precessing GW waveform is shown in Fig. 3.1.

2SpinTaylorXN is also possible. These are waveforms in which the spin effects are included, see
Ref. [71] for more details on their inclusion.
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Figure 3.1: Representation of the h+ polarization for a BBH with and without spin. The
inclusion of spin effects leads to a beating pattern in the signal due to the precession of the
spin angles leading to changes in the inclination angle, modulating the apparent amplitude.

3.2 Modelling the Full Signal: Numerical Relativity

The waveform introduced in the previous section ended before the merger, around the
ISCO frequency. However, the merger and the post-merger regions of the waveforms also
contain crucial information. While some methods are developed to find approximate
solutions for these regimes, only numerical relativity (NR) can provide complete solutions
to the EFEs since no finite-order truncation is required. Unfortunately, this process is
computationally expensive, needing up to months on supercomputers to generate a few
cycles in the inspiral and merger regimes.

Nevertheless, NR has been a growing field in the last 20 years, with the first successful
modeling of a non-spinning BBH with equal component masses in 2005 [74]. Since then,
many codes have been developed and are capable of generating waveforms for a large
variety of CBCs (examples can be found in Refs. [75–81]), and catalogs of numerical
NR waveforms are publicly available (for examples see Refs. [82–88]). Even if they
are not practicably usable for data analysis, such waveforms are valuable. They are
used as models to build, calibrate and assess the error made when using other types of
waveforms. Additionally, NR can model the entire environment of a BNS (or any CBC
merger), making it a powerful tool for studying the link between EM and GW emissions
in such systems (see Ref. [89] for an example).
A specific category of waveforms, called surrogates [90–93], can directly follow from

NR. Their main idea is to take the waveforms obtained through NR and build an
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interpolator between them to cover the possible parameter space and get waveforms
faster for a given set of parameters, making their use for data analysis possible. For
example, NRSur7dq2 [94] interpolates NR waveforms and describes precessing BBHs.
Its precision is relatively close to NR simulations, but it is about 8× faster.

3.3 Effective One-Body Waveforms

The (S)EOB(NR) family3 is a waveform family capable of modeling the signal from
inspiral to ring-down. The main ingredient for these waveforms is the effective one-body
(EOB) formalism. In the Newtonian realm, one can recast the problem of two rotating
bodies into one body moving in an effective potential. In GR, the transformation is a
bit more complicated to do, but the EOB formalism applies the same principle [95–97]
by mapping the CBC evolution to the motion of a body in an effective metric

gµν = diag
(
− A(r), D(r)

A(r) , r
2, r2 sin2(θ)

)
, (3.4)

where we work in polar coordinates (t, r, θ, φ), and A(r), D(r) are potential which are
Taylor approximated.

Moving to the Hamiltonian space in the effective metric, one can define an effective
Hamiltonian depending on the conjugate variables of the position and the phase. This
can be solved by doing a PN expansion of the potentials present in the Hamiltonian.
The related PN-coefficients are known up to 3.5 PN order [98], and one can also add a
pseudo-4 PN term which is a fiducial parameter included to have a better agreement
with NR waveforms [98]. Using this formalism, one can model the entire waveform
from its inspiral to the merger by solving the Hamiltonian equations. The ring-down
is then described with a ringing Kerr black hole, and smoothly connected to the rest
of the model. The full waveform can describe the evolution from inspiral to ring down.
Additionally, the effective potential can be modified to add spin effects (e.g. [99, 100]) or
matter effects when NSs are present (e.g [101]).

3.4 Phenomenological Waveforms

The EOB waveforms presented in the previous section have the main disadvantage of being
slow to evaluate. This is an issue when one performs parameter estimation, where up to

3The S is added if spin effects are accounted for, and NR is added when the waveforms are calibrated
against NR.
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millions of template waveforms for the different parameter sets are required. One solution
to this is the introduction of reduced-order models in the frequency domain [90, 99, 102].
Another alternative is to use phenomenological waveforms, designed to be faster than
EOB waveforms while being at least as accurate. The philosophy for these waveforms
is to model with simple fit functions the frequency-domain behavior of GWs. The
parameters are then tuned to match the EOB and NR waveforms.
For example, we can focus on the IMRPhenomD waveform [103, 104] valid for an

aligned-spin BBH merger and from which other phenomenological waveforms can be
derived. For its dominant effect, the GW waveform depends on two mass parameters,
the total mass M = m1 +m2 and the asymmetric mass ratio η = m1m2/(m1 +m2)2. In
addition, one needs to describe the spin amplitude evolution, which is done through an
effective spin, depending on the individual component spins and η [103, 104].
It can be shown that the GW can be decomposed as a function of spin-weighted

spherical harmonics [103–105]. Then, the dominant (2, 2) mode can take the generic
form

h̃22(f ; Θ) = A(f ; Θ)e−iΦ(f ;Θ) , (3.5)

where Θ represents the binary parameters. So, we seek to describe the phase Φ and the
amplitude A using fitted ansatzes. Therefore, the waveform is split into three regions:
the inspiral, where the signal is well represented with a hybridized EOB model4, an
intermediate region linking the inspiral and the final region – the merger and ring-down
–. The two last parts are modeled using NR waveforms. We construct a fitting function
for the phase and amplitude evolution for each region.

For the inspiral, the model is well approximated with the PN formalism. Therefore,
it is modeled based on the TaylorF2 waveform described in Sec. 3.1, complemented with
additional terms to correct for deviations from the EOB model (and the NR models for
the late inspiral). The description of the phase is

Φins = ΦF2 + 1
η

(
σ0 + σ1f + σ2f

4
3 + 3

5σ3f
5
3 + 1

2σ4f
2
)
, (3.6)

where the σj are fitting parameters and ΦF2 is the phase for TaylorF2 [70].
For the amplitude in the inspiral and the other regions, one factors out the amplitude

of the dominant PN contribution ∝ f−7/6. This leads to the normalization constant

A0 =
√

2η
3π 1

3
f−

7
6 . (3.7)

Using this, the inspiral amplitude is

Ains = APN + A0

3∑
j=1

ρjf
6+j

3 , (3.8)

4This means that the EOB model has been complemented with NR waveforms in the late inspiral.
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where APN is the amplitude in the PN expansion, and ρj are the fitting parameters to
account for effects not included in the PN formalism.

For the two remaining regions, rather than fitting directly the phase, one constructs
the ansatz for its derivative and then integrates the model. This is a way to remove
ambiguity on the reference phase and changes the time shift to a simple constant [103].

For the merger and ring-down, the characteristic feature in the phase’s derivative
is a dip. Hence, the value decreases with frequency before increasing again afterward.
Therefore, in addition to a polynomial expansion, one gets a damping term which will
depend on the ring-down frequency of the final object fRD and its damping frequency
fdamp, leading to the phenomenological function

η
∂ΦMRD

∂f
= α1 + α2f

−2 + α3
α4fdamp

f 2
damp + (f − α5fRD)2 . (3.9)

Integrating this leads to the phase for the last region of the waveform

ηΦMRD = α0 + α1f
−1 + 4

3α3f
3
4 + α4 + arctan

(
f − α5fRD

fdamp

)
, (3.10)

where α0 is a constant of integration. This parameter and α1 (representing a time-shift
in Eq. (3.9)) are determined when imposing smooth transitions with the other regions.

The amplitude is represented by a mixture of a Lorentzian and a decreasing exponential:

AMRD = A0γ1
γ3fdamp

(f − fRD)2 + (γ3fdamp)2 e
− γ2(f−fRD)

γ3fdamp . (3.11)

If one only considers the Lorentzian component in Eq. (3.11), the peak amplitude
happens for fRD, which is not matching the observations in NR waveforms. Using
Eq. (3.11), one finds the peak frequency to be

fpeak =
∣∣∣∣∣fRD + fdampγ3

γ2

(√
1− γ2

2 − 1
)∣∣∣∣∣ . (3.12)

The presence of the ring-down and damping frequencies in Eqs. (3.10), (3.11), and (3.12)
is not so surprising since we expect the final object to having repercussions on the
behavior of the frequency evolution in the latest stages of the merger.

The transition region, linking the two regions described above, has a dominant
phase derivative evolution going as f−1. It is corrected by a term in f−4 accounting for
the observed deviations from the dominant behavior. So,

η
∂Φint

∂f
= β1 + β2f

−1 + β3f
−4 . (3.13)
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Integrating this yields the expression for the phase in the intermediate region

ηΦint = β0 + β1f + β2 ln(f)− β3

3 f
−3 , (3.14)

where β0 is a constant of integration and β1 is a time-shift term. Their values are fixed
through the smooth matching condition between the different regions.

Since smoothly linking the first and last regions’ amplitude is not valid in all generality,
one represents the amplitude in this region as a fourth-order polynomial where the
coefficients are fixed by requiring matching conditions with the inspiral and merger
regions:

Aint = A0
(
δ0 + δ1f + δ2f

2 + δ3f
3 + δ4f

4
)
. (3.15)

Therefore, the δj coefficients are solutions to the system of equations

Aint(f1) = Ains(f1) (3.16)
Aint(f2) = ANR(f2) (3.17)

Aint(fpeak) = AMRD(fpeak) (3.18)
dAint

df (f1) = dAins

df (f1) (3.19)

dAint

df (fpeak) = dAMRD

df (fpeak) , (3.20)

where Mf1 = 0.014, fpeak is defined in Eq. (3.12), and f2 = 0.5(f1 + f2), and ANR(f2) is
the amplitude of the NR waveform at f2.

Accounting for the parameters fixed through matching conditions, we have 17 phe-
nomenological parameters needing to be mapped to the physical ones. This can be done
using a polynomial function of the asymmetric mass and effective spin – see [104] for
the details.

Once the different regions are obtained, they are “stitched” together using two different
types of window functions:

Ξf0(f) ≡ Ξ(f − f0) =

−1 if f < f0

1 if f ≥ f0
(3.21)

and
Ξ±f0 = 1

2
(
1± Ξ(f − f0)

)
. (3.22)

The final waveform is then

h̃22(f) = AIMRPD(f)e−iΦIMRPD(f) , (3.23)
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with

ΦIMRPD(f) = Φins(f)Ξ−f1(f) + Ξ+
f1(f)Φint(f)Ξ−f2 + Ξ+

f2(f)ΦMRD(f) , (3.24)

where the phase parameters for the different regions are given by Eqs. (3.6), (3.14)
and (3.11), Mf1 = 0.018, and f2 = (1/2)fRD, and

AIMRPD(f) = AinsΞ−f1(f) + Ξ+
f1(f)Aint(f)Ξ−f2 + Ξ+

f2(f)AMRD(f) , (3.25)

where the amplitude terms are given in Eqs. (3.8), (3.15) and (3.11), and the frequencies
are such that Mf1 = 0.014 and f2 = fpeak.

With this, IMRPhenomD [103, 104] is a frequency-domain waveform for non-precessing
BBHs that is rapid to compute. Conversely, the waveform is calibrated to be accurate,
with accuracies similar to the EOB waveforms in its inspiral, and close to NR in the
other regions. However, it seems to lack some physics due to its aligned spin assumption.
Nevertheless, it is an important step towards fast and accurate waveform models as
one can transform non-precessing waveforms into precessing ones by “twisting up” the
first. In essence, this is done by applying a set of time-dependent rotation angles
(β(t), γ(t), ε(t)) such that [106, 107]

hprecession
2m = e−imε(t)

2∑
m′=−2

eim
′γ(t)d2

mm′

(
β(t)

)
hmm′(t) , (3.26)

where hmm′(t) are the non-precessing dominant mode (described byIMRPhenomD, for
example) d2

mm′ are Wigner d-matrices [108, 109]. Different methods for computing the
angles exist. Applying the one from Ref. [107] converts IMRPhenomD to IMRPhe-
nomPv2.

For BNS waveforms, one also needs to account for the tidal deformability of the objects
as the NSs get deformed through the gravitational interaction, leaving an imprint in
the GW signal. It is possible to add these matter effects into the phenomenological
waveforms by assuming a decoupling between the phasing effect due to the tidal deforma-
bility and the other effects determining the CBC’s phase evolution [110]. Following the
principles defined above, one can define a fitting formula for the phase effect related to
tidal deformability and fit it to numerical BNS waveforms. This leads to the IMRPhe-
nomD_NRTidal waveform [110], where the precession and self-spin effects are neglected,
and the IMRPhenomPv2_NRTidal waveform [111], where the spin dynamics and the
tidal deformability are included.
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Figure 3.2: Representation of the absolute value of the spin-weighted spherical harmonic as a
function of the inclination angles. The black and red dashed lines represent the inclinations for
GW190412 [41] and GW190814 [44], respectively. This explains why these events have visible
HOMs. Figure adapted from [114].

3.5 Higher-Order Modes in Gravitational Waves

Up to now, our discussion has focused on the dominant mode of the spherical harmonic
decomposition. However, when the systems are made of dissimilar masses and/or have a
significant inclination, other modes – called higher-order modes (HOMs) – are important.
Fig. 3.2 gives a representation of the strength of some sub-dominant modes depending
on the binary’s inclination. Also, recall from Chapter 1 that there are now already
two binaries with confirmed detection of such higher-harmonics: GW190412 [41] and
GW190814 [44]. In addition, observing such modes can lead to additional tests of
GR [112–114] and a better identification of strongly-lensed GWs [115–117].

The three approaches detailed in the previous sections can deal with HOMs. As was
the case above, the phenomenological models rely on the EOB models, which themselves
depend on the PN expansions. HOMs effects can also be accounted for in addition to
precession and matter effects explained in Sec. 3.4.
First, the waveform is expressed in terms of spin-weighted spherical harmonics [105]

h(f ; Θ, θ, φ) =
+∞∑
l=2

l∑
m=−l

hlm(f ; Θ)−2Yl,m(θ, φ) , (3.27)

where Θ represents the binary’s intrinsic parameters, and (θ, φ) represents the orientation
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with respect to the observer. The different modes of the GW are

hlm = 2Mη

DL

x2

√
16π
5 ĥlmei

mΨ , (3.28)

where the values of ĥlm for a precessing BBH can be found in Refs. [105, 118].

Using the SPA introduced in Sec. 3.1 adapted for a generic precessing BBH [105], one
can re-write the hlm from Eq. (3.28) in the Fourier domain as [118]

h̃lm(f) = πM2

DL

√
2η
3 V

−7
2

m e−i(mΨSPA(Vm)+π/4)Ĥlm(Vm) , (3.29)

where ΨSPA is the phase found under the SPA approximation (and can also account for
spin effects, see Refs. [105, 118] for example), the Ĥlm(Vm) have been computed up to
l = 6 [118], and Vm = (2πMfk/k)1/3, with fk = kωorb/(2π).

One can then use the same resummation methods as those described in Sec. 3.3
for the PN expressions, leading to an EOB description accounting for precession and
HOMs [119]. An example EOB waveform accounting for those effects is the SEOB-
NRv4PHM waveform [119].

Once the EOB waveform is designed, one can also make a phenomenological waveform
for non-precessing (IMRPhenomHM [120]) or precessing (IMRPhenomXPHM [121])
BBH with HOMs. The procedure followed is the same as in Sec. 3.4, where the inspiral
part is calibrated on the hybridized EOB waveforms and the rest using NR waveforms
(now also upgraded to contain the full HOM content).

3.6 Overview of the different models

In table 3.1, we recap the different waveform models presented in this chapter, comparing
them in terms of speed and precision, and give some example cases where their use
is advantageous. Additionally, the different waveform families are also important the
one for the other as one family is sometimes used to build to other. For example,
NR waveforms are used to calibrate EOB waveforms and Phenom waveforms. The
PN-approximation used in the Taylor family is crucial to develop the inspiral part of the
Phenom waveform.
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Waveform family Main ingredients Speed and accuracy Example use case
Taylor Based on the Fast, limited accuracy, Analysis of long inspirals

PN-formalism and limited to the inspiral
GR waveforms Numerical solutions The most precise, Study detailed

to the EFEs very slow with only phenomenology,
a few waveforms available e.g. interaction of a

BNS merger and
surrounding matter

NR surrogates Interpolation between Faster than NR waveforms, Do more accurate
NR waveforms limited parameter space, parameter estimation to

slow compared to other study specific events
waveforms but more
accurate

EOB waveforms Based on the GR Faster than NR surrogates Verify for waveform
EOB formalism but less accurate. systematic in parameter

Slower than other estimation and vanilla
waveforms event analysis

Phenomenological Obtained by fitting Faster than EOB waveforms Generally used to
waveforms an analytical ansatz with comparable precision perform parameter

to NR waveforms estimation

Table 3.1: Recap of the different waveform families described in Chapter 3 with a comparison
of their speed and precision as well as a use case.



4
Gravitational-Wave Data and its

Analysis
In Chapter 1, we have briefly explained some of the challenges encountered in developing
detectors for GW detection. Due to the small amplitude of the signal, the interferometers
require very high sensitivity. Therefore, they are subject to many noise sources. In this
chapter, we detail how one can extract a faint signal and its characteristics from such
large noise backgrounds.

4.1 The Noise and its Challenges

During the discussion about the development of the detectors and the significant issues
faced, we mentioned that one of the main bottlenecks for getting the required sensitivity
for detection is the noise, such as the seismic noise and the shot noise on the mirrors [24],
for example. Many studies and techniques are still ongoing to better understand and
eliminate the noise sources [122]. The noise reduction was key to the first GW detection,
and its suppression is crucial to improve GW astronomy [31]. However, noise is a part
of the equation, and one has to deal with it in the analysis framework.
When a GW enters a detector’s sensitive band, the recorded data d(t) is

d(t) = n(t) + h(t) , (4.1)

where n(t) represents the noise component, and h(t) is the GW signal, often described
with waveforms as presented in Chapter 3. From this chapter, we have seen we have
relatively good models for GWs. However, we also need to model the noise if we want to
extract the signal.

Typically, one represents the noise as stationary and Gaussian. Therefore, its charac-
teristics do not change over extended periods, and it has an average value of zero. In
the frequency domain, these assumptions entail

〈ñ∗(f)ñ(f ′)〉avg = Sn(f)
2 δ(f − f ′) , (4.2)

where the tilde means the Fourier transform, 〈.〉avg represents the ensemble average, and
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Sn(f) is called the power spectral density (PSD) and represents the noise content of the
detector around a given frequency. In practice, the noise characteristics are computed
over a finite duration T , and the average becomes a time average:

〈|ñ(f)|2〉T = Sn(f)
2T . (4.3)

In the Fourier space, a frequency bin ∆f = 1/T . Therefore, Eq. (4.3) shows Sn(f)/2 is
the variance of the noise in a given frequency bin.
Fig. 4.1, left panel, represents the average PSD of the LIGO and Virgo detectors

during the O3 observation run. The peaks in the curve are typically due to noise
artifacts in the instrumentation and can limit the sensitivity. As a rule of thumb, when
the strain of the signal is above these curves, it can be detected, and we can extract
information from it. Assuming the noise is Gaussian and stationary, we can design a
filter to find signals in the data. In reality, the noise can also have short-lived variations,
called glitches, where the noise curve is modified for a variable period of time [123–126].
They need to be mitigated to avoid biases in the events’ characterization [126]. For
example, GW170817 suffered from a glitch during its inspiral in the LIGO-Livingston
detector (see the right panel of Fig. 4.1). The part of the data containing the glitch was
removed before analyzing the data [37]. Finally, we can also mention another source of
uncertainty: the possible presence of missed or undetectable GW signals.
Even if we know the noise is not entirely stationary and Gaussian, searches and

analysis methods are designed for such a noise. This leads to sub-optimalities and slight
biases in the recovered information. Still, the noise behaves well enough to permit the
analyses under these assumptions.

4.1.1 Extracting a Gravitational-Wave Signal from Noise

In Eq. (4.1), |h(t)| � |n(t)|, requiring an adapted method to extract the signal from the
noise. This method is called matched filtering, and relies on theWiener-Khinchin theorem,
linking the auto-correlation function of a stationary process to its power spectrum [127].
If K(t) is an unspecified filter applied to the data, we can define

d̂ =
∫ +∞

−∞
dt d(t)K(t) . (4.4)

We can use Eq. (4.4) to define a quantity comparing the noise-only and the noise + GW
cases. It is called the signal-to-noise ratio (SNR, written ρ) and is the ratio between d̂’s
expected value when a GW is present in the data (S) and d̂’s root-mean-square value
when there is only noise (N).
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Figure 4.1: Left: The mean PSD for the LIGO and Virgo detectors during the third observation
run [40]. The peaks are due to instrumental noises. Right: The time-frequency map for the
GW170817 signal in LIGO-Livingston with the glitch present in the inspiral, and the glitch’s
strain [37]. The part of the data containing the glitch had to be removed before analyzing the
data.

When a signal is present in the data

S = d̂

∣∣∣∣∣
d(t)=n(t)+h(t)

=
∫ +∞

−∞
dt 〈n(t) + h(t)〉avgK(t)

=
∫ +∞

−∞
dt h(t)K(t) =

∫ +∞

−∞
df h̃(f)K̃∗(f) , (4.5)

where one should recall 〈n(t)〉avg = 0 by the noise properties.
On the other hand, when only noise is present in the data

N2 = 〈d̂2〉 − 〈d̂〉2 =
∫ +∞

−∞

∫ +∞

−∞
dtdt′K(t)K(t′)〈n(t)n(t′)〉

=
∫ +∞

−∞
df Sn(f)

2 |K(f)|2 , (4.6)

where the square root of this expression is the denominator of the SNR.
Defining the noise weighted inner product

〈p|q〉 = R
(

2
∫ +∞

−∞
df p̃(f)q̃∗(f)

Sn(f)

)
, (4.7)



46 4. Gravitational-Wave Data and its Analysis

the SNR is
ρ = 〈k|h〉√

〈k|k〉
, (4.8)

where
k̃(f) = K(f)Sn(f)

2 . (4.9)

By definition, the presence of a signal in the data is the most obvious when the SNR is
maximized. From Eqs. (4.8) and (4.9), we see that the maximum value is reached when

k̃(f) ∝ h̃(f)
Sn(f) . (4.10)

The filter with this property is called the Wiener filter, and it leads to the optimal SNR

ρopt =
√
〈h|h〉 . (4.11)

It is the highest value of the SNR one can get, and is obtained when computing the
inner product of the signal with itself.
The SNR is a way to find a signal in the data. For example, we can say that for a

given noise, the average SNR value is X and that we are confident of the presence of a
GW in the signal if it leads to an SNR Y � X.

For GW data analysis, the GW observed for each detector is dependent on the detector
location and the sky location through the beam-pattern functions (2.26). For a given
GW in the sky frame, the observed wave in the different detectors is different. So, we
can compute the SNR for each of them by taking the inner product of the GW in the
specific detector frame with the data for the said interferometer. The significance of the
GW signal in the detector network is then expressed using the network SNR [128]:

ρnet =

√√√√√Ndet∑
j=1

ρ2
j , (4.12)

where Ndet is the number of detectors, and ρj is the SNR for detector j.

4.1.2 Wiener Filters for Gravitational-Wave Searches

In Eqs. (4.8) and (4.10), the optimal filter is dependent on the signal itself, which can
appear problematic. A priori, when searching for a GW, one does not know the signal
in advance. To circumvent this, matched filtering is applied using a template bank: a
collection of model waveforms placed to have a minimal difference between them such
that we should not miss too many signals [129].
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Figure 4.2: Template bank used during the O2 observation run [129] for the GstLAL
pipeline [130, 131] represented in the component mass plane. Blue is the BBH systems, red is
the NSBH systems, and green is the BNS ones. Smaller masses are populated more densely,
showing that a given absolute change in intrinsic parameters makes for a bigger loss in SNR
when the masses are small.

Typically, one generates BBH, BNS, and NSBH templates using some waveform. The
intrinsic parameter space is covered such that we “do not lose too much signal”. To
quantify the similarity between waveforms, one defines the match

M(h1, h2) = maxφ

 〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

 , (4.13)

where 〈.|.〉 is the weighted inner product (4.7), and h1, h2 are two waveforms we want
to compare. If h1 = h2, the match is one, and it decreases as the waveforms become
more dissimilar. The match translates the percentage in SNR kept from one waveform
to the other. The templates are placed in the bank such that the match between one
template and its neighbors is not lower than a given value, for example, 0.97 in [129]
used for the second observation run1. Fig. 4.2 gives a representation of the template
bank used for O2 [129] in the GstLAL GW search pipeline [130, 131]. An interesting
observation is that the bank is populated more densely for lower mass systems. One
can understand this as a manifestation of a bigger difference between two signals for a
given absolute parameter variation, which occurs more easily for longer waveforms, i.e.
at lower masses. This also impacts the parameter estimation process since it represents
our ability to distinguish between two neighboring events.
Once the bank is made, one can take time windows in the data and apply matched

1To be precise, this is the coverage required for online searches, hence performed during data taking.
For offline searches, done after the observation run is completed and one has more time to do the
analysis, the template bank is enhanced with more waveforms [129].
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filtering for each waveform in the pool and see if some present a peak in SNR. However,
GW detector noise is not Gaussian nor stationary, and extra steps are needed to ensure
the signal’s origin. These and the waveforms used in the bank are different from one
pipeline to the other. In addition to GstLAL [130, 131], there is also PyCBC [132–137],
and MBTA [138, 139]2.
As an example, we can see how GstLAL identifies a candidate [40, 130, 131]. First,

it does match filtering for each template in each detector. A candidate event is found if
it has an SNR higher than four in each online detector for the same template. Then,
a background is made by sliding the data from one detector relative to the other and
evaluating the SNR. This breaks the coincidence between the detectors, ensuring that
the evaluated SNR and triggers are not due to a genuine GW event. A likelihood is
then built based on the network matched-filter SNR, the background-informed vetoes,
the measured phase and time differences between the detectors, and information about
short non-Gaussian noise artifacts [144]. One then classifies the triggers by decreasing
values of likelihood ratio which compares the probabilities of the trigger originating from
a GW event and the trigger being due to noise, leading to a false-alarm rate (FAR)
representing the time needed for noise-only data to produce a trigger with the same
significance. Additionally, one also computes the pastro [145, 146] – introduced in the
second half of the third observing run [40] – giving the probability that the event has an
astrophysical origin. If the FAR is low enough, and pastro > 0.5, the event is analyzed
further. The same procedure is followed by the other pipelines, except they use different
ways to classify the triggers and ensure their origin (see Appendix D in [40] for a brief
overview of the different methods).

4.2 Bayesian Statistics, the Key to Data Analysis

The previous section shows how one finds a GW signal in the data. However, it only gives
access to the template(s) matching the data, leading to point-approximate values for the
GW parameters. Typically, after the signal is identified, it is further analyzed to grasp
its characteristics better. This step is called parameter estimation. In addition, when
checking whether the GW has particular characteristics (for example, deviations from
GR, lensing, . . . ), one needs to compare the result of the analysis under two hypotheses
(for example, GR versus non-GR, lensed or unlensed, . . . ). The key to all these concerns
is Bayesian statistics.

2Note that there are also search pipelines not based on template banks. For example, SPIIR is
equivalent to matched filtering but uses infinite response filters to model the signals [140, 141], and
cWB does not use a model and looks for coherent power excess in the different detectors [142, 143].
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4.2.1 Bayes’ Theorem

Most of the concepts in the Bayesian framework result from two fundamental rules:

• The product rule: P (A,B) = P (A|B)P (B), where P (A,B) is the probability to
have A and B, P (A|B) is the probability to have A given B, and P (B) is the
probability to have B ;

• The complement rule: P (A) + P (¬A) = 1, where P (¬A) is the probability of not
having A.

In particular, using the product rule, one can find Bayes’ theorem:

P (A|B) = P (B|A)P (A)
P (B) , (4.14)

which is fundamental for data analysis. However, in that context, one often works under
a given hypothesis, changing the expression to

P (A|B,H) = P (B|A,H)P (A|H)
P (B|H) , (4.15)

where P (B|A,H) is the probability of B being true given A, under the hypothesis H.
Each term in the right-hand side of Eq. (4.15) has a name. P (B|A,H) is called the
likelihood, and it is typically a computable function. P (A|H) is the prior on A and
represents the belief one has on A before running the experiment. Finally, P (B|H) is
the evidence, and it is a normalization constant obtained by integrating the numerator
over all values of A.

It is useful to specify Bayes’ theorem for some specific scenarios related to data analysis.
First, one often wants to assess the probability of being under a certain hypothesis H
for the observed data d. For example, in GW data analysis, given data are we observing
a GW (HGW)? For an arbitrary hypothesis H one has

P (H|d) = P (d|H)P (H)
P (d) , (4.16)

It is usually easier to determine the probability of having the observed data under a
certain hypothesis (likelihood) than the probability of having the hypothesis given the
data. P (H) represents the prior probability to be under the hypothesis H.
We see that using Bayes’ theorem somewhat resembles a process of updating what

one believes. First, one thinks there is a certain chance of being in a given situation
(prior on the hypothesis). Then, one runs an experiment to collect data and evaluates
the likelihood. Based on the likelihood and the evidence, one updates one’s belief to be
in the scenario H accounting for the data.
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Often, one analyses the data using a model including parameters. In such a case, one
is interested in having the value of the model’s parameters θ given the data and the
hypothesis:

P (θ|d,H) = P (d|θ,H)P (θ|H)
P (d|H) , (4.17)

which is the expression one evaluates when determining the values of the parameters
describing a GW event. P (θ|d,H) is a distribution for the model parameters θ when
accounting for the data and the hypothesis, and is called the posterior.

For GW data analysis, the likelihood – linking the data, the hypothesis, and the model
parameters – in the frequency domain is

L = P (d|θ,H) ∝ exp
[
− 1

2〈d− h(θ)|d− h(θ)〉
]
, (4.18)

where 〈.|.〉 is the weighted inner product (4.7), and the expression follows from the
assumption that the noise n is stationary and Gaussian, and d = n + h. For a given
waveform model and set of binary parameters, h(θ) can be evaluated, and one can
compute the likelihood, making it possible to find the posterior distributions. In Sec. 3.4,
we mentioned that phenomenological models are introduced to be faster. Eq. (4.18)
shows why it is needed: we need to evaluate the likelihood by generating the waveform
and subtracting it from the data. Moreover, it needs to be evaluated numerous times to
explore the parameter space, making the waveform generation a major bottleneck when
doing parameter estimation.

4.2.2 Summarizing the Posteriors

The posteriors obtained using Eq. (4.17) can be multi-dimensional. This is very hard
to visualize, and one is often interested in the probability density for one parameter
(or a sub-group of parameters). This is obtained by performing marginalization. If
θ = {θ1, θ2, . . . , θN}, the posterior for θ1 is

p(θ1|d,H) =
∫

dθ2 . . . dθN p(θ|d,H) . (4.19)

Fig. 4.3 represents an example of 2-D and 1-D posteriors in the form of a corner plot.
The top and bottom right panels represent the marginalized posteriors for the right
ascension and declination of a GW event. The bottom left panel is the joint posteriors,
where the different colors represent different confidence intervals, which are a way to
summarize information present in the data.
For a given posterior, one can compute summary information that translates some
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Figure 4.3: Representation of the right ascension (RA) and declination (DEC) of an event as
a corner plot. The side panels show the marginalized distribution for the two parameters, while
the central one represents the joint posterior distribution. The different color levels represent
different confidence regions (0.68, 0.95, and 0.997) in the 2D posterior. In the 1D posteriors,
the dashed lines represent the limit of the 0.68 confidence interval. The values written above
the 1D posteriors are the median values for the parameters and their values at the edges of the
0.68 confidence interval.

characteristics of the distribution, for example, the mean value

θ̄ =
∫ θmax

θmin
dθ p(θ|d,H)θ . (4.20)

This quantity is not ideal in some cases. For example, if a posterior is bimodal, the
mean value can fall in a region where the samples are not present. Therefore, one often
prefers to use the median value θmed of the distribution, such that

∫ θmed

θmin
p(θ|d,H) = 0.5 . (4.21)

Hence, it is the value for which the probability that the parameter is less than (or greater
than) the median is 0.5. θmed is a value present in the data set. If the distribution is
unimodal and symmetric, the mean and the median are close.

In addition to a representative point of the distribution, it is often valuable to know
how (un)certain we are of the estimation. Intuitively, a wider posterior means that the
parameter is compatible with more values than a tighter one. It is often summarized
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using a confidence interval

γX =
∫ θhigh

θlow
dθp(θ|d,H) , (4.22)

where X represents the fraction of probability density included in the [θlow,θhigh] interval.
Often, one computes γ0.68 and γ0.95, the one- and two-sigma confidence interval. The
dashed lines in the 1D posteriors from Fig. 4.3 are the 1-sigma confidence interval.
They are obtained by computing the 0.16 and 0.84 percentiles of the 1-D posterior
distributions. For the 2D posterior, the darkest region is the 1-sigma confidence region,
the slightly lighter one is the 2-sigma confidence region, and the lightest region is the
3-sigma confidence region (corresponding to γ0.997). Another way of interpreting these
confidence intervals/regions is that the true value of θ has a probability of X of being
in γX .

4.2.3 Hypothesis Testing

Hypothesis testing – i.e. determining whether it is more likely to be in some scenario or
another, summarized by two hypotheses H1 and H2 – is a crucial aspect of data analysis.
For example, one compares the case where there is a GW in the data (HGW) or only
noise (HN). Another possibility, investigated in this thesis, is to compare the lensed
hypothesis (HL) (the observed GW is lensed) and the unlensed hypothesis (HU) (the
observed GW is not lensed). In all generality, one compares two hypotheses H1 and H2
using the odds ratio

OH1
H2 = p(H1|d)

p(H2|d) = p(d|H1)
p(d|H2)

p(H1)
p(H2) = BH1

H2P
H1
H2 . (4.23)

It is the ratio of the probabilities to be under a hypothesis given the data. The likelihood
ratio BH1

H2 is called the Bayes factor and is driven by the data. PH1
H2 is the prior odds and

is driven by beliefs before any experiment. When the Odds ratio is greater than one, H1
is favored. If it is smaller than one, then H2 is preferred. When relatively close to one,
we cannot choose a hypothesis over the other. The prior odds is often a tricky quantity
compared to the Bayes factor as it is not computed based on the data. Therefore, in
some cases, one sets PH1

H2 = 1 and evaluates the odds based on the Bayes factor.
From Eq. (4.23), it can appear that the favored model will always be the one that fits

our data the best. Therefore, if we use an arbitrarily large number of parameters, we
expect the model to be favored in the odds ratio. This is not accounting for Occam’s
razor (or principle of parsimony), saying that if an additional parameter does not improve
the theory’s accuracy, then it increases the probability that the theory is wrong. This is
a consequence of the increase in prior volume induced by the addition of new parameters
and is automatically accounted for in the Odds ratio. This principle also plays a role
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when searching for GW strong lensing, where lens models have more parameters than
unlensed ones but are not automatically favored.

4.2.4 Final Note on Bayesian Statistics

All the examples given in this section considered continuous variables and probabilities. In
data analysis, we are often confronted with finite samples with discrete parameter spaces.
The rules followed by the different quantities remain the same, and the expression defined
above stays valid. Typically, to go from the continuous to the discrete expression, it
suffices to replace the integrals with sums. So, for example, the confidence interval (4.22)
becomes

γdisc
X =

θhigh∑
θ=θlow

p(θ|d,H) , (4.24)

where θ is an ensemble of data points forming the discrete probability density. Similarly,
the evidence is computed by summing over the products between the likelihood and the
prior for the various points.

4.3 Nested Sampling

Data analysis generally seeks to know the preferred hypothesis and the values of the
parameters describing the model. Doing this via brute-force methods, like Monte-Carlo
integration is generally unsuccessful because the problems are complex and have high
dimensionalities. Therefore, other means are required to evaluate the evidence and get
the posterior samples. Nested sampling is such a method.

4.3.1 Obtaining the Evidence and Posteriors with Nested Sampling

Because the evidence often requires performing integration over a large parameter space
when expressed in terms of the parameters, nested sampling [147] proposes a change
in perspective. Instead of relying directly on the physical parameters, it uses the prior
mass

X(λ) =
∫
p(d|θ,H)>λ

dθ p(θ|H) (4.25)

to evaluate the likelihood. X(λ) is a continuous function decreasing with λ as a higher
λ value leads to integration over a smaller portion of the prior probability density. It
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Figure 4.4: Representation of the different steps followed by nested sampling when going from
one point to the other [147]. For each iteration, one retains the point of minimum likelihood,
draws a new one, and re-orders the samples before starting over. This enables us to explore
the parameter space. Figure adapted from [147].

is bounded between X(0) = 1 since the prior is normalized and X(λmax) = 0 for λmax
corresponding to the point of maximum likelihood.
Writing the likelihood L, we can invert Eq. (4.25) to get L(X) = L(X(λ)). In these

terms,
Z =

∫ 1

0
dXL(X) , (4.26)

which has the advantage of being a bounded integral. L(X) is monotonically increasing
function, with L = 0 for X = 1, and L = Lmax for X = Xmin.

To evaluate Eq. (4.26), one needs to have a set of points {(Li, Xi)}i=1,...,N , called the
live points. Drawing N samples {θ}i=1,...,N from the prior p(θ|H), we can compute the
corresponding likelihoods {Li}i=1,...,N and priors masses {Xi}i=1,...,N . One can then order
the samples by increasing likelihood values (hence by decreasing prior masses)

0 < L1 < L2 < · · · < LN ,

1 > X1 > X2 > · · · > XN > 0 .

This leads directly to a point with a minimum likelihood: (L1, X1), and gives us our first
dead point. We then draw a new sample from the prior with the condition that it has a
larger likelihood than the previous point. We can then order the samples again and have
the next dead point. Thus, we always keep a pool of N samples and each time select the
one with the lowest likelihood. This way, we go to increasing likelihood values for each
next sample. Fig. 4.4 represents this process, where each point has a smaller likelihood
surface than the previous one with a value that is necessarily higher than the one found
for the last dead point. So, we explore the likelihood space by going to smaller surfaces
with higher likelihoods.
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The re-ordering step in the algorithm leads to inefficiency. However, this step can be
bypassed by using a probabilistic estimation of the prior mass. Since the set of samples is
taken from the prior distribution, their likelihood is such that the sampling is equivalent
to taking the mass prior in a uniform distribution between 0 and 1. So, the probability
that the prior mass is drawn with a value below some X ′ is

P (X ′) =
∫ X′

0
dX = X ′ . (4.27)

If X̃ is the highest mass prior in the samples, we know X̃ < 1 and is associated with the
smallest likelihood L̃.

So, one can compute the probability that the surface of the highest mass prior is at a
certain value X∗. It is the probability that no sample in the pool has a value higher
than X∗:

P ({Xi} ≤ X∗) =
N∏
i=1

∫ X∗

0
dX = (X∗)N . (4.28)

Therefore, the probability that the sample with the highest prior mass has XN = X∗ is

P (XN = X∗) = ∂P ({Xi} ≤ X∗)
∂X∗

= NX∗N−1 . (4.29)

A priori, X∗ is an unknown bound, and we sample the prior masses from 0 < X < X̃.
For each X, one can define s = X/X̃, the shrinkage factor, which follows the same
probability distribution as the highest prior mass

p(s) = Ns(N−1) . (4.30)

So, once one has the highest prior mass X̃, it can be stored as a dead point, and the
next point to add in the pool is X = sX̃, where s is directly sampled from Eq. (4.30).
This leads to a series of prior masses

1, s1, s1s2, s1s2s3, . . . (4.31)

Since we have ensured that the next prior mass is smaller, the next point will also have
a higher likelihood. We still explore the parameter space by increasing likelihood values.
However, now, we do not need to re-order the prior mass for each sample anymore. One
can then directly obtain the evidence by integration over the likelihood and prior masses
of the retained points. For N dead points, we have

Z ≈
N∑
i=1

wiLi , (4.32)

where Li is the likelihood associated with each point, and wi is a measure of the distance
between the consecutive prior masses. For example, one can simply take wi = Xi−Xi+1
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with XN+1 = 0 or use the trapezoid integration: wi = (Xi−1−Xi+1)/2 with the boundary
conditions X0 = 2 − X1 and XN+1 = −XN . Finally, regardless of wi, Eq. (4.32) is a
relatively simple expression and can be updated easily for each new dead sample added
to the queue.
In principle, one can continue the sampling process as long as one wants. There

is no generic way to decide when the sampling is finished, and one needs to choose a
termination condition. The latter should be a balance between computation time and
precision on the final results. For example, one can decide to finish after a fixed number
of iterations. However, the precision obtained after a given number of steps depends on
the randomly taken shrinking factors. Therefore, this is not the best approach. Another
approach is to decide to stop the sampling procedure when a new step no longer brings
a significant fractional change in the evidence.

In nested sampling, in addition to the evidence, the posteriors are obtained “for free”.
The output of the procedure outlined above is a set of samples {θ}, their corresponding
likelihoods {L}, and prior masses {X}. From this, one can compute

Wi = L(θi)wi
Z

, (4.33)

the weight associated with each sample in the final posterior.
Since the nested sampling process has some probabilistic components, one can wonder

about the method’s precision. Based on Eq. (4.30), it is possible to compute the mean
and variance of the shrinking factors [147]:

〈s〉 = N

N + 1 , (4.34)

σ2
s = N

(N + 1)2(N + 2) . (4.35)

Since σ2
s ∼ 1/N2, the variability of the factor is decreased by having more final points,

hence sampling more before terminating. This reduces the variability and error in the
evidence. Its statistical behavior is further characterized by its moments

E[Zj]s =
∫

ds
(
Z(s)

)j
P (s) , (4.36)

where s represents a series of shrinkage factors. If there is less variability in the shrinkage
factor, then we should have more stable values in the integral, and therefore the first
and second moments of the evidence should be more stable. These quantities are easy
to compute as one can simply generate the series of shrinkage factors multiple times
with a random number generator starting in a different initial state.

Variability in the process can also be induced by the starting step where we sample
the prior. For a high-dimensionality problem, it may happen that the samples do
not properly cover the initial space. Therefore, if one initializes the nested sampling
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algorithm multiple times, different outcomes can be obtained. One way to circumvent
this effect is to run the algorithm several times in parallel and combine the resulting
evidence and samples.
Finally, the exact number of initial points, termination condition, and other free

parameters in nested sampling have to be chosen carefully depending on the problem
considered. They should account for the dimensionality and complexity of the problem.

4.3.2 Nested Sampling for Gravitational Waves

Typically, for GW data analysis, one tries to compare the evidence under HGW (there is
a GW in the data)

P (d|HGW) ∝
∫

dθL(θ)p(θ|HGW) , (4.37)

where L(θ) is the likelihood defined in Eq. (4.18), and under HN (there is only noise in
the data)

P (d|HN) ∝ exp
(
− 1

2〈d|d〉
)
, (4.38)

where 〈.|.〉 is the noise-weighted inner producted defined in Eq. (4.7). The ratio of the
two then gives the Bayes factor expression of how likely it is to have a GW in the data3.
Publicly available tools have been developed to perform Bayesian analysis for GWs.

The main frameworks used in the LVK collaboration are the C-based LALInference
package [148] and the python-based Bilby framework [149, 150]. In essence, the two
encode the GW (4.18) and noise (4.38) likelihoods and are wrapped around a sampler
which fixes most of the specifications required for the nested sampling process4. For
example, possible samplers are Dynesty [151], a dynamic nested sampling algorithm,
where the number of live points is allowed to vary over time enabling to sample the
posterior instead of having to make a prior transformation [152]. This sampler is the one
used jointly with Bilby in the LVK parameter estimation runs [40]. As another example,
we can mention the PyMultinest sampler [153], based on Multinest [154, 155]. The
latter is a variant of nested sampling where the iso-likelihood contours are approximated
by ellipsoids. More precisely, to also deal with multi-modalities, the samples are clustered
and each cluster is represented by an ellipsoid.

3We assume the prior odds is unity here.
4Generally, they fix the initialization, termination condition, and exact mapping between prior masses
and samples. Other parameters, such as the live points, are specified by the user.
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4.4 Markov Chain Monte Carlo

While nested sampling is widely used in GW data analysis, other methods exist. One
such method is the Markov chain Monte Carlo (MCMC) approach, where one evolves a
set of samples taken from the prior through a series of transition functions – determining
what the next sample is – to get to the final posterior. At each step, one gets a sample θ
which is added to the list of final samples, making a chain {θ0,θ1,θ2, . . . } representing
the posterior.
In particular, one often uses the Metropolis-Hasting algorithm [156, 157] to perform

MCMC. Its principle is illustrated in Fig. 4.5. For the algorithm to work, one needs to
choose a transition function determining the probability to go from a given sample to the
next. Then, one builds the acceptance ratio Ar, which is the ratio of prior probabilities
for the previous and new sample multiplied by the ratio of values for the proposal
distribution when going from the previous to the new sample and vice-versa. If Ar > 1,
one adds the new sample to the chain. When Ar ≤ 1, one draws a random number R
between 0 and 1. If Ar > R, the new sample is added to the chain; else, we add the
old sample a second time in the chain. The process is repeated until we meet some
convergence criterion.

Guided this way, the chain explores the parameter space and, provided we sampled long
enough, provides samples corresponding to those one would have obtained by directly
sampling the posterior distribution. While simple, this method has some drawbacks, and
additional tricks need to be implemented. Some of the important techniques used are

• Thinning, where one removes some samples in the chain to remove the correlation
between successive samples [148] ;

• Burn-in, where one discards the samples obtained in the early stages. Indeed, since
one starts with samples randomly taken from the prior, they do not necessarily
represent the posterior and it takes several steps before the samples start being
representative of the final distribution [148] ;

• Parallel tempering, where one introduces parallel chains with different likelihood
temperature, Ti, modifying p(d|θ) → p(d|θ)1/Ti for the ith chain. This is a way
to better explore the parameter space – avoiding the algorithm to focus only
on one high-probability region when multiple exist – since the high-temperature
chains have a smoothed likelihood, making it more homogeneous on the parameter
space. Then, one swaps samples between the chains at a chosen rate. Eventually,
important samples move to the lower temperature chains. In the end, the complex
posteriors are well modeled by the chain with the lowest temperature [159] ;

• Thermodynamic integration, which enables one to compute the evidence when
doing MCMC. Indeed, all the above has focused on getting accurate posteriors.
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Figure 4.5: Illustration of the Metropolis-Hastings algorithm for a unidimensional problem.
We start from a uniform distribution and take an initial sample. Then, one explores the space
by applying the update process incorporating the proposal distribution depending on the data
y and a random number. The full circles are the points making it to the final chain, while the
empty ones are discarded when computing their acceptance. We see that such points usually
correspond to lower-density regions than the sample under consideration. In the end, the
selected samples in the chain represent well the posterior distribution. Illustration adapted
from [158].

However, to make a decision, one is also interested in the evidence. It is possible to
show that the evidence is a function of the inverse chain temperature introduced
in parallel tempering [160]. In this case, one can obtain the evidence by computing
the expected log-likelihood for all the chains and integrating over the inverse
temperature. In this case, the number of parallel chains influences the accuracy of
the evidence, meaning one needs to choose their number carefully [148].

As for nested sampling, there exist routines one can use to perform MCMC analyses
in the context of GW data analysis. Lalinference [148] and Bilby (called Bilby-
MCMC) [161] have MCMC capacities. The two code bases follow roughly the same
approach, implementing the concepts introduced above. In particular, they rely on
GW-specific proposals taking advantage of symmetries in the GW parameter estimation
problem (for details, see [148, 161]), making the proposals more efficient, leading to
faster convergence and a better parameter space coverage.





5
Deflection of Waves by Massive

Objects
When a massive object is present on the path traveled by a wave, it can deflect it, leading
to gravitational lensing1. This phenomenon is well-known for EM waves but can also
happen for GWs. Einstein predicted it as a consequence of GR [162] but deemed it not
observable because he considered lensing by stars. Later, this theory was put to the
test for the first time by Eddington and Dyson, using a solar eclipse to show that the
Sun’s gravitational field leads to a deflection of background stars [4]. In 1937, Zwicky
showed that one could have galaxies as lenses, leading to more common observations of
the phenomenon [163]. However, before observing lensing, technological advancements
were needed, and the observation of EM lensing became a reality in the 1970s [164].

Because its characteristics are useful to study different things, EM lensing has become
a standard tool in astronomy. For example, it is used to discover exoplanets [5, 6]; when
the planet passes in front of its host star, it will affect the observed light. Therefore,
one can find the planet’s mass and its distance to the host based on the observed
(de)magnification of the host star. Another application is searching for dark matter [7–9].
Because the lensing effects depend on the total mass of the lens, measuring the magnitude
of the time delay and magnification indicates the object’s total mass. Comparing the
inferred and visible masses, one can study the dark matter mass distribution. In addition,
if one thinks about MACHO dark matter types, these objects should also lead to lensing
effects. The frequency of lensing detections helps constrain the proportion of dark matter
present in the Universe. Also, it can be used to probe the cosmological parameters [10–
13]. In essence, by comparing the mass of the lens measured through the lens’ geometry
and the lens’ dynamics, one has a relation linking two measurable values depending
on the Hubble constant. So, putting the two equal enables one to compute its value.
Finally, another interesting example is the study of distant objects [14, 15]. Thanks to
its magnifying power, lensing allows observing objects that would otherwise be out of
reach for telescopes, leading to more detailed studies of more distant objects.
The applications mentioned above focus on EM lensing. However, in recent years,

GW lensing has been a growing research field, and many efforts are made to prepare
for the first detection. For GWs, the principle is the same as for light: the wave gets
deflected by a massive object present on its trajectory [165–170]. The exact effect on
the GW depends on the lens’ characteristics. For lenses with a typical size smaller than

1In this work, we will often simply call it lensing.
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Figure 5.1: Left: Representation of the effect of microlensing on a GW waveform. It leads
to frequency-dependent modulations. Figure taken from [191]. Right: Representation of the
strong lensing effect on GWs. It leads to multiple images. These are magnified, shifted in time,
and can undergo an overall phase shift. Here, the time delay is put to zero to see the phase
difference. Figure taken from [192].

the GW wavelength, one is in the wave-optics limit, and the waveform is distorted,
leading to frequency-dependent beating patterns [168, 171–173]. A representation of
this effect is given in the left panel of Fig. 5.1. These patterns depend directly on the
lens’ characteristics [174] and can therefore be used to study the objects present in the
Universe, such as IMBHs [171, 175–177] or dark matter [178]. On the other hand, for
larger lenses, we are in the geometric optics limit and one gets several images with the
same frequency evolution [167, 168]. These images can be magnified, delayed in time,
and undergo an overall phase shift [169, 170]. The magnification and time delay will
mostly depend on the relative position of the source and the lens, as well as the lens’
mass. For a given source-lens alignment, lower masses lead to superposed images and
one faces millilensing [179]. On the other hand, for more massive lenses, the images are
distinguishable. This is called strong lensing and is represented in the right panel of
Fig. 5.1. Typically, strong lensing can occur due to a galaxy or a galaxy cluster lens. In
the first case, the images can be separated from minutes to months [180, 181], while in
the second case, they can be separated up to years [182–186]. In this thesis, we focus
on strong lensing effects. The latter is predicted with an interesting rate in the coming
years, with an increasing chance of observation as the detectors get upgraded [180, 187].
Therefore, searches have been ongoing since 2019 [172, 188, 189], giving no confident
detection but interesting candidates [190] requiring extensive analyses to determine their
nature.
Since its observation is expected soon, it is of interest to know what benefits one

could have from observing strong lensing. Many scientific applications rely on the
virtually-extended detector network offered by the observation of multiple images. From
the observation of one image to the other, the Earth undergoes a certain rotation and
each image is seen from a different point of view. Combining the information obtained for
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Figure 5.2: Illustration of the virtual extension of the GW detector network due to the
detection of lensed images from the same event. In practice, the number of detectors for each
image can vary due to downtime, changing the total number of detectors.

each image, it is as if the event had been observed with a detector network made of the
sum of detectors having observed each image (see Fig. 5.2 for an illustration when two
images are detected). This leads to a more accurate sky location of the event [192–194].
Additionally, assuming the lensed binary is situated in a galaxy, the light emitted by the
latter should also be lensed, and one can cross-correlate the EM and GW data [193, 194].
Once we have an observation in the EM and GW channels, one can perform precision
cosmography [195–198], and test the speed of gravity [199, 200]. Even without an EM
counterpart identification, strong lensing offers useful insights, such as the possibility to
probe better the GW polarization content [201] and enhanced tests of GR in presence of
HOMs. [117].

Currently, one of the main issues is the confident detection of strongly-lensed GW
images. In principle, for a given set of detected BBHs, one analyzes all the possible pairs.
It rapidly grows with the number of detection, leading to about 105 pairs to analyze
when the LIGO and Virgo detectors reach their design sensitivity [180]. Therefore, the
analyses need to be rapid. In essence, one looks for events with compatible characteristics.
The probability of getting matches due to unlensed pairs increases as more BBHs are
present in the pool of events [187, 202, 203]. Therefore, the analysis methods need
also to be precise. Later in this work, GOLUM will be presented. This framework
is a strong-lensing analysis pipeline solving some of the aforementioned issues. An
extra way to decrease the risk of finding matches by chance is to constrain the lensing
parameters according to some lens model [181, 187, 203, 204]. This can be accounted for
in the search and data analysis processes, decreasing the FAR when the correct model is
used [203].

In this chapter, we show how one can derive GW lensing. We then show the different
lensing regimes and examples of lens models. Finally, we explain how one can search for
lensing in GW data.
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5.1 Gravitational-Wave Lensing

As presented in Sec. 2.2.1, one can see the GW as a perturbation on a background metric
η̃αβ. Since we are considering lensing, η̃αβ cannot be the usual Minkowski metric. So, the
metric is the one corresponding to space-time with a gravitational potential U(r)� 1
due to the lens:

η̃αβdxαdxβ = −(1 + 2U)dt2 + (1− 2U)dr2 , (5.1)

where the potential is assumed small because space-time is rigid, and one needs a very
massive object before getting any distortion.
The GW leads to a perturbation hαβ of the background metric, leading to the total

metric
gαβ = η̃αβ + hαβ . (5.2)

Similarly to Sec. 2.2.1, we place ourselves in the TT Lorentz Gauge. In addition, since
we are only feeling the potential of the object and there is no matter, the EFEs (2.8)
are [168]

2hαβ + 2R̃αβδγh
αδ = 0 , (5.3)

where R̃ is the Riemann tensor computed for the background metric (5.1).
Usually, the GW wavelength is much smaller than the radius of curvature. Therefore,

the second term in Eq. (5.3) can be neglected, and we focus on the equation

2hαβ = 0 . (5.4)

The same type of equation was found when looking for plane wave solutions in Sec. 2.2.2.
However, here, the d’Alembertian operator also contains information on the background
metric (5.1), leading to a different solution.
It is convenient to decompose the GW into a scalar and a tensor component, called

the eikonal approximation [205]
hαβ = χtαβ , (5.5)

where tαβ is the tensor polarization and χ is a scalar. tαβ changes with an amplitude
of the order of U(r). Since the potential is assumed to be small, the change in tensor
polarization is also small and can be neglected. Therefore, only the scalar component
undergoes a variation, and we get the equation [168]

∂α
(√
−η̃ η̃αβ∂βχ

)
= 0 . (5.6)

Using Eq. (5.1) to express η̃ and taking the Fourier transform to get in the frequency
domain, Eq. (5.6) becomes (

∇2 + ω2
)
χ̃(f) = 4ω2Uχ̃(f) , (5.7)
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Figure 5.3: Representation of the setup to derive the amplification factor for GW lensing.
Because of the lensing effect, the source appear displaced by a vector ~η. We assume a thin lens
with a straight propagation from the image to the lens plane. The GW crosses it at a position
defined by ~ξ compared to the lens. It gets deflected in the lens plane and then continues in a
straight line to the observer. The distance between the source and lens plane is DLS, between
the lens and the observer DL, and between the observer and the source DS. When accounting
for cosmology, these distances are the angular diameter distances.

where the tilde expresses the transformation to the frequency space and ω = 2πf . This
equation can be solved using the Kirchhoff integral theorem [164].
To describe the modification due to lensing, it is easier to define the amplification

factor

F (f) = χ̃L(f)
χ̃U(f) , (5.8)

where χ̃L and χ̃U are the lensed and unlensed GW frequency-domain scalar amplitudes.
χ̃U is obtained simply by putting U = 0 in Eq. (5.7).

We now place ourselves in the thin-lens approximation. The image appears displaced
relative to the source by a vector ~η, and the GW crosses the lens plane at a position ~ξ
compared to the lens. We assume the wave travels in a straight line between the planes
and gets instantaneously deflected in the lens plane. The distance between the source
and the observer, the source and the lens, and the lens and the observer are denoted
DS, DLS, and DL, respectively. Fig. 5.3 shows the situation under consideration. In this
case, one can show the amplification factor to be [164, 168]

F (f) = ξ2
0DS

DLDLS

f

i

∫
d2~x e2iπftd(~x,~y) , (5.9)

where ~x = ~ξ/ξ0, ~y = ~ηDL/DSξ0 is the source position, and td(~x, ~y) is the time delay to
go from source to observer due to lensing. ξ0 is a normalization constant. Finally, F (f)
is also normalized so that |F | = 1.
Because GWs can propagate through very long distances, cosmology needs to be

included. Therefore, we need to adapt two quantities in Eq. (5.9). First, the distances
need to be angular diameter distances. Second, we need to account for the frequency-
redshifting caused by the Universe’s expansion. Therefore, the amplification factor (5.9)
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becomes [205]

F (f) = ξ2
0DS

DLDLS

(1 + zL)f
i

∫
d2~x e2iπftd(~x,~y) , (5.10)

where DS, DL, DLS are now angular diameter distances, and zL is the lens redshift. The
arrival time td when going from ~η to the observer and passing through ~ξ is [164, 168]

td(~x, ~y) = ξ2
0DS

DLDLS
(1 + zL)

[
1
2 |~x− ~y|

2 − ψ(~x)− φm(~y)
]
, (5.11)

where the non-dimensional deflection potential ψ(~x) is found via

∇2
xψ(~x) = Σ

Σcr

, (5.12)

where ∇2
x is the Laplacian in the x-direction, Σ is the surface density, and

Σcr = DS/(4πDLSDL) is the critical mass density. φm(~y) is the phase of the mini-
mum time delay and can be chosen to set the minimum arrival time to zero. The exact
expressions for ψ(~x) and φm(~y) depend on the lens. A few lens models will be presented
in Sec. 5.2.

The amplification factor is constructed to link the lensed and unlensed waveforms. A
lensed waveform hL(f) is related to the original unlensed one hU(f) in the frequency
domain as

hL(f) = F (f)hU(f) , (5.13)

where F (f) can only be described if we know the time delay, hence ψ(~x) and φm(~y).
The possible differences in scales between the lens and the GW lead to distinct regimes
with different observable features, as we now discuss.

5.1.1 Geometric Optics Limit

When fGW � 1/td, we are in the geometrical optic limits. In this case, Eq. (5.11) can be
solved using the SPA described in Sec. 3.1. Only the stationary points of the time delay
are contributing in Eq. (5.10). This can lead to several images, each with a position ~xj
solution of [164, 168]

∂td(~x, ~y)
∂~x

= 0 . (5.14)

Then, the amplification factor is

F (f) =
∑
j

√√√√∣∣∣∣∣ 1
det(∂~y/∂~xj)

∣∣∣∣∣e(2iπftj
d
−iπnj) =

∑
j

√∣∣∣µj∣∣∣e(2iπftj
d
−iπnj) , (5.15)
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where µj is the magnification factor, translating the change in amplitude of the im-
age compared to the unlensed waveform, tjd is the time delay for the jth image, and
nj = {0, 0.5, 1} if ~xj corresponds to a minimum, a saddle point or a maximum of the
time delay, respectively. The magnification factor can be positive or negative and its
sign determines the so-called parity of the image. Images with a negative parity – i.e.
µ < 0 – are mirror-symmetric images of the source [164].

So, for the geometrical optics limit, lensing can lead to several images, and their
characteristics depend on the lens. If the time delay between the images is large enough,
one has distinct images, and one talks about strong lensing. If the images overlap, one
talks about millilensing.

In Eq. (5.15), one see a particular case arising when det(∂~y/∂~xj)→ 0, and µj →∞.
This is a non-physical result, meaning we get an infinite image magnification. The points
for which this condition is met form the critical curves in the image plane. For these
curves, one does not have an infinite magnification but a very large one. Therefore, the
images are spread over a large area, meaning they are no longer a (stationary) point,
and the approximation breaks down. By tracing the critical curves from the image to
the source plane, one can find the caustic curves. The shape of these curves depends
on the lens’ geometry. The position of the source relative to the caustic has a major
impact on the observed phenomenon. If the source is outside the curve, we generally see
only one image. On the other hand, when it is inside, the image properties change, and
we can see several of them with different properties [164], with, in general, a change of
±2 images from one side of the caustic to the other. The critical curves also divide the
images into different categories, with positive and negative parity. Depending on the
position compared to the critical curves, the image magnification can be positive – the
image has a positive parity – or negative – the image has a negative parity.

5.1.2 Wave Optics

When the geometrical optics limit does not apply, the full integral in Eq. (5.10) needs
to be solved. Typically, this leads to frequency-dependent beating patterns in the GW,
hence we get a deformation of the wave with only one image formed. This often is
referred to as microlensing. Another possibility is that we get wave optics effects in
one of the images formed by strong lensing. This can happen when one of the images
generated by a massive lens passes close to a smaller lens (e.g. a star in a galaxy) and
gets an additional microlensing effect [178, 191, 206].
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5.2 Lens Models

In the previous section, we showed the general effect of GW lensing on waveforms.
However, the amplification factor (5.10) and the time delay (5.11) depend on the lens.
In this section, we present several lens models. There exist many other lens models, and
the list here is adapted to present models used in this thesis.

5.2.1 Point Mass Lens

First, we view the lens as a point mass. It is a simplified model, giving a first intuition
on lensing. The lens’ surface density is Σ = MLδ

2(~xi), with ML the mass of the lens,
and we take ξ0 =

√
4MLDLDLS/DS as normalization constant, and the non-dimensional

deflection potential, found by solving Eq. (5.12), is ψ(~x) = ln(x). Under these conditions,
Eq. (5.10) can be solved analytically, yielding [207]

F (f) = exp
[
πw

4 + i
w

2
(

ln(w/2)− 2φm(y)
)]

Γ(1− iw/2) 1F1

(
iw

2 , 1; iwy
2

2

)
, (5.16)

where w = 8πMLzf , φm(y) = (xm − y)2/2 − ln(xm), xm = (y +
√
y2 + 4)/2,

MLz = (1 + z)ML is the redshifted lens mass, and 1F1 is the confluent hypergeometric
function. One already sees that the effect depends on two quantities: the redshifted
mass of the lens and the position of the source compared to the observer-lens axis.
In the geometric optics limit, the amplification factor simplifies to [168]

F (f) =
√
|µ+| − i

√
|µ−|e2πif∆td , (5.17)

with
µ± = 1

2 ±
y2 + 2

2y
√
y2 + 4

. (5.18)

The time delay between the two images is

∆td = 4MLz

[
4
√
y2 + 4
2 + ln

(
y +
√
y2 + 4√

y2 + 4− y

)]
. (5.19)

Here, ∆td ∝ MLz, and more massive lenses lead to longer time delays. In addition,
|µ±| → ∞ if y → 0, meaning that if the source is closer to the observer-lens axis, one
gets a larger magnification.
On the other hand, for the wave optics limit, one has to evaluate Eq. (5.16)

numerically for each frequency.



5.2. Lens Models 69

5.2.2 Singular Isothermal Sphere

While the point mass lens is informative, it is definitively not so realistic. A more
realistic model is that of a singular isothermal sphere (SIS) [168, 208], where the lens
is a sphere with a characteristic constant velocity dispersion v. So, the surface density
is Σ(~ξ) = v2/(2ξ). The normalization constant is taken as ξ0 = 4πv2DLDLS/DLS, and
from Eq. (5.12) it follows that the non-dimensional potential is ψ(~x) = x. Under these
conditions, the amplification factor takes the form [168]

F (f) = −iwe
iwy2

2

∫ ∞
0

dx x J0(wxy)e
iw

(
1
2x

2−x+φm(y)

)
, (5.20)

where J0 is the zeroth-order Bessel function, φm(y) = y + 1/2 and w = 8πMLzf . Here,
MLz = 4π2v4(1 + zL)DLDLS/DS is the mass inside what is called the Einstein Radius2.
For the wave optics limit, Eq. (5.20) has to be solved numerically. On the other

hand, for the geometric optics limit, the amplification factor is given by [168]

F (f) =


√
|µ+| − i

√
|µ−|e2iπd∆td if y ≤ 1

√
|µ+| if y ≥ 1 ,

(5.21)

where µ± = ±1 − (1/y) and ∆td = 8MLzy. So, we get multiple images only if y ≤ 1.
In this case, the time delay between the images is still proportional to the mass of the
lens as was the case for the point-mass lens model. If y ≥ 1, only one magnified image
appears.

5.2.3 Singular Isothermal Ellipsoid

Instead of describing a lens as a sphere, one can also use an ellipsoid with cylindrical
symmetry. It is a more realistic description when modeling a galaxy since its rotation
flattens the sphere one would see at rest. In this case, one needs to add a parameter to the
SIS model: the axis ratio q, leading to a singular isothermal ellipsoid (SIE) [168, 209, 210].
The surface density for this lens model is Σ(~ξ) = √qv2/2~ξ [209]. This brings a second
axis of symmetry to the problem, and we can have up to four images.
Unfortunately, this model is unsolvable analytically (both for the geometrical and

wave optics limit), and one has to deal with the amplification factor and the lensing
2The Einstein radius is a characteristic scale in lensing, corresponding to the radius of the ring
appearing when there is a perfect alignment between the source, lens, and observer [164].
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equation numerically. However, we can give a qualitative behavior depending on the
source alignment with respect to the observer-lens axis. When the source is on the outer
limit, only one image is formed and has a relatively small magnification. It also has a
positive parity. When the source gets closer to the caustic, a second image forms. This
image has a negative parity and is usually demagnified. Finally, once the image is inside
the caustic, two more images appear. One has a positive parity, and the other has a
negative one. The magnification is very high at first when we are close to the caustic
but decreases rapidly as the source gets closer to the central axis.

Finally, a still more complicated model, further breaking the symmetry of the problem,
can be obtained by adding shear to the model. In this case, the axisymmetry is
invalidated, and we typically get an odd pair of images. Such lens models require a
numerical lens-equation solver, such as Lenstronomy [211, 212], for example.

5.3 Searching for Strongly-Lensed Events in the Data

Once we know what lensing does to the GW, one can look for it in the data. Such
searches have been going on for some years in the LVK [172, 188, 189], with no confident
detection. In essence, it is a Bayesian inference problem, where one wants to determine
whether we are in the lensed (HL, the GW data is lensed) or in the unlensed (HU,
the GW data is unlensed) hypothesis, which can be assessed using the odds ratio (see
Eq. (4.23)). The likelihood depends on the lens scenario since the lensing effect is
different for different regimes.
Strong-lensing searches correspond to hypothesis testing (see Sec. 4.2.3 for an intro-

duction), and we can distinguish two cases: we detect one or multiple images. From
Eq. (5.15), one sees that the lensed and unlensed images are related via

hL(f ;θ,φ) =
√
|µ|hU(f ;θ)e2πiftd−iπn , (5.22)

where θ represents the usual BBH parameters and φ the lensed parameters, hence the
magnification, time delay, and Morse factor. However, generally, one has hU(f ;θ) ∝
1/DL, where DL is the luminosity distance. Therefore, there is a degeneracy between the
magnification and the luminosity distance. So, an image is observed with an apparent
luminosity distance

Dapp
L = DL√

|µ|
, (5.23)

where we use the absolute value of the magnification µ as it can be negative for images
with a negative parity. Moreover, the lensing time delay term is indistinguishable from
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the unlensed coalescence time tc. Therefore, we have an apparent time of coalescence

tapp
c = tc + td . (5.24)

Finally, while it can look like the additional phase due to the Morse factor nj can be
absorbed in the coalescence phase, it is not the case in all generality. Looking at a
waveform with HOMs (3.27), the phase of coalescence appears with different exponents
in different modes, avoiding the degeneracy with the coalescence phase. Therefore, in
principle, one could detect this effect due to lensing when observing a single image.
However, this effect is present only when one observes a so-called type II image (nj = 0.5).
For other values, the effect corresponds to no shift (for nj = 0, called type I), or a mirror
shift (nj = 1, called type III), and no distortion can be seen [170]. Fig. 5.4 shows a
comparison between a type I and a type II image. Shifting the unlensed waveform is not
helping to recover the correct signal, and additional, potentially detectable, deformations
are present. Mathematically, it can be understood as follows. First, one can re-express
the spherical harmonic decomposition (3.27) in the time domain as [213]:

h(t) =
∑
l≥2

∑
m≥0

Alm(t) cos
(
φlm(t) +mφc − χlm

)
, (5.25)

where Alm is an amplitude term depending on the binary’s intrinsic parameters, its sky
location (α, δ), the inclination ι and the polarization ψ, φc is the phase of coalescence,
and

χlm = tan−1
(
F×(α, δ, ψ)f×(ι)
F+(α, δ, ψ)f+(ι)

)
, (5.26)

with f×,+(ι) a function representing the dependence on the inclination for each polariza-
tion, and F×,+ are the detector’s antenna response (see Eq. (2.26)).

Combining the strong lensing effect (5.22) with Eq. (5.25), one sees that the waveform
for the different image types are3:

• hI = |µI|
∑
l≥2

∑
m≥0Alm(t) cos

(
φlm(t) +mφc − χlm

)
.

So, it corresponds to a GR waveform with an overall magnification.

• hII = |µII|
∑
l≥2

∑
m≥0Alm(t) cos

(
φlm(t) +mφc − χlm + π/2

)
.

Since the phase of coalescence appears with a different pre-factor for each
mode, it is not degenerate with the Morse factor. So, the latter leads to
deformations in the waveform and can be detected – see Fig. 5.4 for a
representation.

• hIII = |µIII|
∑
l≥2

∑
m≥0Alm(t) cos

(
φlm(t) +mφc − χlm + π

)
.

3While not written explicitly here, the time in waveforms correspond to the lensed time, hence
t = tU + δtL.
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The extra π shift here corresponds to a global sign flip of the wave. It
can be shown [214] that the complex waveform can be written h(f) ∼ A′(f)e2iψ.
Therefore, the global sign change can be mimicked by changing the polarization
angle as ψ → ψ + π/2, and single type III images cannot be identified.

Therefore, one can assess how likely it is for a given GW event to be a lensed type II
image as follows. Writing the strain

d(f) = n(f) + hH(f) , (5.27)

where n is the noise component and hH is a GW which can be unlensed (hH = hU) or
lensed (hH = hSL). Assuming the prior odds does not play an important role, we can
evaluate which hypothesis is the most likely through the Bayes factor

BSL
U = p(d|HSL)

p(d|HU) = ZSL

ZU
, (5.28)

where ZSL and ZU are the evidence under the lensed and unlensed hypotheses.
Under the unlensed hypothesis, the GW is described by its usual parameters θ

(h(f) = hU(f ;θ)) and the evidence is

ZU =
∫

dθp(d|θ,HU)p(θ|HU) , (5.29)

where we use the likelihood and prior as explained in Sec 4.2.1.
Under the strongly-lensed hypothesis, the waveform is described by

hSL(f) = h(f ;ϑ)e−iπn sign(f), where ϑ are the parameters describing the unlensed
waveform with the apparent luminosity distance and coalescence time, and n is the
Morse factor. Under these conditions, the evidence is

ZSL =
∫

dϑdn p(d|ϑ, n,HSL)p(ϑ, n, |HSL) . (5.30)

The Bayes factor (5.28) can then directly be computed by taking the ratio of Eqs. (5.29)
and (5.30). If ln

(
BSL

U

)
is significantly larger than zero, then the event is a type II strongly-

lensed image, leading to smoking-gun evidence for strong lensing. The main drawback of
this approach is that one needs very large HOMs to detect the effect, requiring particular
BBH to be lensed or very large SNRs [115, 116].
When multiple images are present, the hypothesis framework is slightly different

since one has to accommodate the different images. Here we outline how it works when
comparing two data streams, hence assuming we observe two potentially lensed images.
This can easily be adapted to more images. In this context, one observes two data
streams d1 and d2, each made of a GW and a noise component. So,

di = ni + hi(Ξi,H) , (5.31)
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Figure 5.4: Representation of type I and type II images for an event with large HOM
contributions. Shifting the type I image does not make for a waveform corresponding to a type
II image, meaning we cannot simply reproduce the type II image by fine-tuning the usual CBC
parameters. Therefore, it is a potentially observable effect.

where i = {1, 2}, and (Ξi,H) = (θi,HU) if we are in the unlensed hypothesis, and
(Ξi,H) = (θ,φi,HL) if we are int the lensed one. So, under the unlensed hypothesis,
the two images are independent and have different parameters, while for the lensed
hypothesis, we have the same BBH parameters but linked through the lensing parameters,
different for each image. One is then interested in the ratio of evidence

CL
U = p(d1, d2|HL)

p(d1, d2|HU) , (5.32)

usually called the coherence ratio in the lensing framework. One talks about a Bayes
factor when selection effects are accounted for [215]. We will talk more about it in
Part II of this thesis, where we show the development of strong-lensing searches.
First, for the unlensed hypothesis, the evidence

p(d1, d2|HU) =
∫

dθ1dθ2p(d1, d2|θ1,θ2,HU)p(θ1,θ2|HU)

=
∫

dθ1p(d1|θ1)p(θ1|HU)
∫

dθ2p(d2|θ2)p(θ2|HU)

= p(d1|HU)p(d2|HU) , (5.33)

where we used the fact that unlensed events are independent. In the end, the unlensed
evidence for two data streams d1 and d2 is the product of the individual evidence for
each data stream. If one has more than two images, the conclusion remains valid, and
the unlensed evidence is the product of the individual evidence under the unlensed
hypothesis.
Under the lensed hypothesis, one needs to account for the dependency between the
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images. Therefore, the evidence

p(d1, d2|HL) =
∫

dθdφ1dφ2 p(d1, d2|θ,φ1,φ2,HL)p(θ,φ1,φ2, |HL)

=
∫

dθdφ1dφ2 p(d1|θ,φ1,HL)p(d2|θ,φ2,HL)p(θ,φ1,φ2, |HL) , (5.34)

where θ represents the binary’s parameters – common for the two images – and φi the
lensing parameters for image i. Under this form, the analysis has to take in the two
data streams jointly to have the joint evidence for the lensed hypothesis [215, 216]. If
more than two images are formed, then one needs to add an integration over an extra
set of lensing parameters4.

Once Eqs. (5.33) and (5.34) have been evaluated, one can get the coherence ratio and
see whether the event is lensed or not. Evaluating the CL

U using the full joint expression
is computationally heavy. In this thesis, we will show how the likelihood can be recast as
a conditional likelihood to allow for both speed and precision [192]. Another approach
is the posterior overlap method [181]. Combining Eqs. (5.34) and (5.33), the coherence
ratio, considering only the parameters unaffected by lensing (ϑ), can be expressed
as [181]

CL
U =

∫
dϑ p(ϑ|d1)p(ϑ|d2)

p(ϑ) , (5.35)

which is an integral computing the agreement between the posteriors. Typically, posterior
overlap uses a sub-set of parameters and a kernel density estimator (KDE) to reconstruct
them before evaluating Eq. (5.35) [181]. This method is much faster than the joint
parameter estimation ones [215, 216] but it is also less precise since it does not account
for the full correlation of all the parameters. Moreover, it does not analyze the signals
jointly, making it unable to extract information on the lensing parameters. Nevertheless,
it can be used as a first filtering step when searching for strong lensing.

Including a lens model can help reduce the false-alarm risk related to strong lensing [181,
187, 203, 204]. Its inclusion in the coherence ratio is detailed later in this thesis. Often,
one simply complements the coherence ratio with the ratio of probabilities for the lensing
parameter under lensed and unlensed hypotheses

SL
U = p(φ|HL)

p(φ|HU) , (5.36)

where S changes depending on the lens model used, and φ can be a subset of or
all the lensing parameters. The statistic can be based on different lens models (see
Refs. [181, 187, 204] for example statistics based on different lens models and parameters).
Generally, to compute these probabilities, one makes an unlensed BBH population and

4In this case, the joint inference of the multiple images can become computationally expensive, and
practically intractable.
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Figure 5.5: Representation of the FAP for lensed pairs as a function of the total observation
time, with and without lens model. The inclusion of a model through a probability ratio
decreases the FAP. The effect is more important for a galaxy-lens model than for a galaxy
cluster lens because the overlap between the (apparent) lensing parameters for the lensed and
unlensed population is lower for galaxy lenses. Figure adapted from [187].

computes their apparent lensing parameters5. For the lensed distributions, one makes
a BBH and a lens population, assuming some merger rates and property distributions.
One sees how many events are lensed and what are the lensing parameters. Once there
are enough samples for the lensed and unlensed hypotheses, one can make a KDE
reconstruction (for example) of the parameters and use this as a probability density
function to evaluate Eq. (5.36). Accounting for this ratio in the detection statistic can
help decrease the FAP [187, 203]. Fig. 5.5 represents this effect. One sees the inclusion
of a model significantly reduces the FAP, especially for a galaxy lens model. The effect
is weaker when considering a galaxy-cluster lens model because galaxy-cluster lenses
lead to a larger diversity of time delays and magnifications. In particular, they often
have longer time delays. Therefore, there is more overlap between lensed and unlensed
probability distributions, and Eq. (5.36) is less effective [187].

5The observed relative magnification is the square root of the luminosity distance ratio, the time delay
is the difference in coalescence time, and the apparent Morse factor difference can be computed
through the difference in phase of coalescence.





6
Machine Learning Concepts

Machine learning (ML), in particular, deep learning (DL), has seen major developments
in the last few years. It is applied in a growing number of fields, thanks to its ability to
deal with high dimensional data, its flexibility, and its speed after training. Some major
successes for ML are its use in self-driving cars [217, 218], medical image analysis [219],
image cleaning for astrophysical surveys [220–222], and many others (e.g. [223–226]). In
particular, it is also more and more commonly used in GW data analysis; see Ref. [62]
for an overview.

ML is a computational technique of learning through examples. In particular, DL is a
sub-branch of ML where one uses multi-layered, non-linear structures – called neural
networks (NNs) – to go from data to an output. They lead to more freedom in fitting
the problem under consideration and better performances of the applied method. In
this thesis, we focus on supervised learning methods, meaning that the algorithm is
trained using labeled examples given by the user. Hence, there is a set of data with their
true value given to the algorithm. The latter then adjusts its configuration through a
learning process to improve its performance.
In this chapter, we describe the basics of supervised-learning ML algorithms as well

as some specific techniques related to inference problems.

6.1 The Building Blocks

Originally, NNs were thought of as a sort of numerical representation of the human
brain. Therefore, common terms are present between ML and neuroscience. The jargon
is detailed in this section. In practice, the idea behind a NN is to have an algorithm
capable of learning and adapting by seeing examples.

6.1.1 The fundamental Entity: the Neural Network

The main entity used in ML is a NN. It is a collection of neurons, making a multi-layered
and non-linear structure. A neuron takes several inputs, combines them in a weighted
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sum, and adds a bias. Mathematically,

n̂(~x) = b+
N∑
j=1

wjxj , (6.1)

where ~x = {x1, . . . , xN} is the input vector, {wj}j=1,...,N is the set of weights, and b is
the bias. The weights and bias form trainable parameters, adjusted through the training
process.
Generally, one also applies an activation function f to the neuron’s output

f(~x) = f(b+
N∑
j=1

wjxj) . (6.2)

The simple structure formed by a neuron and an activation function is called a perceptron,
first described by Rosenblatt in 1958 [227]. It can be seen as a primitive form of a NN
but is generally not complex enough to fulfill realistic tasks. NNs can also be seen as an
ensemble of perceptrons. Two examples of typical activation functions are:

• the ReLU (Rectified Linear Unit):

ReLU(x) =

x if x ≥ 0
0 else .

(6.3)

It weights the values based on their sign, and generally leads to a rapid convergence
for the network ;

• the GELU (Gaussian Error Linear Unit):

GELU(x) = x/(1− e−1.706x) . (6.4)

It focuses on the input’s value rather than only its sign. In addition, it does not
suffer from “dying neurons” like the ReLU function, where once the derivative is
set to zero, it remains zero for the rest of the process [228].

The activation functions are chosen by the user and should be adapted to the task at
hand.

A NN is then a collection of neurons linked through activation functions and grouped
as layers. For a given neuron in a given layer, its output passes through an activation
function before being used as one of the inputs for the neurons in the next layer. This
leads to more flexibility and higher representation capabilities when learning the problem.
The number of neurons, hence the number of weights and biases, can change from
one layer to the other. The collection of layers leads to a differentiable and non-linear
structure, generally without an analytical solution. Its weights and biases are adjusted
through a process called training.



6.1. The Building Blocks 79

Figure 6.1: Illustration of a simple neural network, a perceptron, and a neuron with the
link between them. In a neural network, the output of a neuron passes through an activation
function before being used as input for the neurons of the next layer. A neuron followed by an
activation function corresponds to a perceptron.

Typically, one distinguishes three layer types:
• the input layer : the set of neurons taking in the data. It can be raw data or a

representation of it ;

• hidden layers: the next layers after the input one, except for the last layer. They
represent different levels of abstraction, extracting different features of the data.
Their number varies from one network to the other ;

• the output layer : the final layer, whose output is the sought information. For
example, the class if we do classification, i.e. determining the class corresponding
to the data, or a value if we do regression, i.e. determining the value of one or
more parameters based on the data.

If the network has too few layers, it can be unable to model the situation, leading to
poor performance. On the other hand, if it is too large, it can overfit, reducing flexibility.
In this case, the NN learns the mapping from example to true value for the training data
but is unable to generalize to data outside of the learning examples. A representation of
a NN, a perceptron, and a neuron, as well as their interconnections, is given in Fig. 6.1.

6.1.2 Loss Functions, the Key to Training

To adjust the network’s performance, one requires a metric to assess how close the NN’s
outputs are to the true values in the training data. The loss function is a way to measure
this. It has to be adjusted to fit the task under consideration.



80 6. Machine Learning Concepts

A simple example of a loss function is the mean-square error (MSE)

MSE = 1
N

N∑
i=1

(Oi − Ti)2 , (6.5)

where Oi is the network’s output and Ti is the true value for the example i. This can be
used for simple regression problems but is often not suited for more realistic scenarios.
For classification tasks, one often uses the cross-entropy [229]. It is based on the

notion of information in probabilities and measures the difference between two proba-
bility distributions for given sets of events. The cross-entropy between two probability
distributions P and Q is

H(P,Q) = −
∑
x∈X

P (x) log(Q(x)) , (6.6)

where X is the set of samples for which the cross entropy is computed. When training a
NN, p(x) is the probability to be in a given class based on the true value, hence it is 1
for the correct class and zero for all the others. Q(x) is then the probability to be in a
given class according to the NN’s output. Clearly, the loss is maximized when Q(x) = 1
for the correct class.

Eq. (6.6) resembles the Kullback-Leibler (KL) divergence, which describes how much
two distributions differ from each other and can also be used as a loss function, even if
it is not symmetric in the two distributions, making its use somewhat difficult:

KL(P,Q) = −
∑
x∈X

P (x) log
(
Q(x)
P (x)

)
. (6.7)

If the KL statistic is small, the two distributions are very similar, and the network
outputs values close to the true ones.

As another example, let us also note that it is possible to use the negative Bayesian log-
likelihood as a loss function if it is known for the situation. The loss function is minimized
during the training (see Sec. 6.1.3 for more details). For the correct parameters, the
log-likelihood is maximum. So, the negative log-likelihood is at its minimum. Therefore,
we seek to find parameters that minimize the negative log-likelihood since they are a
good representation of the data. In this case, one does not need a direct comparison with
the true values making this approach more suited when the goal is to model probabilistic
distributions.

6.1.3 Gradient Descent, the Key to a Working Network

Once a network is built, it has a certain number of weights and biases to adjust to
minimize the loss function. The best performance in the training set is obtained when
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we are at the minimum of the loss function. The latter can be seen as a function of the
bias and weights, making a hyper-surface in their space. Ideally, we want to find the
deepest valley on this surface, corresponding to the global minimum. However, we often
have to be satisfied with a good approximation, corresponding to a local minimum. This
is done through an iterative process called gradient descent.

Since the loss space is complicated, the trick is to consider only local information and
simplify the function at that point of space. Therefore, we can do a Taylor expansion
of the loss. Writing the network parameters ζ and the loss function L, its expansion
around a given network configuration ζj is

L(ζj + ε) ' L(ζj) + ε ·∇L(ζj) +O(|ε|2) , (6.8)

where ε is a small step in the network parameter space, meaning its norm is small.
The goal is to find a step leading to smaller values for the loss, hence an ε such that
L(ζj + ε) < L(ζj), and which can be computed based on the loss. This is the case if we
choose

ε = −γ∇L(ζj) , (6.9)

where γ is a (small) positive number that can be tuned during the training process.
With this, the network parameters follow the update rule,

ζj+1 = ζj − γ∇L(ζj) , (6.10)

when going from a network configuration j to j + 1 when minimizing the loss function.

Using Eq. (6.9) as step, we have

L(ζj+1) = L(ζj + ε) ' L(ζj)− γ∇L(ζj) ·∇L(ζj) < L(ζj) , (6.11)

since γ∇L(ζj) ·∇L(ζj) > 0. This shows that using Eq. (6.9) for the step, we move
to lower loss function values at each iteration. So, when training the network and
minimizing the loss function, one starts with some initialization of the weights. Then,
one computes its derivative and uses it to move to a lower loss value. Once the step is
done, the process is repeated until we reach a satisfactory minimum of the loss function.
In this process, the free parameter γ determines the step size. It is called the learning
rate and is chosen by the network’s designer. It has to be chosen with care. If it is too
large, we can over-shoot the minimum and miss it. If it is too small, the training takes
a very long time, and there are risks to be stuck at a local minimum. Among other
things, one can make this rate evolve, starting with a large value to quickly move to the
interesting region of the parameter space before reducing it to find the correct overall
minimum in that region.
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6.1.4 Better Explore the Loss Function Space: Optimizers

Gradient descent, as described in the previous section, is the basic principle to obtain
optimal network parameters. However, it is often inefficient, and the process is made
more effective using an optimizer. A common optimizer family is the Adam family, based
on the Adam optimizer [230], derived from the adaptive moment estimation.

The Adam algorithm uses moving averages to keep track of the mean and variance of
the gradient for each network parameter. This information is used to better grasp the
behavior of the loss. In particular, it prevents missing a good minimum by keeping track
of the dynamics. For example, if there is a small local minimum, then the momentum
will push us out of it based on past dynamics. On the other hand, the loss will also
not oscillate around a point, as the average over the oscillatory steps stabilizes the
value of the loss to the actual minimum. Additionally, Adam is robust to noise in the
gradient computation by averaging the values over several steps. This is a valuable
feature since gradients are evaluated numerically, and one can have imprecise values due
to the problem’s high dimensionality and noise. In the end, these features combined
with an efficient algorithm make Adam a popular optimizer with good performances for
many ML tasks [230].

There are also variants of Adam designed to be more efficient or solve remaining issues.
For example, there is the AdaMax, where instead of using the moving average of the
mean and variance of the loss, we use the infinity norm of the gradient vector [230]. This
modification improves the robustness against noise and sparse gradients where, in some
cases, the gradient can take low values, making Adam inefficient. Therefore, taking the
maximum value helps keep a more stable learning rate and solve the optimization problem
more efficiently [230]. Another improvement is presented in the AdamW algorithm [231],
where one also implements weight decay regularization. Here, one slightly decreases the
value of the network parameters when updating them to new values. The simple update
rule (6.10) is then modified as

ζj+1 = (1− λ)ζj − γ∇L(ζj) , (6.12)

where λ is a small positive number. This additional decrease in parameter values can
also be implemented in the moving averages used in the other Adam algorithms. λ can
be seen as a penalty term for the network parameters. By decreasing their values, one
avoids overfitting since weights that would become dominant are rendered less important.
In parallel, unimportant weights are decreased more rapidly as the update rule increases
their value less, and the penalty is not compensated. The value of λ can be kept fixed
or adapted over time. Using this additional parameter in the update rule decreases the
risks of overfitting, improving the network’s generalization capacities [231].
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6.1.5 Overview of a Basic Training Process

Now that we have outlined the different elements needed to build and train a NN, we
can briefly sketch how supervised learning works. We start with a set of example data
with corresponding true values. Typically, one splits this set in two: the training and
validation sets. The training set is used to adapt the weights, while the validation set is
used to gauge the evolution of the performance over time. It is also good practice to
have a third set of labeled data, the test set, used only once to gauge the performance
on unseen data after the training is stopped.

When training the network, one passes the training set through it, adjusting the weights
as one goes. Then, one checks the results on the validation set. If the performances
do not yet seem adequate, one continues. Else, one can stop the training and assess
the performance on the test set. Often, one does not pass the whole training set at
once, using batches instead. So, one adapts the weights based on the results of a batch
of data. The complete passage of the batched training set is called a training epoch.
The training termination condition can be set by specifying a given number of epochs.
However, this is generally not optimal since the number of steps needed for convergence
is unknown beforehand. Instead, one can decide to put a termination condition based
on the evolution of the loss function or the performances on the validation set.
Stopping the training on time is also a key aspect. Indeed, the loss function can

continue its decrease for the training set until it reaches very low values. However, at
some point, there is no improvement in the validation set anymore. On the contrary, we
get better performances on the training set, while the performances on the validation
set degrade. This is called over-fitting. In this case, the weights and biases are not
adjusted to features of the data anymore but rather to the training set itself. Therefore,
the network loses its adaptation capabilities and cannot perform well on unseen data.
One way to deal with this is to have much larger data sets. This is often difficult due to
memory issues. Another way to circumvent this is to generate new data continuously
while the training is ongoing. This is possible only with a fast data generation process.

Finally, let us outline an additional technique used for the training and helping the
network to learn more complicated data: curriculum learning. Typically, there are easier
and harder cases in the data. If we simply sample the data randomly, the network has a
hard time interpreting the more difficult instances and performs poorly on them. To
avoid this, one can gradually increase the difficulty of the data passed to the network
when training. We start by showing simple examples. Once the network performs well on
them, we move to the next more complicated data set. Usually, one keeps a fraction of
the simpler examples in the next sets to avoid the network forgetting them. In principle,
one expects the network to have satisfactory performance for all the sets in the data
after the full training is done.
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6.2 Finding Spatial and Time Correlation in Data

In the previous section, we introduced the main elements of a NN. We have only presented
dense or fully-connected layers, connecting all the neurons of one layer to all the neurons
of the next layer in a biased and weighted sum. Networks built only with such layers
often have many free parameters and can be hard to train. Therefore, we introduce
convolutional neural networks (CNNs), which alleviate some of these difficulties. Such
networks are made to find correlations on different levels in the data by using convolutions.
This type of NN is the subject of this section.

6.2.1 Convolutional Neural Networks

Instead of connecting one neuron to all the neurons of the next layer, the convolution
connects a sub-group of neurons to the next neuron. The number of neurons considered
is called the kernel size. The neurons are then summed and biased like before. The
convolution with a given kernel side slides over the layer to collect information from the
full layer. The step taken is called the stride. One can also add padding to compensate
for a mismatch between the number of neurons required based on the stride and kernel
size, and the number of them available in the layer. For example, one can add null
neurons. The working of a convolutional layer is represented in Fig. 6.2. Because they
look at local information in a given layer, convolutional layers contribute to translation
invariance in the NN.
One can stack convolutional layers one after the other to build a CNN. Each layer

probes a different correlation level in the data. In a CNN, one usually adds pooling
layers, which are filters reducing the dimension of a layer by summarizing its content. If
well applied, it can help increase the network’s efficiency by helping it focus on the key
feature. Besides, the combination of pooling and convolutional layers leads to translation
invariance by bringing the key features into the NN’s focus. However, they can also lead
to a loss of information if applied too extremely. The number of neurons considered
when doing to average operation is called the kernel size. We distinguish two typical
pooling layers:

• Max pooling: one selects the maximum value present in the kernel under consider-
ation and passes it to the next neuron ;

• Average pooling: one computes the average value present in the kernel and passes
it to the next neuron.

A complete CNN is typically made by an input layer, taking in the data. Then, one
stacks multiple convolution blocks, made by convolution layers followed by a pooling
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Figure 6.2: Representation of a 1D convolution layer in a neural network with a kernel size
of 3 and a stride of 1. Here, no padding is used. The kernel (of size 3) slides over the neurons,
summing and biasing the output of a given subset, extracting local information.

layer. One can perform pooling after every or several convolutions. Between convolution
blocks, one can also use activation functions. Finally, the last layer of the network is
fully connected. Examples of networks having this type of architecture are VGG16 [232],
AlexNet [233] and YOLOv1 [234].

6.2.2 Making Deeper Networks: Residual Connections

While CNNs have been used in various contexts, they are not always optimal, especially
for complex tasks when the networks become very large. In this case, one needs to make
sure the addition of new layers leads to more expressivity and not only an increased
computational complexity. If G represents the ensemble of configurations the NN can
reach, and we denote by g a given network configuration, then we want to find g∗ the
optimal one. Generally, this solution is not in G and we look for g∗G, the best possible
setting in G. This is found by minimizing the loss. Now, we want to find G ′ such
that the optimal configuration is g∗G′ and is better than g∗G. This can happen only if
G ⊆ G ′. So, we need to construct a NN such that the addition of the new layer leads to a
configuration encapsulating the previous one, preferably without significantly increasing
the computational cost. For deep NNs, it is done by using residual connections (see
Fig. 6.3 for a representation), where one applies an identity function on the layer’s input
in parallel to the usual operations [235]. Since the new network is a superset of the
previous one, it can perform better. Additionally, the identity function is simple, not
increasing the computational cost too much.

In practice, this is equivalent to learning the residuals of the mapping, which is done
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Figure 6.3: Representation of a residual connection. In parallel to the convolution block,
we keep the input feature vector and sum it to the block’s output. It is a way to learn the
residuals of the transformation and build deeper networks without significantly increasing the
computational cost.

through the residual connection [235]. The latter makes the network learn the mapping
F(~x), where F represents the operation of a given block in the NN, such that

~y = F(~x) +W~x (6.13)

is the output of the convolution block and the residual connection. F in Eq. (6.13)
is a function of the weights and biases present in the layers, and W is an operation
rescaling the input ~x to have the same dimension as F(~x). Since we do not do any
other operations, the network does not become heavier, and the training efficiency is
conserved. Learning the residuals from the mapping rather than the mapping decreases
the training error efficiently while also improving the accuracy by permitting the design
of larger NNs [235].

Such residual connections have been used to upgrade CNNs in image recognition
tasks. For example, it is employed by YOLOv4 [236], an update of the YOLO algorithm
with improved precision compared to the previous iteration with only convolution
layers. Another architecture using residual connections is Inception-ResNETv4 [237]. In
addition to residual connections, they use inception blocks, made of several branches
where convolutions with different kernel sizes are performed in parallel. Therefore, a
given block can look for correlations on different scales at once.
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6.2.3 Batch Normalization

To reduce overfitting and improve the NN’s performance, one can also introduce batch
normalization [238]. It is a technique used to normalize the activation of the neurons in
the network. One can see it as an additional layer made of two trainable parameters
and modifying the output of a neuron to have a normalized mean and variance as input
for the next layer. Schematically,

y = γ
x− E[x]√
Var[x] + ε

+ β , (6.14)

where x is the output of the previous neuron, ε is a small constant added to avoid division
by zero, γ and β are trainable parameters learned with the other network parameters,
and y is the input for the next layer. This additional normalization enables the network
to learn more efficiently [238].

6.3 Neural Networks for Probability Density Estimation

One of the main concerns in GW data analysis is the estimation of the binaries’ pa-
rameters. This Bayesian inference problem would also benefit from the NN’s speed
after training as traditional methods (see Secs. 4.3 and 4.4) can be slow. For this,
one can use normalizing flows (NFs). The main idea is to start from an initial simple
probability distribution and pass it through a series of (simple) transformations to get
the arbitrarily-complex probability distribution of interest. These transformations are
parametrized with trainable parameters adapted through a training process to represent
the distribution most faithfully – see Ref [239] for a comprehensive introduction.

6.3.1 Transforming Simple to Complex Probability Distributions

The main goal is to find a way to estimate the probability distribution p(x) for a given
multi-dimensional random variable x. A NF represents x as a transformation T of u,
where u is sampled from a simple probability density p(u):

x = T (u) and u ∼ p(u) . (6.15)

In this context, p(u) is called the base distribution, and p(x) the target distribution. The
base distribution is generally an easy function parametrized by a set of parameters φ.
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The transformations are parametrized by ψ. The ensemble of parameters θ = {φ,ψ}
represents trainable parameters, adjusted through a learning process1.

The transformation T in Eq. (6.15) has to be invertible, leading to an inverse transfor-
mation T−1. In the training process, one needs to go from x to u, while for the inference
process, it is the opposite. In addition, T and T−1 have to be differentiable, meaning
they are diffeomorphisms. Under these conditions, the probability distributions for the
two variables are linked via the change of variable rule [239]

p(x) = p(u)| det(JT (u))|−1 , (6.16)

where u = T−1(x), and JT (u) is the Jacobian of the transformation, corresponding to
the matrix

JT (u) =


∂T1
∂u1

· · · ∂TN
∂u1... . . . ...

∂T1
∂uN

· · · ∂TN
∂uN

 , (6.17)

where N is the dimensionality of x and u.
Equivalently, Eq. (6.16) can be written as

p(x) = p
(
T−1(x)

)
| det(JT−1(x))| . (6.18)

Instead of using a single transformation and its inverse to get from one variable to the
other, one often uses a series of simple transformations {Tk}k=0,...,K such that

T = T0 ◦ T1 ◦ · · · ◦ TK , (6.19)

where Tk transform the variable zk−1 into zk, assuming z0 = u and zK = x. It relies
on the composability of diffeomorphic transformations. This is where the term flow
comes from: our variables flow through the transformations with a preserved normalized
(probability) density like a fluid through a pipe.

The decomposition (6.19) can always be done for diffeomorphic transformations since
they are always composable. Indeed, if we have two such transformations T1 and T2,
then T1 ◦ T2 is also invertible and differentiable. In addition, its inverse is [239]

(T1 ◦ T2)−1 = T−1
2 ◦ T−1

1 , (6.20)

and the determinant of its Jacobian is [239]

det
(
JT1◦T2(u)

)
=
[

det
(
JT1(T2(u))

)][
det

(
JT2(T1(u))

)]
. (6.21)

Hence, everything can be computed based on individual diffeomorphic functions. Addi-
tionally, it is possible to show that for any variables x ∼ p(x) and u ∼ p(u), there exists

1Here, we look at the most generic case. However, the base distribution can also be static, and only
the transformation parameters ψ are adjusted during training.
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a transformation T such that x = T (u), under reasonable conditions on p(x)2 [239].
NFs are related to traditional ML approaches. Indeed, the different simple transfor-

mations have tunable parameters θ. Finding the optimal coefficients is the same as a
fitting problem, where we want the final distribution p(x|θ) to be a good representation
of the theoretical distribution p∗(x). Again, the model’s parameters are tuned to have a
minimal difference between the target distribution and the one provided by the NN.
For example, one can use the KL-divergence (see Sec. 6.1.2) between the two dis-

tributions to evaluate how good an approximation p(x|θ) is. The loss function is
then [239]

L(θ) = DKL
[
p∗(x)|p(x|θ)

]
= −Ep∗(x)

(
ln p

(
T−1(u)|ψ

)
+ ln

∣∣∣detJT−1(x|θ)
∣∣∣)+ C ,

(6.22)

where C is a constant. If one has a set of samples {x}n=1,...,N ∼ p∗(x), then the loss
function can be expressed by

L(θ) ' − 1
N

N∑
i=1

ln p
(
T−1(xi)|ψ

)
+ ln

(
detJT−1(xn|θ)

)
+ C . (6.23)

Taking the gradient of Eq. (6.23) for the model parameters leads to

∇φL(θ) ' − 1
N

N∑
i=1

∇φ ln p
(
T−1(xi|ψ)

)
+ ∇φ ln

∣∣∣detJT−1(xi|φ)
∣∣∣ , (6.24)

∇ψL(θ) ' − 1
N

N∑
i=1

∇ψ ln p
(
T−1(xi)|ψ

)
. (6.25)

So, only the inverse transformation and its associated Jacobian are needed to train the
model, provided we have access to samples from the target distribution. Minimizing the
KL divergence is equivalent to maximizing the log-likelihood of the target distribution
under the transformation. However, one cannot always have samples from the target
distribution beforehand. Therefore, it is convenient to rewrite the loss function (6.22) as

L(θ) = Ep(u|ψ)

[
ln p(u|ψ)− ln

∣∣∣detJT (u|φ)
∣∣∣− ln p∗(T (u)|θ)

]
, (6.26)

of which one can take derivatives with respect to the model parameters to perform
gradient descent. Here, one can evaluate the expression as long as the target distribution
is evaluable for given samples. One also needs p(u), T and its determinant.
In Eq. (6.26), it is enough to know the true distribution up to a constant. So, if

we know p̃(x) such that p∗(x) = p̃(x)/C, with C some constant, we can compute the

2For example a non-zero probability on the considered domain for x.
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loss via Eq. (6.26). This is easier because, according to Bayes’ theorem (4.14), the
posterior probability can be expressed as a product of the likelihood and the priors for
the sample, divided by the evidence. The latter is nothing else than a normalization
constant. Therefore, the equation can be evaluated if we have a modeled likelihood and
some known priors. Finally, if one can sample p(u) directly, the second loss function
makes it possible to train the model without having to know the exact shape of the
posteriors in advance. Therefore, we can train a NN to perform Bayesian analysis.

There are various possibilities to model the different transformation mapping p(u) to
p(x) [239]. For example,

• Autoregressive flows [240]: made by two main elements, the transformer, and the
conditioner. The first is transforming the samples from one step to the other, while
the second controls how the transformation happens. One has then some freedom
in choosing the exact characteristics of the two elements (see [239] for examples).
These flows are usually expressive but have the disadvantage of being slow in the
forward or backward direction [240].

• Linear flows: alleviates one of the issues of autoregressive flows, where the order
of the input variables generally matters. Here, the transformation from one step
to the other is parametrized by an invertible matrix. However, it is less expressive
since one only has linear transformations [239].

• Coupling flows [241, 242]: make the forward and backward operations fast but
reduce a bit the expressivity of the individual layers [239]. The idea is to split the
network parameters into two subsets arbitrarily. The first subset is unchanged
and the layer just outputs the initial value, while the second subset is transformed
using an invertible function. It can be shown that stacking multiple coupling layers
enables one to get a network able to represent any distribution [239].

The main idea behind these structures is to construct a tractable Jacobian, done by
representing it as a triangular matrix. Autoregressive and coupling flows are two ways
of obtaining this, making them common flow algorithms.

6.3.2 Continuous Normalizing Flows

In the previous section, the transformations are cast as a series of discrete steps taken one
after the other. An alternative, and often more efficient approach, is to use infinitesimal
steps to make the entire transformation a result of the integration of all the smaller
steps [243]. This is called a continuous NF (CNF). Here, the flow’s evolution is described
by ordinary differential equations (ODEs). By analogy with fluids, one can see the
parameters describing the model flowing through the different steps. Therefore, one can
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parametrize the ODEs using time and see the network as making the samples evolve to
map p(u) to p(x).

If the state of the flow at time t is written zt, with zt0 = u and zt1 = x, and t evolves
continuously, the transformation is described by

dzt
dt = g(t, zt|θ) , (6.27)

where g is a function representing the transformation and parametrized by θ, corre-
sponding to the NN’s parameters. Eq. (6.27) has a unique solution if g is Lipschitz
continuous3 in zt and continuous in t [243]. Many NN layers respect these criteria,
making it relatively straightforward to build a CNF.
The full transformation T such that x = T (u) is given by

x = u +
∫ t1

t0
dt g(t, zt|θ) , (6.28)

and the inverse transformation by

u = x +
∫ t0

t1
dt g(t, zt|θ) . (6.29)

Therefore, a CNF has the same computational complexity in both directions. It is not
necessarily the case for discrete normalizing flows.
Working in log space, the evolution of the log probability density is [243]

d ln p(zt)
dt = −Tr

[
Jg(zt)

]
, (6.30)

where Jg is the Jacobian of the transformation using g. For high dimensions, the trace
can be approximated as [244–246]

Tr
[
Jg(zt)

]
' E

[
vTJg(zt)v

]
, (6.31)

where v is an N-dimensional (N being the number of dimensions in the problem) random
vector with E[v] = 0 and E[vTv] = 1. While the computational complexity of the trace
is already lower than for the determinant, this approximation reduces it even more. So
CNFs recast the problem in a less computationally expensive way.

Using Eq. (6.30), the final probability density is obtained via an integration similar to
the one in Eq. (6.28), giving

ln p(x) = ln p(u)−
∫ t1

t0
dtTr

[
Jg(zt)

]
. (6.32)

3A function is Lipschitz continuous if there exists a real R such that for any pair of points in the
function’s domain, the slope of the line connecting the two points is smaller than R.
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In the end, one can compute the variable x and its (log) probability simultaneously
by considering the system of equations made of Eqs. (6.28) and (6.32). The system has
to be solved numerically. Efficient numerical integration methods exist and can be used.
For example, there are the well-known Euler and the Adjoint methods [239]. Other,
faster and more robust methods have also been developed, for example, the asynchronous
leapfrog (ALF) method [247] or the memory efficient ALF integrator (MALI) [248].
The rest of the procedure is similar to the discrete case, and one can directly adjust

the weights by minimizing the KL divergence.

6.3.3 Accounting for Data in Normalizing Flows

Secs. 6.3.1 and 6.3.2 show how to convert a simple distribution into a more complex one
via transformations modeled with a NN. However, when solving a Bayesian inference
problem, one often wants to account for the data. Therefore, one introduces conditional
NFs [249], where one makes the different distributions conditional on the data. So,
Eq. (6.16) becomes

p(x|d) = p(u|d)det
∣∣∣JT (u, d)

∣∣∣−1
, (6.33)

where d is the data. In this expression, everything is conditioned on the data, even the
prior. The latter is not necessary, and one can use a static prior.
The conditional NFs and CNFs can be constructed the same way as before, where

the transformation T accounts for the conditionality on the data. Therefore, the final
probability density probed also becomes a function of the data and can be evaluated
using the data-dependent likelihood and priors on x. The loss function is still Eq. (6.26),
now with probabilities conditional on the data, and the training can be done as before.
The main difference is that one needs to have many data sets to cover the full possible
parameter space and learn to model the corresponding probability distributions.
Putting everything together, it is possible to construct a conditional continuous NF

network, mapping parameters u to the posteriors p(x|d) using some transformation
function g(zt, t|θ, d). The latter describes the evolution of the samples with time, is
parametrized by the NN parameters θ, and depends on the input data d. This approach
enables one to benefit from the efficiency of CNFs while also making the posterior data
dependent. Such a framework fulfills the requirements to perform Bayesian inference.

6.4 Pre- and Post-Processing the Data

A NN starts with an input layer taking in the data. One can decide to use the raw
data. However, this is not always the best option. First, the data can be very long,
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and one would need a very high number of input neurons. Additionally, the first layers
of the network are used to interpret the data instead of analyzing it, losing efficiency.
Therefore, it can be better to modify the data first and give the network a reduced
version of it. In addition, it can happen that the network’s performance is not optimal.
In that case, one can apply a post-processing step to correct and improve the output. If
the post-processing method is well chosen, it can also alleviate the black-box nature of
ML. In this section, we review some methods used to summarize the data before passing
it to the network as well as post-processing steps to improve the network’s output.

6.4.1 Normalizing the Data

GW data has quite often significant relative amplitude variations, with signals having
an amplitude much smaller than the noise they are buried in. Passing this raw data
directly to the NN is usually not a suitable option as the numerous features can lead
to confusion. Therefore, one can apply some pre-processing steps. A first such step
is whitening, where one performs a normalization of the data with the noise estimate,
dividing the frequency-domain strain by the square root of the PSD. It is a good way to
remove some noise artifacts from the data. For example, there are known peaks in the
PSD (see Fig. 4.1 for an illustration) which have large contributions in the frequency
power but are due to noise.
Additionally, NNs generally prefer having a normalized input. A possible way to do

this is to normalize the data between -1 and 1 by dividing by the absolute maximum.
However, if there is one dominant value in the data, it can lead to tiny values for most
other data points. Instead, one can standardize the data, where the goal is to transform
the data so that it has a zero mean and a unit variance. For example, one can do this
by fitting a Gaussian through the data. This exact method is data-specific and can be
applied batch-wise.

6.4.2 Extracting Essential Features of the Data

In some cases, standardizing the input is not enough to have a well-performing NN.
Noise and spurious features can still lead to confusion. Additionally, the data can remain
relatively heavy, and the number of sample points considered is unchanged. Therefore,
it is sometimes more advantageous to extract summary information from the data and
use this as input for the NN. While recent developments have shown that this extraction
could be optimized using NNs [250], the method explained here, and used in this thesis,
is a classical one, called singular value decomposition (SVD) [251, 252]. The idea is to
reduce the number of elements representing the data by finding a basis of orthogonal
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vectors on which to decompose the signals. Additionally, this has the advantage of
reducing the noise passed to the network, enabling it to focus more on the signal.
If d is the array of detector strain data, we want to find basis vectors ui and a

reconstruction matrix A such that the SNR for a template hj is

ρj =
N∑
i=1

Aji(ui · d) . (6.34)

If the data under consideration is an array of waveforms {h1, h2, . . . , hM}, we seek an
SVD matrix H such that [252]

Hij = {<h1,=h1,<h2,=h2 . . . ,<hM ,=hN} , (6.35)

where row vectors ~H2i−1 and ~H2i represent the real and the imaginary parts of the ith
template in the set.
The SVD decomposition for the matrix (6.35) is [252]

Hij =
N∑
k=1

uikσkvkj , (6.36)

where v is an orthonormal matrix containing the reconstruction coefficients such that∑
i

vijvik = δjk . (6.37)

σ is a vector containing the singular values representing the data and ordered by
importance in the template reconstruction. u is a matrix representing vectors of an
orthonormal basis with ∑

i

uijuik = δjk . (6.38)

CBC search sensitivities are such that an error of a few percent is undetectable.
Therefore the matrix Hij can be represented with a truncated decomposition, using
N ′ < N elements for its representation

Hij '
N ′∑
k=1

vikσkukj . (6.39)

One can then evaluate the reconstructed SNR for the signal as

ρ′j =
N ′∑
k=1

[
v(2j−1)kσkiv(2j)k

]
(uk · d) . (6.40)

One can truncate the decomposition at a given precision level, corresponding to selecting
the first X elements of σ. In addition, it is often enough to use the first few hundred
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elements, significantly reducing the amount of data passed to the NN, and the elements
summarize key features of the signal. Therefore, they help the NN focus on important
characteristics, making the learning process lighter and more efficient. An example of an
algorithm used to perform SVD decomposition can be found in Ref. [251]. Performing
the SVD decomposition on noisy data reduces the noise and makes the NN more sensitive
to the GW signal present in the data.

6.4.3 Linking Machine Learning With Classical Methods

One concern often faced when using ML is its black-box nature. It is possible to reduce
this concern by comparing the final samples obtained using ML with those obtained
using MCMC or nested sampling. This can be done via importance sampling.
If q is a probability distribution covering the same space as another distribution p,

we can transform q into p provided that (i) p is known up to a normalization constant,
hence we know p̃ such that p(θ) = p̃(θ)/Z, and (ii) q(θ) 6= 0 for all θ such that p(θ) 6= 0.
Then, we can compute the ratio

w(θ) = p̃(θ)
q(θ) , (6.41)

which enables us to transform the base distribution into the target distribution. One
can see w(θ) as a measure of the (di)similarity between the two distributions under
consideration. w(θ)q(θ) eventually converges to p(θ) when enough samples are used [253].
For GW data analysis, p̃(θ) can be obtained via the likelihood as in Eq. (4.18), and

q(θ) are the samples provided by ML. As long as the description given by ML is broad
enough to cover the traditional methods’ posterior space, importance sampling can be
used to transform one into the other. This alleviates the black-box issue as we have a
measure of the difference between ML and Bayesian techniques.
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7
Searches for Strong

Gravitational-Wave Lensing and
Related Issues

Strong lensing and microlensing were first searched for by the LIGO-Virgo-KAGRA
(LVK) collaboration in 2019 [172], but this pioneering paper reported no detection. At the
time, the strong-lensing searches were based only on the posterior overlap technique [181],
introduced in Sec. 5.3. So, they only looked for overlapping posteriors in a sub-group of
parameters. This can lead to a significant false alarm risk, but it is a good first indicator.
On the strong lensing side, the GW170104-GW170814 event pair is the most interesting
candidate. However, even if it has consistent posterior distributions, it has a very long
time delay, incompatible with galaxy-lensing, which is the most likely type of lensing to
be observed [172].

Complementing the first searches, other more precise methods were developed. They
also use the lensing parameters linking the two events and analyze the two data streams
jointly under the lensed hypothesis [215, 216]. In Ref. [216], the authors re-analyze the
O2 data, confirming GW170104-GW170814 as an interesting pair with a high significance.
Still, the evidence is too low to state the event pair is strongly lensed. The interest in
this pair is also followed up by groups outside of the LVK Collaboration, as attested
by [190]. In this study, the authors also flag this event but without enough evidence to
claim lensing. They find an additional sub-threshold event compatible with the two first
events, making it a possible triplet. However, even with the addition of a third event,
we do not have enough evidence to claim these are strongly-lensed images.

In parallel, the GW lensing field has continued evolving, developing interesting
applications. For example, one can note the emerging interest in multi-messenger
strong lensing, where one would link the observed GW data with an EM counter-
part [193, 194]. From such an observation, one could probe cosmology [193] or test
fundamental physics [199, 200]. At the same time, the increased number of detectors in
the fiducial detector network obtained through the observation of multiple images opens
the possibility of probing the GW polarization more efficiently [201].
Lensing searches have been performed on the first half of the third LVK observation

run – called O3a – [188], and on the entire data obtained after the third observation
run completed [189]. None of these searches led to a significant detection. Thanks to
the development of new search methods more complete analyses were performed on
the data. On the strong lensing side, one now searches for strong lensing in several
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ways. First, one looks at unusually high-mass systems. Since the luminosity distance
is biased by the magnification, the inferred redshift is also biased. As a consequence,
the inferred source-frame component masses are biased. Therefore, we would seemingly
observe events with masses higher than those expected according to population models
(see, for example, [254] for BNS systems). Another approach used to search for strong
lensing signatures with a single image is the search for phase effects due to type II
images [115–117, 170]. This is discussed further in Chapter 9 of this thesis. The search
for strongly-lensed image pairs is slightly different between the first half of O3 and the full
search. For the first, posteriors overlap is used to flag interesting candidates. Then, the
flagged pairs are followed up by two different joint parameter estimation pipelines: one is
LALInference-based [216] and the other – called Hanabi – is Bilby-based [215]. The
second pipeline also includes selection effects and is, therefore, used to assess the lensed
nature of the events. These pipelines are computationally expensive, and therefore not
suited to analyze a large number of event pairs. For the full O3 searches, the multi-stage
approach is reworked. In the low-latency part, posterior overlap is complemented with
LensID, a machine-learning-based pipeline [255]. The interesting event pairs are then
passed to a medium-latency pipeline, called GOLUM [192] and described in Chapter 8
of this thesis. It filters further the events, and the remaining interesting candidates
are passed to the Hanabi pipeline. For the O3a and complete observation runs, one
also looks for sub-threshold counterparts of the detected events by searching for events
with similar characteristics and an SNR < 8 [256, 257]. None of these searches led
to a significant detection of strong lensing [188, 189]. Microlensing searches were also
performed on the LVK data, not leading to any detection [188, 189]. The non-detection
of gravitational lensing enabled us to put constraints on the observation rate of strong
lensing, the BBH merger rate at high redshift, and the dark-matter content of the
Universe [188, 189].
All these efforts are motivated by the predicted rate for strong lensing, with a non-

negligible detection rate in the coming years [180, 187]. Indeed, the expected relative
observation of lensed events is expected to be between 1/2000 and 1/1000. So, accounting
for the increasing observing rate over the years, a detection becomes more likely with
every detector upgrade, and is non-trivial for the coming years [180, 187]. However,
all methods to look for strong lensing [181, 215, 216] rely on analyzing pairs of events.
This can lead to issues since the number of detected events rapidly grows with detector
upgrades, reaching a predicted O(1000) events in O5 [180], leading to O(5×105) pairs to
analyze. This number will only increase in the coming years when the current detectors
get upgraded and new ones join the ground-based interferometer network. Therefore,
the search methods have to be fast.

Other works have also shown that major false alarm risks are linked to the increasing
number of detected events [187, 202]. Indeed, as the number of events grows, the
probability of having matching binary parameters by chance increases, leading to
seemingly lensed events. One way to decrease this risk is to make the search pipelines
more accurate, using joint parameter estimation, for example. However, these methods
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are too slow to follow the number of pairs that need to be analyzed. Another approach
is to account for the expected values of the lensing parameters by including so-called
lensing statistics [181, 187, 204]. This helps discard more events that overlap by chance
by identifying those with apparent lensing parameters incompatible with the expected
values. However, this approach is model-dependent, and if one is not considering the
correct lens model, it can lead to the non-identification of genuinely lensed events.

In this part of the thesis, we present work done to address some of the issues related
to the identification and characterization of strongly-lensed GW events.





8
GOLUM: A Fast and Precise

Methodology to Search for and
Analyze Strongly Lensed

Gravitational Waves
In Ref. [192], we developed a method to search for strongly-lensed GWs combining speed
and precision, theoretically equivalent to joint parameter estimation under the lensed
hypothesis. It is based on an alternative way to write the coherence ratio (5.32), making
the evidence for one image conditioned on the other image. This leads to a “distribution”
of the parameter estimation runs. In this chapter, we explain in detail how this works.
Combining speed and precision should enable one to analyze more signals and keep up
with the forecast detection rates without increasing the related false-alarm probability
(FAP) as much as with posterior overlap.

8.1 Recasting the Lensed Evidence for Fast Computation

For strong lensing, the amplification factor is given by Eq. (5.15). Therefore, the lensed
and unlensed waveforms are related as [169]

h̃L(θ, µj, tj, nj) = √µje(2iπftj−iπnjsign(f))h̃U(θ) , (8.1)

where θ are the usual BBH parameters, µj is the relative magnification, tj the time
delay, and nj the Morse factor. These three additional parameters represent the lensing
parameters for image j. However, the magnification and the time delay are degenerate
with the luminosity distance and the coalescence time, respectively. Therefore, one
would observe an apparent luminosity distance and an apparent time delay

Dapp
L = DL√

µj
(8.2)

tapp
c = tc + tj , (8.3)
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where DL and tc are the unlensed luminosity distance and coalescence time, respectively.
Because of these degeneracies, one uses relative lensing parameters, linking the observed

values between the images. Assuming a pair of events, one has

tapp,2
c = tapp,1

c + t21 ,

Dapp,2
L = √µrelD

app,1
L , (8.4)

n2 = n1 + n21 ,

where t21 is the time delay between the two images, µrel is the relative magnification, i.e.
the ratio of the individual magnifications, and n21 is the Morse factor difference. These
parameters link the lensed waveforms for the two images.
To find whether two events are lensed or not, one can compute the coherence ra-

tio (5.32), which is the ratio of the lensed (5.34) and unlensed (5.33) evidence. The
lensed evidence described by Eq. (5.34) requires jointly analyzing the two data streams,
which can be cumbersome [215, 216]. However, the lensed evidence can be recast into a
conditioned evidence. As explained here, this new expression decreases the computational
cost related to joint parameter estimation.
The joint evidence under the lensed hypothesis can be rewritten as

p(d1, d2|HL) = p(d2|d1,HL)p(d1|HL) . (8.5)

We have
p(d1|HL) =

∫ ∫
dn1dΘ p(d1|Θ, n1,HL)p(n1,Θ|HL) , (8.6)

with n1 the Morse factor for the first image and Θ the usual BBH parameters with the
luminosity distance and coalescence time replaced by the apparent ones for the first
image.
The joint evidence can then be expressed as

p(d2|d1,HL) =
∫ ∫

dΘdφ p(d2|Θ,φ,HL)p(Θ|d1,HL)p(φ|HL) , (8.7)

where φ = {µrel, t21, n21} is the array of relative lensing parameters.
Eq. (8.5) is recovered through the repeated use of Bayes’ theorem:

p(d1, d2|HL) =
∫ ∫

dΘdφ p(d1, d2|Θ,φ,HL)p(Θ|HL)p(φ|HL)

=
∫ ∫

dΘdφ p(d2|d1,Θ,φ,HL)p(d1|Θ,HL)p(Θ|HL)p(φ|HL)

= p(d1|HL)
∫ ∫

dΘdφ p(d2|d1,Θ,φ,HL)p(Θ|d1,HL)p(φ|HL)

= p(d1|HL)
∫ ∫

dΘdφ p(d2,Θ,φ|d1,HL)

= p(d1|HL)p(d2|d1,HL) . (8.8)
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Eqs. (8.6) and (8.7) can be used to explicitly write the coherence ratio

CL
U = p(d1|HL)

p(d1|HU)
p(d2|d1,HL)
p(d2|HU) (8.9)

in terms of likelihoods. The labels 1 and 2 given to the data are arbitrary and can be
swapped if desired. A good practice could be to use the best-observed event (highest
SNR, most detectors active at the detection time, . . . ) as the first image as it is the one
that best constrains the event’s parameters.
The analysis for the first image, computing Eq. (8.6) is a usual BBH run with an

additional Morse factor included. For the second image, the equation’s dimensionality
has been reduced from 16 to 3 dimensions since only the unlensed parameters are sampled
from the first image’s posteriors. Additionally, since the BBH parameters are already
known via the first image run, these parameters are concentrated in the correct region
of space. Therefore, the second image run is faster.

8.2 Evaluating the Conditioned Evidence

In principle, one can develop several ways to compute the conditioned evidence. Our
approach is to rewrite the conditioned evidence in terms of a “marginalized likelihood” as

p(d2|d1,HL) =
∫

dφL(φ|HL)p(φ|HL) , (8.10)

where
L(φ|HL) =

〈
p(d2|Θ,φ,HL)

〉
p(Θ|d1,HL)

. (8.11)

It is the likelihood of the second image averaged over the posterior samples of the
first one. Evaluating this expression is desirable for the speed of the analysis since the
posteriors for Θ are already focused on the correct region of the parameter space.

The passage from the conditioned evidence (8.7) to the marginalized likelihood (8.10)
is performed as

p(d2|d1,HL) =
∫ ∫

dΘdφ p(d2,Θ,φ|d1,HL)

=
∫

dφ p(φ|HL)
∫

dΘ p(d2|Θ,φ,HL)p(Θ|d1,HL)

=
∫

dφ
〈
p(d2|Θ,φ,HL)

〉
p(Θ|d1,HL)

p(φ|HL)

=
∫

dφL(φ|HL)p(φ|HL) . (8.12)
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Evaluating the conditioned evidence gives access to the posterior for the lensing
parameters p(φ|d1, d2). Still, we only have the posteriors for Θ as a function of the first
image. However, the observation of the second image should impact on these posteriors
since it brings a major improvement in some parameters, such as the sky location for
example [193]. This can be done through a reweighting process, using

p(Θ,φ|d1, d2) ∝ p(d2|Θ,φ)
p(d1, d2|φ)p(Θ|d1)p(φ|d1, d2) . (8.13)

Indeed, the probability for both the source and the lensing parameters can be decomposed
as

p(Θ,φ|d1, d2) = p(Θ|φ, d1, d2)p(φ|d1, d2) . (8.14)

Further writing out the probability for the (apparent) source parameters given the lensed
ones and the two data streams gives

p(Θ|φ, d1, d2) = p(d1, d2|Θ,φ)p(Θ|φ)
p(d1, d2|φ)

= p(d2|d1,Θ,φ)p(d1|Θ,φ)p(Θ|φ)
p(d1, d2|φ)

∝ p(d2|Θ,φ)p(Θ|d1)
p(d1, d2|φ) . (8.15)

Finally,combining Eqs. (8.14) and (8.15) gives Eq. (8.13).
Eqs. (8.5) and (8.10) are exact expressions. However, to decrease the computational

time, one often takes sub-samples from the first image posteriors before evaluating
Eq. (8.10), leading to some approximation. If enough samples are selected, the method
remains sufficiently precise.

8.3 Additional Likelihood Evaluation Speed up

The evaluation of Eq. (8.10) can further be sped up by using a look-up table. For this,
one recycles the parameters from the first image and uses them to pre-compute the
waveforms. Therefore, during the sampling process, one does not need to generate the
full waveforms anymore as it suffices to correct for the effect of the relative lensing
parameters.

Indeed, if {dj1} and {dj2} are the data sets corresponding to images 1 and 2, respectively,
with j denoting the detector index, the log-likelihood of the second image can be expressed
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as

2 lnL(Θ,φ) =
∑
j

〈dj2 − h
j
2(Θ,φ)|dj2 − hj2(Θ,φ)〉

=
∑
j

(
〈dj2|d

j
2〉+ 1

µrel
〈hj1(Θ)|hj1(Θ)〉 − 2

√
µrel
〈dj2|h

j
1(Θ)〉e(2iπft21−iπn21sign(f))

)
,

(8.16)

where 〈·|·〉 is the inner product (4.7). The different inner products in this expression
are a function of the first image’s waveform only. Therefore, they can be computed as
soon as samples are selected. During the second image run, for each set of samples φ,
one can directly correct the pre-computed inner products with the lensing parameters,
which makes the inference process significantly faster. The application of a look-up table
reduces the computational time by a factor ∼ 20.
The new methodology formed by the conditional likelihood scheme and the look-up

table is implemented in GOLUM (Gravitational-wave analysis Of Lensed and Unlensed
waveform Models) [192, 258], which is a module of Bilby [149]. Since we also incorporate
a lensed waveform, applying the Morse phase as an overall phase-shift, our framework
works with any waveform model, ranging from an aligned-spin waveform model like IM-
RPhenomD [104], to a precessing-spin waveform model, like IMRPhenomPv2, and even
to a precessing waveform with HOMs, like IMRPhenomXPHM [121]. With this frame-
work, the second image run takes less than O(1) CPU-hour1 using the PyMultinest
sampler [153].

8.4 Example Analysis

As a practical example, we inject the signal from a spinning, precessing BBH merger
generated with IMRPhenomPv2, with parameters listed in the second column of
Table 8.1, into synthetic stationary, Gaussian noise for a network of 3 detectors (LIGO-
Livingston, LIGO-Hanford, and Virgo) at design sensitivity [25, 26]. This event has a
network SNR of ∼ 23. We then inject the event’s lensed counterpart image, with relative
magnification between the two events µrel = 2, relative Morse factor n21 = 0.5, and
relative time delay t21 = 14 hr. Throughout this analysis, we use a uniform prior for the
relative magnification (µrel ∈ [0.01, 20]), the time-delay (t21 ∈ [t21 − 0.1, t21 + 0.1] s), the
chirp mass (2.50) (Mc ∈ [10, 100] M�), and mass ratio (q ∈ [0.1, 1], with q = m2/m1);
the spin distribution is isotropic. The prior on the Morse factor is a discrete uniform
distribution over the three possible values (n1 ∈ {0, 0.5, 1}), and the prior in Morse
factor difference is a discrete uniform distribution over the four possible values (n21 ∈

1This is the total time to compute the evidence and joint posteriors with an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz processor.
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Parameter Lensed event Unlensed event
Mass 1 (m1) 36.0M� 35.8M�
Mass 2 (m2) 29.2M� 11.4M�
Spin amplitude 1 (a1) 0.4 0.3
Spin amplitude 2 (a2) 0.3 0.2
Tilt angle 1 (θ1) 0.5 1.0
Tilt angle 2 (θ2) 1.0 2.2
Spin vector azimuthal angle (φ12) 1.7 5.1
Precession angle about angular momentum (φjl) 0.3 2.5
Luminosity distance (dL)a 1500 Mpc 500 Mpc
Inclination angle (ι) 0.4 1.9
Wave polarization (ψ) 2.659 2.7
Unlensed phase of coalescence (φc) 1.3 3.7
Morse factor (n1) 0.5 0
Right ascension (α) 1.375 3.9
Declination (δ) -1.2108 0.22
Time of coalescence (tc) 1126259642.413 10.04

Table 8.1: Summary of the injection parameters used for the example runs in Sec. 8.4. In
this table and throughout the work, the angles are measured in radians.

aIn the lensing framework, the distance of the event is the apparent one, as both images are, in fact,
affected by the lensing parameters.

{0, 0.5, 1, 1.5})2. These priors do not include results from lens modeling of the inferred
astrophysical BBH population.

To analyze this lensed pair, we perform four nested sampling runs. Firstly, we analyze
the two injections under the non-lensed hypothesis. Secondly, we estimate the parameters
of one of the events under the lensing hypothesis. Thirdly, we obtain the conditioned
evidence p(d2|d1,HL), by sampling the second event’s likelihood based on the earlier
lensed parameter estimation, thereby also obtaining the relative image properties (see
Fig. 8.1).
Combining the four runs, we obtain the coherence ratio CLU . In our example lensed

simulation, we find logCL
U = 23.6, correctly consistent with lensing.

We then inject two unrelated events (see the last column of Table 8.1 for the parameters)
and repeat the analysis. In this case, the coherence ratio log CLU = −14, not consistent
with lensing, as expected.

We can also combine information from the two lensed images to better constrain the
binary parameters. In particular, we can use the posterior of the lensed parameters
obtained from the combined run to reweight the posterior samples of the first run as in

2The negative value n21 = −0.5 is equivalent to the transformation n21 = 1.5, and the negative value
n21 = −1 is equivalent to n21 = 1. Thus, we do not consider them.
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Figure 8.1: Posterior distribution of the magnification and time delay (re-centered at zero)
between two strongly lensed GW images. The parameters are well recovered, and the difference
in Morse factors is fully determined, allowing us to make inferences about the image properties.
If the event pair is part of a strongly lensed quadruplet lensed by a galaxy, the first image type
would likely be type-I and the second one type-II. The injected values are µrel = 2, n21 = 0.5,
and t21 = 50400 s = 14hr.
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Figure 8.2: The combined sky location (right ascension α and declination δ) of two strongly
lensed GW images. The black distributions refer to the posteriors from the analysis of the
first image only, and the green distributions are the results when the two images are combined.
The detection of several images significantly reduces the 90% credible region.
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Figure 8.3: Posterior distribution of the magnification, and time delay (re-centered at zero)
between two strongly lensed gravitational-wave images, where one of the events is sub-threshold
(with an SNR of ∼ 5.5). The simulated relative magnification µrel = 25, relative Morse factor
n21 = 0.5, and relative time delay t21 = 57600 s = 16hr. The parameters are well recovered,
and the Morse factor difference is also uniquely recovered in this scenario.

Eq. (8.13). The most notable impact is on the sky localization, where the 90% confidence
sky area improves by about a factor of two in our example case (Fig. 8.2). This is
particularly important for the strong lensing science case as an improved sky localization
might help narrow down the number of possible host galaxies when combining the GW
information with EM data [193].

As an additional example, we analyze a sub-threshold trigger (a signal hidden in the
noise background). In a targeted sub-threshold search, one uses a reduced template bank
to cover the source parameters posteriors recovered from the primary super-threshold
event [256, 257] – such searches may uncover many additional candidates, which would
need to be analyzed. We assume that a super-threshold event has already been observed
(with identical parameters to the event described in the earlier example). The lensing
parameters for the sub-threshold counterpart are µrel = 25,3 n2 = 1, and t21 = 16 hr,
leading to a network SNR of ∼ 5.5, which is below the value typically required for

3For this search, the relative magnification prior is extended to cover the [0.01, 50] interval.
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detection.
The resulting posteriors are shown in Fig. 8.3. We recover injected values, but (as

expected) the relative magnification measurement is less accurate than it is for typical
super-threshold events. The coherence ratio is log CLU = 9.3, consistent with lensing.

8.5 Adaptation to Multiple-Image Analyses

The previous sections have shown how one can use the conditioned likelihood to analyze
a pair of events rapidly. However, lensing can lead to more than two images [164].
Our approach can easily be generalized for any number of images while remaining
computationally tractable.

If one has N GW lensed images, their detector-frame parameters are related under the
lensed hypothesis, while they are unrelated under the unlensed hypothesis. Therefore,
the coherence ratio takes the form

CL
U = p(d1, d2, . . . , dN |HL)

p(d1, d2, . . . , dN |HU) , (8.17)

where the numerator can be written as

p(d1, d2, . . . , dN |HL) = p(d1|HL)
N∏
i=2

p(di|d1, . . . , di−1,HL) , (8.18)

and the denominator as

p(d1, d2, . . . , dN |HU) =
N∏
i=1

p(di|HU) . (8.19)

The conditioned evidence for the ith image in Eq. (8.18) is computed similarly to the
two-image case (8.10):

p(di|d1, . . . , di−1,HL) =
∫

dφi Li(φi|HL)p(φi|HL) , (8.20)

where φi are the relative lensing parameters for the ith image, i.e. the parameters linking
the current image with the first image considered. In Eq. (8.20), the marginalized
likelihood is obtained by averaging the likelihood over the reweighted samples coming
from the (i− 1)th image analysis, hence

Li(φi|HL) =
〈
p(di|Θ,φi,HL)

〉
p(Θ|d1,...,di−1,HL)

, (8.21)

where we implicitly include the Morse factors for images 1 to i− 1 in Θ.
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As before, the final posteriors, accounting for the first i images, can be obtained
through a reweighting process as

p(Θ,φi|d1, . . . , di) ∝
p(di|Θ,φi)

p(d1, . . . , di|φi)
p(Θ|d1, . . . , di−1)p(φi|d1, . . . , di) . (8.22)

In essence, this means that the analyses of additional images after the first two amount
to one extra GOLUM run followed by reweighting for each additional image. So, one
starts by analyzing the two first images. Then, the third image is analyzed by performing
the GOLUM run using the reweigted samples from the first pair analysis. Once the
samples obtained for the three-image run are reweighted, they are used as a prior for the
GOLUM run of the fourth image. The process is repeated until all images are analyzed.
Since only GOLUM runs are involved, the addition of images is relatively cheap.

8.6 Quadruple Image Analysis: Sky Localization

Let us analyze an example quadruplet of lensed images. We assume that the first and
second images have the same parameters as in Sec. 8.4. We inject two more lensed
signals, with relative magnifications of 4 and 5, time delays of 16 hours and 21 hours,
and Morse factors n3 = 0 and n4 = 1, respectively.
We begin by analyzing the first two images. We then use the reweighted samples

obtained from the joint analysis of the first two images to analyze the third image. As a
consequence, we retrieve the lensing parameters p(φ3|d1, d2, d3,HL) and the conditioned
evidence p(d3|d1, d2,HL) for the third image. We then reweigh the posterior sam-
ples from the second run with the results from the third, obtaining p(Θ,φ3|d1, d2, d3).
Using those reweighted samples, we analyze the fourth image similarly, obtaining
p(Θ,φ4|d1, d2, d3, d4).
A particularly noteworthy improvement is in the sky localization, which we show in

Fig. 8.4. The initial 90% sky area of ∼ 20 deg2 of the first image is reduced to a final
area of ∼ 2 deg2 when accounting for the four images. Such an improvement is important
for studies involving lensed host galaxy localization, which rely on an accurate sky map
estimate [193]. The entire analysis was performed in around 4 CPU hours4.

4This corresponds to the time needed to infer the lensed parameters and reweigh the posteriors for the
three images.
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Figure 8.4: The 90% credible region of the sky location of a strongly lensed GW singlet
(black), pair (green), triplet (blue), and quadruplet (red). There is a clear improvement in sky
localization with every GW image added. The final 90% confidence sky area is ∼ 2 deg2 in
this example. An improved sky localization might be particularly useful for lensed host galaxy
localization.
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8.7 A Note on Selection Effects

The ratio of evidence (5.32) is called the coherence ratio instead of the Bayes factor
because it does not include selection effects. The latter account for the selection bias in
the observed events due to the detectors’ sensitivity [215, 259]. Therefore, one needs
to compute the probability of detecting given events in the data, which itself depends
on the CBC merger population. The difficulties for this process lie in the uncertainties
present in the BBH and lens population [190]. Accounting for selection effects, the
evidence under the lensed hypothesis becomes [215]

p(d1, d2| det,HL) = 1
p(det |HL)

∫ ∫
dΘdφ p(d1, d2|Θ,φ,HL)p(Θ,φ|HL)

= p(d1, d2|HL)
p(det |HL) , (8.23)

where “det” means the data is conditioned on its detection, and p(det|HL) is the
probability to detect a signal under the lensed hypothesis
Through a similar derivation, the unlensed hypothesis becomes

p(d1, d2| det,HU) = p(d1, d2|HU)
p(det |HU)2 . (8.24)

Finally, the Bayes factor with selection effects is [215]

BL
U = p(det |HU)2

p(det |HL)
p(d1, d2|HL)
p(d1, d2|HU) = p(det |HU)2

p(det |HL) C
L
U . (8.25)

In practice, GOLUM can be linked to Hanabi [215] to use its selection effect ca-
pabilities or the selection effects can easily be added to the framework. In essence, it
can be done by reweighting the evidence to account for a BBH population and a lens
model. The factors in front of the coherence ratio in Eq. (8.25) are computed once since
they do not depend on the lensing parameters and only on the populations and detector
sensitivities.

8.8 Concluding Remarks Concerning GOLUM

In this chapter, we introduced a fast and accurate methodology to perform strong-lensing
analyses. It relies on recasting the joint likelihood as a conditioned likelihood. The first
image run amounts to a standard BBH parameter estimation run with an additional
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Morse factor. The second image run can be expressed as a marginalized likelihood and
further be sped up using a look-up table. Finally, the joint posteriors are obtained using
a reweighting process. This setup significantly reduces the computational time compared
to joint parameter estimation. Additionally, the method can easily accommodate more
images without significantly increasing the computation time. One can also easily add
selection effects to the pipeline or link it to existing ones, such as Hanabi [215].
The combination of speed and precision allowed by our method will likely become

crucial in the future when we expect the number of detected individual events, each of
which could, in principle, be a lensed image, to rise rapidly.

This framework could also play a complementary role to existing methods such as
posterior overlap [181] and joint parameter estimation [215, 216]. It would perform
strong lensing estimates and multiple-image analyses in an accelerated fashion – situated
between the two existing methodologies in terms of speed and precision. A three-tier
analysis may be possible, where we first analyze the strongly lensed events with a
posterior-overlap method, after which we analyze a reduced set of events with our
methodology, and finally, the best candidate(s) could be passed to the joint parameter
estimation tools.



9
On the Identification of

Individual Gravitational-Wave
Image Types of a Lensed System

Using Higher-order Modes
Identifying strong-lensed event pairs is not an easy task [181, 187, 203]. Therefore, it is
of interest to try and find characteristic features related to lensing. This is the case for
the Morse factor (see Eq. (5.22) for the link between lensed and unlensed waveforms).
This overall phase-shift is not degenerate with other BBH parameters when HOMs are
present [169, 170]. Therefore, one can try to identify it. A clear identification would
lead to smoking-gun evidence for strong lensing. Past searches have focused on the case
of single type II images [115, 116]. In Ref. [115], the authors focus on a single detected
image in a 3G detector scenario. In such a case, since the SNR for a BBH is usually very
large, many systems have a detectable HOM contribution. On the other hand, in [116],
the authors focus on 2G detectors. In addition to inquiring which systems give rise to
detectable Morse factors, they study potential biases in the parameter estimation due
to the non-inclusion of the Morse factor. For the detection and the bias, only signals
with a large inclination and high masses lead to observable effects. Moreover, they
require relatively high SNR. However, very asymmetric systems are disfavored by current
population models [46] and are also less likely to be observed.

In Ref.[117] and this chapter, we investigate the possibility of detecting type II images
when two lensed events are observed. In this case, since we are comparing one signal (a
type II image) with a reference signal (a type I image), the identification is made easier,
and the Morse factor effects are detectable at lower total HOM contributions.

9.1 Methodology

The goal of this work is to understand the circumstances under which HOMs can enable
us to identify the types of images present in a lensed pair. To explore the effect of different
HOM contributions, we tune the HOM SNR by varying the mass ratio q = m2/m1
(with m1, m2 the component masses), the inclination ι, and the luminosity distance
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DL of the events. For the first image, DL is adapted so that the network SNR (see
Eq. (4.12)) for the event is always 12. For the mass ratio, the three values considered are
0.1, 0.3, and 0.5, while for the inclination we choose the values to be 20◦, 45◦, and 70◦.
When considering lensing, we also need to specify the image types as well as the relative
magnification µrel and time delay t21 between the two images. We consider three types of
lensed systems: type I–type II, type I–type I, and type II–type II, where a type I image
has a Morse factor n = 0 and a type II image has n = 0.5. One could also have type
III images, with n = 1. However, those are expected to be rare as they require lenses
with very shallow profiles [260–262] and are therefore not considered here. Throughout
this work, the time delay between the two images is arbitrarily fixed at 11 hr while the
relative magnification is such that the SNR of the second image has a specific value. We
consider values of 12 or 25 for the second image as these represent a typical and a loud
event based on current LVK observing runs, respectively [40].

For each event, we inject the GW with the IMRPhenomXHM waveform model [263],
a non-precessing waveform with HOMS, in a network of interferometers made of the
two LIGO detectors and the Virgo detector at design sensitivity [25, 26] assuming
Gaussian, stationary noise and we perform the analyses with IMRPhenomXHM and
IMRPhenomD [104] as template waveforms. To this effect, we use the GOLUM joint
parameter estimation framework laid out in Ref. [192] and Chapter 8 for analyzing
multiple lensed images. The main idea behind this framework is to use the posterior
from one image as the prior for another image, which together with the use of a lookup
table leads to a significant speed-up in the analysis.

The priors used in our analyses and the general setup are the same as in Sec. 6 of [192].
That is, the priors for the lensing parameters are uniform for the relative magnification
and time delay and discrete uniform for the (difference in) Morse factor. Furthermore,
we choose a uniform prior for the chirp mass, the mass ratio, the coalescence time, the
cosine of the inclination angle, the polarization angle, and the coalescence phase. The
prior for the sky position is such that we have a uniform distribution for the location on
a sphere, and the luminosity distance prior is uniform in comoving volume.

9.2 Results

Here we first look at the possibility of identifying the individual image types for an
observed pair of lensed images. We investigate how our ability to do so evolves with
the HOM content of the image pair and contrast this with the scenario where only one
image is detected. We also look at the impact of analyzing an event pair with HOMs
using a waveform that does not include them. Finally, we investigate whether our ability
to discern the HOM content (and not only the image type) improves when we analyze
two images jointly.



9.2. Results 119

9.2.1 Type I–Type II Systems

First, we consider a system of type I and type II images and investigate our ability to
recover the image types; we contrast this with the case of a single type II image. Note
that when performing a joint analysis on two images, the difference in the Morse phase
can always be determined unambiguously for the systems considered (with n21 = 0.5
for the image configuration at hand). From this information, one can infer straight
away that the first image is not a type III image. Next, as a heuristic criterion to
determine that an image type is correctly recovered in the two-image case, we choose
that the posterior probability P (n1 = ninj1 |data) ≥ 0.75, where ninj1 is the injected value
of the Morse factor of the first image. Indeed, when we have no information at all
about the image type, we expect a probability of 0.5 for both image types. The value
of 0.75 corresponds to half of the probability of the disfavored image type going to the
correct one. We find this to be the case, on average, once the HOM SNR (defined as
the quadrature sum of the SNRs over individual modes and the two images) satisfies
ρHOM & 0.5. On the other hand, for a single image, we cannot immediately discard the
type III image scenario. So, there are now three image types to consider. When we
have no information about image types, each of these comes with a probability of 0.33.
Here we choose P (n1 = ninj1 |data) ≥ 0.66 as the (again heuristic) criterion to determine
that the event type is correctly identified in the case of single images; as before, this
corresponds to half of the probability of the disfavored image types going to the correct
one. This threshold is crossed when ρHOM & 1.3. Consequently, for a lensed event pair,
identifying the image types can be done at a weaker HOM contribution than for a single
type II image. A comparison of the way P (n1 = ninj1 |data) evolves with the HOM SNR
can be seen in Fig. 9.1. The decision threshold is crossed for a lower ρHOM when two
images are observed.
The unequivocal recovery of the image types for an event pair would constitute

smoking-gun evidence for lensing, as no other “standard” effect could reproduce similar
results [115, 170].

9.2.2 Type I–Type I and Type II–Type II Systems

Let us now consider other types of systems, namely, type I–type I and type II–type II.
The ability to identify the image types for a given pair depends on the types of images

present. As in the previous case, when two type II images are detected, we find that the
image types can be identified at a lower total HOM SNR than for the observation of a
single type II image.

On the other hand, we cannot identify the image types unequivocally for type I–type I
systems, regardless of the HOM SNR. When the HOM SNR is high enough, it is possible
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Figure 9.1: Comparison between the posterior probability values for the recovery of the Morse
factor, for systems made of a type I and a type II image (in blue), and for a single type II
image (in green) as a function of the total SNR in the HOMs. For the lensed system, the first
image corresponding to the type I image has a fixed SNR of 12, while the second image has an
SNR of 12 or 25. We change the HOM content of the images by using different combinations
of mass ratios and inclinations and show medians and 90% intervals for the distribution of
probabilities. For the single image systems, the SNR is fixed at 25, and we change the HOM
content by varying the mass ratio and the inclination. The image type identification is made
at lower total HOM content when two images are observed than when only one type II image
is observed. The recovery for the type II image is the same as for the type I image, as the
difference between the Morse factor is always unequivocally recovered.

to exclude the presence of a type II image, and we can say that the two images are
of the same type. However, it will be difficult to distinguish type I-type I from type
III-type III systems based on GW data alone. That said, type III imaging is expected
to be rare when considering a galaxy lens [260–262], so in that sense, the interpretation
of two type-I images will be preferred. On the other hand, the situation regarding type
III is less clear when galaxy cluster lenses are considered.
These observations show that we will likely require at least one type II image to

determine the image types based on GW data alone.

9.2.3 Using Templates Without HOMs to Analyze Systems with HOMs

Without HOMs, the coalescence phase and the Morse phase are degenerate; hence image
type identification is impossible when using template waveforms without HOMs [170].
In addition, the non-inclusion of the HOM in the analysis of events containing significant
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HOMs can lead to biases in some parameters such as the polarization angle, the phase,
and the distance [264, 265]. Since this bias will change depending on the antenna response
of the detector, the two images making up the lensed system are biased differently. And
indeed, for a type I–type II system, when the HOM content is strong (e.g. ρHOM = 3.5),
our framework is not able to detect lensing any longer when the analysis is done with
IMRPhenomD.

9.2.4 Improved Probing of HOMs with Lensing

Finally, we compare parameter estimation results for a type I–type II image system
with those for a single unlensed image, both having the same total SNR (with a value of
16.97 for

√∑
i=1,2 SNR2

i , where i runs over the images) and ρHOM/ρtot = 0.14. We use
the same BBH parameters for the different types of systems, except for the polarization
angle and the (apparent) luminosity distance. In that sense the total HOM content is
the same in both scenarios, enabling us to probe whether observing a lensed pair of
events leads to better inference on the HOMs.

As an important example, HOMs allow us to better constrain the orbital inclination,
as seen in Fig. 9.2. Hence, detecting two lensed images with the presence of HOMs
would allow us to study the HOM content with greater precision. This is likely to have
implications, for example, for the use of GW lensing in cosmology [193], or testing GR
by probing the polarization content of gravitational waves [201].

9.3 Summary and Conclusions

In this chapter, we have focused on the impact lensing and HOMs can have on each
other when observing a lensed image pair. We have shown that our ability to identify
the strong lensing image types greatly improves when jointly analyzing two images as
opposed to one. If we were to identify the presence of type-II images, it would count as
smoking-gun evidence that the event is indeed lensed. In addition, we have confirmed
that the presence of a type II image is required to unequivocally identify the observed
image types based on GW data alone. We have also shown that when the HOMs play an
important role, their non-inclusion in the lensing analysis can lead to the non-detection
of a lensed pair. Finally, we have shown that strongly lensed gravitational-wave events
allow us to study the HOM content more accurately than similar non-lensed gravitational
waves, likely improving several scientific applications for strongly-lensed GWs.
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Figure 9.2: The posterior distribution for the inclination (ι) and the mass ratio (q) for an
unlensed event (in green) and a lensed image pair (in blue). The events have the same (total)
network SNR (of 16.97), and the same ρHOM/ρtot (of 0.14). While the posterior on the mass
ratio is not significantly better, the one on the inclination is ∼ 2× narrower. Hence, the support
of the posterior in the q-ι plane has a smaller surface for the lensed scenario, showing that the
HOMs are better constrained when we observe a lensed image pair than in the case of a single
image with the same total HOM content.
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Ordering the Confusion: a Study
of the Impact of Lens Models on

Gravitational-Wave Lensing
Detection Capabilities

Searches for strong lensing are essentially looking for events with the same frequency
evolution. However, there are uncertainties about the measured GWs’ characteristics.
Therefore, when too many events are present in the data, the FAP increases rapidly [187,
202, 266].

However, one can have some expectations about the lens. For example, one can
think the lens is most likely a galaxy. In this case, it is possible to compute expected
distributions for the lensing parameters [181, 187, 204]. From this, one computes lensing
statistics, representing how likely it is to observe the (apparent) lensing parameters
under the lensed and unlensed hypotheses; see Eq. (5.36).

In some previous works [181, 187], it has been shown how using this ratio in parallel
with posterior overlap can reduce the FAP. In Ref. [203] and this chapter, we go a
step further by working this statistic into the coherence ratio in a post-processing step,
enabling one to test several models without needing to redo the nested sampling run
several times. We then proceed by showing how using a more precise method such as
GOLUM decreases the FAP, and how the coherence ratio including information about
the lens makes for a better discriminator when performing lensing searches. We also show
the risk of taking the wrong model, where one can worsen the situation and increase the
FAP.

10.1 Including the Lens Statistics in the Coherence Ratio

The coherence ratio as presented in Eq. (5.32) accounts for similar frequency evolution of
the signals but, generally, does not assume anything particular on the lensing parameters.
So, searches use uninformative priors on the lensing parameters to not bias their results
towards a pre-defined model. However, one may want to constrain the lensing parameters
given some models. This can be done by using adapted priors. However, doing this means
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one has to redo the parameter estimation runs for each model considered. Therefore, it
is more convenient to constrain the lensing parameters after the analysis is done.

The inclusion of a lens model in the coherence ratio can be done as follows. If ZMHI is
the evidence for a given model M under the hypothesis HI , and ZAHI is the evidence
obtained from the model-agnostic analysis for the same hypothesis, then

ZMHI =
〈
p(ϑI |M,HI)
p(ϑI |A,HI)

〉
p(ϑI |D,A,HI)

ZAHI . (10.1)

In this expression, ϑI represents the set of all parameters needed to describe the data
under hypothesis I, p(ϑI |M,HI) and p(ϑI |A,HI) are the probabilities of observing the
parameters in the model and the analysis for a given hypothesis. p(ϑI |D,A,HI) is the
posterior distribution obtained from the model-agnostic analysis for data D.

Indeed, for a given hypothesis (not written explicitly here to ease the notation), the
evidence for a model M is

ZM =
∫
dϑ p(D|ϑ)p(ϑ|M) , (10.2)

where D is the data, which can be composed of several data streams. However, using
Bayes’ theorem, the posterior for another situation A is

p(ϑ, |D,A) = p(D|ϑ)p(ϑ|A)
p(D|A) = p(D|ϑ)p(ϑ|A)

ZA
. (10.3)

So,

p(D|ϑ) = Z
Ap(ϑ|D,A)
p(ϑ|A) . (10.4)

Combining Eqs. (10.2) and (10.4), one gets

ZM =
∫
dϑZA p(ϑ|D,A)

p(ϑ|A) p(ϑ|M)

= ZA
∫
dϑ

p(ϑ|M)
p(ϑ|A) p(ϑ|D,M)

=
〈
p(ϑ|M)
p(ϑ|A)

〉
p(ϑ|D,A)

ZA . (10.5)

The last line corresponds to Eq. (10.1), as announced.

In practice, one does not solve the integral over the ratio of probabilities but uses the
samples obtained from the analyses to compute the weights for each set of samples and
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then takes the average (hence performing a Monte Carlo integration). So,

ZMHI = 1
N

(
i=N∑
i=0

WM
A (ϑiI ,HI)

)
ZAHI , (10.6)

where N is the total number of samples, and

WM
A (ϑiI ,HI) = p(ϑiI |M,HI)

p(ϑiI |A,HI)
(10.7)

is the ratio of probabilities between the model and the analysis for a set of parameters i.
Here, the {ϑi}i=1,...,N samples are drawn from p(ϑI |D,A,HI).
The model-dependent coherence ratio is then obtained by taking the ratio of the

evidence for the lensed and the unlensed hypotheses for the model:

CLU

∣∣∣∣∣
Model

=
ZMHL
ZMHU

. (10.8)

In the end, since the reweighting process is much faster than the parameter estimation
analysis, this approach enables one to adapt the results for different models without
significantly increasing the computational burden. In addition, if the initial coherence
ratio is low, one already knows the event is not lensed since the parameters should match
regardless of the lens model. So, the model-dependent part of the analysis is not needed.
A good strategy would be to first carry out the parameter estimation for all the events
and then apply the reweighting to account for the effect of the various lens models for
the events with a high coherence ratio.

10.2 Injections and Setup of the Study

10.2.1 Binary Black Hole Population

Here, we study the impact of the lens model included in the coherence ratio computation
on our ability to differentiate between lensed and unlensed events. Since the fraction of
strongly-lensed events is relatively low, O(10−3) [e.g., 187, 267], we focus on making a
large unlensed background with lensed events on top. Therefore, we generate 100 unlensed
BBH mergers. Their masses are sampled from the PowerLaw + Peak distribution [46]1 2.

1For all the models in this study, we took the median parameter values found in [268].
2The PowerLaw + Peak model, as well as the other models shown in [46], present a secondary peak
around 30M�. This can lead to more events with closer masses and an increased FAP for lensing.
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The spins and redshifts are sampled from the ones observed by the LVK collaboration [46].
The sky location is sampled from a uniform distribution over the sky, the inclination
is uniform in cosine, and the phase and polarization are uniform in their domain. We
take the time of arrival for the unlensed events to be uniform in a year. For each event,
we draw randomly from one of the following cases - the event is observed by i) the two
LIGO detectors ii) one of the LIGO detectors and the Virgo detector, or iii) by the three
detectors jointly. It is important to vary the number of detectors since fewer detectors
lead to larger uncertainty on some critical parameters, such as the sky location. In turn,
it leads to more overlap between the posteriors and higher coherence ratios for unlensed
events. For each parameter set drawn from the distribution, we take the PSD to be that
of one of the events in GWTC-2.1 [269, 270] or GWTC-3 [40, 271] and generate colored
Gaussian noise from it. We then inject the GW strain into the noise. This leads to a
realistic scenario for detections where the number of detectors and the noise realization
are different from one event to the other3. The change in the observation conditions
between events is important as the differences in noise and number of detectors change
the accuracy we have from one event to the other, impacting the observed detection
statistic.

From these 100 unlensed events, we make 4950 unlensed pairs. We also add 50 lensed
event pairs. For the first image, the masses, spins, and apparent luminosity distances
are drawn from the same distributions. We then generate the second image by selecting
the relative magnification and the time delay from theMµ,t parameter catalog [204].
From here on, we take these distributions as the true lensing parameter distribution.
We analyze the different events under the unlensed hypothesis using BILBY [149],

and the events under the lensed hypothesis using the GOLUM framework [192] which
provides fast and accurate joint parameter estimation for strong lensing. The two
parameter estimation pipelines are used with the DYNESTY sampler [151].

10.2.2 Population Analyses

Using our background, we perform different analyses to understand the process of
identifying the lensed events in an unlensed background better. For each event pair,
we perform a posterior overlap analysis [181]4 as well as a joint parameter estimation
run [192]. Since the posterior overlap method considers only a subset of the posteriors,
while GOLUM requires the strains to be consistent, this is a way to check the effect of
using a more accurate parameter estimation tool.

3Here, the realistic observation conditions apply to the changes in the number of detectors and noise
from one event to the other. The proportion of lensed and unlensed events is not realistic, but the
high number of lensed events is needed to define the threshold for the FAP.

4The consistency between posteriors is computed for the component masses, the sky location, the
spin amplitudes, and tilt angles, and the binary’s inclination, similarly to the approach followed
in [172, 188].
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In a second step, using the coherence ratios obtained from the joint parameter
estimation runs, we reweight them for several models using the procedure explained in
Sec. 10.1. We use data from three different catalogs for the lensed models: the Ht time-
delay distribution [181], theMµ,t time-delay and relative magnification distribution [204],
and the Wµ,t time-delay and relative magnification distribution [187]5. ForMµ,t and
Wµ,t, we do the analysis once with the two lensing parameters included and once with
only the time delay. This enables us to probe the impact due to the addition of the
relative magnification. A comparison of the time delays and relative magnification
distributions for the three models is given in Fig. 10.1.

We also introduce four artificial models which represent various observation scenarios.
We denote these models A, B, C, and D. Model A is constructed as a fake galaxy-cluster
lens catalog, where we focus on larger relative magnifications and time delays. The two
lensing parameters follow a scaled beta distribution:

B(x, p, t,m,M) = m+ (M −m)β(x, c1, c2) , (10.9)

where β(x, c1, c2) is the usual beta distribution with domain 0 to 1, and

c1 = 1 + t
p−m
M −m

c2 = 1 + t
M − p
M −m

.

In this expression, M and m are the maximum and minimum of the distribution, p is its
peak, and t is a shape factor. For the relative magnification in model A, the distribution
peaks at 10 and has minimum and maximum values of 2 and 30, respectively. The shape
factor is 5. For the time delay distribution, the peak is at 3 months, t is 5, and the
minimum and maximum values are 3 days and 1 year, respectively. Model B uses the
same relative magnification distribution as theMµ,t catalog but has a different time
delay distribution. We take it as a Gaussian peaking at 4 months with a standard
deviation of 1.5 months. This example illustrates the impact of a mismodeling of one
of the two parameters. The last two models (C and D) resemble the Mµ,t model as
they focus on the same region of parameters space. However, model C has loose bounds,
with µji ∈ [0.02, 32] and tji ∈ [30 s, 400 day], while model D has tighter bounds, with
µji ∈ [0.5, 3] and tji ∈ [2 hr, 60 day]. These two models represent what would happen
if one uses tight or loose bounds on the lensing parameters to be more conservative or
detect more events respectively.
For each of these models, the probability density in the (µji, tji)-plane is obtained

by sampling from the distributions for the individual parameters and performing a
KDE reconstruction. The consequence of this is mainly to smoothen the edges of the

5We used the code base from [187], but adapted the detector networks and their sensitivity to match
our situation.
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Figure 10.1: Top: Time delay probabilities for the different models. One sees that the SIS
model (Ht) peaks at lower values before dropping fast when going to higher values. The
SIE-based models have a wider probability distribution. Bottom: Relative magnification
distributions for the two SIE-based models. The two distributions are consistent, and one sees
that adding shear leads to a broader distribution.
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Model Description of the model
Mµ,t SIE-based model for relative magnifications and time delays described

in [204].
Mt Same asMµ,t but where we only consider the time delay distribution.
Wµ,t SIE + shear-based model for the relative magnifications and time

delays described in [187].
Wt Same as Wµ,t but where we only consider the time delay distribution.
Ht SIS-based model for the time delay described in [181].

Model A Toy model representing galaxy-cluster lenses with scaled beta
distributions for relative magnification (peak at 10 with minimum
of 2 and maximum of 30) and for time-delay (peak at 3 months,
minimum of 3 days and maximum of one year).

Model B Toy model with same µji distribution asMµ,t but with a shifted
time delay (G(4 month, 1.5 month)).

Model C Toy model based onMµ,t but using broader bounds on the lensing
parameters, with µji ∈ [0.02, 32] and tji ∈ [30 s, 400 day].

Model D Toy model based onMµ,t but using tighter bounds on the lensing
parameters, with µji ∈ [0.5, 3] and tji ∈ [2 hr, 60 day].

Table 10.1: Summary of the different lens models used in this study.

distributions. A summary of the various lens models used in this work is given in
Table 10.1.

For the µji and tji distributions of the unlensed events, we use the distributions given
in [204] for all of the models except for Ht. These distributions correspond to a census
of magnification (i.e. distance) ratios and time delays for the unlensed pairs made from
the BBH population and depend on the specific assumptions of the BBH population.
For the Ht scenario, we use the same approach as in [181], where the times of arrival of
individual unlensed events follow a Poisson process. For the unlensed cases in [204] and
in [181], the probability density is higher for longer time delays when compared to the
lensed scenario (see Fig. 2 in [204] and Fig. 2 in [181] for a representation).

10.2.3 Determining Lensed Candidates

To determine whether events are lensed, we need to use some threshold on the detection
statistics. One way of doing this is to use a fixed threshold. For example, one could
claim an event to be a lensed candidate if ln (C) > 2, where C is any detection statistic.
This is similar to the approach considered in [272]. However, this is a generic approach
and does not account for the characteristics of the data we are considering. Unlensed
events could also cross this threshold by chance, leading to false alarms. Instead, in this
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work, we take an approach similar to the one used in [202] with the FAP6 given by

FAP = #Unlensed > X
#All Unlensed . (10.10)

Here the numerator is the number of unlensed pairs having their detection statistic
above X, a threshold defined based on the observations in the lensed scenario, and the
denominator is the total number of unlensed event pairs.

In this work, X is the 5th percentile of the detection statistic for the lensed foreground.
Using this method, we can fold in the effect of the models on both the lensed and the
unlensed populations. For example, if the model favors the unlensed events and disfavors
the lensed ones, its impact on the statistics is such that their values increase for the
unlensed events. On the other hand, they decrease for the lensed events, leading to a
smaller value of the fifth percentile. Therefore, #Unlensed > X increases, and the FAP
increases.
In this work, other information is also used to characterize the performance of the

detection statistic for a given model. The receiver operator characteristics (ROC) curve
represents the ability of the model to differentiate between lensed and unlensed pairs. It
represents the efficiency (the fraction of lensed events passing the detection threshold)
versus the false-positive probability (FPP; the fraction of unlensed events passing the
detection threshold). So, one wants the highest possible efficiency for the lowest possible
FPP.
Another way to represent the performance is to use the complementary cumulative

distribution function (CCDF) of the unlensed background with the cumulative density
function (CDF) of the lensed foreground. Ideally, one wants the CCDF to drop as fast
as possible, while the CDF for the lensed foreground should be significant at values as
high as possible. The overlap between those two curves will represent the confusion
region, where the value of the detection statistic is such that it can correspond to lensed
and unlensed events. The smaller this region, the easier it is to distinguish between the
two hypotheses.

10.3 Results

In this section, we detail the results obtained in different conditions. First, we compare
the FAP between approximate and more precise methods. Then, we look at the effects
of model inclusions, going from looking at the impact of the correct model to that of the
toy models.

6In [202], this is called the FAP per pair, as it corresponds to the probability that a given event pair is
classified as lensed while being unlensed.



10.3. Results 131

10.3.1 From Posterior Overlap to Joint Parameter Estimation

First, we verify how moving from posterior overlap to joint parameter estimation modifies
the distribution of the corresponding detection statistics. For that, we compute the
overlap between the parameters for all the events in our catalog (lensed and unlensed)
using the method from [181] as well as the coherence ratio using GOLUM [192].
The comparison between the two is given in Fig. 10.2, where a ROC curve is shown

(left panel) as well as a scatter plot (right panel) of the detection statistic for the two
methods. These plots show there is a real gain in using a framework like GOLUM, where
one ascertains more stringently the correlation between the signals. Based on the ROC
curve, the FPP for a given efficiency is reduced when going from one framework to the
other. This is also evident from the lower number of unlensed events with ln (CLU) > 0 for
GOLUM compared to the posterior overlap. For the lensed events, the two frameworks
agree relatively well. Taking the lensing detection threshold as the 5th percentile of the
lensed detection statistic distribution, FAP = 0.75% for GOLUM and FAP = 2.9% for
posterior overlap, showing that seeking for better correlation between the parameters of
the GW signals leads to a lower risk of misidentifying an unlensed event as a lensed one.

Based on this observation, one could advocate using a fast joint parameter estimation
tool such as GOLUM to filter out the events before doing more extensive searches.
Usually, a GOLUM run would still require the full analysis of the first image, including
the Morse factor information. This corresponds to a standard parameter estimation
run and is relatively expensive. However, the inclusion of the image types becomes
important when there is a strong HOM contribution in the observed event [115–117, 170].
So, a preliminary strategy could be to use the posteriors obtained by the usual LVK
pipelines [40], such as BILBY [149], and perform the analysis of the second image using
those posteriors, by-passing the more computationally costly first image run. Under the
assumption that the HOMs are weak, the distributed coherence ratio [192]

CL
U = p(d1|HL)

p(d1|HU)
p(d2|d1,HL)
p(d2|HU) (10.11)

can be approximated by
CL

U '
p(d2|d1,HL)
p(d2|HU) (10.12)

as the ratio of evidence for the first image is O(1).
With this method, only the second image run would be needed in GOLUM , and it

would take O(30 min) at most while enabling a better reduction of the background. Of
course, if an event is flagged with a significant HOM contribution, one would necessarily
have to redo the joint parameter estimation completely to make sure that nothing was
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Figure 10.2: Left: ROC curves for the GOLUM and posterior overlap methods. Since the
curve for GOLUM is more to the left and reaches one faster, it is better suited to determining
whether events are lensed. Right: Comparison between the ln(CLU ) and the ln (CPO) statistics
for the lensed and unlensed events in our catalog. The horizontal purple dash-dotted line is
the 5th percentile for the lensed events in the posterior overlap analysis, while the vertical
orange dash-dotted line is the same quantity for the lensed events analyzed with GOLUM.
We see that for the lensed events, the two methods seem correlated. However, there is a clear
reduction in the number of high-significance unlensed pairs when using GOLUM .
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missed because of potential biases [116, 117]7.
Some preliminary investigations performed on our catalog show that most of the events

are well recovered without accounting for the Morse factor. More extensive comparisons
are left for future work.

10.3.2 Including the Correct Model

Once the catalog has been analyzed and a coherence ratio obtained for all the pairs, one
can include the effect of lensing statistic in the final results using Eq.(10.1). This should
decrease the confusion region where the background and foreground overlap, and hence
the FAP [181, 187, 202]. In this section, we analyze what happens when the true model
is used. In our case, this means the Mµ,t model. We denote the detection statistic
associated with theMµ,t model CMµ,t .
A comparison between the background CCDF and the foreground CDF is shown in

Fig. 10.3. One sees that the overlap region between the lensed and unlensed distributions
is reduced when including the lensing statistics. Indeed, the crossing between the CCDF
of the unlensed events and the CDF of the lensed events happens for a higher value and
encompasses a smaller area. The unlensed background is decreased for the higher values
of CL

U, but the tail is not pushed back entirely. This happens because a small number
of unlensed events is promoted to a higher CMµ,t when theMµ,t information is added.
Indeed, amongst the events starting with ln (CL

U) close to zero, some have apparent
relative magnifications (i.e. their distance ratios) and time delays more compatible with
the lensing hypothesis than the unlensed hypothesis purely by chance. As a consequence,
those are not pushed to a lower value but a slightly higher one, mimicking the lensed
scenario. However, such events are rare and there is an effective decrease in the number
of unlensed events with a high significance. For instance, we go from an FAP = 0.75%
for the CL

U to an FAP = 0.07% for the CMµ,t statistic. In the end, this confirms that the
inclusion of the lensing statistics helps decrease the FAP and makes for more confident
detections. This is consistent with previous studies [181, 187, 202, 204].

We note that our values seem a bit more pessimistic than those presented in Ref. [202]
because of the following two main reasons. The first one is the number of events analyzed
in this work. Indeed, since we need to perform parameter estimation on all of the events
and pairs, we do not consider as many events as analyzed in [202]. However, the goals
of our works are different and yet complementary. In [202], the goal was to show how
difficult it is to identify genuinely lensed pairs in a large number of samples and to show
how the FAP evolves with the number of samples. Our goal is to study the effect of the
addition of a specific lens model in identifying lensed pairs in an unlensed background.
Secondly, we consider more realistic and complex observational conditions. We use

7We note that if the HOM content is strong enough to significantly bias the GOLUM analysis, it
would also bias the posterior overlap analysis, where the samples are usually taken from a standard
unlensed parameter estimation runs.
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Figure 10.3: Comparison of the CCDF for the unlensed events (solid lines) and the CDF
for the lensed events (dashed lines) for the CL

U (blue) and the CMµ,t (red) statistics. The
vertical dotted lines represent the 5th percentile of the lensed distribution, which can be seen
as the threshold above which one can consider an event to be lensed. We see that the fraction
of unlensed events with a statistic higher than this threshold is reduced significantly when
including the lensing statistics.

PSDs coming directly from the third observation run and vary the number of detectors
observing different events. This leads to worse constraints on some parameters and more
room for matching unlensed events by chance. Nevertheless, both studies suggest that
it is difficult to identify lensed pairs in a background of unlensed events, even if the
inclusion of a lens model can help in reducing the FAP.

10.3.3 Using Other Models

In the previous section, we have shown that including the expected distributions for the
relative magnification and the time delay in the detection statistic helps disentangle the
unlensed background and the lensed foreground. However, here, we use the underlying
model used to generate the lensed events. When performing real lensing searches, the lens
population characteristics are not known accurately (the lens properties for a galaxy-scale
or a cluster-scale lens are very different [180, 182–184, 273]). In addition, the models
for a given type of lens can also be different. For example, several types of density
profiles exist for a galaxy lens, such as SIS [208], SIE [210], and SPEMD [274]. Although
some are favored by electromagnetic observations [210], there is no guarantee that the
assumed model is the best representation of the true lens population in the Universe,
and even the best-fitting models are subject to simplifications and inherent degeneracies.
For example, we know that our prediction of the relative magnification is less robust
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than the one for the time delay. The former can be impacted by smaller objects present
in the macro-lens [e.g., 173, 275], which could lead to smeared distributions or secondary
peaks. Therefore, we look at what happens when we use a different lensing statistic
catalog and when we use only the time delay coming from the lensing statistics.

10.3.3.1 Effect of Shear

Here, we focus on the difference in detection statistics when including shear in the model
while the underlying model has no shear, comparing the results from theMµ,t and Wµ,t

models. We note the detection statistic based on the Wµ,t model CWµ,t . As shown in
Sec. 10.1 and Fig. 10.1, the two have relatively close distributions, and the main effect
of shear is to widen the relative magnification distribution. We also note that the Wµ,t

statistic has a slightly higher probability for large time delays.
A comparison of the detection statistics for the unlensed and lensed events for the

two models is shown in Fig. 10.4. One sees the two statistics agree quite well, with a
few exceptions. For the most part, the unlensed background is unchanged between the
two in the sense that most of the unlensed events for one model are also categorized
as unlensed for the other model. For CWµ,t , there are a few events with a low CMµ,t

pushed to higher statistical values. This happens when the time delays are close to some
hundred days and the relative magnification is large. Indeed, in that case, one is in the
highest probability values of the model and there is a boost due to the lensing statistics.
It is also seen for the CMµ,t statistic where a few events are promoted. This happens
for events with short time delays and magnifications close to 1. Still, only a few of the
events are significantly changed.

For the lensed events, we see that a few have CWµ,t < CMµ,t . This is because the peak
probability density is reached for different values of the time delay and the relative
magnification. Still, no lensed event is discarded. This decrease in significance for
some events leads to an increase in the FAP, as the 5th percentile has a lower value.
So, more unlensed events have their value above the threshold. For the CWµ,t statistic,
FAP = 0.095%. As a consequence, doing the same analysis with the same density profile
as the underlying distribution but with slight variations in the model is still better than
using no model at all. Indeed, the FAP is reduced significantly for the Wµ,t model
compared to the statistics for the coherence ratio. This means that small systematics in
the lens model should not hinder the benefits coming from the inclusion of a lens model.

10.3.4 Using Only the Time Delay

As mentioned previously, the time delays are less sensitive to systematics for a given
model compared to the relative magnification. Therefore, it can be appealing to use
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Figure 10.4: Comparison of the foreground and background values for the CMµ,t and CWµ,t

detection statistics. The orange dash-dotted line is the value of the 5th percentile for the CMµ,t

statistic for the lensed pairs, while the purple one is the same quantity for the CWµ,t statistic.
For most events, the two models agree reasonably well. Some events have a higher significance
for one model or the other. This happens when the apparent lensing parameters are in a high
probability region of the model. For the lensed events, the two models agree well, even if
there is a slight decrease in significance for some events when using the Wµ,t distributions.
Because of that, the 5th percentile for the lensed event will decrease a bit and the FAP is
slightly increased for the Wµ,t model. However, the difference is small enough to not impact
significantly the benefit of including a lens model in the detection statistic.

only the time delay to reweight the coherence ratio.
To investigate this, we analyze the lensed and unlensed event pairs using the time

delay distributions obtained for the Mµ,t and Wµ,t models and note these detection
statistics CMt and CWt , respectively. In addition, to study the impact of an error on the
lens density profile, we include the time delays obtained from the Ht model. In this
model, the lens profile is an SIS instead of an SIE, leading to a different shape of the
time delay distribution (see Fig. 10.1).
A comparison of the performances for the three models, the CL

U and theMµ,t model
is shown in Fig. 10.5. There is no major difference between using the time delay for
the SIE or the SIE + shear models, with a small difference at lower FPP, which comes
from the lower probability for lower time delays. Still, we see that in this case, the
difference between the models is smaller than for the one with the relative magnification
included. The two models are slightly less efficient than the correct model including
the relative magnification and the time delay. For theMµ,t model, some events have
a compatible time delay but not a compatible relative magnification. Therefore, they
have a lower CMµ,t . Those events are not flagged here and thus increase the background
FPP. A comparison between theMµ,t model with and without magnification and the
coherence ratio in terms of CDFs and CCDFs for the background and foreground is
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Figure 10.5: ROC curves for the different models with only the time delay included. The
curves for the CL

U andMµ,t with relative magnification and time delay are added for comparison.
Using the time delay only leads to a slight loss in search performance. Still, the picture remains
relatively close, making the identification of lensing easier. On the other hand, the model with
an entirely different density profile for the lens (Ht) has a significantly poorer performance,
doing even worse than without the inclusion of a lens model.

given in Fig. 10.6. The FAPs for theMµ,t and Wµ,t models with only the time delay
included are 0.19% and 0.21% respectively. This is higher than the values for the same
models with the relative magnification included. On the other hand, we see that the
picture is much worse when including the wrong density profile with a very different
shape in probability. Indeed, the curve found in the ROC plot from Fig. 10.5 is not
comparable to the one from the other models. It is worse than for the case without a
model as the curve for the Ht-based model is below the one without a model for nearly
all FPPs (except the highest values, where the curves are comparable). This can also be
seen in the FAP, where, for CH, FAP = 1.1%, which is higher than for the CL

U statistic.

A closer comparison between CL
U and CH is given in Fig. 10.7, where we represent the

values for one statistic compared to the values for another one. The two are not entirely
correlated for higher values and one has more unlensed pairs with a high CH compared
to CL

U. So, it is harder to distinguish between lensed and unlensed events than without a
model. In the end, this means that including an erroneous lens profile can harm lensed
event identification. However, if the lensed event present in the data is a “golden” lensed
event (with a very high CL

U and a relatively short time delay), the wrong statistic will
still enable one to detect such an event. In this case, the detection is likely to be less
confident than using the correct statistic.



138
10. Ordering the Confusion: a Study of the Impact of Lens Models on

Gravitational-Wave Lensing Detection Capabilities

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
ln(C)

10−3

10−2

10−1

100

ln(CLU)

ln(CMµ,t
)

ln(CMt
)

Figure 10.6: Comparison of the CDF and the CCDF for the background and foreground
for theMµ,t model with and without the relative magnification included. The dotted lines
represent the 5th percentiles of the statistics for the lensed foreground. We also represent the
CL

U distributions for comparison. We see that the non-inclusion of the relative magnification
leads to a larger confusion region. However, it still performs much better than without a lens
model.
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Figure 10.7: Comparison of the detection statistics for the Ht model and no model at all (CL
U),

with the 5th percentile (purple dash-dotted line for ln (CH), and red dotted line for ln(CL
U)).

One sees more unlensed events with more significant statistics for the wrong model. In addition,
more unlensed events cross the 5th percentile threshold, leading to a higher FAP.
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10.3.5 Analyses Using the Toy Models

In this section, we analyze the results obtained when including the toy models. These are
also important as they represent some hypothetical scenarios of interest and illustrate
what can happen if there are major errors in the model (for example, using an entirely
biased model).

10.3.5.1 Effect of Important Errors in the Model

Here, we look at the results for models A and B, where one or two of the lensing
parameters are strongly biased to higher values. Such scenarios could be observed for
some galaxy-cluster lenses [e.g., 182–186]. The statistics for models A and B are written
CModA and CModB, respectively.
A comparison of the CDF and CCDF for model A, model B, and the CL

U is given
in Fig. 10.8. The two models have worse results than when no model is used. The
effect is more important than for the Ht case. Indeed, here, not only the shapes of the
distributions for the time delay are different, but they are also focusing on an entirely
different region of the parameter space. In this case, the identification would be nearly
impossible for the two models. For model B, the relative magnification has the same
distribution as the underlying distribution. Still, one sees the resulting model is worse,
and having one correct parameter out of two is not enough to compensate when the
other is strongly biased. Notably, one sees that some of the lensed pairs get a negative
ln (CModA) or ln (CModB). In such a case, lensing identification would become extremely
difficult as a significant part of the unlensed events has a higher significance than some
of the lensed events. For model A, we observe a FAP of 1.9%, while for model B it is
2.2%. The higher value for the second model is explained by a higher number of unlensed
events pushed towards a larger value. Indeed, the unlensed events tend to have larger
time delays, which are more compatible with the lensed distribution for this model.
The situation represented by these models could be the one faced when analyzing a

strongly-lensed event with one type of lens in mind (for example, a galaxy cluster model)
while the actual lens is something else (for example, a galaxy lens). Since one does
not know the true nature of the lens beforehand, performing an entire analysis based
on a single model could hinder the detection of a genuinely lensed event. In addition,
in our situation, the FAP is computed when knowing the underlying true distribution.
However, in reality, this is not the case. Therefore, if one is not careful and uses an
entirely biased model, it would have a lot of high-significance unlensed events, which
could lead to false claims. The only way to ascertain the event’s nature would be to
perform a background study to verify the significance of the candidate event. So, one
would have to perform an extensive injection study and use the state-of-the-art BBH
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Figure 10.8: CDF and CCDF for the toy models A and B, and the coherence ratio. In
this case, one sees the models are performing worse than when no model is included. This
shows that including a model that would be entirely wrong compared to the true underlying
distribution would make the identification of the lensed events nearly impossible. Such a case
could happen when analyzing a galaxy-lensed event with a galaxy cluster lens or vice-versa.

population and lens distributions. For example, one could use the BBH population given
by the LVK collaboration [46] and a lens distribution taken from a catalog, and compute
the statistical significance of the candidate pair. This exercise would be analogous to the
one presented in this work, except that the FAP would be represented by the number
of unlensed pairs with a detection statistic higher than the lensed candidate under
consideration8.
Finally, since the time delay distribution for galaxy cluster lensed events overlaps

much more with the distribution expected for unlensed events, we expect the effect of the
lensing statistics to be reduced. Hence, robust identification of a galaxy cluster lensed
event would be more difficult than for a galaxy lens (see also [187] for similar results).

10.3.5.2 Effect of the Bounds on the Lensing Parameters

In this section, we focus on the alternative models C and D, which have broader and
tighter bounds, respectively, than theMµ,t model but focus on the same region of the
parameter space. This could be seen as a proxy for using the highest and lowest bounds
on the model parameters. Instead of taking a hard cut on the bounds and keeping the
same probability density, we rescale it to the new bounds. Therefore, in practice, we

8This would be one of the safest ways to ascertain the lensed nature of the observation but would
also be computationally extensive, as a significant number of parameter estimation runs would be
required.
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Figure 10.9: CCDF for the unlensed background and CDF for the lensed foreground for
models C and D, and Mµ,t. The dotted lines represent the 5th percentiles of the statistics
for the lensed foreground. The pink curve for the lensed model D foreground extends to very
low values because of two lensed events with their lensing parameters outside of the bounds
considered for this model. When those events are neglected (or considered as background),
one gets the blue dashed curve. In this case, we see the confusion background gets much closer
to the one obtained for theMµ,t model. Model C has larger bounds and a diluted probability
density in its application domain. Therefore, we get a lower significance for the lensed events.
Models C and D could represent the effect of taking the upper and lower bounds on some
model parameters.

dilute the probability density for model C and condense it for model D. We denote the
detection statistic CModC and CModD for models C and D, respectively.

A comparison of the performances for models C and D, and forMµ,t is given in Fig. 10.9.
One sees that the change in bounds has consequences on the model’s performance. Indeed,
the two alternative models have a larger confusion background, making for a harder time
differentiating lower significance lensed pairs from higher significance unlensed pairs. For
model C, since the bounds on the lensing parameters are larger, more of the unlensed
events have lensing parameters compatible with the lensed hypothesis. However, since
the probability density is reduced, the unlensed events get less promoted, and we get a
reduction of the background for the very high values. On the other hand, the lensed
events get a smaller boost from the lensing statistics and therefore reach lower values.
As a consequence, we also observe an increase in the FAP, with FAP = 0.47%. This
value remains lower than without including any model. However, it is more difficult to
confidently identify the lensed events compared to when the exact injected model is used.
For model D, the FAP increases as well, since FAP = 0.64%. This is lower than without
including any models, but it is still higher than the FAP obtained from using the true
model. This happens mainly because of a decrease in the 5th percentile for the lensed
distribution. Out of the 50 lensed pairs, 2 have lensing parameters that have values
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outside of the bounds covered by model D. Therefore, they get a significant reduction
in their statistic, which decreases the percentile in return. Finally, since there are still
some unlensed events with compatible apparent lensing parameters, they get promoted
to higher values and end up above some of the lensed events. Therefore, the background
extends to values comparable to those seen forMµ,t. If we remove the 2 events with
negative ln(CModD), the FAP becomes 0.05%. This lower FAP is a consequence of higher
values for the lensed events combined with a slight decrease in the values for the unlensed
background.
This experiment shows that there is no major consequence in making errors on the

bounds of the model. However, taking more stringent bounds leads to a loss in the
number of detected lensed events, with some events entirely discarded. Still, if one does
not account for the lensed events with a negative ln(CModD), the FAP for the remaining
events decreases. On the other hand, using more conservative bounds helps retrieve all
the events but leads to an increase in the FAP as the effect of the lensing statistic is
weakened, making it less impactful.

10.4 Discussion on Triply and Quadruply Lensed Images

Typical galaxy-scale lens systems show doubly or quadruply lensed sources. For all of
the doubly lensed GW signals, we need to study the detectable image pairs. However,
if there exists a quadruply lensed GW source in the data, we could analyze either the
brightest pair, the brightest triplets, or all four lensed images of the GW source. Needless
to say, if we correctly identify 3 or all 4 images of the quadruplet, it would be a robust
means of lowering the FAP. Indeed, the chances of having matching parameters between
three or four unlensed events are much lower. Adding then as a constraint that the
apparent lensing parameters match the theoretical distributions for a lens model makes
it very unlikely for unlensed events to be mistaken for lensed ones. However, there are
multiple reasons why this becomes increasingly challenging to implement.

Here, we have focused on analyzing only the brightest image pairs from the quadruplets
for the following reasons. Firstly, it is computationally lighter to analyze the constraints
from a pair of images rather than those from triplets or quadruplets. Secondly, the
fraction of lens systems where a pair of images will be super-threshold (i.e. meet the
detectability criteria) is much higher than the triplets or quadruplets for the current
generation of detectors. For example, we find that about 50% of lens systems will have
detectable triplets and 16% of the lenses will have all four images detectable assuming
Advanced LIGO at design sensitivity. In contrast, these fractions become 70%−90% for
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the third-generation detectors 9. Thirdly, if we consider the analysis of sub-threshold
lensed counterparts together with super-threshold pairs of events, we are likely to
introduce many uncertainties since the parameter estimation of the sub-threshold events
will not be robust. It is then unclear how beneficial adding further lensed counterparts
will be in improving the detection of the lens systems. Lastly, time delays are our only
robustly measured observable. As a result, the correct identification of more lensed
counterparts does not turn out to be as effective in practice as one might expect it to be
in theory.

Analysis of triplets (and possibly quadruplets) will certainly be highly effective for 3G
detectors. We leave the exercise of showing this rigorously for a future study.
In the end, having more images for a given lensed event would most likely decrease

the FAP compared to event pairs, even more so when we include the lensing statistics.
However, the detection of more than two super-threshold images is unlikely to happen
soon, and we leave the study of the impact of lensed multiplets on the FAP for future
work.

10.5 Conclusions and Outlook

In this study, we have investigated how to better distinguish between lensed and unlensed
events by using a rapid joint-parameter estimation pipeline and the inclusion of a lens
model in the decision process by analyzing an unlensed background with a lensed
foreground. Our event pool was made to resemble as much as possible a realistic
observation scenario for individual events by including changes in the PSD used to
generate the noise and a variation in the number of detectors observing each event. This
leads to an increase in the error made on the parameters, causing more unlensed events
to be misidentified as lensed pairs by chance. On the other hand, to define our FAP as a
function of the lensed population, our foreground is saturated, with an unrealistically
high proportion of lensed events compared to unlensed ones. This setup enables us to
probe the effect of the inclusion of lens models on the lensed and unlensed pairs under
the experimental conditions of our dataset.

First, we have compared the performances of GOLUM with the results of the posterior
overlap method [181], showing that comparing the strains and ascertaining the match
between all the parameters decreases significantly the FAP. Based on this, we suggest
a new approach for doing online searches for strong lensing. Neglecting the effect of
HOMs, one could use the posterior samples from the first image obtained with traditional

9These numbers are estimated using mock samples of [204] assuming strong lensing effects. Note
that we expect demagnification of Type II images, on average, due to microlensing from the stellar
population embedded within the lensing galaxies [178, 206]. This will decrease the detectable triplet
or quadruplet fractions quoted here since quadruplets comprise a pair of Type-I and Type-II images
each. Further accurate estimations are beyond the scope of this work.
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Model FAP

CL
U 0.75%

Mµ,t 0.07%
Mt 0.19%
Wµ,t 0.095%
Wt 0.21%
Ht 1.1%

Model A 1.9%
Model B 2.2%
Model C 0.47%

Model D with all lensed events 0.64%
Model D without discarded lensed events 0.05%

Table 10.2: Summary of the FAP for all the models used in this work. There are two
values given for Model D, one where we keep all the lensed events (including those having
ln (CModD) < 0), and the other where we do not consider the events that would not be seen as
lensed (those that have ln (CModD) < 0).

methods to analyze the second image under the lensed hypothesis and compare the
evidence for this image with the evidence obtained for the unlensed run. This would lead
to better discrimination between the lensed and unlensed events at low latency. However,
if BBHs have a larger HOM content, this method would not be entirely trustworthy,
as HOMs can impact the observed parameters and lead to bias if type II images are
present10.

Using our joint parameter estimation tool, we showed how to incorporate information
on the relative magnification and time delay obtained from a lensed model without
the need to re-do the parameter estimation, saving computational time. This can be
done by reweighting the evidence obtained from the runs using the probability densities
obtained from different lens catalogs. In this work, we used the results of Refs. [181],
[187], and [204] to simulate three different models for galaxy lenses. We also added four
toy models representing different possible observation scenarios, such as the analysis
using a galaxy-cluster lens or a change in the bounds used for the model. A census of all
the models used in this study and their corresponding FAP is presented in Table 10.1.
We also show the FAP values obtained for all the models in Table 10.2 and represent
the performances for the lensing catalog-based models in Fig. 10.10.
When comparing the discriminatory power between the lensed and the unlensed

background for the different models, we have shown that, as expected, the best-case
scenario is when one uses the correct model with both the relative magnification and
time delay included. We have then also shown that having a slight change in the model
10Posterior overlap suffers from the same caveat as it is performed on posteriors obtained during

unlensed parameter estimation runs.
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Figure 10.10: ROC curves for the existing catalogs with (solid lines) and without (dashed
lines) relative magnification. The inclusion of the correct model is the best possible scenario.
However, using only the time delays does not lead to a major change. Another catalog using
the same density profile but using shear does not drastically change the performances either.
Using an erroneous density profile degrades the performances significantly, making them worse
than using no model at all.

(represented by the addition of shear in the model) leads to a slight increase in the FAP
but does not lead to drastic modifications in the identification capabilities. This implies
that minor differences between the true underlying lens model and the model chosen in
our analysis will not compromise the detection efficiency significantly.
We also looked at the consequences of using only the time delay in these realistic

models. This leads to a slight decrease in efficiency compared to the case where
relative magnification is used. Indeed, some of the unlensed events have their time
delay fairly compatible with the lensing distribution but not their relative magnification.
Therefore, when the latter is not included, they are less well removed from the background.
Nevertheless, the increase in FAP is not important and the identification of lensing
should still be easier than without using any model. We note here that the Morse factor
(or phase difference) between the events has not been used in this work. However, it
could also lead to more constraints and the possibility to get even better efficiency in
lensing identification. The difficulty with this parameter is that the expected value
is different depending on which pairs of images are seen in the lensed multiplet [204].
Hence, one would need to account for the uncertainty in the ordering of the observed
images.
Next, we study the case where the time delay is obtained from the wrong density

profile. Here, the identification of lensing becomes nearly impossible and the efficiency
for detection is worse than in the case where no model is included at all.

This can be observed even more when looking at the results for the alternative models
A and B, where we make toy models with time delays biased towards higher values. In
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this case, some of the lensed pairs are seen as unlensed and the confusion background is
increased compared to the scenario without a lens model. This mimics the case where
galaxy-scale lenses are analyzed with a cluster-scale lens model. In such a case, the
identification of lensed events would be next to impossible. This motivates the need
to perform multiple lens searches in parallel, for each type of lens as the respective
lens models are fairly distinct, and assuming any one model can lead to missing lenses
belonging to the other type11.
Finally, with models C and D, we vary the bounds of the model to understand its

impact on detection. We found that the effect was a slight increase in the FAP when the
bounds are widened while retaining all the events. On the other hand, when the bounds
are tightened, we lose some of the lensed events. When the lensing parameters are closer
to the edge of the distribution, some lensed events are discarded because they get a
very low probability in the lensed hypothesis. If we compute the FAP when keeping
these events in the lensed foreground, it increases because of the very low values of their
statistics. However, by removing them from the lensed pool (which is what would be
done in reality), we get a further decrease in the FAP. This indicates that the choice
made for the bounds on the model will correspond to a trade-off between the significance
and the efficiency of the detection.
In conclusion, although we know that strong lensing of GW could be detected in

the coming years, identifying strongly-lensed GWs robustly is a real challenge. A large
number of unlensed events leads to a significant background that can increase the false
alarm risk. Still, there is hope. Even though we cannot guarantee the detection of
one randomly selected lensed event in a pool of 1000 unlensed ones, the inclusion of
lensing statistics in the detection process decreases the FAP, making for a higher chance
to detect lensing. However, using a lens model does not guarantee the detection of
all lensed events since the efficiency of the detection is sensitive to the choice of the
lens model. Therefore, our suggested approach, based on this work, is to analyze first
the events without a lens model using a fast joint-parameter estimation tool, and then
do a follow-up analysis for the high CL

U pairs using different plausible lens models for
different types of lenses, not only limited to the most likely types of lenses. This would
also require the development of new lens catalogs to have statistics for other lens types
than galaxy lenses (More et al. 2023, in prep.). Setting up such a framework and using
extended backgrounds to find the significance of the observed events should help us
identify strongly-lensed events more confidently.

11We also expect this to be true if one analyzes galaxy cluster lensed events with a galaxy lens model.
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Multi-Messenger Astronomy and

the Need for Faster Analyses
On the 17th of August 2017, LIGO and Virgo made the first observation of a BNS
merger: GW170817 [37]. Contrary to BHs, NSs are made of matter and do not have
a horizon. The interaction of this matter during the merger can lead to potentially
observable EM and neutrino emissions. For GW170817, EM-counterpart searches were
performed successfully. The Fermi Gamma-Ray-Burst Monitor (Fermi-GBM) [276]
and the INTEGRAL satellite [277] detected the associated γ-ray signal 1.7 s after
the coalescence. This event provided the first direct evidence of a link between these
mergers and short GRBs. Later, other EM bands (X-ray, radio, visible, . . . ) were
observed, making the reconstruction of the history related to the associated kilonova
possible [37, 38]. This first observation was a success for GW science. The combined
detection of multiple messengers allows us to improve our understanding of complex
astrophysical phenomena, such as the r- and s-processes at the origin of heavier elements
in the Universe. It can also lead to a better measurement of the Hubble constant and
novel tests of GR, such as a measurement of the speed of GWs [278–283].
Since then, new BNS events have been detected, none with an electromagnetic

counterpart [40, 284, 285]. Several explanations are possible. For example, the events
were further away and the EM counterparts were too faint to be observable or the line
of sight was off-axis compared to the jet emission. Observing more events with an
associated EM counterpart would be useful to further improve our understanding of
such events and their associated processes.

The prospects to observe multi-messenger BNSs are studied and predicted, with 0.01
to several observations a year expected in upcoming 2G observation runs [286, 287]. For
3G detectors, the CBC detection rate is larger, with tens of thousands of BNS signals
detected each year. Therefore, more detection opportunities are possible [288]. However,
it also comes with more data to analyze, requiring fast and accurate methods.

In the future, to maximize our chances of promptly finding EM counterparts, dedicated
low-latency strategies are required. Besides, observing the EM counterparts before or
closer to the merger time would help us access other stages of the binary evolution in
the EM bands, and better understand the behavior of matter in these never-observed
stages. Therefore, efforts are made to detect BNS events in advance [289, 290]. This
would leave time for the EM facilities to prepare themselves to follow up on such events
and search its sky location as soon as a sky map is issued. To make this happen, fast
analysis tools are needed.
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In parallel, in the last years, ML has been an emerging tool in GW data analysis
(see [62] for a review). Often, it is appreciated for its speed after training, making it
appealing for low-latency tasks where one can spend training time before data taking
and run swiftly during the observation period. As a consequence, it is an interesting
avenue to tackle BNS low-latency searches [291–293]. More details about such strategies
are given in this part of the thesis.
In addition to triggering alerts about incoming BNSs, it is important to have a

corresponding reliable sky map as soon as possible. Generally, low-latency sky maps
– describing the probability distribution of the event in the sky – are generated using
Bayestar [294], a rapid Bayesian framework. However, the sky localization found
for a given event can change over time due to different noise characterizations, and
the initial sky map is often different from the more accurate one found using complete
Bayesian parameter estimation processes. Unfortunately, they arrive later as they take
time and require cleaned data. Therefore, one can think of speeding up the inference
methods, which can be done using ML [295–301], by using normalizing flows (explained
in Sec. 6.3) for example. However, these methods still use cleaned data and infer all the
CBC parameters. Also, most of them still focus on BBHs since the training is harder for
BNS systems. Additionally, they may suffer some instabilities. In low latency, one is only
interested in the event type and its sky location. Therefore, it can be of interest to set up
a different framework where we only infer the masses and sky location. Such information
can be computed rapidly using ML combined with importance sampling [302].

In this part of the thesis, we show several works done in the spirit of developing early
alert and fast inference for GW signals using ML.
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Convolutional Neural Networks

for the Detection of the Early
Inspiral of a Gravitational-Wave

Signal
A key element in MMA is the delay between the detection and identification of a GW
and its source. It is desirable to observe the event as close in time as possible to its
merger, if not before, to not miss any part of the signal. The ability to do this depends
on the GW analysis pipeline and the time needed for a telescope to point toward a
possible target. For example, the Swift observatory takes a few seconds (15 s for its
Burst Alert Telescope) to focus on a given sky position [303]. So, even if one wants
to detect the EM emission at the merger, one needs to know where to look before it
happens. Depending on the observed EM band, the observation of the merger itself
would bring new insights into different aspects. In the optical and UV, it would bring
more information about the r-process forming the heavy elements in the Universe [304],
and about the ejecta [305]. The prompt X-ray emission would help identify the final
state of the remnant [306–308], and the radio emission could reveal information on
the magnetospheric interactions pre-merger [309]. The latter emission would also help
testing models proposing BNS as precursors for fast radio burst [310–312].
Thus, the goal is to detect the signal during its inspiral. However, its evolution is

slow, as will be detailed later in this chapter, and its amplitude is small. Hence, SNR
accumulation takes time. In addition, the very early inspiral cannot even be detected
as it is under the detector sensitivity, buried in noise, reducing the delay between the
moment the signal enters the sensitivity band and when it merges. In the future, the
delay should increase as the detectors get more sensitive, especially for 3G detectors,
where the lower frequency cut-off could be as low as 1 Hz [31]. The improved sensitivity
should also make for more detections and higher SNRs in the early parts of the signal.
Usual low-latency searches perform matched filtering on the full signals. Here, we

want to consider the GW event before its merger, requiring an adapted pipeline. Such a
setup was used in [289, 290], where the authors show promising detection capabilities in
the future, with some detections done about a minute before the merger. Additionally,
they also show how one can adapt Bayestar [294] to have sky maps before the merger.
However, there is a loss in sensitivity due to the low signal SNRs.
An avenue able to circumvent some of these issues is ML and in particular CNNs.
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Most of the computational cost is spent on the training part, significantly reducing
the runtime when data is analyzed. Additionally, several studies have shown ML’s
capacities for GW detection in low-latency, obtaining sensitivities similar to matched
filtering techniques [313–318]. Moreover, the inclusion of spin in ML searches seems
nearly automatic as CNNs trained on non-spinning BBHs can get high performances on
precessing systems [313, 314]. Some of these techniques rely on the image recognition
capacities offered by CNNs and pass Q-transforms – a representation of the signal power
in time-frequency bins – [319] to the network. However, generating them takes time and
leads to an additional latency in the analysis.

In Ref. [291] and this chapter, we present a CNN-based framework developed to trigger
when seeing an inspiraling BNS signal. We show that with a small network, it is possible
to detect signals more than a minute in advance, provided the signal is loud enough.

12.1 Setup of the Study

12.1.1 Quantifying the Signal Present

The SNR (see Sec. 4.1.1 for a more extended discussion) obtained when matching a
template h with data d takes the form [132]

ρ =
(

4R
(∫ fmax

fmin

d̃(f)h̃∗(f)
Sn(f) df

))1/2

, (12.1)

where the tilde represents the Fourier domain, and ∗ is the complex conjugate. Sn(f)
is the noise PSD. Typically, when considering the full frequency content, fmin is the
minimum detector sensitivity, and fmax is the maximum in-band frequency, typically set
as the Nyquist frequency.

The SNR represents how well a typical template h matches the data d, made of a GW
signal and noise. A matched-filtering-based search finds the template that maximizes
the SNR and has an optimal performance for Gaussian stationary noise and an exactly
known signal. For this type of noise, when there is no GW in the data, the SNR
fluctuates around a mean value. If a GW enters the detector, the SNR increases, and
when it exceeds a predefined SNR threshold, a candidate trigger event is recorded.

However, the noise from the detectors is neither Gaussian nor stationary, making
the search more complex. For example, glitches can occur and lead to an SNR peak,
mimicking a GW trigger. To avoid noise-triggered detections, the matched filtering-
based pipelines often require the detection to be in coincidence in different detectors.
Additionally, more elaborate tests downranking noise artifacts in the final candidate lists
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Figure 12.1: Evolution of the PI SNR as a function of the duration of the inspiral for a BNS
with 1 M� component masses. On the vertical axis, the PI SNR is normalized by the optimal
SNR. On the horizontal axes, the duration of the early inspiral is normalized by the duration
of the full template. The PI SNR increases more slowly at the start before having a rapid
increase in the last 20% of the inspiral.

exist, such as the χ2-test [133], for example. The confidence one has about the detection
is also often translated by a false-alarm rate (FAR) that gives the frequency at which
noise fluctuations lead to the same ranking statistic value [320].
The optimal SNR is obtained when the template is matched with itself [132]:

ρopt =
(

4R
(∫ fmax

fmin

|h̃(f)|2
P(f) df

))1/2

. (12.2)

In the context of pre-merger analysis, only a part of the inspiral is considered, and
the SNR does not represent the signal’s loudness anymore. Instead, we define it using
the partial inspiral SNR (PI SNR), which has the same definition as the optimal SNR in
Eq. (12.2), but where the template is now the partial template containing only the early
partial inspiral (hPI). In the frequency domain, it is equivalent, for a given waveform, to
replacing the fmax in Eq.(12.2) by the maximum frequency reached by the template in
the part of the inspiral considered. Typically, this frequency is below 50 Hz (instead of
thousands usually), significantly reducing the value of the integral.

The SNR increases more rapidly around the late inspiral and the merger than during
the early inspiral. Fig. 12.1 represents the value of the PI SNR as a function of the
fraction of the signal accounted for. It starts with a slower evolution, which speeds up
as we get closer to the merger.
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Figure 12.2: Top: BNS signal template with component masses m1 = m2 = 2 M�. Bottom:
Frequency evolution of the template with time. In both plots, the inspiral part considered for
our ML-based approach is colored in red, while the blue signal represents the entire signal,
from when it enters the sensitivity band to its merger.

The PI SNR behavior comes from the relation between frequency and time. At the
lowest order in velocity1, one finds [24]:

f(t) = 1
π

(
GMc

c3

)−5/8( 5
251

1
(tm − t)

)3/8

, (12.3)

where f(t) is the frequency at time t,Mc is the chirp mass (2.50), and tm is the time of
the merger. This behavior is illustrated in Fig. 12.2, which shows the full and partial
templates and their frequency evolution. Looking at the frequency evolution, when
(tm − t) decreases, i.e when getting close to the merger time, we have a steeper increase
in frequency. This is directly observable in the bottom panel of Fig. 12.2.

12.1.2 Defining Different BNS Categories

The duration of the observable CBC signal depends mainly on the chirp mass. Indeed,
at the lowest order in velocity, the duration of the signal is given by [321]

1In the early inspiral, the strong-field effects are small, which means that the expression derived for
the lowest order approximates well the behavior of the binary systems.
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where flow is the lowest frequency in the detector sensitivity band, and fhigh is the highest
frequency reached by the binary (approximated by fISCO (2.63) for the full inspiral).
From this expression, it is clear that for a fixed lowest frequency flow, if the chirp mass
increases, the duration of the detectable signal shortens.

Furthermore, at the lowest order in velocity, the SNR also has a simple expression [322]:
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In this expression, c is the speed of light, DL is the luminosity distance, G is the
gravitational constant, I is the frequency integral

I =
∫ fmax

fmin

(f ′)−7/3

Sn(f ′) df ′ , (12.6)

and g(θ, φ, ψ, ι) is a function that depends on the orientation of the orbital plane and
the sky position through the antenna pattern of the detectors [64]. From Eqs. (12.4)
and (12.5), fixing all other parameters, one sees that if the chirp mass decreases, the
optimal SNR of the signal decreases while its duration increases.
As we can observe in Fig. 12.1, the PI SNR depends on the fraction of the signal

considered and on the highest frequency reached within the observation time. Therefore,
observing the signal for a longer time would lead to a higher PI SNR, making its detection
easier. However, we also want to detect the signal as early as possible to have an efficient
pre-merger alert system. This leads to a trade-off between a high PI SNR and prompt
detection in our method.

Since we know that the time evolution of the signals’ amplitude is different depending
on the masses, we split the BNS set into three different categories: light, intermediate
and heavy BNS. For each of these, we use a separate OTW, meaning we train the
networks on data with different durations. Hence, our algorithm consists of 3 CNNs,
one for each category and input size. Note that the OTW is a hyper-parameter tuned in
later work.

Table 12.1 summarizes the characteristics of the different categories, classified according
to their chirp mass. To give an intuition for the objects’ masses in each category, we
present the highest and lowest chirp masses and the component masses for an equal-
mass system2. For each category, in addition to the constraint on the chirp mass, we
also restricted the individual component masses to be between 1 M� and 3 M�, which
corresponds to a broad mass range for NSs. Note also that spin effects are absent at
this order in v

c
, so we considered only non-spinning BNS.

2Non-equal mass systems are also considered during the training and testing of our networks.
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BNS light intermediate heavy
Mc (M�) 1.13 - 1.56 1.56 - 2.09 2.09 - 2.61
flow (Hz) 20 20 20
Duration (s) 100 - 180 65 - 100 45 - 65
OTW (s) 80 50 30
Fraction of signal 0.44 - 0.8 0.5 - 0.77 0.46 - 0.66
Time before merger (s) 20 - 100 15 - 50 15 - 35

Table 12.1: Summary of the BNS categories for the different CNNs. A different OTW is
considered for each category because the duration of the signal changes with its component
masses. “Fraction of signal” corresponds to the time the signal passes in the frame compared
to the total duration. The time before merger is the duration between the end of the OTW
and the end of the signal. For each OTW, the minimum and maximum component masses are
restricted between 1 M� and 3 M�.

12.1.3 Data Generation

The inputs of the NNs are 1-dimensional whitened time series made of Gaussian noise
generated from the design sensitivity PSD of Advanced LIGO (aLIGO) with a GW
added in some cases. The network is trained as a classifier between an event class (noise
+ template) and a noise class (only noise). The GW data analysis and generation have
been performed with the PyCBC package [323].

We start by generating 120 seconds of colored Gaussian noise. Then, a non-spinning
BNS waveform is injected. The approximant used is SpinTaylorT4 [324], and it is
generated with a minimum frequency of 20 Hz. We always generate the frame so that
the signal starts at beginning of the frame, hence the time at which the signal reaches
20 Hz corresponds to the first data point in the frame.

By default, we employ the optimal sky localization and consider only the plus po-
larisation aligned with the interferometer’s arms to generate the various data sets.
Note, however, that when we test the performance of the networks with realistic BNS
populations later in this study, the sky location is not the optimal one anymore.

Since our objective is to train the networks on the early inspiral part of the waveforms,
we select the desired OTW and compute the PI SNR for the generated strain. In
Fig. 12.3, we plot the waveform embedded in Gaussian noise. The vertical red lines
represent the portion of the strain in the OTW. The latter always starts at the beginning
of the signal, when it has a 20 Hz frequency. Finally, we whiten the stretch of data under
consideration and normalize its amplitude by dividing all the points by the maximum
amplitude in absolute value. Therefore, all data points are in [−1, 1]. For the frames
containing a GW, the event characteristics, such as the distance, are chosen so that the
PI SNR distribution covers a wide range; see Fig. 12.5 for the PI SNR distributions.
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Figure 12.3: Representation of the noise and the injected waveform before the whitening.
The CBC signal corresponds to a BNS with component masses of 1.8 M�, and placed at a
luminosity distance of 100 Mpc. When training and testing the CNNs, we do not pass this
full frame to the network, but only the first 50 s (denoted by the two red lines), which is the
chosen OTW length for this BNS category.

12.2 Methodology

12.2.1 Convolutional Neural Network Architecture

Our goal is to perform a binary classification task, distinguishing the OTWs with GW
signals from those without, with a short CNN, similarly to [313–315]. The CNNs are
implemented with the PyTorch package [325]. We use cross entropy as the loss function
and AdaMax, a variant of Adam, based on the infinity norm [230], as the optimizer.
Several hyper-parameters, such as the learning rate, the batch size, the number of layers,
and the kernel size, were tested. Here, we only describe the ones that provided the best
performance.
After several trials, we found the best performance with the minimal computational

cost for a CNN composed of 5 convolutional layers. It is found that a bottleneck structure,
i.e. starting with a large kernel size, making it smaller in the middle, and enlarging it
again afterward, yielded the best results. We represent the best-performing architecture
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Figure 12.4: Architecture of the best performing CNN for all the categories. The input size
is adapted from one BNS type to the other. The network has a bottleneck structure, with
smaller convolution kernel sizes in the middle compared to their size at the start and end.

in Fig. 12.4 and give its full details in Table 12.2. The training batch size was 40 for
networks 1 and 2, used for low and intermediate-mass BNSs. Due to memory issues, it is
reduced to 30 for network 3, used for heavy BNSs. For the optimizer, we use a learning
rate of 8× 10−5 and a weight decay of 10−5.

The network’s output is the probability of the observed data belonging to the event or
the noise class, depending on whether an inspiral is present in the data. The classification
task is performed according to a predefined threshold, depending on the FAP.
The three networks are trained on a dataset containing 8000 frames. The data sets

are balanced so that half corresponds to noise only and the other half also contains an
inspiral. The testing set is balanced and made of 4000 frames.

12.2.2 Training and Testing our Neural Networks

For each category, we have a predefined OTW, given in Table 12.1. Due to the varying
size of the input, we perform a binary classification task with a tuned replication of the
CNN for each BNS category. We employ 80% of the training data set for training and
20% for validation. The network’s performances for the training and validation sets are
compared to avoid overfitting. Finally, we test each network using a balanced testing set
with 4000 data frames.
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Layers Input Output Kernel size Stride Padding Dilation Activation
BatchNorm 1 1 - - - - -
Conv1D 1 32 128 1 0 1 ReLU
MaxPool1D 32 32 4 4 0 1 -
Conv1D 32 64 32 1 0 1 ReLU
MaxPool1D 64 64 4 4 0 1 -
Conv1D 64 128 16 1 0 1 ReLU
MaxPool1D 128 128 4 4 0 1 -
Conv1D 128 256 32 1 0 1 ReLU
MaxPool1D 256 256 4 4 0 1 -
Conv1D 256 612 128 1 0 1 ReLU
MaxPool1D 612 612 4 4 0 1 -
Dense X 128 - - - - ReLU
Dense 128 2 - - - - SoftMax

Table 12.2: Complete architecture of our CNN. Between the last two MaxPool1D layers, we
flatten all the channels to obtain an output of dimension one and length X (X depends on the
OTW).

Fig. 12.5 shows the SNR and PI SNR distributions for our training and testing sets.
The main difference between the two distributions is a decrease in loudness. It is due to
the removal of a part of the signal. Indeed, the SNR is in the range ∼ [20, 130], while the
PI SNR is in the range ∼ [1, 70]. Due to the smallness of the PI SNR, the classification
task becomes more difficult.
To assess the performance of each neural network, we classify its output for a given

data frame into true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), according to the standard confusion matrix [326].
Then, we define the true-alarm probability (TAP) and the false-alarm probability

(FAP) as follows:

TAP = TP

TP + FN
FAP = FP

TN + FP
. (12.7)

The TAP corresponds to the number of noise + signal frames classified as such over all
the number of frames that belong to the noise + signal class, whereas the FAP represents
the number of misclassified noise frames over the number of frames belonging to the
noise class. The networks’ performances are evaluated based on the TAP for a fixed
FAP.
We present all the results for a FAP of 1%. This can be considered high compared

with the current GW searches, but we stress that this work is a proof of concept and
our pipeline uses only one detector. By considering coincident triggers in Nd detectors,
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Figure 12.5: Top: SNR distribution for the training (left) and testing (right) sets. Bottom:
PI SNR distribution for the training (left) and testing (right) sets.

the FAP will roughly scale as 0.01Nd , naturally reducing the risk of false claims3.

12.3 Results and Discussion

In this section, we first discuss the performance of the three networks. Then, we look
at our networks’ performance when applied to a realistic BNS population. Finally, we
discuss a first simple attempt at curriculum learning.

3This is an approximation where we assume that the three channels are independent and that, at each
instant, each CNN has a 1% chance to claim a false detection.
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Figure 12.6: Left: Results of the three networks, each trained on its category, as a function of
the distance. Right: Mean (µ) PI SNR and its standard error (ε), µ(PI SNR)± ε(PI SNR)
and a confidence of 2σ, represented by the colored band, are plotted for each network. For
each figure, the FAP is fixed at 0.01.

12.3.1 Performance of the CNNs

In Fig. 12.6, we plot the TAP as a function of the distance and the PI SNR for each
BNS category individually. The network trained on heavier objects can reach higher
distances. From Eq. (16.3), we observe the same behavior: for smaller chirp masses,
we need to decrease the luminosity distance to keep the same SNR value. We obtain
the best performance for the heavy BNS category. The intermediate and low categories
have very similar performance, where we see that the 2σ interval for both overlaps when
considering the PI SNR. Since the architecture of the network was optimized for the
heavy category, we expect it to perform best for these BNS inspirals. Adapting the
networks’ structures for each category could help enhance the performance of each of
them.

Note that the CNNs are sensitive to the accumulation of the signal. To confirm this,
we trained and tested the networks on data with low-frequency cut-offs set to higher
values than the usual 20 Hz. This is a way to reduce the PI SNR of the injected signal
while maintaining the same maximum amplitude. For the testing set, we obtained an
88% TAP for a cut-off at 20Hz, and 71% for a 26Hz lower frequency, showing that the
CNN is sensitive to the PI SNR for a fixed maximum amplitude. Similarly to matched
filtering, a CNN is designed to recognize patterns and, in this context, the larger PI
SNR means that the signal is present for a longer time.

From Fig. 12.6, we see that network 1 can reach distances larger than 60 Mpc before
its TAP departs from 100%. Since the first BNS detected (GW170817) was located at a
distance of about 40 Mpc [37], our method has a high probability of detecting similar
signals when present in noise at design sensitivity. So, our method can recover a realistic
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Figure 12.7: Representation of the performance of the CNN trained on the heavy BNS
systems for different OTWs. A longer window gives a higher number of detections. However,
it also means the detection happens closer to the merger time. The mean times before the
merger are 35, 30, 25, and 20 s for the 20, 25, 30, and 35 s OTW, respectively.

signal from colored Gaussian noise when only the inspiral part is present. Network 2,
which is trained on intermediate BNSs, can perform better at higher distances compared
to network 1, which is expected based on the chirp mass - PI SNR relation. Finally,
Network 3 has a TAP of 100%, even for a distance of 125 Mpc. Hence, the detection
efficiency remains high for distances similar to that of GW190425, the second BNS
discovered by the LVK collaboration [42].

We now perform a series of tests to evaluate the influence of the length of the OTW.
This is an important hyper-parameter representing the fraction of the signal seen for
a given event. It needs to be optimized to have as many detections as possible while
keeping a long enough delay between the trigger and the merger time. In Fig. 12.7, we
show the TAP for Network 3 when using different OTW. As expected, a larger OTW
increases the TAP but is associated with a shorter time remaining before the merger.
We also test whether a network trained on a given category can find signals that

belong to a different one. We concentrate on Network 3, trained to detect heavy BNSs
and check whether it manages to detect intermediate BNSs. For this, we decrease the
OTW of intermediate BNSs to 30 s, to feed the data set to Network 3. We find that the
TAP decreases significantly. Network 2, trained to detect intermediate BNSs, yields a
TAP of ∼ 68%, while Network 3 reaches only ∼ 16%. This is also understandable in
terms of PI SNR. The reduction of the OTW duration leads to a decrease in the PI
SNR, and we already established that this is a key parameter for detection.

We now compare the time needed for our CNN and matched filtering to analyze a data
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frame. When applying matched filtering on a 50 s early-inspiral frame, similar to those
passed to the CNNs and with only the optimal template, the computation time is ∼ 0.05
s4. This is just the time needed to get the SNR in matched filtering when computing the
statistic using the injected template. In this traditional method, several templates are
tested, and the trigger is not only assigned an SNR, but also other statistics, such as the
FAR. As a consequence, the time to get the final information is longer [327]. Analyzing
the same frame using our CNN on a Nividia GeForce RTX 2070 SUPER GPU, we get
the probability of an inspiral to be present in ∼ 0.005 s. Therefore, the time to analyze
the frame and get a probability of there being an inspiral is improved by a factor of
∼ 10.

12.3.2 Test on a Realistic BNS Population

To better grasp the performance of our networks compared to matched filtering, we also
test them on a simulated realistic population of BNS systems. Therefore, we compute
both the optimal and PI SNRs for each BNS with a high-frequency cut-off of 32 Hz,
similar to what was done in [289]. When performing the run with a high-frequency
cut-off and the test with our CNNs, we only consider the events with a matched filtering
SNR higher than 8. This basic computation is performed for the high rate presented
in [328].
The cut-off frequency of 32 Hz has been chosen to give results comparable to those

in [289] while having in-band times corresponding to the OTWs defined in Table 12.1.
The population synthesis is performed using the code of [321], with minor changes

to suit our framework. For example, the PSD employed is the same as for the noise
generation, the low-frequency cut-off is 20 Hz, and we generate the equivalent of 5 years
of data.

One shortcoming of this procedure to generate a realistic population of BNSs is that,
although it is fast, it is based on analytical approximations. As a consequence, we do
not inject the signals in noise to compute the SNR and cannot calculate the matched
filtering FAR for such frames. So, we cannot use the criterion of Ref. [289] (an SNR
threshold followed by a FAR), and the direct comparison is non-trivial. Our procedure
confirms the difficulty to detect those events with matched filtering methods.
Once we have selected the events based on the analytical approach, we inject them

in design-sensitivity noise and pass the frames to the CNNs. Fig. 12.8 represents the
events detected, missed, and misidentified. We also generate the same noise for each
event without injecting the BNS into it. We test our networks on these pure noise frames
to highlight the FPs. As shown in Fig. 12.6, the networks detect most of the BNSs
which have a sufficiently high PI SNR. We also want to emphasize that matched filtering
applied for pre-merger alerts needs a PI SNR above a threshold to lead to a trigger.

4All the tests were done on an Intel(R) Core(TM) i7-8650U CPU.
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Figure 12.8: The PI SNR for a low-pass filter at 32 Hz for each BNS with a full SNR higher
than 8. The black crosses represent the events missed by the CNNs, and the red squares are the
events correctly found. The orange diamonds are triggers that correspond to noise fluctuations
(false positives). This represents the detection one could expect in O4 data using our network.
Since most events have lower SNR, we only detect the loudest events.

This threshold depends on the framework and the number of detectors included. We
can see that, if one chooses an SNR threshold of 8, our results are comparable to those
of matched filtering. Nevertheless, CNNs are much faster5.
A key feature employed in [289] is the network of detectors. Requiring coincident

detections in the different interferometers helps to remove signals due to noise artifacts.
Another advantage is that the data can accumulate in several detectors simultaneously.
Additionally, sky localization is found using the data in the three detectors [329]. For
a NN, the input will have a certain number of channels, one for each detector. Then,
the input will be convolved through the network, finding relationships between the
different channels. This should decrease the FAP of our detector network and enable us
to perform sky localization. This will be explored in future work.

12.3.3 Basic Curriculum Learning Exploration

Aside from the architecture, another crucial factor in the development of DL algorithms
is the training procedure. From the population analysis, we conclude that the networks
see the loudest events, i.e. those with the highest PI SNR in the OTW (or the highest

5Here, we neglected the latency needed for the data transfer. During the O3 run, the latency was
∼ 20 s. Eventually, one would like to bring this down to ∼ 7 s [289].
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Figure 12.9: Comparison of the TAP as a function of the distance for the GW sources with
and without curriculum learning for the heavy BNS class. A rudimentary curriculum learning
setup helps improve the TAP at higher distances. Note that the blue curve is the same as in
Fig. 12.6.

SNR in the detector for the full template). The networks have been trained on a wide
distance range for the events (hence a wide PI SNR range), but it is hard for them to
detect smaller PI SNRs, as we can see in Fig. 12.6. A way to overcome this obstacle
is by training the CNNs with curriculum learning (see Sec. 6.1.5 for a more in-depth
introduction). The main idea is to train the network on batches of PI SNR, first on
the easy examples, namely the frames with the highest PI SNR. Then the difficulty is
increased iteratively by decreasing the PI SNR until the hardest examples are considered,
namely the frames with the lowest PI SNR (see [314] or [330] for an example).
With this idea in mind, we generate an extra batch of training data with higher

distances and lower PI SNR. Thus, we train on the first data set, store the weights,
then train on the newly generated set beginning with the weights saved previously. The
results of this test can be seen in Fig. 12.9. The TAP increases significantly even if
we are using only one extra data batch. As a consequence, we expect our networks’
efficiency to increase substantially once they are trained using curriculum learning.

12.4 Conclusions

In this study, we introduced a new approach based on short CNNs for pre-merger alerts.
We have shown that it is possible to detect BNS events when only part of the early inspiral
is present in the data stretch under consideration. For this purpose, we have introduced
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three different neural networks, each trained on a particular range of chirp masses for
the BNS systems. Such developments are important for MMA, as the prediction stage is
computationally less expensive and usually faster than traditional matched filtering. We
have also shown that our method can recover signals from a realistic BNS population
simulated at design sensitivity and compared our detection statistics to those obtained
with matched filtering pipelines. In addition, we also suggested some improvements in the
training method, as well as in the structure of our CNNs, to enhance their performance
further, leading the way to a competitive pre-merger alert system.
This work presents a proof-of-concept ML-based early-alert system, and we will

continue to build upon this basis to upgrade our networks and get better performances.
The next steps, which will probably require more complex networks, are the consideration
of multiple interferometers and computing the sky location. Furthermore, curriculum
learning will systematically be deployed as this will allow us to train on a larger dataset
with smaller PI SNR. Indeed, the training set currently has a minimum PI SNR of
around 8. With curriculum learning, it will be possible to lower this value. A fourth
CNN trained to retrieve the full BNS signal, regardless of its category, will be built. This
will complete the pipeline as the events not detected based only on their inspiral would
still be found in low latency. Another recent approach [292] used CNNs to remove some
non-linearly coupled noises and detect the early phase of a gravitational wave signal.
This further reinforces the case for using CNNs in early-alert systems.

Various works have shown that ML-based algorithms can help GW astronomy. In this
work, we have shown that they can also be used to solve one of the challenges that will
arise in the future, namely the early detection of BNS mergers in the context of MMA.
However, we still want to improve the performance and add some features, such as sky
localization. These are the next milestones, probably requiring more complex networks
and more advanced training methods.
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In the previous work [291] and Chapter 12, we presented a proof-of-concept pipeline
to perform pre-merger alerts using ML, in particular one-dimensional CNNs. Others
have had a growing interest in early warning with ML [292], where they show that
using a filtering algorithm to clean the data helps improve detection capabilities. The
work presented in this chapter and Ref. [293] builds upon the framework developed in
Chapter 12. We construct more robust techniques and apply them to more realistic
scenarios. We now accommodate a detector network made of the two LIGO and Virgo
detectors. Additionally, we also decrease the starting frequency of the signals and aim
at detecting signals at a lower maximum frequency. This is crucial since finding signals
at a lower maximum frequency means detecting them with an increased time before the
merger.
The main changes compared to the previous chapter are

• Addition of spin effects in the BNS waveform ;

• Use of random sky location for the events in the data ;

• Consideration of different types of noises: simulated O3 and O4 noises, and real
O3 noise ;

• Decrease of the minimum frequency cut-off for the data, going from 20 Hz to
between 10 and 15 Hz ;

• Longer and fixed input signal of 300 s sampled at 512 Hz, allowing for the analysis
of all BNS events without the need for classes ;

• Implementation of a more robust curriculum learning scheme [331].
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13.1 Method and Setup

As in the previous chapter, the signals are characterized by their SNR; see Eq. (12.1).
However, since we consider a network of detectors, the signal’s total loudness is expressed
via the network SNR (see Eq. (4.12)), the square root of the quadratic sum of the
individual SNRs.
As detailed in Sec. 12.1.1, when considering only the early inspiral, we quantify the

signal’s loudness with the PI SNR, computed similarly to the SNR, except the maximum
frequency is the highest in-band frequency. This can also be combined into a network
PI SNR, similar to the SNR and the network SNR.

13.1.1 Data and Training Strategies

In the previous chapter, we showed the possibility of detecting the early inspiral of a BNS
injected in Gaussian noise. In this work, we want to turn to a more realistic scenario
using real O3 noise. To investigate the difference in performance between Gaussian and
real noise, we also inject the signals in colored Gaussian noise generated from the O3
representative PSDs [329]. In addition, to assess the performance of our network in
future observation runs, we consider colored Gaussian noise generated from the predicted
O4 PSDs [329, 332].

The corresponding PSDs are represented in Fig. 13.1. To generate a frame of simulated
O3 Gaussian noise, we use the PSDs from [329], provided by PyCBC [323]1. To obtain
O3 data, we download the detectors’ strain directly [40, 126, 269] using the GWpy
package [333]. To resemble a real-time search, these downloaded strains are the ones
recorded in low latency, meaning that they are not filtered and cleaned as extensively
as the final noise 2. To generate the O4 Gaussian noise, we use the predicted O4
PSDs [329, 332]3.
Since the problem at hand can be solved as a classification task, we need a data set

containing two classes: noise and noise plus inspiral, also referred to as injections. For
the latter, we generate waveforms using the SpinTaylorT4 approximant [324]. We

1The PSD used for Gaussian O3 LIGO is aLIGOaLIGO140MpcT1800545, the one for Virgo is
aLIGOAdVO3LowT1800545, both are provided by LIGO and Virgo and implemented via Py-
CBC [323].

2To download the real O3 data, we use the channels H1:GDS-CALIB_STRAIN, L1:GDS-
CALIB_STRAIN, V1:Hrec_hoft_16384Hz, and the frame type: H1_llhoft, L1_llhoft, V1Online in
GWpy.

3The LIGO and Virgo PSDs used for O4 correspond to the ones shown in Fig. 1 of [329], with the
BNS detector horizon at 160 Mpc for the LIGO detectors and the horizon at 120 Mpc for the Virgo
detector.
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Figure 13.1: Representation of the different PSDs for the Livingston detector. They are
used to generate different data sets. We also show the design sensitivity PSD provided by
PyCBC [323] used in [291].

Figure 13.2: Representation of the different types of noises for the Handford detector used
together with an injection similar to GW170817, i.e. with neutron star masses of 1.46 and 1.27
M� [37]. Note that only the part in the rectangle is passed to the network.
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choose uniformly distributed component masses between 1 and 3 M� to cover all the
possible BNS systems [334]. The sources are distributed uniformly over the sky, and we
also include the spin effects. With these parameters and a lower frequency of 10 Hz, the
simulated signal is always longer than 300 seconds. In such a way, the network’s inputs
contain only the early inspiral part (see Fig. 13.2 for an illustration). After injecting the
simulated signal into the noise, the frames are whitened, and we apply a low-pass filter
at 100 Hz4 and a high-pass filter at 10 Hz. Afterward, the final data is renormalized,
making all the values in the frame between −1 and 1. This is the input data of the
network, and we refer to a single sample as a frame.
For O3 real noise, some significant peaks can appear in the whitened strain due to

non-Gaussian effects (see Fig. 13.3 for an illustration). In our approach, these effects are
vetoed by zeroing them out as they would lead to issues in the normalizing scheme. The
large peak would be the maximum value used to divide the values for all the other points,
making the other points in the time series too small. This confuses the NN. Therefore,
we remove these artifacts from the data. The vetoing is done according to the z-score:

Zi = xi − µ
σ

(13.1)

where xi is the strain value for a point i in the time series, µ and σ are the mean and
the variance of the time series, respectively.
The z-score is computed for each point. We also calculate its standard deviation for

the entire series. All the data points with a z-score larger than five times the standard
deviation are set to zero, removing the dominant peaks from the data (see Fig. 13.3).
Then, the normalization and analysis are performed on the vetoed data frame. Generally,
when applying this procedure, we only veto a few points in a row.

For the training and testing, we choose a distance distribution such that the distribution
in PI SNR is an inverse Gaussian with a mean of thirty-five and a shape parameter of
one hundred5. Despite having a large data set containing one million frames, we have
observed a low performance when we decrease the maximum frequency to ∼ 25 Hz.
This is because the CNN is sensitive to a variation in frequency, and for earlier inspiral
phases, the signal is more monochromatic.
To detect events earlier, it is key to decrease the maximum frequency seen by our

model. Therefore, we change the training strategy and use curriculum learning [331]
on the maximal frequency seen by the network. In previous works [330], curriculum

4Since we focus on the early inspiral of the signal, it is not expected to reach higher frequencies.
Therefore, keeping all the data would not help in the detection since it would only contain noise.

5We found that the inverse Gaussian (Wald) distribution fits better our goal. Indeed, this distribution
gives a few very high PI SNR events that enable the network to start its learning process. The PDF
of an inverse Gaussian is

f(x) =
√

λ

2πx3 exp
(
− λ(x− µ)2

2µ2x

)
,

where µ is the mean and λ is the shape parameter.
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Figure 13.3: The blue curve represents O3a noise after the application of the whitening, the
low-pass filter, and the high-pass filter. The orange curve shows the vetoed part.

learning applied to the SNR has already led to increased performances. Its principle
is to train the network on easier data first (on data with a high maximum frequency),
then gradually increase the difficulty (on data with a lower maximum frequency). The
network is then iteratively trained on each set. To prevent the network from forgetting
what it has learned, we keep all the data of the previous steps while adding new ones.
To that effect, we generate five different training sets. The parameter distributions for
the injections stay the same, except for the maximal frequency seen by the network. It is
now a Gaussian distribution with a standard deviation of 2.5 Hz, and a mean depending
on the data sets. More information about the data sets is presented in Table 13.1. Each
training set contains 20000 frames, and half of them contain an injection. 20 % of each
training set is used for validation during the training. For each step, we train for six
epochs since it is enough to make the loss converge without facing over-fitting. The use
of curriculum learning allows for improving the performance on data set 3, 4, and 5
with a maximum frequency of, respectively, 30, 25, and 20 Hz, while maintaining the
performance at higher frequencies.

The training on the real noise data is done similarly. It is done only with noise coming
from O3a, the first half of O3 [269]. We veto the periods corresponding to real events
from the GWTC-2.1 catalog [269]. For all the testing, we used noise coming from O3b,
the second half of O3 [40, 126]. During O3 there are times when not all detectors are
online. To account for this, we fill the CNN entry corresponding to the detector with a
vector of zeros when it is offline. This way, our network can perform the search regardless
of the number of interferometers available.

For the training parameters, we use a batch size of 50. The learning rate is 8× 10−5,
and the optimizer is AdaMax with a weight decay of 10−5. AdaMax is a variant of
Adam, based on the infinity norm [230]. In the previous chapter, we have seen that
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Data set Max. Freq Min. Freq Min. TBM Max. TBM
Data set 1 40 Hz 12.9 Hz 7 s 44 s
Data set 2 35 Hz 12.8 Hz 10 s 63 s
Data set 3 30 Hz 12.6 Hz 15 s 95 s
Data set 4 25 Hz 12.3 Hz 24 s 115 s
Data set 5 20 Hz 11.7 Hz 45 s 280 s

Table 13.1: Each data set corresponds to a maximum frequency seen by the networks, which
in turn leads to a minimum frequency and a Time Before Merger (TBM). The maximum and
minimum frequencies presented are the mean values in each data set. The maximum and
minimum TBMs are for equal mass BNSs with 1 M� and 3 M� NSs, respectively.

using AdaMax leads to faster convergence during training.
We use the weighted cross-entropy loss [335]. At first, we employed the cross-entropy

loss, which is standard for classification problems. However, this led to a large number
of false positives. To avoid this, we weight the loss [330] by a factor of 0.4 for the frames
with an injection. This reduces the chances that the network classifies a noise-only frame
as an event, reducing the number of FPs. We tried multiple values for the weight and
found that, for the task at hand, a factor of 0.4 translates into a reduction of the number
of FPs while maintaining the number of TPs. The duration of the training is about one
day on a NVIDIA Tesla V100-PCIE-16Gb GPU.

13.1.2 Description of the Neural Network

The NN’s architecture is similar to the one in Chapter 12 (see Fig. 12.4), where we tested
multiple structures to find the most effective one. We use the Pytorch package [325] to
implement the architecture. The network takes 300 s of data for each available detector.
In other words, it has three input channels, each corresponding to one of the three
detectors (Hanford, Livingston, and Virgo)6. It is composed of a batch normalization
layer, followed by five blocks made of a convolution layer, a ReLU activation, and a
pooling layer. For the convolution, the kernel sizes are successively 16, 8, 4, 8, and 16.
For the pooling layers, the kernel size is always 4. The stride is 1 for the convolution
layers and 4 for the pooling layers. After these blocks, we add two linear layers with
sizes of respectively 128 and 2 interspersed by a ReLU activation. The final layer is a
softmax layer returning a probability vector.

6The Conv1D layer as implemented in PyTorch allows us to give as input any number of channels,
see https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html [325].

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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13.2 Results and Discussion

This section discusses the results of the various changes made to decrease the maximum
frequency required for detection. We also compare the performances for the different
noises and look at the effect of curriculum learning on the performance. Finally, we also
investigate and discuss different ways to decrease the FAR.

13.2.1 Performance of the Network

The testing sets are built with the same distributions as the training sets, see Table 13.1.
The other parameter distributions are the same as for the training sets. Each of the test
sets contains 4400 frames, half of which are pure noise and the other half contain an
injection. The total size of the test sets for a type of noise is 22000 frames.
The efficiency of our network for the different steps of curriculum learning can be

seen in Fig. 13.4. We define the TAP and the FAP as in Eq. 12.7. In the top panel of
Fig. 13.4, we present the results for the three lowest maximum frequency data sets. The
higher maximum frequencies have performances similar to the 30 Hz data set. For the
data sets with a maximum frequency > 25 Hz, an efficiency of 50% is obtained at ∼ 15
PI SNR, while the efficiency reaches 100% at 30 PI SNR. This is not the case for the
data set with a maximum frequency of 20 Hz, where the TAP is lower. This is expected
since the detectors’ sensitivity worsens at lower frequencies, typically under 20 Hz, see
Fig. 13.1, left panel. In all the figures shown in this work, the FAP is fixed at 1%.

Similarly, we did the same test for the real O3 and the simulated O4 Gaussian noises.
The different results are summarized in the bottom panel of Fig. 13.4, where each curve
represents the results for the whole test set. In terms of PI SNR, the efficiencies for O3
Gaussian noise and O4 Gaussian noise are similar. However, since the noise floor is lower
in the O4 case, the network can probe higher distances in this case. The performance for
real noise is a bit worse than for the two Gaussian cases. The network needs a slightly
larger PI SNR to achieve the same performance. For example, the network requires a PI
SNR of 20 to have an efficiency of 50% in the case of real O3, whereas it only needs a
PI SNR of 17 to reach the same sensitivity in the two other cases. Even if some glitches
and non-Gaussian features are present in the data, the network still reaches a high
performance, provided the PI SNR is high enough. To resemble a real-time search, the
noise is downloaded from genuine low-latency strains. Therefore, it has a lower quality,
explaining the reduced performance.
After testing the network on independent 300 s-long frames, we generate frames of

1000 s and inject a complete GW signal into them. Then, we slide a 300 s window over
the frame, pass the data in the window to the CNN for each step and make a prediction.
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Figure 13.4: Top: The TAP as a function of the PI SNR for the O3 Gaussian noise case.
Each curve represents a different test set with a different maximum frequency seen by the
CNN. Bottom: The TAP as a function of the PI SNR for the O3 Gaussian noise, real O3 noise,
and O4 Gaussian noise.
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From one step to the other, we shift the window by 5 s. This is repeated until the full
1000 s are covered. Note that the step of 5 s is arbitrary and can be reduced for a
realistic early-alert pipeline. The minimum step length should be the time required to
load 300 s of data, pre-process it, and predict it with our network. The DL algorithm
is fast and takes about 0.5 s on a CPU, and 0.01 s on a GeForce GTX 750 GPU. The
pre-processing is also fast: about 0.13 s to compute the PSD with Pycbc, 0.01 s to
perform the whitening, and 1 s to remove the peaks and do the renormalization. The
limiting factor is to load 300 s of data for three detectors with GWpy 7, which takes
around 2 s on an Intel Xeon E5-2650 v4 CPU. Note that the PSD used for the whitening
is computed each time we load the 300 s frame. To reduce the computational time
further, one can evaluate the PSD at regular intervals and use the result for multiple
steps.
Fig. 13.5 illustrates the time left before the merger when our approach detects the

event for the different noise types. Each point contains 1000 frames with a duration of
1000 s, and each frame has a different noise realization. In each of them, we inject a BNS
signal with fixed component masses similar to those detected for GW170817 [37]. This
maintains a fixed duration for the data. The sky position of the signal varies from frame
to frame. We then slide a 300 s window over the 1000 s of data, as described above. The
process is repeated for injections corresponding to a larger distance. Fig. 13.5 shows
that, for a given distance, the events are detected the earliest in O4 Gaussian noise. It
is also interesting to note that the time before the merger for real O3 and Gaussian O3
noises is not that different, even if the Gaussian case is better. An event like GW170817
at a distance of 40 Mpc can be detected by our method 25 s in advance in real O3
noise, 35 s in advance in Gaussian O3 noise, and 50 s in advance for Gaussian O4 noise,
showing quite good trigger capabilities for future observations runs.

Often, the performance of online matched-filtering searches is evaluated with a FAR.
It represents the probability that a trigger occurs because of the noise for a given period
of time [138]. The matched filtering FAR is computed for each event and represents how
often the noise is expected to produce a trigger with a ranking statistic value at least as
high as the one of the event. With our method, we can not compute such a FAR, but
it is possible to evaluate the False Positive Over Time (FPt), defined as the number of
false positives for a given period.
To compute the FPt, we run our network over the entire O3b data using the same

setup as the one described previously. We shift the observation windows by 5 s for each
step and veto the times corresponding to events reported in the GWTC-3 catalog [40].
Additionally, we assume that there are no other detectable events in the data8. Then, the
FPt is the number of triggers divided by the total observation time. For O3b, we obtain
a FPt of 277.54 per day, which is too high to be used for online searches. To decrease
its values, we can consider that an event is present when our network gives multiple

7Using the built-in function gwpy.timeseries.TimeSeries.get().
8This assumption is reasonable since our network needs relatively high SNRs to detect the inspiral,
and the event would therefore have been detected by the usual search methods when merging.
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Figure 13.5: The time before the merger for the event’s detection as a function of the
distance. This experiment is done for a BNS with component masses similar to GW170817.

triggers in a row, as shown in Fig. 13.6. If we keep detections with five consecutive
alerts, the FPt goes down to 12.31 per day, and it goes to 1.71 per day if we consider
ten triggers in a row. Using multiple triggers implies longer delays before producing an
alert and reduces the time before the merger for the detection. For example, considering
five triggers leads to a delay of 20 s as we wait for 5 s for each step when sliding the
window. In the end, we need to find a trade-off between the time before the merger and
the desired FPt.
Another way to decrease the FPt is to use coherent triggers between two or more

detectors. The training strategy for the network does not make it favor coherent triggers.
Indeed, since it is trained for one, two, or three interferometers available, it learns to
trigger even if only one detector is online. Furthermore, even if more than one detector
is online, we do not use a minimum SNR in each of them for the training set. Hence,
the network learns to trigger even if only one interferometer picks up the signal. In the
end, it means that as soon as the CNN sees something remotely close to an inspiral in
one of the detectors, it triggers, leading to a relatively high FPt.

13.2.2 Estimation of the Number of BNS Inspirals Detectable in O4

To estimate the number of BNSs our network could detect in O4, we simulate a population
of BNSs. It is generated using the method described in [321], and the BNS merger rate
is normalized so that the local rate is equal to the median rate given in [328]. The only
difference with [321] is that we adapt the detection thresholds and the PSDs to our O4
scenario. We keep BNS events with a network SNR higher than 13 and discard all the
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Figure 13.6: Top: Representation of a signal and the noise it is injected in. Bottom:
Representation of the output of the CNN. Each point represents the probability of having an
inspiral in the 300 s of data. By convention, the time of a point represents the end of the time
window. The network does not trigger on the early inspiral because the PI SNR is too low.
When it becomes high enough, the network produces a trigger until the injection leaves the
frame, giving multiple points with a high probability in a row.

others. This threshold is chosen as we expect our network to find only BNSs visible in
the detector network. A global SNR of 13 corresponds approximately to an SNR of 8 in
each detector.
To have more statistics, we compute the equivalent of 5 years of data, with a duty

cycle of 100% for all the detectors. Our simulations predict that, on average, around
twenty BNSs per year will have a network SNR over 13 for O4 sensitivity. Our network
can detect around three of those BNSs in advance. Fig. 13.7 represents the time before
the merger for all the BNSs detected by our network over five years of data. Even if our
network detects only three events out of twenty, it is important to note that these events
are seen in advance and would, therefore, not be seen at that stage by the unmodified
matched filtering searches. Nevertheless, matched filtering pipelines adapted to the early
detection of long inspirals are also being developed [289, 336]. Those are also able to
detect BNS mergers in advance. Even if the comparison between these works and ours
is difficult (partially because of the difference in noise, but also performance evaluation),
their times before the merger are comparable to those obtained by our network, ranging
from O(10) to O(100) s. An advantage of these early-warning matched-filtering searches
is that their FAR is lower than our FPt (around one per month). However, they require
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Time before merger Mc (M�) net SNR net PI SNR at detection Max. frequency
88 s 1.19 71.87 15.32 25.45 Hz
59 s 1.08 63.77 23.43 31.35 Hz
58 s 1.26 53.01 16.63 28.75 Hz
25 s 1.16 28.72 16.31 41.39 Hz
22 s 1.95 64.07 19.8 31.45 Hz
22 s 2.06 54.88 18.01 30.42 Hz
19 s 2.15 30.55 10.37 31.29 Hz
14 s 1.69 31.26 14.42 40.75 Hz
11 s 1.98 27.68 13.63 40.43 Hz
10 s 2.0 28.95 16.28 41.58 Hz
10 s 1.79 25.04 12.9 44.52 Hz
7 s 2.01 20.47 11.87 47.48 Hz
7 s 1.72 34.21 25.71 52.2 Hz
3 s 2.12 28.28 20.68 63.01 Hz

Table 13.2: The time before the merger, the maximum frequency seen by the network at
detection, the chirp mass of the event, the network SNR, and the PI SNR at the moment of
the detection for all the detected BNSs in five years of simulated O4 data.

more computational resources during the search as the highest cost for machine learning
is moved to the training step. During the search, our method can run on a single
GPU or even on a single CPU, while most standard matched-filtering methods require
parallelization on multiple CPUs.

Table 13.2 shows the different characteristics of the detected BNSs. The network
can see an event when the network PI SNR is between 10 and 25, which is expected
according to Fig. 13.4. The time before the merger at which the CNN can detect a signal
depends on two factors: i) the network PI SNR, and ii) the length of the signal. The
PI SNR can be seen as a fraction of the SNR and its exact value depends on the signal
part considered (hence the maximum frequency seen by the CNN). For a fixed signal
duration, if the network SNR is high, the NN can detect an event at a lower maximum
frequency, corresponding to a longer duration before the merger. However, if we fix the
SNR and the maximum frequency while increasing the signal’s duration (for example
by decreasing both the chirp mass and the luminosity distance), the event is detected
earlier. This behavior is well represented in Fig. 13.7, where events with a low chirp
mass and a high SNR are detected the earliest. It also explains why some events with a
lower chirp mass can be detected earlier than events with a higher network SNR.



13.3. Conclusions 179

Figure 13.7: Chirp mass and time before merger as a function of the network SNR for the
BNSs detected by our NN in five years of simulated O4 data. We can detect about three events
in advance per year, up to a minute and a half before the merger.

13.3 Conclusions

This work builds upon the framework developed in Chapter 12. We implement several
upgrades and modifications to the CNN-based pipeline designed to detect the early
inspiral phase of BNS events. An important upgrade is the increased duration of the
frames passed to the network, allowing us to search for smaller frequencies and opening
the door to earlier detections. Another benefit of this increased duration is that we can
use a single network to look for all BNS types, which was not the case in our previous
work. The detection of events with smaller maximum frequencies is not easy and requires
an adapted training methodology: curriculum learning. We consider realistic observation
scenarios, including all the detectors of the LIGO-Virgo network, and use realistic noise
realizations: O3 and O4 colored Gaussian noises, and real O3 noise. We have also
demonstrated that, even in real detector noise, our network can identify GW signals
in advance. We expect our network to see some BNSs up to minutes in advance in
O4, provided the SNR of the event is high enough. In future work, we will upgrade
our method to also search for NSBH mergers. As discussed in Sec. 13.2, we will also
develop ways to decrease the FPt. Finally, we will investigate avenues to infer the sky
position with only the early inspiral part to also have an idea of where to look for an
EM counterpart.





14
Swift Sky Localization of

Gravitational Waves using Deep
Learning Seeded Importance

Sampling
In addition to knowing when a BNS merger signal is incoming, it is also important
to access its sky location. Indeed, one would need to localize it rapidly to extract
maximum information. The best possible sky localization occurs when at least three
detectors are online and seeing the event. Currently, low-latency sky location is done
with Bayestar [294], a Bayesian algorithm leveraging the matched filtering information
to by-pass the need for MCMC or nested sampling, and able to produce sky maps in less
than a minute after detection. However, its sky location is not always robust compared
to those obtained through complete Bayesian algorithms relying on MCMC or nested
sampling.
Better early sky localization capabilities would improve real-time multi-messenger

astronomy (MMA), observing astrophysical events through multiple channels - EM
transients, cosmic rays, neutrinos - only seconds after the GW is detected. MMA
is limited to GWs originating from BNS and NSBH mergers. According to current
understanding, BBHs are unlikely to emit an EM counterpart during their merger
[337, 338]. Currently, astrophysicists try to collect the non-GW channels in the weeks
after the event. A notable example is GW170817 [37, 278]. This process takes enormous
effort, while the obtained data quality is often sub-optimal. Having all channels observed
for the entire duration of the event would be a major leap forward. Real-time MMA
would enable a plethora of new science [280, 281, 339].

As mentioned before, real-time MMA relies on the generation of a sky map and
imposes two limits on the methodology used to obtain it. First, it needs to be swift to
allow observatories to turn towards an event’s origin, preferably only seconds after its
observation. Second, the sky map needs to be as accurate as possible since telescopes
have limited sky coverage.
The most precise methods are the Bayesian inference methods such as LALInfer-

ence [148] and Bilby [149]. They reconstruct the posterior distributions for all the
compact binary coalescences (CBC) parameters. Given enough samples, they asymp-
totically tend to the true distributions [340]. However, such methods are slow, taking
hours to days for BBH signals and up to weeks for BNSs. This makes them unusable for
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real-time MMA.
Owing to its speed after training, ML represents an attractive alternative to traditional

methods for producing rapid sky maps. Several methods have been developed to generate
posterior distributions for CBC events using ML [295, 297]. Even if they rely on different
approaches, these methods can generate a complete set of posteriors in about a few
minutes. Both DL methods are fast and seem to be accurate for the 100 - 1000 simulated
GW events they are evaluated on. However, these methods have a few issues: (i) they
are both susceptible to changes in the PSD and SNR, (ii) both have performances close
to Bayesian inference but do not match it, leading to different posterior distributions,
(iii) they can act unpredictably outside of the trained strain-parameter pairs and, even
within this space, they can act unpredictably due to the black box nature of NNs. Issues
(i) and (ii) have been addressed for normalizing flow algorithms in [299]. However, the
robustness remains behind those of traditional Bayesian inference.
In Ref. [302] and this chapter, we present a method that tries to bridge the gap

between Bayesian inference and DL methods, allowing for fast inference while preserving
optimal accuracy. It is to be noted that combining Bayesian inference and DL methods
has recently gained traction in the GW community, see [301] for example. The goal of
our algorithm is to restrict the parameter space such that, via sampling, one can quickly
obtain an accurate sky map. We use a multi-headed CNN to parameterize an independent
sky and mass distribution for a given BBH event. The model is trained on simulated
precessing quasi-circular BBH signals resembling the ones observed by the LIGO and
Virgo detectors. The parameterized sky and mass distributions are Gaussian-like and are
assumed to approximate the sky and mass distributions generated by Bayesian inference.
Using the parameterized sky and mass distributions, we construct a proposal posterior
in which all other BBH parameters are distributed uniformly. By using importance
sampling we can then sample from the exact reference posterior. This implies that we
effectively match the performance of Bayesian inference in a short time without exploring
the entire parameter space. We stress that this work is a proof-of-concept to show the
promises of combining NNs and Bayesian inference. In future work, we will consider
more complex DL structures and other event types.

14.1 Methodology

Our inference setup is a two-step method. In the initial step, we infer simple distributions
for the BBH sky localization and masses by using a NN. Subsequently, we apply
importance sampling (see Sec. 6.4.3) to these simple distributions to compute a more
accurate posterior.
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14.1.1 Going from Simple Distributions to Complex Posteriors

High-dimensional distributions in which the majority of the probability density is confined
to a small volume of the entire space are hard to sample from, which results in long run
times to get proper estimates when using MCMC methods. A well-known avenue to
cope with this problem is importance sampling (see Sec. 6.4.3). In this case, it suffices
to have a good proposal distribution and a likelihood to generate the final posterior
distributions.
Generating accurate posteriors for GW observations using MCMC is very time-

consuming, and thus importance sampling is an attractive alternative. Importance
sampling requires us to have a viable proposal distribution. Published posteriors for
known GWs show that the probability density in the posterior is relatively confined
for both the sky location and the two masses [269]. A Von Mises Fisher (VMF) and
Multi-Variate Gaussian (MVG) distribution are good first-order approximations of
the sky and mass distribution, respectively, and thus suitable to use as a proposal
distribution for importance sampling. We propose to construct this proposal distribution
by assuming a uniform distribution over all non-spinning BBH parameters, except for
the sky angles, represented by a VMF, and the masses are represented by an MVG
distribution. Assuming that the sky angles, masses, and other BBH parameters are
independent, our proposal distribution becomes the product of these two distributions.
In what follows, we discuss how we create this proposal distribution using a NN.

Importance sampling also requires a likelihood function for the proposal distribution
and the desired distribution. In the previous paragraph, we discussed how we want to
create a proposal distribution. The desired distribution is the likelihood function for
GWs given in Eq. (4.18).

We now have all the parts needed to discuss how we utilize importance sampling for a
given strain s. A trained neural network parametrizes the proposal distribution q for the
given strain. The proposal distribution generates n samples representing possible GW
parameter configurations. For each sample, we calculate the logarithm of the importance
weight w(θ),

logw(θ) = log Ξ(s|θ)− log q(θ) + C, (14.1)

where θ is the BBH parameters and Ξ is the right-hand-side in Eq. (4.18), instead of
the importance weight itself to prevent numeric under- and overflow. The constant C is
added to set the highest logw(θ) to zero to prevent numerical errors. Since we normalize
the weights afterward, the correct importance weights are obtained in the end. The
reweighed samples represent the desired distribution p.
If the proposal distribution does not cover the true distribution well enough, the

importance samples are dominated by a single to a few weights if we restrict the run-
time. We can use this as a gauge to check if the sky map produced by the NN and
importance sampling can be trusted.
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14.1.2 Neural Model

Previous work [314] shows that CNNs can extract the masses from a BBH event just as
well as the currently-in-use matched filtering. Furthermore, another work [341] indicates
that 1D CNNs can locate GW origins. Therefore, we chose to use a 1D CNN to model
the distribution across the sky for the source and a multivariate normal distribution for
the two masses of the BBH system.

The network architecture of this 1D CNN is presented in Fig. 14.1 and consists of four
parts: a convolutional feature extractor and three neural network heads. These heads
are used to specify the two distributions. The following properties were tested or tuned
for optimal performance: the number of convolutional layers, kernel size, dilation, batch
normalization, and dropout. The model shown in Fig. 14.1 produced the best result on
a validation set.

The convolutional feature extractor generates a set of features characterizing a given
GW. This set of features is passed to the neural heads. Each head is specialized to
model a specific GW parameter. The first head determines the sky distribution, the
second head the masses, and the third head the uncertainty over the two masses. Below
we elaborate on each of these heads and how they characterize these distributions.

The first head specifies the distribution of the source position. A 2D Gaussian
distribution is ill-fit because the sky location is a surface on a 3D sphere. A suitable
alternative is the VMF distribution [342] which is the equivalent of a Gaussian distribution
on the surface of a sphere. The probability density function and the associated negative
log-likelihood (NLL) of the VMF distribution:

p(x|µ, κ) = κ

4π sinh(κ) exp
(
κxTµ

)
(14.2)

NLLVMF(x, µ, κ) = − log(κ)− log(1− exp(−2κ))− κ− log(2π) + κxTµ , (14.3)

where x and µ are normalized vectors in R3, with the former being the true direction
and the latter being the predicted direction. κ is the concentration parameter, which
determines the width of the distribution. It plays the same role as the inverse of the
variance for a Gaussian distribution. We use this distribution by letting the first head
output a three-dimensional vector D = (Dx, Dy, Dz). The norm of D specifies the
concentration parameter κ, and its projection onto the unit sphere gives the mean µ. So,
κ = |D|, and µ = D/|D|. These values, together with the true direction x, are used to
calculate the negative log-likelihood, which is used as a loss function for the first head.

The second and third neural heads specify a 2D MVG, describing the possible config-
urations of the masses. The means ν of the MVG are given by the second head, and the
covariance matrix Σ is specified by the third head. Given the true values of the masses
y = (m1,m2), the probability density function and associated negative log-likelihood of
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Figure 14.1: A graphical depiction of the CNN developed in this work. After each MaxPool1d
and Batchnorm1d layer, a leaky ReLU activation function with an α = 0.1 is applied. The
convolutional part is shown on the left and takes as input a time series of 4096 elements
with 3 channels. Conv1D(i, o, k , d) denotes a 1D convolution with i input channels, o
output channels, kernel size k and dilation factor d. MaxPool1d(k) denotes a 1D max pooling
layer with kernel size k. The output of the convolutions is given to three independent NN
heads. The first head predicts the sky location parameterized as D = (Dx, Dy, Dz), the second
head predicts the mean of the masses of the two black holes, and the last head predicts the
uncertainty elements of the covariance matrix over the two masses. Linear(i, o) denotes a
linear transformation with i input features and o output features. Lastly, Batchnorm1d(i)
denotes a 1D batch normalization layer with i input features.
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the MVG are:

p(y|ν,Σ) = 1√
(2π)2|Σ|

exp
(
−1

2(y − ν)TΣ(y − ν)
)

(14.4)

NLLMVG(y, ν,Σ) = 1
2(y − ν)TΣ−1(y − ν) + 1

2 log (|Σ|) + log (2π) . (14.5)

The inverse covariance term in the negative log-likelihood can contain imaginary
numbers if the covariance matrix is not positive-definite. To ensure the covariance matrix
Σ remains positive-definite, it is parameterized through

Σ11 = exp(s11) (14.6)
Σ22 = exp(s22) (14.7)

Σ21 = Σ12 = tanh(s12)
√

Σ11Σ22 . (14.8)

The three variables s11, s22, s12 are predicted by the third neural head and define the
covariance matrix completing the MVG prediction of the masses. The parameterization
and implementation of the MVG are based on Ref. [343].

By further assuming that the sky and mass distributions are independent, we obtain
a first approximation of the posterior distributions, thereby satisfying the requirements
for importance sampling.

14.2 Setup for the Experiments

Experiments were performed on two different fronts: (i) training the NN followed by
the empirical evaluation of its performances on unseen test data, and (ii) comparing
the NN model, importance sampling scheme, and Bilby, based on several metrics and
sky maps. Below, we describe the experimental details and justify the decisions we
made. All experiments are performed on a computer with a 16-core AMD Ryzen 5950X
CPU, NVIDIA 3090 RTX GPU, and 64 GB of RAM. The source code is available at
https://github.com/akolmus/swiftsky.

14.2.1 Setup for Training and Evaluating the Neural Network

To obtain strain-parameter pairs for training and validation, we sample parameters
from a BBH parameter prior (see Table 14.1) and generate the associated waveforms
using the IMRPhenomPv2 waveform model [107]. The waveforms are generated in the
frequency domain in a frequency band of 20 to 2048 Hz. The duration of the signal

https://github.com/akolmus/swiftsky
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parameter prior minimum maximum unit
Masses (constraint) - 20 80 M�
Chirp mass Uniform 10 100 M�
Mass ratio Uniform 0.25 1.0 -
Spin magnitudes Uniform 0 0.95 -
Spin polar angles Sine 0 π rad
Spin azimutal angles Uniform 0 2π rad
Right ascension Uniform 0 2π rad
Declination Cosine -0.5π 0.5π rad
Binary inclination angle Sine 0 π rad
Coalescence phase angle Uniform 0 2π rad
Polarization angle Uniform 0 2π rad
Time Shift Uniform -0.1 0.1 s
Luminosity distance - 1000 1000 Mpc

Table 14.1: The priors used for the data generation when training and testing our NN. The
luminosity distance in the prior was set to 1000 Mpc and scaled afterward to match the desired
SNR.

is 2 s. Subsequently, these waveforms are projected onto the LIGO-Hanford, LIGO-
Livingston, and Virgo interferometers. We sampled the SNR from a scaled and shifted
beta distribution with its peak set to 15 (see Figure 14.2). The luminosity distance in
the prior is set to 1000 Mpc and scaled afterward to match the desired SNR. We generate
Gaussian noise from the design sensitivity PSD for each detector [25, 26]. Finally, the
signal is injected into the noise, and an inverse Fourier transform is applied to obtain the
strains as time series. This setup allows us to generate an arbitrary amount of unique
strain-parameter pairs, which results in every training epoch having a unique data set,
reducing the risk of over-fitting.
We applied three preprocessing steps to the data. All time series are whitened with

the aforementioned PSDs. Next, the time series are normalized. Lastly, to make the
mass distribution easier to learn, we calculate a shift and scaling factor for the target
masses such that all target masses are between -1 and +1. The shifting and scaling
are applied inversely to the NN output during importance sampling to get the correct
masses.
The model is trained for 300 epochs with a batch size of 128. During each epoch,

we drew 500 000 strain-parameter pairs for training and 100 000 strain-parameter pairs
for validation. Adam [230] is used to optimize the model in conjunction with a cosine
annealing scheme with warm restarts [344]. The learning rate oscillates between 10−3 and
10−5 with a period of 20 epochs; weight decay is set to 10−6. Multiple hyper-parameter
configurations are tested, and this configuration obtained the best performance.

To benchmark the trained model, an unseen test set is generated. It contains 100 000
strain-parameter pairs at specific SNR values. The model is evaluated using the mean
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Figure 14.2: Scaled and shifted beta distribution acting as the SNR sampling distribution
during training and validation. The vertical axis represents the probability density function of
this beta distribution. The horizontal axis represents the SNR value.

absolute angular error (maae) and the average 90% confidence area of the predicted
VMF distribution.

14.2.2 Setup for Importance Sampling

To evaluate the importance sampling procedure, we construct a slightly simpler test set in
which we set the spin magnitude to zero. This is done to limit the Bilby run-time. The
importance sampling procedure is applied to the first 100 strain-parameter pairs of this
test set at three different optimal SNR values: 10, 15, and 20. For each strain-parameter
pair, we generate 200 000 importance samples. To simulate multiple independent runs
at various time points for the same strain-parameter pairs, we sub-sample from these
200 000 importance samples during the experiments.

We ran two experiments to test the convergence of the importance sampling method.
In the first one, we use the importance sampling scheme as a maximum likelihood
estimator. For a given set of samples, we choose the sample with the highest likelihood
and calculate the angle between this sample and the true sky coordinates. In the second
experiment, we represent the probability density function of the importance samples
by a KDE and test how well the resulting density covers the injected right ascension.
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Specifically, we use a Gaussian KDE1 to fit the right ascension distribution proposed
by the importance samples. The log-likelihood of the actual right ascension is used
to measure the quality of the estimated density. We remove a few outliers from the
second experiment. By restricting ourselves to only the right ascension, the number
of outliers decreases. These outliers have densities that do not cover the true right
ascension at all, resulting in extreme negative log-likelihoods dominating the average
log-likelihood. For both experiments, we expect the metric to improve as the number
of importance samples increases, and to level after a significant number of importance
samples indicating convergence.

14.2.3 Generating Sky Maps

We use Bilby as a benchmark to generate sky maps for the first ten strain-parameter
pairs of the test set and, for each, create a version at an SNR of 10, 15, and 20. To
make a fair comparison, the prior given to Bilby has its spin components set to zero.
Moreover, the posterior inference is done with standard settings, and each run took
between 2.5 and 7 hours to complete. During these runs, the live points of the sampler
are saved every 5 seconds and labeled by the total number of sampled points. These
points are used to run the two importance sampling experiments for Bilby.

14.3 Results

In Fig. 14.3, we summarize the results for the first experiment: the top panel gives the
maae in the sky location, and in the bottom one we plot the 90% confidence area of the
VMF distribution. As expected, when the SNR increases, the prediction error in the sky
location decreases and the 90% confidence area becomes smaller. The error in the mass
prediction is similar to those of other CNN approaches [314], see Fig. 14.4, indicating
that the setup works well. We note that the error in the sky location seems quite high
for SNR < 10 and does not converge to zero for high SNR. We can think of two possible
explanations for the poor performance at low SNR. First, the detection rate using either
CNNs or matched filtering pipelines at an SNR of 5 is less than 40% [314, 345]. At
such a low SNR, it is difficult for the model to discern the differences in arrival time at
each detector, which explains the slightly better than random predictions for SNR < 7.
When we compare our angular error with other CNN approaches [341, 346], the average
error looks similar. Furthermore, Ref. [347] reported that Gaussian approximations are
only accurate for high SNR (SNR > 8), and, even then, multi-modalities might arise.
Second, the sky distribution can be multimodal. This multi-modality is either due to

1We use the gaussian_kde from the scipy python package.
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strong noise or can be due to a sky reflection [148]. For three detectors, there are two
viable solutions to the triangulation problem: the true sky location and its reflection. In
most cases, the amplitude information is sufficient to break the degeneracy between the
location and its reflection. However, for certain sky angles, this amplitude information
does not lift the degeneracy, and a multimodal distribution is observed. For these angles,
the model has a 50% chance of guessing the wrong mode and thus has an average angular
error of 90◦.

14.3.1 Importance Sampling

The results of the importance sampling experiments are shown in Fig. 14.5. The top
panel shows the maae as a function of the number of importance samples. We observe a
decreasing error when the number of samples increases. The bottom panel shows the
log-likelihood of the true right ascension given by KDEs built using varying numbers
of importance samples. The majority of the convergence in the maae seems to happen
within the first 30 000 samples. The slow convergence can largely be attributed to strains
for which the model predicted a wide sky distribution. When we compare this to results
of Bilby, we see that the maae of the highest likelihood sample for all SNR is always
between 1◦ and 8◦. Importance sampling is competitive for an SNR of 20 and close
for an SNR of 15, especially when considering that, in both cases, 2 out of the 100 sky
distributions were parameterized as the sky reflection.

However, importance sampling is not competitive with Bilby in the second experiment.
For all SNR values, Bilby reports log-likelihoods between 2 and 3, see the top panel
of Fig. 14.6, and importance sampling does not reach these values. If we consider runs
showing good convergence, i.e. where 90% of the importance weight is not determined
by less than ten importance samples, importance sampling also reports log-likelihoods
between 2 and 3. In the bottom panel of Fig. 14.6, we have repeated the kernel density
experiment, but only for the well-converged runs. These runs represent 30% of all runs,
and almost no SNR < 10 runs.

14.3.2 Generating Sky Maps

As a final test, we generate sky maps using the NN, importance sampling, and Bilby on
the same signals. Three representative sky maps are shown in Fig. 14.7. The sky maps
generated by the NN have significantly more spread than those generated by importance
sampling and Bilby. As we explained in the previous sections, this might due to the
NN overestimating the uncertainty and having difficulty extracting the exact signal
from the detector noise. The sky maps generated by importance sampling and Bilby
resemble each other quite a lot, their peak intensities are in the same position, and the
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Figure 14.3: Characterization of the neural network in terms of accuracy and certainty over
the test set. Top: the maae between the sky angle predicted by the model and the actual
sky location as a function of the SNR. Bottom: the average size of the 90% confidence area,
expressed in degrees squared, of the predicted VMF distributions as a function of the SNR.
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Figure 14.4: The mean relative error of the estimated component masses by the NN on the
test set as a function of the optimal SNR. This figure closely resembles Fig. 5 in [314]. Any
differences are due to the difference in the experimental setups. The main differences are that
our priors include spins and that we do not use a stationary sky origin.

sky distributions occupy roughly the same area. However, the importance sampling
sky maps are grainy and sometimes do not cover the complete area that Bilby does.
As seen in the bottom row of Fig. 14.7, when the predicted VMF distribution has its
peak intensity in the correct location the importance sampling creates better-looking
sky maps. This improvement is due to the increased number of significant importance
samples. These results indicate that a larger number of significant importance samples
is needed, which is to be expected with only 5 min of run-time. Within only 1-4% of the
Bilby run-time, we can already recover the essentials of the sky maps. Additionally,
such sky maps can be good enough for low-latency searches and can be updated as more
importance samples are generated.

14.4 Conclusions

In this study, we produced sky maps for simulated BBH events using an importance
sampling scheme that turns an approximate sky map made by a NN into a sky map
representing the Bayesian posterior distribution. Experiments show that our method is
competitive with Bilby and can produce the essentials of the sky map within 4% of
the Bilby run-time. However, in some cases, the proposal distributions made by the
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Figure 14.5: Characterization of the importance sampling, with the number of importance
samples ranging from 1 000 to 50 000. The colors represent different SNR values, with blue,
green, and red being 10, 15, and 20, respectively. Top: the maae of the importance sample
with the highest likelihood as a function of the sample size. Bottom: the log-likelihood of the
true right ascension according to the kernel density estimator created by importance samples
as a function of sample size.
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Figure 14.6: Top: The log-likelihood of the true right ascension according to the KDE created
by the Bilby samples. The horizontal axis represents how many samples Bilby has generated
(live and dead samples). Bottom: The log-likelihood of the true right ascension according to
the KDE using only the importance samples of well-converged runs. These values are more in
line with those of Bilby (see top panel).
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Figure 14.7: Examples of predicted sky maps by our NN (left), importance sampling after
100 000 steps or roughly 5 min of computing time (middle), Bilby at convergence (right). The
true sky location is indicated in red. The shown sky maps are generated for signals with an
SNR of 15. The number of significant importance samples, and hence the quality of the sky
maps, increases as we go from the top to the bottom row. In the worst case scenario, the sky
location is wider than for Bilby. However, it seems good enough to perform prompt follow-ups.
In the best-case scenario, the sky location obtained after importance sampling is equivalent to
the one given by Bilby.

NN are too crude, which hampers the efficiency of the importance sampling scheme.
If the sampling efficiency is improved, importance sampling could be used as a quick
alternative to Bilby or LALInference for inferring the GW posterior. In future work,
we will consider more advanced DL models, such as normalizing flows, to infer more
accurate posterior distributions. Additionally, we will accommodate other signal types
and try to use our framework for early sky location generation.

This framework combined with the one presented in Chapters 12 and 13 would make
for a complete low-latency/early-alert ML-based framework. Still, this would require
some updates to the two pipelines. For example, the early-alert system should have a
reduced FAP. This can be done by using consistency requirements between the triggers
throughout the detectors. On the other hand, the sky location algorithm leads to prompt
sky localization but does not produce a sky map in advance. Therefore, we would need
to adapt the model to produce sky maps based only on the inspiral. However, we have
also seen that our algorithm does not perform well on low SNR signals. Therefore, we
would probably need to modify our NN to deal properly with the inspiral part of the
signal. Once both pieces work individually for more realistic scenarios, we can combine
them to make a complete early-alert system.





Part IV
Third-Generation Detectors:
Interesting Science,
Tough Analyses





15
Third-Generation Detectors:

Expending our Horizons
Even if they are upgraded continuously and should reach higher sensitivities in the
coming years [25, 26], the 2G detectors have inherent limitations due to their design and
size. Therefore, planning for future ground-based interferometers has already started,
with Einstein Telescope (ET) on the European side [30, 31] and Cosmic Explorer (CE)
on the American side [50]. These detectors are designed to have a significantly increased
sensitivity through various technological and design improvements.

Since the detectors are not in the commissioning phase yet, discussions on their exact
design are still ongoing. For ET, the proposed plan is to make a triangular detector
composed of nested interferometers with a 60◦ opening. The triangle would have a 10
km arm-length with a “xylophone” structure, meaning that it would be made of two
entangled detectors, one specialized for lower frequencies and one for high frequencies [31].
The triangular shape gives a more uniform antenna response, making for better sky
coverage. Additionally, it leads to redundancy and makes the construction of a null-
stream possible [348–350]. For the low-frequency part, the plan is to use cryogenic
mirrors and low-power lasers. On the other hand, the high-frequency detector should
have a high-power laser to reduce the shot noise [31, 31, 351]. Finally, to avoid gravity
gradients and perturbations due to anthropological activity, the full structure would
be placed underground. With these nested detectors, it would be possible to reach
frequencies between 1 and 5 Hz [31]. The latter is crucial for the high-mass CBC mergers
detection, as higher masses lead to lower maximum frequency, as seen in Eq. (2.63). On
the other hand, the generally improved sensitivity makes the LIGO BBHs visible to
redshifts of ∼ 20. At that time, no stars had formed. Therefore, only primordial BHs
would be observed [52]. Moreover, BNS mergers should be visible up to redshifts of 3.
This is after the peak in the star formation rate. Therefore, the number of detections
should increase drastically compared to 2G detectors [52]. This is the theoretical design
and studies are still ongoing to see the consequences of the setup.

In synergy with ET, CE should also be operational. Its design is different from ET’s.
CE is expected to keep the L-shaped structure but is expected to have 40 km long
arms [50]. It should also come with more powerful lasers to increase its sensitivity.
However, nothing particular is planned to improve the low-frequency detection capacities.
For 2G sources, it should reach the same type of horizon distances as ET, if not a bit
higher thanks to its longer arms.

Together, these detectors could shed light on many open questions, see Ref. [52] for an
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overview. These range from the origin of BBHs to the possible existence of primordial
BHs. They also have interesting applications for BNSs, where many multi-messenger
detections could be made [52, 287], and the high-frequency sensitivity makes the post-
merger part of the signal observable [352–354]. The latter could help study the NS EoS
as it happens in different conditions compared to the inspiral.

Besides the technological challenges, 3G detectors also require major developments on
the data analysis side. For CBC mergers, the enlarged horizon leads to an enormous
number of mergers happening over time, with up to hundreds of thousands of CBC
signals observed over a year [52]. This means the analysis tools will have to be fast
if one wants to keep up the pace of the analysis. Additionally, the improved low-
frequency sensitivity significantly increases the duration of the signal, as can be seen
from Eq. (12.4). While BBHs will last for minutes, BNSs will last for hours. This is
interesting for early alert pipelines as BNS systems could be very loud – with SNRs of a
few hundred – and the SNR has time to accumulate in the first hours, and detectability
could be reached well before the merger. On the other hand, the full signal analysis,
from early inspiral to merger, will be computationally challenging. Combining this with
the rate, current analysis methods [148, 149] will probably be unable to follow up on
all the events. One can think of various techniques to circumvent these issues. Some
examples are adaptive frequency resolution [355], relative binning [356–359], machine
learning [295–301], quantum computing [360], . . . However, most of these methods are
not yet mature enough to be used under realistic conditions.

Other problems will arise. Among them are overlapping signals [321, 361–365], where
the combined increase in detection rate and signal duration leads to several signals
in-band at the same time. They can interfere and could be problematic for data analysis
in 3G detectors. This part of the thesis takes a look at this problem and offers several
solutions.



16
Biases in Parameter Estimation

From Overlapping
Gravitational-Wave Signals in the

Third-Generation Era
When going from 2G to 3G detectors, there will be a steep increase in the detection
rates. Moreover, the decrease in low-frequency sensitivity will lead to longer in-band
signals [366]. These two combined effects lead to a significant probability for the signals
to overlap, as first pointed out in [361]. In Ref. [321] and this chapter of the thesis,
we study the occurrence of overlapping signals and their consequences on parameter
estimation.
It is important to know how much overlapping signals can impact some of the 3G

science goals (for examples, see [52, 366–375]). Not only the CBC science objectives can
be affected but also other scenarios where one needs to subtract foreground sources, such
as searches for primordial BHs [376–381]. In principle, individual CBC detections should
not be impacted significantly by the occurrence of overlapping signals [382]. However,
their recovered posterior distributions could be modified because of the overlap.

While previous work has focused on the study of individual sources in the 3G era [383–
385], we here focus on the possibility to observe bias in the recovered parameters when
neglecting the presence of another GW signal in band. First, we study how often
signals overlap over a year in a 3G scenario with a network made of two CEs and one
triangular ET detector. Therefore, we assume some realistic merger rate distribution as
a function of redshift and mass distributions for BBHs and BNSs. We find that tens
of CBC merger signals occur during one BNS signal. Also, events merging within the
same second will be quite common. Since these are the cases where the largest bias is
expected, we focus on them to simulate two closely-merging signals injected in simulated
noise from the ET-CE network. We then analyze the signals using state-of-the-art
parameter estimation techniques. We explore different types of overlaps: two BBH
signals, two BNS signals, and a BBH with a BNS. In our simulations, we choose signal
parameters consistent with past observations for the different types of sources. BNSs
are modeled with parameter values similar to the ones observed for GW170817 [37],
high-mass BBHs are represented by GW150914-like parameters [33], and lower-mass
BBHs with GW151226-like parameters [386]. This work finds that, in most cases, the
intrinsic parameters are recovered with negligible bias. However, when the merger times
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of the signals are sufficiently close, considerable bias can occur when a short BBH or
a quieter BNS overlaps with a louder BNS signal. Even if this work is exploratory, it
already shows where issues can occur and where current parameter estimation techniques
should be improved.

16.1 Overlap Rate Estimates

Before looking at the impact of overlapping signals on parameter estimation for the
individual signals, we want to address the question of how frequently such overlaps occur,
depending on the signal’s type.

16.1.1 Methodology

Previous characterizations of the overlap probabilities for 3G detectors were based
on the duty cycle, defined as the ratio of the typical duration of a particular type of
event (BNS or BBH) to the average time interval between two successive events of
that type, assuming some fixed canonical values of the component masses for each type
[361]. However, here we also want to allow for overlaps of mixed types and a range
of component masses (and hence signal durations) within a given type to arrive at a
detailed assessment of overlap rates. Therefore, we assume particular merger rates as a
function of redshift for BBH and BNS, as well as component mass distributions, and
based on these create simulated “catalogs” of signals in the detectors. This allows us to
make quantitative statements regarding BNS signals overlapping with other BNS signals
and with BBHs, and the same for overlaps of BBH with BBH events, in a much more
detailed and realistic fashion1.

We start by estimating the number of individual BBH and BNS coalescences happening
in a given volume up to a maximum redshift, chosen to be zmax = 30 for BBH events and
zmax = 6 for BNS events [361, 366, 388, 389]. For this, we need the intrinsic merger rate
density for the events as a function of redshift. We will assume that the compact binaries
originate from stellar populations and adopt the merger rate estimates of Belcynski et

1Since NSBH merger rates are less certain (see e.g. [44, 387]), we do not consider them here, but
we expect general conclusions regarding parameter estimation to largely carry over when signal
durations are similar.
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Figure 16.1: The BBH merger rate density according to Oguri’s fit [391] for population I, II,
and III stars, as well as the total rate when all the star populations are included.

al. [390] with Oguri’s analytical fit [391]2, whose general expression is

RGW(z) = a1e
a2z

ea3z + a4
. (16.1)

Here RGW is expressed in Gpc−3 yr−1, and the coefficients ai, i = 1, . . . , 4, depend
on the considered star populations; see Fig. 16.1. For our purpose, we consider the
combination of population I and II stars for BNS, and populations I, II, and III for
BBH, as the contribution of the latter type of stars is important only at redshifts of
& 4. However, these relations are rescaled to match the local merger rate estimates
obtained observationally by LIGO and Virgo so far; see [328]. In this work, we focus on
the lowest, the median, and the highest local rate for each type of event. For BNS, the
lowest, median, and highest local rates are, respectively, 80 Gpc−3 yr−1, 320 Gpc−3 yr−1,
and 810 Gpc−3 yr−1, which are obtained by changing the value of a1 to 2480, 9920, and
25110, respectively. On the other hand, for the BBH events, we apply a multiplicative
constant to the sum of the population I and II and the population III rates, equal
to 0.0709, 0.112, and 0.178 for the lowest, median, and highest local rates, which are
15.1 Gpc−3 yr−1, 23.8 Gpc−3 yr−1, and 37.9 Gpc−3 yr−1, respectively.

An intrinsic merger rate density RGW(z) is then converted to an observed merger rate
2Strictly speaking, this merger rate distribution refers to BBH mergers. However, when computing the
merger rate density (see e.g. [388–390]), one assumes a time delay distribution (e.g. P (td) ∝ 1/td),
with a minimum time delay that is higher for BBH than for BNS. Using the distribution of [390] for
both BNS and BBH (with some overall rescaling) then implies that we will underestimate the BNS
merger rate density [389] and hence the frequency of overlaps involving BNS signals.
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density as a function of redshift by multiplying by the differential comoving volume [361]:

Robs
GW(z) = RGW(z) dVc

dz (z). (16.2)

To obtain dVc/dz, we assume the Planck13 cosmological model [392] of Astropy [393,
394].

As a next step, we simulate the population of systems by constructing a “catalog”,
and determine which events are detected. For the BBH population, we assume that
the masses follow the “power law + peak” distribution presented in Ref. [328] for the
primary component mass, and the corresponding power law distribution for the mass
ratio, through which we sample the secondary mass [328]. For BNS events, we distribute
component masses uniformly, where for the primary mass m1 ∈ [1, 2.5] M�, and the
secondary mass m2 ∈ [1 M�,m1]. Events are distributed over comoving distance D
according to RGW(z), converting between D and z using the above-mentioned cosmology
and cutting off at the maximum redshifts zmax stated above. Sky positions and unit
normals to the orbital plane are taken to be uniform on the sphere.

In this work, we assume a network of two CEs located at the LIGO Hanford and
Livingston sites and one ET located at the Virgo site. We calculate the optimal SNRs in
the three observatories for each event. They are added in quadrature to obtain a network
SNR. In computing SNRs, we only consider the inspiral part of binary coalescence so
that in the SPA (see Sec. 3.1) [72] and for a single interferometer [395]

SNR = 1
2

√
5
6

1
π2/3

c

D(1 + z)1/6

(
GMc

c3

)5/6

g(θ, φ, ψ, ι)
√
I(M). (16.3)

Here,Mc is the chirp mass in the source frame (2.50). The geometric factor is given by

g(θ, φ, ψ, ι) =
(
F 2

+(θ, φ, ψ)(1 + cos(ι)2)2 + 4F 2
×(θ, φ, ψ) cos(ι)2

)1/2

, (16.4)

where F+,× are the beam pattern functions (see Sec. 2.2.4) in terms of sky position (θ, φ)
and polarization angle ψ, while ι is the inclination angle. We take the ET to consist of
three detectors with 60◦ opening angle, arranged in a triangle with sides of 10 km [396],
and add the corresponding SNRs in quadrature; for CE we assume a single L-shaped
detector of 40 km arm length [50]. Finally,

I(M) =
∫ fhigh

flow

f−7/3

Sn(f)df. (16.5)

Here flow is a low-frequency cut-off that depends on the observatory; we set flow = 5 Hz
for both ET and CE, though lower values may be achieved in the case of ET [31, 397].
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For fhigh we use the ISCO frequency3:

fhigh(m1,m2, z) = 1
1 + z

1
6π
√

6
c3

GM
, (16.6)

where M = m1 +m2 is the total mass. We take the noise PSD Sn(f) to be ET-D in the
case of ET [30, 31]; for the projected PSD of CE, we use the one from [50].
The network SNR – denoted SNRnet – is defined in Eq. (4.12) and the sum is over

the two CE and the one (triangular) ET observatories. We consider an event detectable
if the network SNR is above 13.85 (=

√
3 × 8), without imposing SNR thresholds in

individual observatories. For the BNS and BBH mass ranges considered here, it means
that detection rates will mainly be driven by the CE detectors. Still, we note that ET
will have an advantage at higher masses [398].

Finally, signals will be present in a detector for a duration given by

τ = 2.18
(

1.21 M�
Mc

)5/3[(100Hz
flow

)8/3

−
(

100Hz
fhigh

)8/3]
s. (16.7)

Simulated catalogs of events happening over a year are constructed as follows. The
year is split into a grid where each cell corresponds to one second. Merger times are
drawn from a uniform distribution over these cells. For a given type of event (BNS
or BBH), one associates to each merger time a mass pair, redshift, sky position, and
orientation of the orbital plane drawn from the corresponding distributions, as well
as a signal duration computed from Eq. (16.7). Doing this for the three choices of
local merger rate, and in each case putting together the BNSs and BBHs, catalogs of
events are obtained. Finally, within each catalog, it is assessed which events will be
detectable with the ET-CE network according to the criteria spelled out above, leading
to an overview of what we may expect to be contained in one year’s worth of data. In
particular, we can check how often and in what way events tend to overlap, depending
on their types.

16.1.2 Overlap Estimates

Before imposing detectability thresholds, the three different local merger rates give the
following typical numbers of events happening over one year: ∼ 59000, 93000, 148000
BBH events, and 286000, 1145000, 2900000 BNS events for the low, median, and high
local rates, respectively. The network of two CEs and one ET will detect 93% of BBHs
and 35% of BNSs within the considered volumes. The number of detected signals is

3Note that this equation differs from Eq. (2.63) by a factor 1/(1+z), added here to account for the
expansion of the Universe.
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# detections SNRnet # SNRnet > 250 # SNRnet > 100 # SNRnet > 50 # SNRnet > 20

BBH
Low rate 53756 81.1+94.2

−57.3 3069 (5%) 20605 (35%) 40063 (68%) 52239 (89%)
Median rate 85725 81.3+93.9

−57.5 4972 (5%) 33148 (39%) 63958 (75%) 83333 (97%)
High rate 137225 81.5+94.2

−57.4 7860 (6%) 53419 (39%) 102766 (75%) 133460 (97%)
BNS
Low rate 98898 19.2+22.1

−4.9 17 (0.017%) 298 (0.30%) 2712 (2.7%) 44350 (48%)
Median rate 396793 19.1+22.0

−4.8 73 (0.018%) 1257 (0.32%) 10659 (2.7%) 177296 (45%)
High rate 1004525 19.1+22.1

−4.8 196 (0.020%) 3255 (0.32%) 27135 (2.7%) 448610 (45%)

Table 16.1: The number of events detected by a network of two CEs and one ET in one
year of simulated data, the median network SNRs and their 90% spreads, and the detection
numbers and percentages (in brackets) for different choices of minimum network SNR.

Rate BBH mergers > 1 BNS mergers > 1 Any mergers > 1
Low rate 48 310 750
Median rate 127 2412 7347
High rate 303 15581 20149

Table 16.2: The number of seconds in a year with at least two mergers occurring, depending
on their types.

shown in Table 16.1 for the three local rates, along with median and 90% spreads on
SNRs and a breakdown of detections according to their loudness.

Within our simulated event catalogs, we can look at the numbers of detected signals
that overlap depending on the types. We focus on two quantities: (i) the number of
seconds in a year where at least two detected signals have their merger, and (ii) the
typical number of mergers that happen during the time a given signal is in a detector’s
sensitivity band.

The number of seconds in a year having at least two mergers taking place is given in
Table 16.2; clearly, this will happen frequently over a year. Indeed, we find that even
more than two mergers can occur within the same second. The proportion of detected
signals merging together with at least one other goes up with an increasing local merger
rate, potentially reaching thousands per year.

In addition to the scenario where different CBC mergers happen in the same second,
we investigate the typical number of mergers happening over the entire duration of a
BNS event while it is in band, depending on their type; see Table 16.3 and Fig. 16.2.
Because BNS events are in the detector band for a long time (several hours for flow = 5
Hz), quite some such overlaps will indeed occur. If one does the same for BBHs, one
finds that either zero or one BBH or BNS merger (at 90% confidence) will happen in its
duration; this is due to BBH events being shorter (the median duration being ∼ 45 s).
Before moving on to parameter estimation issues, let us briefly look at other future

GW observatories that are being planned or considered. Constructing simulated catalogs
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Rate Number of Number of Number of
BBH mergers BNS mergers any type

Low rate 8+10
−5 16+16

−8 25+23
−12

Median rate 13+14
−7 62+58

−27 76+77
−33

High rate 21+21
−11 157+144

−66 178+164
−75

Table 16.3: Typical numbers of compact binary mergers happening while a BNS signal is in
band.
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Figure 16.2: Fraction of detected BNS mergers with a given number of compact binary
mergers (blue), BBH mergers (red), and BNS mergers (green) taking place while the BNS
signal is in band.

of detectable sources in the same way as above and focusing on the high local merger rate,
we find that for a year, Advanced LIGO+ [329] will typically have no events merging
within the same second, and only a few occurrences of a BBH merging in the duration
of a BNS (assuming flow = 15 Hz). For Voyager [399] we find O(1) instances of two
events merging within the same second, and BNS signals will typically have at most
one other signal’s merger in their duration (for flow = 10 Hz). These numbers refer to
signals detectable with a single interferometer (with an SNR threshold 8) rather than
with a network of them, but it will be clear that overlapping signals are going to become
an important consideration mainly in the 3G era.
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Run BBH-BBH BBH-BNS BNS-BNS
Low rate 5 57 416
Median rate 11 304 6752
High rate 15 1594 41306

Table 16.4: Number of pairs of binary coalescence events with both SNRs between 15 and 30,
and such that their mergers occur within 2 seconds or less of each other.

16.2 Parameter Estimation Setup

Having established that 3G detectors will see numerous overlapping signals whose mergers
occur very close in time, we want to find what this will imply for parameter estimation.
To this end, we simulate BBH and BNS signals in a network consisting of one ET and
two CE observatories, assuming stationary, Gaussian noise following the PSDs as in the
previous section.
Since we expect parameter estimation biases to be more pronounced when SNRs of

overlapping signals are similar to each other, and on the low side, we focus on network
SNRs roughly between 15 and 30. We consider overlapping events whose merger times
coincide (as a proxy for merger within the same second) or are separated by 2 seconds,
again because these are the types of scenarios where biases will likely be the largest.
The number of overlaps from the previous section satisfying these criteria is given in
Table 16.4, for different local merger rates; we see that they will be fairly common.

In our parameter estimation studies, for definiteness, we take the BBH events to have
masses similar to those of either GW150914 (a higher-mass, shorter-duration signal)
or GW151226 (a lower-mass, longer-duration event). For BNSs, we take the masses to
be similar to those of GW170817. Overlapping signals are given different injected sky
locations. All analyses are done with three different noise realizations. For each example
of overlapping signals, parameter estimation is also done on the individual signals, for
the same noise realizations, to assess what biases occur. Fig. 16.3 provides an overview
of the various overlap scenarios considered in the rest of this work, in terms of masses
and SNRs.

To reduce the computational cost, we focus on non-spinning sources. A BBH signal is
then characterized by parameters θ = {m1,m2, α, δ, ι, ψ,DL, tc, ϕc}, where m1, m2 are
the component masses, (α, δ) specifies the sky position in terms of right ascension and
declination, ι and ψ are respectively the inclination and polarization angles which specify
the orientation of the orbital plane with respect to the line of sight, DL is the luminosity
distance, and tc and ϕc are respectively the time and phase at coalescence. BNS signals
have two additional parameters: (Λ1,Λ2), corresponding to the (dimensionless) tidal
deformabilities [400–404].
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In this work, we focus specifically on potential biases in intrinsic parameters. For
BBHs, results will be shown for the total mass M = m1 +m2 and mass ratio q = m2/m1
(with the convention m2 ≤ m1). For BNSs, we show chirp massMc (2.50) instead of
total mass since that parameter is usually the best-determined one for long signals. As
the individual tidal deformabilities tend to be poorly measurable for the SNRs considered
here, we will be showing results for a parameter Λ̃ defined as [405]

Λ̃ = 16
13

∑
i=1,2

Λi
m4
i

M4

(
12− 11mi

M

)
, (16.8)

since this is how tidal deformabilities enter the waveform phase to leading (5PN)
order [400].
The data is analyzed using the usual Bayesian framework, relying on Bayes’ theo-

rem (4.17) and the usual GW likelihood (4.18), used for each signal individually. Due to
computational limitations, in our parameter estimation studies, we use a lower frequency
cut-off of flow = 23 Hz. Since both ET and CE will be sensitive down to lower frequen-
cies than that, we expect our choice will lead to conservative estimates of parameter
estimation biases, as the same signal will, in reality, accumulate more SNR when visible
in the detector already from a lower frequency.
Our choices for the prior probability density p(θ|HGW) in Eq. (4.17) are similar to

what has been used for the analyses of real data when BBH or BNS signals with
masses similar to the ones specified in Fig. 16.3 were present. In all cases, we sample
uniformly in component masses. For the GW150914-like signals, we do this in the range
m1,m2 ∈ [10, 80] M�. For analyzing the GW151226-like signals, the component mass
range is m1,m2 ∈ [3, 54.4] M�, and in addition we restrict chirp mass toMc ∈ [5, 20] M�
and mass ratio q to the range [0.05, 1]. For BNSs, we sample component masses in the
range m1,m2 ∈ [1, 2] M�, restrictingMc ∈ [0.7, 2] M�, while tidal deformabilities are
sampled uniformly in the range Λ1,Λ2 ∈ [0, 5000]. When we show PDFs for the derived
quantity Λ̃, they will have been reweighted with the prior probability distribution of
this parameter induced by the flat priors on component masses and Λ1, Λ2, such as to
effectively have a uniform prior on Λ̃.
To sample the likelihood function in Eq. (4.18), we use the LALInference li-

brary [148], and specifically the lalinference_mcmc algorithm. The waveforms
we use for the BNS and BBH signals are IMRPhenomD_NRTidalv2 [110, 111, 406]
and IMRPhenomD [103, 104] respectively, both computed with the waveform library
LALSimulation. To inject the signals and add noise to them, we use standard tools
available within the LALSimulation package. All these codes are openly accessible in
LALSuite [407].

Before performing parameter estimation, we verify the detectability of the individual
signals in the overlap scenarios of Fig. 16.3 using the PyCBC software package [323]. We
inject overlapping signals in noise generated from the PSD and check that the individual
signals show up as triggers with masses consistent between detectors at a network
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Figure 16.3: Individual waveforms and the overlap scenarios considered in our simulations. All
signals are injected in 3 different simulated noise realizations for a 3G detector network. Signals
are either overlapped using the same end time (blue waveforms) or 2 seconds earlier than the
“primary” signal’s end time (orange waveforms). Top two panels: Overlapping waveforms in the
case of two BBH signals. The higher-mass BBH signal (bottom; GW150914-like) is overlapped
with the lower-mass BBH signal (top; GW151226-like). Central two panels: Overlapping
waveforms in the case of two BNS signals. Bottom three panels: BNS signals (top) with an SNR
of 30, 20, or 15 being overlapped with either a high-mass BBH signal (middle; GW150914-like)
or a low-mass BBH signal (bottom; GW151226-like).
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BBH overlapped BNS (SNR = 30) BNS (SNR = 20) BNS (SNR = 15)

M q Λ̃ M q Λ̃ M q Λ̃
GW150914-tc 0.0112 0.00915 0.0277 0.0162 0.0204 0.0275 0.0297 0.0323 0.00947
GW150914-tc-2 0.0320 0.0389 0.0168 0.0235 0.0273 0.0331 0.0704 0.0840 0.0218
GW151226-tc 0.00754 0.00748 0.0113 0.0123 0.0139 0.0173 0.0403 0.0516 0.0305
GW151226-tc-2 0.0187 0.0220 0.0309 0.0227 0.0233 0.0259 0.0521 0.0513 0.0159

Table 16.5: Values of the KS statistic comparing PDFs for BNS parameters (columns) in the
BNS+BBH overlap scenarios (rows) with the corresponding PDFs when there is no overlapping
BBH signal. The small numbers indicate the absence of significant bias. The numbers shown
here correspond to the PDFs in the top panel of Fig. 16.4.

SNR above a threshold of 8. This turns out to be true for all the cases considered,
except for two BBH signals merging at the same time. In the latter case, we still have
triggers in individual detectors, but with masses differing by up to ∼ 5 M�. Using
the SNRs in single detectors as detection statistics, detection is still achieved. For all
scenarios, the end times of individual signals tend to be identified with a precision of a
few milliseconds [408]; when subsequently performing parameter estimation, we use a
prior range for end time that is centered on the true end time, leaving an interval of
0.1 s on either side.

For parameter estimation, all simulations are done with three different noise realizations.
Sec. 16.4 gives the same results for the two other noise realizations. Our conclusions are
stable over noise realizations.

As usual, the one-dimensional PDF p(λ|HGW, d) for a particular parameter λ is
obtained from the joint PDF p(θ|HGW, d) by integrating out all other parameters (see
Sec. 4.2.2). In assessing the effect on parameter estimation of overlapping signals in
various ways, we will frequently be comparing one-dimensional PDFs for the same
parameter in different situations. A convenient way of quantifying the difference between
two distributions p1(λ) and p2(λ) is through the Kolmogorov-Smirnov (KS) statistic [409,
410]. Let P1(λ), P2(λ) be the associated cumulative distributions; then the KS statistic
is just the largest distance between these two:

KS = supλ|P1(λ)− P2(λ)|. (16.9)

By construction, this yields a number between 0 and 1; if the KS statistic is close to
zero, then the distributions p1(λ) and p2(λ) will be considered close to each other.
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Figure 16.4: Top: Posterior PDFs showing estimation of intrinsic parameters when the
BNS signal has SNR = 30 (top row), SNR = 20 (middle row), and SNR = 15 (bottom row).
Results are shown for the cases when the GW150914-like signal ends at the same time as
the BNS signal (GW150914-tc), when it ends 2 seconds earlier (GW150914-tc-2), when the
GW151226-like signal ends at the same time as the BNS (GW151226-tc), when it ends 2
seconds earlier (GW151226-tc-2), and finally when the injected signal is only the BNS (BNS).
The true values of the parameters are indicated by vertical black lines. We do not observe
any bias in the recovered posteriors. Bottom: Posterior PDFs for total mass and mass ratio,
for the GW150914-like signal (top panel) and the GW151226-like signal (bottom panel) when
they are respectively being overlapped with a BNS signal of SNR = 30 (solid lines), SNR =
20 (dashed lines), and SNR = 15 (dotted lines). The overlaps are being done when the BBH
and the BNS end at the same time (tc), and when the BBH ends 2 seconds before the BNS
(tc-2). Finally, posterior PDFs for the two BBH signals without overlap are shown as green,
dashed-dotted lines (BBH). The injected parameter values are indicated by black vertical lines.
When the GW150914-like signal ends at the same time as the BNS, the event is not found
by the sampler. For the GW151226-like signal, there is a slight deterioration in the recovery
but we retain measurability. When the BBHs merge two seconds before the BNS, we do not
observe bias.



16.3. Results 213

BNS overlapped GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

M q M q M q M q

BNS (SNR = 15) – – 0.0504 0.0807 0.00933 0.0117 0.0687 0.0657
BNS (SNR = 20) – – 0.0427 0.0698 0.0107 0.0106 0.0727 0.0700
BNS (SNR = 30) – – 0.0379 0.0673 0.0187 0.183 0.0819 0.0793

Table 16.6: Values of the KS statistic comparing PDFs for BBH parameters (columns) in the
BNS+BBH overlap scenarios (rows) with the corresponding PDFs when there is no overlapping
BNS signal. In the case of a GW150914-like signal merging at the same time as a BNS, the
sampler fails to find the signal, but other scenarios are not so problematic. For GW151226, the
slightly higher values for the tc-2 case compared to the tc case are likely due to the signals
placed in a slightly different part of the noise stream (two seconds earlier) from the BBH-only
cases used for comparison. The numbers shown here correspond to the PDFs in the bottom
panel of Fig. 16.4.

16.3 Results

16.3.1 Overlap of a BNS Signal with a BBH Signal

First, we look at the results of parameter estimation for the overlap of a BNS signal
with a BBH, either ending at the same time or with the BBH signal ending 2 seconds
earlier than the BNS. This scenario is shown in the three bottom panels of Fig. 16.3.
We perform parameter estimation first on the BNS and then on the BBH, with priors as
specified in the previous section.

16.3.1.1 BNS Recovery

The top panel of Fig. 16.4 shows posterior probability distributions for intrinsic pa-
rameters characterizing the BNS signal for three different SNRs of the BNS and the
different overlap scenarios. The PDFs tend to widen with decreasing SNR, as expected.
We see that the estimation of the mass parameters is essentially unaffected, regardless
of the type of overlapping BBH signal (GW150914-like or GW151226-like) or of its
merger time (identical to that of the BNS or 2 seconds earlier). For a given SNR of
the BNS, the PDFs for the tidal parameter Λ̃ differ slightly more between the overlap
scenarios. However, we note that most of the information on tides enters the signal at
high frequencies, where the detectors are less sensitive; in fact, as shown in Sec. 16.4
(Fig. 16.7), differences in the underlying noise realization tend to have a larger effect on
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the measurement of Λ̃ than overlapping signals.
We conclude that an overlapping BBH signal does not impact the estimation of the

BNS parameters much, even if the BBH merger time is arbitrarily close to that of the
BNS. This is corroborated by the KS statistics in Table 16.5, comparing PDFs for the
various overlap scenarios with the corresponding PDFs in the absence of overlapping
signals. It is reasonable to assume that placing a BBH signal even earlier in the BNS
would also have had little impact.

16.3.1.2 BBH Recovery

The bottom panel of Fig. 16.4 shows parameter estimation on the BBHs when the SNR
of the BNS signal is varied from 30 to 20 to 15. Table 16.6 has the corresponding KS
statistics comparing overlapped signals with PDFs obtained in the absence of overlap.
Again, results are shown for a particular noise realization; see Fig. 16.8 in Sec.16.4 for
two other noise realizations. When the BBH signal has its coalescence time 2 seconds
earlier than the BNS (tc-2 in the figure), the signal is well recovered. However, when
the BBH signal and the BNS signal end at the same instant of time, the BBH recovery
deteriorates, and in the case of the GW150914-like signal, the sampling process fails to
find the signal. For the GW151226-like signal, while the estimates are offset from their
true values, there is some measurability of the signal when the times of coalescence of
the BBH and BNS are the same. The different outcomes between the GW150914-like
and GW151226-like injections are likely due to the short duration of the GW150914-like
signal, effectively leading to a distortion of the entire signal when the merger happens
at the same instant as the BNS merger. By contrast, the much longer inspiral of the
GW151226-like signal implies many more wave cycles for the parameter estimation
algorithm to latch on to. Finally, as the SNR over the underlying BNS signal is varied
(keeping the SNR of the BBH signal the same), the PDFs for the BBH show essentially
no change. Placing a BBH signal only 2 seconds before the BNS merger causes the BBH
to be recovered without appreciable biases, so it is reasonable to assume that placing a
BBH signal still earlier in the BNS inspiral would also have little effect on its recovery.

16.3.2 Overlap of Two BBH Signals

The scenario analyzed here is the one in the two top panels of Fig. 16.3. Fig. 16.5 shows
the posterior PDFs on total mass M and mass ratio q when two BBH signals of different
masses are overlapped, compared with parameter estimation on the same signals in
situations where there is no overlap (BBH). The corresponding KS statistic values are
given in Table 16.7. We find the results to be consistent with statistical fluctuations.
Here too, the signals are overlapped once with identical coalescence times (tc), and once
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Figure 16.5: Posterior PDFs for total mass and mass ratio when a GW150914-like signal
and a GW151226-like signal are being overlapped at the same trigger times (tc) and when
the trigger time of the GW150914-like BBH ends 2 seconds earlier (tc-2), compared with
parameter estimation in the absence of overlap (BBH). The top panel shows the recovery of the
GW150914-like signal, and the bottom one that of the GW151226-like signal. Black vertical
lines indicate the true values of the parameters. No major bias is observed and variations are
within statistical fluctuation.

with one of the signals, GW150914, ending 2 seconds earlier (tc-2). The SNRs of the
two signals, GW150914-like, and GW151226-like, are 30 and 15, respectively. As can be
seen in Fig. 16.5, the two BBH signals’ parameters can be extracted without any biases
even when they end simultaneously. Again, see Sec. 16.4 for other noise realizations
with the same conclusion.

16.3.3 Overlap of Two BNS Signals

Finally, we analyze the simulations in the two middle panels of Fig. 16.3. Fig. 16.6 shows
the recovery of BNS parameters for each BNS signal when two BNS signals are being
overlapped, again with either the same coalescence times and when one of the BNSs
(henceforth BNS2) ends 2 seconds earlier than the other BNS signal (henceforth BNS1).
For KS statistic values comparing PDFs with the corresponding non-overlapping cases,
see Table 16.8. BNS1 and BNS2, respectively, have SNRs of 30 and 20, and component
masses (m1,m2) = (1.68, 1.13) M� and (m1,m2) = (1.38, 1.37) M�. These particular
choices cause both signals to have very similar chirp masses. Given these masses, their
tidal deformabilities, Λ̃ = 303 for BNS1 and Λ̃ = 292 for BNS2, follow the equation of
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GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

M q M q M q M q

0.0195 0.0109 0.162 0.103 0.0446 0.0478 0.0844 0.127

Table 16.7: Values of the KS statistic comparing PDFs for BBH parameters in the BBH+BBH
overlap scenarios with the corresponding PDFs without an overlapping signal. The slightly
higher values for the tc-2 cases are likely due to the signals being in a slightly different part of
the noise stream (two seconds earlier) from the BBH-only cases used for comparison. However,
in all cases, there is no significant bias. The numbers shown here correspond to the PDFs in
Fig. 16.5.

state APR4 [411]; these were the simulated signals used for investigating systematics in
the measurements on GW170817 in Ref. [412].
In Fig. 16.6, the top panel shows the posterior PDFs on chirp mass, mass ratio, and

tidal deformability for BNS1 when BNS2 ends at the same time (tc) and when BNS2
ends 2 seconds earlier (tc-2), together with the case where only BNS1 is present in the
data (BNS). The bottom panels show the same, but for the recovery of BNS2. When the
two signals end at the same time, the parameters characterizing BNS1 are recovered,
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Figure 16.6: Posterior PDFs showing recovery on chirp mass, mass ratio, and tidal deforma-
bility Λ̃ when two BNSs, referred to as BNS1 and BNS2, are being overlapped at the same
time of coalescence (tc) and when BNS2 ends 2 seconds earlier than BNS1 (tc-2). These are
compared with results in the absence of overlap (BNS). The top panel is for the recovery of
BNS1 and the bottom one is for the recovery of BNS2. The solid black vertical lines indicate
the injected values of the source being recovered each time. We note that when the times of
coalescence of the two BNSs are the same, the parameter estimates recovered are those of
BNS1, whose injected values are also shown in the bottom panel as dashed vertical black lines.
Therefore, in this case, the fainter BNS signal is not recovered.
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BNS1 (tc) BNS1 (tc-2) BNS2 (tc) BNS2 (tc-2)
M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃
0.269 0.270 0.202 0.0309 0.0216 0.0129 1.0 0.955 0.0762 0.384 0.0951 0.368

Table 16.8: Values of the KS statistic comparing PDFs for BNS parameters in the BNS+BNS
overlap scenarios with the corresponding PDFs without an overlapping signal; see also Fig. 16.6.
We see that the numbers are higher for both BNSs when they end at the same time; in fact, the
measured parameters for BNS2 are those of BNS1. However, when the BNSs merge 2 seconds
apart, the values are much lower, showing that the biases largely disappear. The numbers
shown here correspond to the PDFs in Fig. 16.6.

likely because of the higher SNR of BNS1. As the tidal deformabilities of the two sources
are so close, the PDFs for Λ̃ look similar in all cases. However, also looking at the mass
parameters, parameter estimation is rather robust when the signals end 2 seconds apart.

16.4 Impact of the Noise Realizations

We have performed all our simulations in three different noise realizations. To avoid
plots getting too busy, in Sec. 16.3 we only showed results for one of these; here we also
give them for the other two noise realizations.
In the case of a BNS overlapping with a BBH, the measurements on the BNS are

shown in Fig. 16.7 and those on the BBH in Fig. 16.8. The corresponding KS values are
given in Tables 16.9 and 16.10, respectively. For measurements of the mass parameters
of the BNS, we find that the results are consistent between noise realizations. For
the tidal parameter Λ̃, the PDFs differ somewhat more; compare the right columns in
the two panels of Fig. 16.7. This is likely because most of the information on tides
enters the signal at higher frequencies, where the variance of the noise is larger; hence
the measurement of Λ̃ will be more affected by the noise realization than the mass
measurements, especially when SNRs are not high. Indeed, though not shown here
explicitly, for a given overlap situation, KS statistics for Λ̃ between different noise
realizations tend to be significantly larger than within the same noise realization but for
different overlaps. For parameter estimation on the BBH, there are differences in the
PDFs for the masses when the BBH merger time coincides with that of the BNS but not
so much if it occurs 2 seconds earlier.

In the case of two overlapping BBH signals, parameter estimation results are shown in
Fig. 16.9, and KS statistics in Table 16.11. The results are quite robust under a change
of noise realization.



218
16. Biases in Parameter Estimation From Overlapping Gravitational-Wave

Signals in the Third-Generation Era

PD
F

SNR=30SNR=30SNR=30SNR=30SNR=30
PD

F

SNR=20SNR=20SNR=20SNR=20SNR=20

500 1500 25001.1944 1.1948 1.1952

PD
F

SNR=15SNR=15SNR=15SNR=15SNR=15

0.65 0.80 0.95
q

GW150914-tc
GW150914-tc-2

GW151226-tc
GW151226-tc-2

BNS

PD
F

SNR=30SNR=30SNR=30SNR=30SNR=30

PD
F

SNR=20SNR=20SNR=20SNR=20SNR=20

500 1500 25001.1946 1.1948 1.1950

PD
F

SNR=15SNR=15SNR=15SNR=15SNR=15

0.65 0.80 0.95
q

GW150914-tc
GW150914-tc-2

GW151226-tc
GW151226-tc-2

BNS

Figure 16.7: Posterior PDFs for BNS parameters when a BNS and BBH signal are being
overlapped; same as the top panel of Fig. 16.4 when injections are done in two other noise
realizations (left and right panels). The variations for the Λ̃ are more affected by the difference
in noise realization than by the overlap itself.
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Figure 16.8: Posterior PDFs for BBH parameters when a BNS and BBH signal are overlapped;
same as the bottom panel of Fig. 16.4 when injections are done in two other noise realizations.
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Figure 16.9: Posterior PDFs for BBH parameters when two BBH signals are being overlapped;
same as Fig. 16.5 when injections are done in two other noise realizations.



16.4. Impact of the Noise Realizations 221

PD
F

BNS1BNS1BNS1

1.195 1.196 1.197

PD
F

BNS2BNS2BNS2

0.65 0.80 0.95
q

0 1000 2000 3000

tc tc-2 BNS

PD
F

BNS1BNS1BNS1

1.195 1.196 1.197

PD
F

BNS2BNS2BNS2

0.65 0.80 0.95
q

0 1000 2000 3000

tc tc-2 BNS

Figure 16.10: Posterior PDFs when two BNS signals are being overlapped; same as Fig. 16.6
when injections are done in two other noise realizations.
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BBH overlapped BNS (SNR = 30) BNS (SNR = 20) BNS (SNR = 15)

Noise realization 2 M q Λ̃ M q Λ̃ M q Λ̃
GW150914-tc 0.0267 0.0248 0.0224 0.0106 0.0141 0.0169 0.0146 0.0211 0.0290
GW150914-tc-2 0.0287 0.0282 0.0338 0.00601 0.0108 0.0486 0.0263 0.0308 0.0137
GW151226-tc 0.0125 0.0141 0.0421 0.0376 0.0471 0.0723 0.0155 0.0152 0.0333
GW151226-tc-2 0.0337 0.0346 0.0815 0.0244 0.0258 0.0179 0.0113 0.0108 0.00923

Noise realization 3 M q Λ̃ M q Λ̃ M q Λ̃
GW150914-tc 0.0140 0.0143 0.0251 0.0236 0.0298 0.0481 0.0114 0.0255 0.0378
GW150914-tc-2 0.0296 0.0396 0.0255 0.0272 0.0218 0.0125 0.0186 0.0125 0.0299
GW151226-tc 0.0135 0.0161 0.0347 0.0215 0.0312 0.0412 0.00750 0.00868 0.0239
GW151226-tc-2 0.0142 0.0140 0.0334 0.0109 0.00833 0.0310 0.0223 0.0292 0.0169

Table 16.9: Values of the KS statistic comparing PDFs for BNS parameters (columns) in the
BNS+BBH overlap scenarios (rows) with the corresponding PDFs when there is no overlapping
BBH signal when injections are done in two other noise realizations. The numbers shown
correspond to the PDFs in Fig. 16.7, noise realization 2, corresponding to the top panel, and
noise realization 3 to the bottom panel.

16.5 Conclusions and Outlook

Given regular improvements in the sensitivity of GW detectors and, especially, the
planned construction of the next-generation interferometers, it will become increasingly
likely that individually detectable GW signals end up overlapping in the data. In this
work, we (i) assessed how often different types of overlap will happen in ET and CE, and
(ii) tried to quantify the impact this would have on parameter estimation with current
data analysis techniques.

To address the question of the nature and frequency of different overlap scenarios, for
each of the three possible local merger rates, we constructed a “catalog” of signals in
ET and CE, enabling a more in-depth study of overlaps than in previous works. We
showed that there will be a significant number of signals for which the merger happens
within the same second, varying from tens to thousands depending on the local merger
rate. Additionally, the substantial increase in the duration of BNS events due to the
improved low-frequency sensitivity of 3G observatories will lead to up to tens of other
signals overlapping with a given BNS.
Motivated by these results, we performed the first detailed Bayesian analysis study

on possible biases that may arise in the future as detection rates become higher and
overlapping signals start to occur. We focused on overlapping signals for which the end
times were close to each other so that, in particular, there is overlap at times when
both signal amplitudes are high; it is in this type of situation that we expect parameter
estimation biases to be the most pronounced. Specifically, merger times were taken to
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BNS overlapped GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

Noise realization 2 M q M q M q M q

BNS (SNR = 15) – – 0.0134 0.011 0.00832 0.00890 0.411 0.398
BNS (SNR = 20) – – 0.0104 0.0109 0.0169 0.0172 0.390 0.377
BNS (SNR = 30) – – 0.0100 0.0113 0.0140 0.0146 0.367 0.357
Noise realization 3 M q M q M q M q

BNS (SNR = 15) – – 0.0168 0.0100 0.0140 0.0142 0.318 0.131
BNS (SNR = 20) – – 0.0189 0.0131 0.0132 0.0137 0.322 0.315
BNS (SNR = 30) – – 0.0287 0.295 0.0136 0.0130 0.334 0.327

Table 16.10: Values of the KS statistic comparing PDFs for BBH parameters (columns)
in the BNS+BBH overlap scenarios (rows) with the corresponding PDFs when there is no
overlapping BNS signal when injections are done in two other noise realizations. As before,
when the GW150914-like signal ends at the same time as a BNS, it is not found by the sampling
algorithm, but other scenarios are less problematic. The numbers shown correspond to the
PDFs in Fig. 16.8, noise realization 2, corresponding to the top panel, and noise realization 3
to the bottom panel.

GW150914-tc GW150914-tc-2 GW151226-tc GW151226-tc-2

M q M q M q M q

0.0195 0.00854 0.163 0.0395 0.0299 0.0309 0.0417 0.0746
M q M q M q M q

0.0291 0.0110 0.188 0.0625 0.0477 0.0497 0.0225 0.0440

Table 16.11: Values of the KS statistic comparing PDFs for BBH parameters in the BBH+BBH
overlap scenarios with the corresponding PDFs for the BBH-only case when injections are done
in two other noise realizations. The numbers shown correspond to the PDFs in Fig. 16.9, the
upper row corresponding to the upper panel and the lower row to the lower panel.

be either the same (as a proxy for being arbitrarily close to each other), or separated by
2 seconds. Our preliminary conclusions (based on a limited number of investigations)
are as follows:

• When BBH signals are overlapping with a BNS signal of similar SNR, parameter
estimation on the BNS is hardly affected, even with the merger time of the BBH
arbitrarily close to that of the BNS. Presumably, this is due to the much larger
number of BNS wave cycles in band compared to the BBH.

• However, in the same scenario, parameter estimation on the BBH can be subject to
significant biases if the BBH is high-mass so that its signal is short. That said, the
problem largely disappears when the BNS and BBH merger times are separated
by 2 seconds or when the BBH has a low mass.
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BNS1 (tc) BNS1 (tc-2) BNS2 (tc) BNS2 (tc-2)
M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃
0.316 0.282 0.0743 0.0385 0.0339 0.0325 1.0 0.936 0.382 0.0271 0.0858 0.248
M q Λ̃ M q Λ̃ M q Λ̃ M q Λ̃
0.278 0.257 0.123 0.0475 0.0381 0.0630 1.0 0.902 0.341 0.226 0.101 0.128

Table 16.12: Values of the KS statistic comparing PDFs for BNS parameters in the BNS+BNS
overlap scenarios with the corresponding PDFs for the BNS-only case, when injections are
done in two other noise realizations. The numbers shown correspond to the PDFs in Fig. 16.10,
the upper row corresponding to the upper panel and the lower row to the lower panel.

• When two BBHs with sufficiently dissimilar masses overlap with close-by merger
times, parameter estimation on either of the signals will not be much affected.

• When two BNS signals overlap with close-by merger times, parameter estimation
will recover the louder signal reasonably well. With a 2-second separation of merger
times, good-quality parameter estimation can already be done on the two signals
separately.

These results suggest that current parameter estimation techniques will, in several
types of situations of interest, already perform reasonably well in the 3G era when
applied to overlapping signals, even when the individual signals have similar SNRs,
and even when the SNRs are on the low side given the projected distribution for these
observatories. Nevertheless, several questions remain. What happens when SNRs are
gradually increased? Related to this is the choice of the lower cut-off frequency; to what
extent will parameter estimation improve as one goes to flow = 5 Hz or even lower so
that signals have a much larger number of wave cycles in the detector’s sensitive band?
Though not the focus here, at higher SNRs the use of currently available waveform
approximants to analyze BNS signals in 3G detectors would lead to biases in the
estimation of Λ̃ even in the absence of overlap [413], also motivating further research in
waveform modeling. Spins were not included in our study, but it would be of interest to
see their effect: large precessing spins will complicate parameter estimation in the case
of BBHs, while for BNSs, having access to the spin-induced quadrupole moment can aid
in determining tidal deformabilities [414]. Finally, what happens when overlaps involve
(much) more than two signals, e.g. long BNS signal overlapping with numerous BBH
signals? These questions are left for future work.

To make optimal scientific use of the capabilities of 3G detectors, it will be appropriate
to develop Bayesian parameter estimation techniques for which the likelihood function
assumes multiple signals to be present in a given stretch of data, e.g. replacing Eq. (4.18)
by

p(d|{θi},HGW) ∝ exp
[
−1

2

〈
d−

N∑
i=1

h(θi)
∣∣∣∣∣d−

N∑
i=1

h(θi)
〉]
, (16.10)
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with N the number of signals found by a detection pipeline, and θi, i = 1, . . . , N , the
associated parameters. Additionally, one could let N itself be a parameter to be sampled
over, thus allowing for an a priori unknown number of signals in the given stretch of data.
In all this, it may be possible to borrow from techniques developed in the context of
somewhat related problems in GW data analysis, such as the characterization of a large
number of (in this case near-monochromatic) signals from galactic white dwarf binaries
in the space-based LISA [415–421], BNSs in the Big Bang Observatory (BBO) [376], or
supermassive BH binaries in pulsar timing searches [422].





17
Parameter Estimation Methods

for Analyzing Overlapping
Gravitational-Wave Signals in the

Third-Generation Detector Era
Chapter 16 and other works [321, 362–365] have established the impact of overlapping
signals on data analysis when recovering one of the two signals and neglecting the other.
These works employed different techniques, but all have the same conclusions: biases can
occur in various scenarios, are most likely when the signals merge close to each other,
and depend on the signals’ nature.

In Ref. [362], using a Fisher matrix approach, the authors show BNSs are less correlated
in overlapping signals. Therefore, their bias becomes important only for close merger
times (< 0.1 s). Conversely, the correlation between BBHs is more important, meaning
that the bias can happen for larger differences between the merger times. They then
proceed to do parameter estimation for overlapping BBHs in a LIGO-Virgo network
varying some of the parameters, showing the appearance of biases for merger times
close to each other. In [365], the authors use Fisher matrices to study the bias that can
occur in the parameters for both overlapping BBHs and BNSs, also finding that the
bias becomes more important for short differences in the time of arrival. In [363], the
authors focus on a LIGO Voyager scenario, looking at the biases as a function of other
parameters than the coalescence time, such as the sky location. For overlapping BBHs,
they find more important biases for closer merger times. However, they show that the
observed bias for a given difference in merger time can change substantially depending
on the sky location of the two events. Moreover, two overlapping BBHs can be mistaken
for one strongly precessing BBH. Also, the authors suggest no major bias will occur for
overlapping BNS and BBH signals due to the different durations of the two signals. This
is corroborated by the analyses done in Chapter 16, where three scenarios are analyzed:
two overlapping BBH signals, two overlapping BNS signals, and the overlap of a BBH of
varying masses with a BNS. In the latter case, the authors find that there is hardly any
effect on the BNS parameter estimation, probably due to the difference in the number of
cycles present in-band for this signal. However, in this scenario, the BBH can be affected
by significant bias, especially when the BBH has high component masses. The bias
mostly disappears when the merger times are separated by more than two seconds. For
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two overlapping BBHs, if the total masses, and hence the durations, are different, the
parameter estimation is done relatively well. However, others [362, 363, 365] have shown
that if the two BBHs have similar source properties, biases can be present. Finally, for
two overlapping BNSs, it appears that the signal with the highest SNR is relatively well
recovered in all cases but not necessarily the quieter signal.
One problem not covered by previous studies is the effect of confusion noise on

parameter estimation. Indeed, the high event rate and increased event duration will
make for very few periods without signal in-band for the 3G detectors [321]. As a
consequence, it will be very difficult to estimate the noise present in the detectors, and
additional biases can occur due to a mismodeling of the noise [364]1. A demonstration
of this noise’s effect on matched filtering and how the PSD could be computed are
presented in [423].
The presence of biases when signals merge close to each other and the relative

occurrence of such scenarios based on the estimated rates shows that parameter estimation
methods will have to be adapted to be suited for the 3G cases. Indeed, biases in the
parameters estimated for the CBCs would impact any direct science case for the CBCs
(such as measuring their mass distribution and rate or testing GR [424]), and also some
indirectly related ones, such as the search for primordial BHs since it requires subtracting
foreground sources [379–381, 425–427].

In this chapter of the thesis and Ref. [428], we look at two possible methods to analyze
overlapping signals. One is Hierarchical subtraction (HS), where we analyze one signal
(typically the loudest), then subtract the maximum-likelihood template before studying
the second one. However, if a significant bias occurs when analyzing the first signal, the
parameters of both events might be biased2. Optionally, one can also perform a third run,
subtracting the maximum-likelihood parameters for the second event and re-analyzing
the dominant signal to reduce the bias in its recovery. Still, this is not guaranteed to
lead to unbiased results. Therefore, we also implement a joint parameter estimation
(JPE) framework, where the two signals are analyzed simultaneously to account for the
entire model. In principle, this should be the most complete model one can use. Due to
the high dimensionality of the parameter space, combined with the long duration of the
signals in the 3G detectors, this framework is substantially slower than HS3. It would
be nearly impossible to follow the predicted rates for an ET and CE network using
a simple JPE like the one used in this work. Such constraints could be alleviated by
using recently developed techniques, like relative binning [356–358], adaptive frequency

1We will not consider this in this study, and we will only look at overlapping binary signals.
2In this chapter, the term “bias” is used colloquially and denotes any change in the recovered posteriors
due to the other signal’s presence.

3For our experiments, the two frameworks were run on the same cluster using 16 Intel(R) Xeon(R)
Gold 6152 CPUs. The average run time for JPE is 23.8 days, while for HS, the first run took an
average of 6.3 days, the second run an average of 4.3 days, and the last run took an average run
time of 6.1 days. So, on average, JPE takes 7 more days to complete than HS if we perform the
three runs. If one is satisfied with the two first runs, the difference between the two approaches goes
up to about two weeks.
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resolution [355], or ML [299, 301] – see Chapter 18 for a proof-of-concept use of ML for
parameter inference for overlapping signals. One could also count on the development
of more powerful computational methods, such as quantum computing [360], but it is
difficult to have an idea of the state of such methods by the time the 3G detectors
get online. Still, it is important to start preparing for the future of 3G detectors now.
Therefore, it is crucial to start looking at the parameter estimation of overlapping signals
to have the bases to build on. Due to the limited computational resources, this work
focuses on the parameter estimation of two overlapping BBH signals.

17.1 Description of the Methods

When performing GW data analysis on CBC signals, our objective is to find the posterior
probability density function (PDF) of the binaries’ parameters (θ): p(θ|d,H), where d
represents the data, and H is the hypothesis under which we work (e.g. HGW when
there is a GW signal in the data). This can be done using Bayes’ theorem (4.17) as
explained in Sec. 4.2.

For GW inference, d(t) is the output of the interferometers, which can be seen as made
of a noise component n(t) and, under the signal hypothesis, a GW component h(t):

d(t) = n(t) + h(t) . (17.1)

In our scenario, the GW component can consist of one or more signals. In the latter
case, h(t) = ∑N

i=1 hi(t), where hi(t) is the representation of each GW signal, and N is
the total number of GW signals present in the data stretch under consideration.
Assuming Gaussian noise, the likelihood of having data d(t) given the presence of a

GW signal h(t) is given via the usual GW likelihood (4.18).

17.1.1 Joint Parameter Estimation

When the noise component in Eq. (17.1) is made of multiple signals, the likelihood
described by Eq. (4.18) becomes

p(d|θ,HGW) ∝ exp
− 1

2

〈
d−

N∑
i=1

h(θi)
∣∣∣∣∣d−

N∑
i=1

h(θi)
〉 , (17.2)

where we just expanded the expression for h(t) compared to the previous expression.
Here, N is the total number of signals, and θi represents the set of parameters describing
the ith GW signal so that θ = {θ1, . . . ,θi, . . . ,θN} in this case.
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Using Eq. (17.2) gives rise to the method of JPE, where we jointly look for {θi}i=1,...,N .
Since each θi is a set of 15 parameters for spinning BBHs, a set of 16 parameters for
NSBHs, and a set of 17 parameters for BNSs4, it means that, if we have X BBHs, Y
NSBHs, and Z BNSs (so N = X + Y + Z), the parameter space has 15X + 16Y + 17Z
parameters to explore. In the end, this means that as soon as we consider two signals,
the parameter space grows to at least 30 dimensions, which is already challenging with
our traditional methods, showing the difficulty of analyzing several signals jointly.
In addition, we can assume there is some uncertainty on the total number of signals

N in the data. In this case, it is also possible to sample over N and the signal types,
effectively allowing for any number of signals to be present in a given data stretch.
The problem of joint analysis of several signals has already been looked at in other

contexts, such as the characterization of the nearly monochromatic signals coming from
white dwarfs in LISA [421], BNSs in the BBO [376], or supermassive BHs in PTA
searches [422]. However, the different signal characteristics looked for in these various
context makes the methods different from one case to the other.
In this work, we will only consider the possibility of having two signals in the data.

So, we write the data as

d(A,Bt) = hA(t) + hB(t) + n(t) , (17.3)

where we just denote the signals by A and B, without any importance on which signal
is A and which signal is B.
In this case, the likelihood (Eq. (17.2)) takes the particular form

p(d(A,B)|θ,HGW) ∝ exp
−1

2

〈
d(A,B)−hA(θA)−hB(θB)

∣∣∣∣∣d(A,B)−hA(θA)−hB(θB)
〉 .

(17.4)
In principle, if the sources have the same nature, the labels A and B are interchangeable

during the sampling, making the likelihood symmetric in two events. In our algorithm,
we do not impose any conditions on the parameters to break this symmetry. As a
consequence, it needs to be done in a post-processing step, as we need to assign drawn
samples to the correct event. Sometimes, not accounting for this condition leads to
bimodalities. In this work, we use a time ordering condition, taking the samples for
event A to be those that arrive first in time and the samples for event B to be those
arriving second in time. In future work, this condition could directly be imposed in the
algorithm by having a conditional prior such that the time of arrival of one event is

4Typically, a BBH is described by two mass parameters, 6 spin parameters, a distance parameter, the
inclination, 2 parameters for the sky location, the merger time, the phase of coalescence, and the
polarization angle. Usually, for each NS present in the system, one also adds tidal deformability.
However, for BNSs, the dimensionality could increase even further if higher-order tidal contributions,
spin-induced quadrupole effects, or resonant effects are accounted for. In addition, formally, when
parameter estimation is performed, one can also add the noise-related calibration parameters, which
would further increase the dimensionality of the parameter space.
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always before the other. We also note that the condition could be imposed on different
parameters, such as the chirp mass for example.

17.1.2 Hierarchical Subtraction

In HS, the idea is not to fit the two signals at once but instead combine individual
signal analyses and subtraction of best-fit parameters. Therefore, we start by running a
single event parameter estimation analysis on the data d(A,B) to get the characteristics
of the dominant signal. If we label by A the loudest signal, we can denote the best-
fit parameters (typically the maximum likelihood parameters) θ̂A, and the waveform
corresponding to this signal

ĥA(t) = h(t, θ̂A). (17.5)

Using this, we can get the data for signal B given signal A by subtracting the best-fit
template

d(B, rA, t) = d(A,B, t)− ĥA(t) , (17.6)

where rA are the residuals of signal A due to the imperfect subtraction. This is an
approximate data strain for the second event in the data since the maximum likelihood
parameters used to model the first event are prone to errors, with errors coming from
the modeling itself but also from neglecting the presence of the second event when
characterizing the first one.
We can then analyze d(B, rA, t) to get the parameters for event B, leading to a

posterior distribution for the two events. In principle, if the bias on the first recovery
is not too important, then the posteriors on the second event should also be correct.
However, this approach is less robust than the JPE, where we correctly account for the
presence of several events.

In Ref. [364], the authors also suggest a way to correct the bias due to the individual
characterization of two signals5. Once the two signals are analyzed separately, we can use
the two best-fitting posteriors to evaluate the bias in the model reconstruction for each
signal. The estimated biases can then be applied as a correction factor to the best-fitting
parameters. We could then redo the subtraction of each event and analyze it again, but
now with a subtracted signal closer to the real one, reducing the possible bias in the
recovered posterior. Though this method is attractive, it requires multiple parameter
estimation runs, which are expensive in a 3G detector context. The computation of the
biases also requires solving a combination of Fisher matrices and numerical derivatives,
making it a non-trivial operation.

5In their paper, they also account for the possible confusion background due to the sum of all the
mergers going on in the background.
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Parameter Population generation Prior

Primary component mass PowerLaw + Peak [40] /
Mass ratio PowerLaw + Peak [40] U(0.1, 1)
Chirp mass / U(4 M�, 200 M�)
Redshift Oguri’s fit [391] + rescaling /
Luminosity distance / Uniform comoving volume [1, 100] Gpc
Spin amplitude 1 U(0, 1) U(0, 1)
Spin amplitude 2 U(0, 1) U(0, 1)
Tilt angle 1 Uniform in sine Uniform in sine
Tilt angle 2 Uniform in sine Uniform in sine
Spin vector azimuthal angle U(0, 2π) U(0, 2π)
Precession angle about U(0, 2π) U(0, 2π)
angular momentum
Inclination angle Uniform in sine Uniform in sine
Wave polarization U(0, π) U(0, π)
Phase of coalescence U(0, 2π) U(0, 2π)
Right ascension U(0, 2π) U(0, 2π)
Declination Uniform in cosine Uniform in cosine
Time of coalescence Uniform over a year U(tinj − 0.1, tinj + 0.1)

(second precision)

Table 17.1: Overview of the functions used to generate the different parameters for the BBH
population and the priors used for the parameter estimation recovery.

17.2 Setup of the Analyses

Due to the computational resources required to analyze 3G signals, we focus on over-
lapping BBHs with masses in [30, 60] M�6. We use a network of detectors made of one
triangular ET with 10 km arm-lengths and a CE detector located at the LIGO-Hanford
position and with 40 km arm-lengths. We generate stationary Gaussian noise from the
detectors’ PSDs, where, for ET, we use the ET-D PSD [30, 31], and for CE, we use the
projected PSD from Refs. [50, 429]. We then inject two simulated BBH signals into
the artificial noise. For this study, we take a lower cutoff on the signals of 20 Hz. A
representation of the waveforms obtained by the addition of two BBHs can be found in
Fig. 17.1. One sees that the final signal has a non-trivial shape, illustrating the risk of
biases when not accounting for the presence of two signals. In addition, one also sees
that depending on the relative SNR of the signals, the observed bias is different. For
the case where one signal has a significantly higher SNR than the other (∼ ×2, top
panel), the quieter signal will somewhat bias the signal but the observed waveform will

6The higher masses are chosen to not have a signal with a too long durations while still enabling
overlap for the difference in arrival times used in this work.
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resemble mostly the loudest signal. On the other hand, for signals with close SNRs
(bottom panel), we see that the deformation of the signal can be more complicated
without really having a dominant signal (except for the fraction of a second where one
signal has merged and the other is still merging). Based on these observations, one can
expect HS to be more effective when one signal clearly dominates over the other.
In our study, we simulate 55 such mergers. To produce these high-mass signals, we

sample the component masses from the Power-law + Peak distribution from [40] but keep
only the systems fulfilling the mass requirement. In addition, the events are sampled in
redshift according to the merger rate density reconstructed from Oguri’s fit [391]. The
sky location is drawn to be uniform on the sky, and the spin parameters are picked
from an isotropic distribution. For overlapping signal events, the coalescence time of the
first event is drawn from a uniform distribution spanning over an entire year, while the
second event is placed 0.1 seconds later. An overview of the functions used to make the
binaries and the priors used for the analyses is given in Table 17.1.
Since the SNR of the signals can reach hundreds to thousands in an ET and CE

network, and such high values make the computation time even longer, we decided to
rescale the SNR to take values constrained between 8 and 50. This is done by adjusting
the luminosity distance. However, since we expect the SNR ratio between the events
to play a role, we try to keep this ratio as close as possible to the original one. So, if
the loudest signal has a value above 50, we rescale it to take one between 45 and 50
(this value is drawn randomly from a uniform distribution). Then, we rescale the quieter
signal with the same factor. If this value is below 8, then we choose a new scaling factor
to bring the SNR back between 8 and 13 (once more using a uniform distribution). Each
system is then analyzed once without additional noise and once injected in Gaussian
noise generated from the PSDs.
For the different runs, we choose fixed priors for the various parameters. The right

column of Table 17.1 gives an overview of the priors used for the different parameters.
In particular, we take a uniform prior on chirp mass (Mc, Eq. (2.50)) and mass ratio
(q = m2

m1
), with bounds of [4, 200] M� and [0.1, 1]. We also take a uniform in comoving

volume prior for the luminosity distances, with bounds going from 1 to 100 Gpc. These
priors are adapted to cover any possible signal present in our set of data. The priors for
the other parameters correspond to the usual priors taken for BBHs. When doing the
JPE and HS runs, the priors are the same for the two events, and no conditions related
to the signals (for example, time ordering of the signals or enforcing a heavier one) are
added.
We note here that an alternative approach is to use narrower priors informed by the

results of low-latency searches [382, 388], which very likely could only be applied for
a couple of parameters such as the chirp mass and the coalescence time. In [382], the
authors show that matched filtering pipelines and unmodelled searches can pick up
overlapping signals with reasonable accuracy. They also suggest some enhancements to
make the pipelines even more suited for the challenge of overlapping signals detection. In
addition, they show that for most of the overlapping signals, the error on the chirp mass
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Figure 17.1: Top: Representation of two overlapping BBHs and the underlying signals for
signals with different SNRs (SNRA = 46.1 and SNRB = 22.2). In this case, the sum of the two
signals is mostly dominated by the loudest signal, while the effect of the quieter signal takes
up only after the loudest signal has merged. Bottom: Representation of two overlapping BBHs
and the underlying signals for signals with similar SNRs (SNRA = 34.3 and SNRB = 30.2).
In this scenario, no signal dominates over the other for the entire event duration, and the
overlapping signals have more complicated features.
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is not much larger than for the non-overlapping case, even if for the occurrences where
the signals are very close in time, the error increases. Therefore, using such searches
to set narrower priors is a realistic alternative. However, currently, they also seem to
contain risks, as an increased difference in the value recovered for some parameters can
happen, and taking too narrow a prior could lead to the exclusion of the actual value
from it. In the end, additional developments are needed to ensure that using these
results to narrow down the initial priors is viable.
To have a basis for comparison, we also perform the parameter estimation of the

individual signals. This is done by using the same priors as the one explained above but
injecting only one of the two signals in the noise. The single parameter estimation runs
are denoted SPE.
All the parameter estimation runs are performed using bilby [149] with the

dynesty [151] sampler. For the JPE runs, we add our own adapted joint likelihood in
the package to keep a consistent framework.

17.3 Results and Discussions

In this section, we show the results of the different approaches. We first compare the
HS approach with SPE. Then, we compare JPE with SPE and HS. Here, we focus on
the results of the analyses performed with noise. The conclusion in the no-noise case is
similar and can be found in Sec 17.4. For all the figures presented in this work, when
plotting individual event results, we represent by a dot and label as “loud” events those
that are the loudest in the pair, and by a triangle and label as “quiet” the quieter ones.

17.3.1 Hierarchical Subtraction

We start by discussing the result of the analysis for the HS approach. In almost all HS
runs, the first PE stage picked up the signal with higher SNR. There were two cases
where it instead picked up the quieter signal; these were instances where the SNRs of
the injected signals were close to each other. In such a case, the signal picked first is
not the same with and without noise. A representative example of the posteriors can be
found in Fig. 17.2. While the widths of the distributions match the ones obtained for
SPE runs closely, in most cases they show bias in the recovered parameters.
When comparing the HS and SPE recoveries of the parameters, one sees that the

HS recovery is nearly always biased. However, this bias seems more pronounced when
the injection is done in noise. For example, in Fig. 17.2, one sees the zero-noise HS
recovery is close to the one for SPE with noise, while the recovery with noise is off. This
shows that the mismodelling of the noise (due to an additional event) is present, as
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Figure 17.2: Comparison of the posteriors for the HS and the SPE methods with and without
noise. We represent the chirp mass (Mc), the mass ratio (q), and the luminosity distance (DL).
Left: Case where HS is worse than SPE. HS posteriors are shifted significantly compared to
the injected value and SPE posterior recovery. Right: Case where HS is close to SPE, with
equivalent posteriors recovered in the two cases.

one could expect from previous works on biases in overlapping signals [321, 362–364].
However, this does not necessarily mean that all parameters are off and the first signal’s
characteristics can be recovered.
In Fig. 17.3, we can see mismatches between the injected and recovered waveforms,

comparing HS and SPE cases with and without noise. The mismatch is defined as
1 − M̄ , where M̄ is the match between the waveforms, defined in Eq. (4.13). The
mismatch represents the dissimilarity between two waveforms. High values mean a major
disagreement between the two waveforms, and smaller values mean that the waveforms
agree well. In Fig. 17.3, we see that the average mismatch throughout the detections
is always low, below 0.02. As expected, the presence of another signal leads to worse
waveform recovery for HS compared to SPE (most points are below the diagonal). In
our data set, the worst recovery of the signals occurs for overlapping signals with similar
SNRs. Note that the zero-noise case (see Sec 17.4) shows a clearer difference between
SPE and HS recoveries. It is expected to have a larger difference in this case because
the effect of the unmodelled signal is stronger when there is no noise since it is the only
source of uncertainty in the signal.
By looking at the difference between the median of the recovered posterior and the

injected value, normalized by the injected value, we can quantify the offset in the recovery
(∆Mc = |Minj

c −Mrec
c |

Minj
c

, where “rec” stands for recovered and “inj” stands for injected.). This
is represented Fig. 17.4 for the chirp mass recovery with noise and is representative of
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Figure 17.3: Mismatch between the injected and recovered (maximum likelihood) waveforms
for the SPE analysis versus the HS analysis, with noise. The red dashed line represents the
diagonal where the mismatch is the same. HS is worse at signal recovery, as most points fall
below the diagonal. This is expected since HS does not model the noise properly since it
neglects the presence of one of the signals.

all the parameters. HS shows higher offsets in 71% of the louder events and 51% of the
quieter ones. As expected, the offset is larger for HS compared to SPE. For the first
signal recovered, since we have an unmodeled signal in the detectors, the noise properties
are not modeled properly. Therefore, generally, a larger offset is observed for the louder
signal compared to the secondary one. However, when strong deviations are present for
the first signal, they can reverberate in the second, also leading to worse recoveries for
this event.

Finally, Fig. 17.5 shows how the widths of the 90% confidence intervals of the posteriors
for HS compare to SPE, normalized by the injected value (δMc = σMc

Minj
c
, where σMc

represent the width of the 90% confidence interval). We observe that the widths of the
distributions are consistent between the two, even though the recovery is biased.
It is interesting to compare how doing successive parameter estimation steps affects

the results. After reconstructing the quieter of the two signals, we subtract it from the
initial data and do parameter estimation again. In principle, it should result in a better
recovery of the louder signal than the original parameter estimation run.

The top panel of Fig. 17.6 shows the mismatch for the recovered dominant waveform
after the first and third HS runs. The match after the third run is better in 62% of the
cases, compared with 50% expected if the procedure had no effect at all. This small
effect is also observed on the offset plot – see Fig. 17.6, bottom panel – where the third
HS step leads to better results in the same proportions. Even if the results get better
for some events, it also leads to worse recoveries for other cases, and only a few of the
other events have comparable results between the first and third HS steps. Therefore, it
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Figure 17.4: Representation of the offset of the recovered parameters, with noise for HS and
SPE. Plotted is the difference between injected value and the median of the recovered value,
normalized by the injected value. HS tends to give a higher deviation than SPE.
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Figure 17.5: Comparison of the normalized width of the 90% confidence interval for the
chirp mass for the HS recovery and the SPE recovery. We see that the width of the recovered
distribution is largely unaffected by the presence of another signal.
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does not seem like simply applying successive HS steps converges to unbiased posteriors.
More sophisticated approaches appear to be needed, like an estimation of the offset as
suggested in [364] and briefly explained in Sec. 17.1.2.

In the end, our HS runs confirm previous observations [321, 362, 363]: doing parameter
estimation for one signal neglecting the other can lead to significant biases when the
two signals merge very close to each other. In addition, we have also shown that once
the first signal is subtracted, analyzing the second one with parameter estimation is less
prone to deviations, even if the subtraction of the first event is not perfect.
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Figure 17.6: Top: Comparison of the mismatch between the injected and recovered waveforms
for the first (horizontal axis) and third (vertical axis) steps of HS. The mismatch after the
third step is lowered in 62% of the cases. Bottom: Comparison of the offset in recovered chirp
mass between the first (horizontal axis) and the third (vertical axis) HS steps. The recovered
bias after the third step is lowered in 62% of the cases.
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17.3.2 Joint Parameter Estimation

In what follows, we discuss the results obtained from the analysis of the overlapping
signals using JPE. We focus on the results obtained after the time ordering of the samples
(described in Sec. 17.1) is done, as these are the samples where effectively one set of
posteriors is matched with one signal and the other set with the other signal.

For the JPE recovery, more diverse scenarios are possible. We show three main cases
in Fig. 17.7: one where the recovery is equivalent to the one from SPE, one where JPE
has smaller bounds on the posteriors for one or more parameters, and one where JPE has
trouble fitting the signal properly and offsets can occur. While more in-depth studies are
required to fully comprehend this behavior, it seems like it could be originating from the
mixed term of the two signals present in the likelihood modified to account for multiple
signals. In some cases, the narrower posteriors could be offset compared to the injected
value, pushing it out of the 90% confidence interval.

For all the events, we compare the mismatch between the maximum likelihood
waveforms of the event in the JPE scenario and the SPE and HS cases. This is
represented in Fig. 17.8 for the noise cases. Independent of the presence of noise, we
find that the mismatch is smaller for JPE than for HS but larger than for SPE. This is
what one would expect since JPE accounts for the presence of the two signals and so
should lead to smaller deviations. However, fitting two GW signals simultaneously is
more complex than analyzing a single signal. Therefore, the SPE measures remain a
better representation of the injected signal.
As before, we present the normalized distance between injection and recovery in

Fig. 17.9 (for the noise case). When comparing the offset for the JPE case against the
SPE case, we find that 45% of the events have a larger offset for JPE than for SPE. On
the other hand, when we compare with HS, we find 65% of the events with a lower offset
for JPE. This confirms that JPE is better than HS for finding the injected signals (when
the two are at 0.1 s of each other in the data). This is indeed what one would expect, as
JPE takes care of the mismodeling of the noise but leads to an increased complexity
during the analysis.

For the spread in recovered posteriors, contrary to what one had for the HS approach,
the normalized width of the 90% confidence interval does not align on the diagonal.
Indeed, since we have more varying scenarios, with larger or tighter posteriors in some
cases, the spread can be significantly different between the JPE and SPE scenarios. In
addition, since there is no significant difference for this quantity between HS and SPE,
the relation between JPE and HS is the same as between JPE and SPE. The increased
discrepancy between the two approaches is represented in Fig. 17.10. Nevertheless, the
posteriors are distributed evenly above and below the diagonal representation, showing
that, on average, the posteriors’ width is not significantly bigger in one method or the
other.

Based on our JPE results, we see that, using an adapted likelihood (17.4), we obtain
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Figure 17.7: Comparison of the recovered posteriors for JPE and SPE with and without noise
for different types of recovery. Top left: the posteriors recovered with JPE for the noise case is
narrower for the chirp mass and the mass ratio compared to the SPE case, while the posterior
for the luminosity distance is narrower for JPE in the zero-noise case. Top right: JPE and
SPE are very close to each other, with equivalent recovery with and without noise. Bottom:
representation of a case where the JPE recovery is worse than for SPE. We get narrower
posteriors, but the peak is shifted out of the 90% confidence region.
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Figure 17.8: Top: Comparison of the mismatch between the injected and recovered waveforms
for the JPE and the SPE cases with noise. Bottom: Comparison of the mismatch between
the injected and recovered waveforms for JPE and HS with noise. Overall, the mismatch is
higher for JPE than for SPE, while it is lower than for the HS case. This is expected since
JPE accounts for the two events in the data, which is better than neglecting one but more
complicated than having only one signal present in the data and fitting that signal.
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Figure 17.9: Top: Comparison of the offset of the recovered posterior for the chirp mass for
the JPE and SPE methods. Bottom: Comparison of the offset of the recovered posteriors for
the chirp mass for JPE and HS. The two plots indicate that the offset is lower for JPE than
for HS, due to the better modeling of the noise, while it is still better in the SPE case, where
the noise is well modeled, and the problem at hand has a reduced complexity.
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Figure 17.10: Comparison between the normalized width of the 90% confidence interval for
JPE and SPE for the noise case. Since the spreads are very close for SPE and HS, the same
relation is established for the JPE and HS comparison. Here, we see there are larger differences
between the two approaches but, globally, one is not better than the other as we have about
50% of the events above the diagonal and the same proportion below.

better results than by analyzing both signals sequentially when their merger times are
very close. However, this comes with the drawback that the computational time and
the complexity of the problem are increased, making the approach less stable as can
be seen by the wider variations in the widths of the posteriors. On the other hand, in
some cases, JPE leads to narrower posteriors compared to SPE. This could be due to
the inner product mixing the two signals following the introduction of multiple signals
in the likelihood. However, a more in-depth study should be performed on a larger set
of events to understand this behavior. This is left for future work.

17.4 Zero-noise Results

In this section, we show results for the posteriors obtained when the injections are
analyzed without noise. The conclusions drawn from these experiments are the same
as in the noise case, which suggests that our findings are robust. So, they are due to
sampling effects and not induced by random noise fluctuations added to the data.

17.4.1 Hierarchical Subtraction

Here, we present the complementary zero-noise result for the HS method.
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Figure 17.11: Mismatch between the injected and recovered waveforms for the SPE analysis
versus HS analysis without noise. The red dashed line represents the diagonal where the
mismatch is the same. The difference in waveform recovery between SPE and HS is more
pronounced than in the case with noise, and it is clear that the recovery degrades when using
the HS approach.

Fig. 17.11 represent the mismatch for HS versus SPE for the zero-noise case. As for
the noise case, HS leads to higher mismatches, meaning that the recovered (maximum
likelihood) parameters are a worse representation of the injected signals.
Fig. 17.12 represents the offset for the chirp mass for HS versus SPE without noise.
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Figure 17.12: Representation of the offset of the recovered chirp mass without noise. Plotted
is the difference between injected value and the median of the recovered value, normalized by
the injected value for HS and SPE. One sees that offsets are more important for HS.
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Figure 17.13: Comparison of the normalized width of the 90% confidence interval for the
chirp mass for the HS recovery and the SPE recovery, with zero-noise. We see that the width
of the recovered distribution is largely unaffected by the presence of another signal.

Here HS shows higher offsets for 74% of the louder events and 57% of the quieter ones.
There is no significant difference compared with the injections into noise, with HS still
being more prone to deviations in the recovered posteriors.
Fig. 17.13 represents the normalized width of the posteriors for HS versus SPE.

Similarly to the analysis with noise, the widths of the distributions are very close to
each other.

17.4.2 Joint Parameter Estimation

Here, we present the complementary zero-noise results for the JPE method.
Fig. 17.14 represents the mismatch between the JPE and SPE methods (top) and the

JPE and the HS methods (bottom). This also shows the JPE method leads to a better
representation of the data than the HS method. However, the increased complexity of
the problem leads to a decrease in the accuracy of the recovery. We keep low mismatch
values for JPE and SPE.

Fig. 17.15 represents a comparison between the offsets for JPE and SPE, and JPE
and HS, for the zero-noise case. Here, one also has a larger offset for the JPE than for
SPE (39% of the events have a smaller offset for JPE), and a larger bias for HS as for
JPE (57% of the events have a smaller offset for JPE).

Fig. 17.16 represents the normalized width of the posteriors for JPE versus SPE (which
is comparable to JPE versus HS since HS versus SPE has widths aligning along the
diagonal). There is more variance in this plot than for SPE versus HS. This is because
the JPE method is significantly different from SPE, and we have a larger variety of
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Figure 17.14: Top: Comparison of the mismatch between the injected and recovered waveforms
for the two events for JPE and SPE without noise. Bottom: Comparison of the mismatch
between the injected and recovered waveforms for JPE and HS without noise. Overall, it is
higher for JPE than for SPE, while it is lower than for the HS approach. This is expected
since JPE accounts for the two events in the data, which is better than neglecting one but
more complicated than having only one signal present in the data and fitting it.
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Figure 17.15: Top: Comparison of the offset of the recovered posterior for the chirp mass for
the JPE and SPE methods in the zero-noise case. Bottom: Comparison of the offset of the
recovered posteriors for the chirp mass for JPE and HS in the zero-noise case. The two plots
indicate that the offset is lower for JPE than for HS, due to the better modeling of the noise,
while it is still better in the SPE case, where the noise is well modeled, and the problem at
hand has a reduced complexity.
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Figure 17.16: Comparison between the normalized width of the 90% confidence interval for
JPE and SPE without noise. Since the spreads are very close for SPE and HS, the same
relation is established for the JPE and HS comparison. There are larger differences between
the two approaches, but, globally, one is not better than the other as the results are more or
less evenly distributed around the diagonal.

posteriors. Indeed, sometimes, for JPE, we get broader posteriors but also tighter ones,
depending on the characteristics of the two signals in the data. However, the points are
evenly distributed on the two sides of the diagonal, showing that, on average, none of
the methods has widened posteriors compared to the other.

17.5 Conclusions

In this study, we have presented two ways to perform parameter estimation for two
overlapping BBH signals: HS and JPE. We have implemented them and compared them
to the usual SPE. Because of limited computational resources, we focus on high mass
and medium SNR events; major adaptions to the parameter estimation framework are
needed to deal with a larger variety of signals.
For the HS method, we analyze the first signal, then subtract it (more precisely, the

maximum likelihood signal) from the data before analyzing the second signal left in the
data. On the other hand, JPE analyzes the two signals simultaneously. We note that,
since the likelihood is symmetric in the two signals when they have the same nature, we
need to add a post-processing step to have samples corresponding to each event. For
this purpose, we order the samples in time.

We have applied both methods to a population of BBH mergers to show the feasibility
of the two approaches and their respective drawbacks. For HS, as already mentioned



250
17. Parameter Estimation Methods for Analyzing Overlapping

Gravitational-Wave Signals in the Third-Generation Detector Era

in the literature, we showed that analyzing one signal while neglecting the other can
lead to offsets in the recovered posteriors because of the erroneous noise representation.
However, even when some deviations occur in the first signal, it does not necessarily
impact the recovery of the second signal. We have also shown that there is no significant
broadening of the posteriors compared to usual SPE approaches. Therefore, it shows
that HS suffers from biases due to overlapping signals for signals measured at very close
merger times, which can lead to an incorrect parameter inference.
For JPE, we have shown that the offset in recovered posteriors is smaller than for

HS while remaining higher than for SPE. This is understood as JPE having a correct
noise representation for the two signals, which HS lacks. On the other hand, solving
the likelihood for JPE means we explore a 30-dimensional parameter space, making
the analysis more complex and computationally challenging than SPE. However, the
recovered width of the posteriors is, on average, the same as for SPE. But while the
average is the same, we are confronted with posteriors that can be narrower or broader
in JPE compared to SPE. This behavior seems to originate from the cross-term between
the two signals entering the likelihood when adapting it to account for multiple signals.
More extended studies are needed to understand this effect.
Overall, our results indicate that current techniques for a joint likelihood approach

are not yet at their best, and options for making the sampling more efficient could
be implemented in future work. For example, one could impose the time ordering (or
chirp mass hierarchy) directly during the sampling by requiring that the arrival time of
one event is smaller than that of another event. This would prevent the sampler from
confusing the two events and enable it to converge more easily. Another possibility could
be to use narrower priors motivated by the output of the search pipelines. This is possible
for the chirp mass and the arrival time but still contains risk as the search pipelines
themselves can provide inaccurate point estimates for some critical parameters [382].
One of the main issues with the methods suggested here is the computational time

required, as the data analysis takes up to a few months for lower-mass overlapping
BBH mergers. This would make it extremely hard, if not impossible, to keep up with
the detection rate of the 3G-detector network. However, methods exist to speed up
traditional parameter estimation methods, such as relative binning [356–358] or adaptive
frequency resolution [355]. These methods could be adapted to overlapping signals in
future work to reduce the computational time, enabling one to analyze other types of
systems and to use a lower minimum frequency to get closer to the real 3G scenario.
A drastically different approach that could help in the analysis of such signals in the
future is ML, where major progress has been made in the parameter inference for single
compact binary colescences [299, 302]. In parallel to this work, a proof-of-concept study
applying ML techniques to overlapping signals has shown that it is possible to extract
posteriors using normalizing flows with a reasonable precision [430]; see Chapter 18 of
this thesis.

To this end, we believe this work makes a first step towards the analysis of overlapping
CBC signals, which will be crucial to analyze GW data in the 3G detector era, as
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overlaps will become quite common.





18
Normalizing Flows as an Avenue

to Study Overlapping
Gravitational-Wave Signals

In Chapter 16 and Ref. [321], it has been established that neglecting the presence of a
second signal in the data can lead to biases in the recovered posteriors. This has also been
confirmed by other works [362–365]. In Chapter 17 and Ref. [428], we have shown the first
steps towards the complete analysis of overlapping signals by comparing two approaches:
HS and JPE. The second method is less prone to biases but computationally heavier.
Additionally, the method’s current implementation suffers from some instabilities, and
upgrades are needed to be entirely reliable. Moreover, the method is computationally
heavy, requiring between 20 and 30 days to analyze two high mass BBHs1. In the 3G
era, more than 105 CBC mergers are expected [321]. So, having analyses taking several
weeks to complete is not an option.

In Ref. [428] and Chapter 17, we suggested several methods to speed up our analyses.
Some consist in speeding up the traditional Bayesian methods, using adaptive frequency
resolution [355] or relative binning [356–358]. Others imply using conceptually different
techniques, such as quantum computing [360] or ML [295–301].
In this chapter, based on Ref. [430], we demonstrate, as a proof-of-concept, how

overlapping signals can be analyzed with ML-based techniques. We focus on overlapping
BBH signals in a network of 2G detectors. Our ML method relies on normalizing
flows [431–433]. We show that ML is a viable approach for analyzing overlapping GW
signals, even if further developments are required to obtain optimal performance.

18.1 Machine Learning for Overlapping Gravitational Waves

The use of ML in GW data analysis has been growing over the last years, owing to
its speed after training and flexibility; see Ref. [62] for an overview. A subset of these
methods falls under the umbrella of simulation-based inference [434] and are developed to
perform parameter estimation for CBC signals [295–301]. In particular, Refs. [298–300]

1This would be the lower bound on the analysis time. Lower mass signals have a longer duration and
would therefore need a more extended analysis time.
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use normalizing flows to get posterior distributions for BBH parameters. Such methods
have been shown to have results close to MCMC and nested sampling. Our approach is
somewhat similar to theirs, with some notable differences explained below.

We use continuous conditional normalizing flows, a variant of normalizing flows suited
for probabilistic modeling and Bayesian inference problems. One can find a detailed
overview of normalizing flows in Sec. 6.3. Here, we just give a brief overview to outline
the differences between our approach and previous normalizing flow-based methods. Due
to the recursive and continuous nature of these models, their memory footprint can be
quite small [243]. These qualities allow for extensive training on home-grade GPUs while
retaining the ability to capture complex distributions.
Normalizing flows are an ML method through which a NN learns the mapping from

a simple base distribution pu(u) (a Gaussian, for example) to a more complex target
distribution q(θ)(see Sec. 6.3.1 for a detailed introduction). This is done through a series
of invertible and differentiable transformations. They are summarized by a function
g(θ). However, in our case, it is not sufficient to go from one distribution to the other.
We also need to do this conditionally on the GW data we wish to analyze. To account
for this, we use conditional normalizing flows [239], where the transformation functions
are dependent on the data d (hence, g = g(θ, d); see Sec. 6.3.3). A major difference
with [239] is that our base distributions are kept static; experiments on toy models
did not show any benefits in having conditional priors. Thus, our model g(θ, d) is a
trainable conditional bijective function that transforms a simple 30-D Gaussian into a
30-D complex distribution. The bijectivity allows us to express and sample q(θ|d) in
terms of g(θ, d) and pu(u) via the change of variable theorem:

q(θ|d) =
∣∣∣det(Jg−1(θ, d))

∣∣∣pu(g−1(θ, d)) , (18.1)

where det(Jg−1(θ, d)) is the determinant of the Jacobian Jg−1(θ, d) of the transformation.
We train the model by minimizing the forward KL-divergence (see Sec. 6.3.1), which
is equivalent to maximum likelihood estimation [433, 435]. As noted by [300], q(θ|d)
should cover the actual (Bayesian) posterior p(θ|d), and asymptotically approach it as
training progresses due to the mode-covering nature of the forward KL-divergence.
A distinctive choice of our method is the continuous nature of the flow, linked

to the transformation function itself. A more in-depth explanation of continuous
normalizing flows is given in Sec. 6.3.2. Neural ODEs [243] are the foundation of
continuous normalizing flows. They are not represented by a stack of discrete layers
but a hypernetwork [436]. Hypernetworks can be understood as regular networks where
“external” inputs, such as a (continuous) time or depth variable, smoothly change the
network’s output for identical inputs. They can thus represent multiple networks or
transformations. In [243], hypernetworks are used to represent ODEs and trained by
using ODE solvers and clever use of the adjoint sensitivity method. A continuous
normalizing flow uses neural ODEs as its transformations.
We will now explain the training of a continuous flow. For clarity, we will use f to
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refer to a continuous transformation and g for a discrete one. If θ(t) represents the
samples from the distribution at a given time t, the continuous normalizing flow obeys
an ODE when going from t1 to t2

dθ(t)
dt = f(t,θ(t)) . (18.2)

The change in likelihood associated with this “step” differs slightly from Eq. (18.1) due
to the continuous nature of the flow:

log(p(θ(t1))) = log(p(θ(t0)))−
∫ t1

t0
dtTr

[
Jf (θ(t))

]
. (18.3)

Assuming a non-stiff ODE, the integration can be performed rapidly with state-of-the-
art ODE-solvers, which in our case is MALI [248]. In addition, we have to solve a
trace instead of a determinant, which reduces the complexity, going from O(D3) to at
most O(D2) with D being the dimensionality of the posterior space, and speeds-up
the computation. Moreover, using continuous normalizing flows removes the need to
use coupling layers between transformations. Instead, all parameter dimensions can be
dependent on each other throughout the flow. Combining the continuous and conditional
flows leads to continuous conditional normalizing flows, where the conditional consists
of the GW data d and the time t.

We also need a better data representation than the raw strain to train and analyze
the data. Therefore, we follow a similar approach as in [296–300], using an SVD
decomposition (see Sec. 6.4.2) as summary statistics, reducing the dimension and the
noise content of the data while retaining at least 99% of the original signal. Each of
the 256 generated basis vectors is used as a kernel in 1D convolutions used as an initial
layer in a residual CNN (see Sec. 6.2 and in particular 6.2.2), enabling one to capture
the time variance of the signal. Therefore, we do not need to use a Gibbs sampler to
estimate the time of the signal as is done in [298–300], and can sample over time like
any other variable which allows us to retain the likelihood of the samples. The flow
itself is represented by two multi-layer perceptrons with 3 hidden layers of 512 units.
Furthermore, we also use a different representation for the angles. Instead of directly
using their values, we project them onto a sphere for the sky location and a circle for
the other angles. This makes for a better-posed domain for these angles, plays on the
interpolation capacities of the network, and makes the training step easier.

In the end, our framework combines data representation as a hybrid between classical
SVD and CNN, followed by the continuous normalizing flow network. Fig. 18.1 gives a
representation of our analysis framework. It is worth noting that our entire framework
is relatively small compared to the ones presented in [298]. It enables the network to
run on lower-end GPUs but also means it could be limited in its capacity to model the
problem.
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Figure 18.1: Representation of our analysis framework. It is made of a pre-processing part
where we build an SVD basis to filter the data, followed by a normalizing-flow-based neural
network.

18.2 Data and Setup

To test our framework’s capacity to deal with overlapping signals, we start with a
simplified setup. We consider a network made of the two LIGO and the Virgo detectors,
at design sensitivity [25, 26] with a lower sensitive frequency of 20 Hz. We generate
stationary Gaussian noise from their PSD and inject two precessing BBH signals generated
with the IMRPhenomPv2 waveform [104]. Our data frames have an 8 s duration and
are whitened before the SVD decomposition is performed. The chirp mass (Eq. (2.50))
is sampled from a uniform distribution between 10 M� and 100 M�, and the mass
ratio (q = m2/m1) from a uniform distribution between 0.125 and 1. We constrain
the individual component masses to be between 5 M� and 100 M�. Therefore, our
ML approach is trained and usable on a larger range of BBH events compared to the
ranges used in Chapter 17. During the data generation, the luminosity distance is
kept fixed. Afterward, it is rescaled to result in a network SNR value taken randomly
between 10 and 50, sampled from a beta distribution with a central value of 20. The
time of coalescence for the two events is set randomly around a time of reference,
with tc ∈ [tref − 0.05, tref + 0.05] s, ensuring that the two BBH merge in the high bias
regime [362]. The other parameters are drawn from their usual domain. Table 18.1 gives
an overview of the parameters and the function from which they are sampled.
During the training, we continuously generate the data by sampling the prior distri-

butions for the events and making a new noise realization for each data frame. The
training is stopped when the network has converged and before over-fitting occurs. Our
model trained for about 12 days on a single Nvidia GeForce GTX 1080 GPU.
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Parameter Function

Chirp mass (Mc) U(10, 100) M�
Mass ratio (q) U(0.125, 1)
Component masses (mi, i = {1, 2}) Constrained in [5, 100] M�
Luminosity distance (dL) Rescaled to follow SNR
SNR B(10, 50)
Coalescence time (tc) U(tref − 0.05, tref + 0.05) s
Spin amplitudes (ai, i = {1, 2}) U(0, 1)
Spin tilt angles (θi, i = {1, 2}) Uniform in sine
Spin vector azimuthal angle (∆φ) U(0, 2π)
Spin precession angle (φJL) U(0, 2π)
Inclination angle (ι) Uniform in sine
Wave polarization (ψ) U(0, π)
Phase of coalescence (φc) U(0, 2π)
Right ascension (α) U(0, 2π)
Declination (δ) Uniform in cosine

Table 18.1: Summary of the parameters considered for the BBH generation and the functions
used to sample the parameter values.

18.3 Results

First, we show the corner plots recovered for the masses and sky location of the two
events in a pair in Fig. 18.2. These are representative of our results. One can see that
the injected values are within the 90% confidence interval. This is the case for most
events, regardless of the relative difference in arrival time or the SNR ratio between the
two.
To demonstrate the method’s reliability, P-P plots for the two signals recovery are

shown in Fig. 18.3. The P-P plot is constructed by sampling the posteriors for 1000
overlapped event pairs with parameters drawn from the distributions detailed in Ta-
ble. 18.1. We then compute in which percentile of the distribution the injected value
lies. If everything goes as expected, the cumulative density functions should align along
the diagonal. One can observe that this is the case for our network. Comparing this to
the single signal results given in Ref. [298], there is a broadening of the shell around the
diagonal, showing more variability in the signal recovery. This means that our inference
is less accurate than for single signals. Possible origins are the degenerate posteriors,
increased complexity of the problem, and the reduced size of our network. In addition,
an increased variability has been noted when going from single parameter estimation to
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Figure 18.2: Example recovery for the masses and sky location of two overlapping BBHs
with our ML approach (event A is left and event B right). The recovered values are well within
the 90% confidence interval.

joint parameter estimation methods in Bayesian approaches [428].

A trick used to alleviate the problem of degeneracies is to time-order the samples.
Indeed, for two BBHs, the likelihood is symmetric in the two events. Therefore, the
posteriors can get bimodal [428]. While our training method formally labels one event as
A and the other event as B, when the characteristics of the events are close, we may get
somewhat bimodal posteriors. This probably also contributes to the higher variability of
the P-P plot.

Since parameter estimation for overlapping signals is still an active field of research, it
is difficult to compare with traditional methods. While methods have been developed
in Ref. [428] and Chapter 17, they are not yet fully stable and take a long time to
analyze a BBH system. Therefore, making a statistically significant study comparing
the two approaches seems premature at this stage. However, to have some sense of the
performances of our network compared to traditional methods, we consider 15 injections
complying with our network’s setup and analyze them with the framework presented
in [428]. Using these analyses, we can already identify some trends between the two
pipelines. The first is that our ML framework typically has broader posteriors than the
Bayesian approach. As mentioned in Ref. [428], the standard joint parameter estimation
approach can sometimes get overconfident –see Ref. [428] or Chapter 17 for a discussion
on the Bayesian algorithm–, where the recovered injected value lies outside the 90%
confidence interval. Our method is not confronted with this bottleneck as the broader
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Figure 18.3: P-P plots for the recovered parameters for the two events in the data. In both
cases, the lines align along the diagonal, showing that our method is trustworthy. The larger
spread can be due to bimodalities in the data, the increased complexity of the problem, and the
reduced size of our network. The legend indicates which line corresponds to which parameters.
The values between the brackets correspond to the KS test statistic.

posterior encapsulates the injected value2. Fig. 18.4 illustrates the two representative
situations: one where the Bayesian approach finds the event correctly, and one where we
see that our ML approach covers the injected values while it does not for the standard
approach. It should be noted that an offset in the posterior, similar to the one noted in
Ref. [428], can exist in our method and would not be seen because of the broad posteriors.
However, because we are using the forward KL divergence, we expect the posteriors to
have some support for the injected values. The origin of the larger posterior, which is
not observed in the SPE ML-based methods, is probably due to the increased complexity
of the problem combined with our network’s small size. One possible avenue is applying
importance sampling (see Sec. 6.4.3) after the normalizing flow [300, 302]. This would
increase the computational time, but the time needed to go from events to samples
would still be well below the time taken by the traditional methods. However, such
methods can be tricky, and additional modifications to our network could be needed.
Finally, an important advantage of our method is its speed. After training, it can

analyze two overlapping BBH signals in about a second compared with O(20 days)
reported in [428]. While it is difficult to estimate the time gain for other types of signals,
such as BNSs or NSBHs, we can expect the inference time after training not to be
significantly larger than for BBHs for the ML approach while it significantly increases for
Bayesian methods. Since computation time is a crucial aspect of studies in the 3G era,

2In our 15 injections, we find 4 for which the Bayesian approach is overconfident. This is higher than
values reported in [428] and can be related to the closer merger times we are considering.



260
18. Normalizing Flows as an Avenue to Study Overlapping

Gravitational-Wave Signals

Baysian approach

ML approach

0.
3

0.
6

0.
9

q

2

4

6

α

25 50 75

Mc

−0
.8

0.
0

0.
8

δ

0.
3

0.
6

0.
9

q

2 4 6

α
−0
.8 0.

0
0.

8

δ

Baysian approach

ML approach

0.
3

0.
6

0.
9

q

4.
8

5.
2

5.
6

α

60 80

Mc

−0
.6

0.
0

0.
6

δ

0.
3

0.
6

0.
9

q
4.

8
5.

2
5.

6

α
−0
.6 0.

0
0.

6

δ

Figure 18.4: Comparison between our approach and the one from [428] for two separate
events and for the chirp mass, mass ratio, right ascension, and declination. The injected values
are given by the black lines. For the event in the top panel, the true value is encapsulated
by the posteriors of both methods, for the bottom event this is only the case for our method.
This is representative of the cases encountered in our comparisons: our posteriors are generally
broader but encapsulate the injected value within the 90% confidence interval. The posteriors
could be narrowed by applying importance sampling to the samples given by our network.
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ML approaches seem to be more suited to study realistic scenarios for these detectors.

18.4 Conclusions and Perspectives

In this work, we have presented a proof-of-concept ML-based method to analyze overlap-
ping BBH signals. We focused on a 2G detector scenario with the two LIGO detectors
and the Virgo detector at design sensitivity, with a lower frequency cutoff of 20 Hz. Our
approach is based on continuous normalizing flows.

While also using normalizing flows, as in [296–300], we bring extra modifications that
seem to help in the inference task. We represent the data through a mixture of SVD and
convolutions, enabling us to sample directly over the events’ arrival time, removing the
need to use additional Gibbs sampling steps over that parameter and retaining the ability
to access the likelihood of a sample. We also move to continuous conditional normalizing
flows, reducing the computational cost of the method as we need to compute a trace
instead of a determinant when going from one step to the other in the transformation.
Finally, we also use a particular representation of the angles, projecting them onto circles
(for the phase, the polarization, . . . ) and spheres (for the sky location). We believe that
these modifications make our network more flexible, enabling it to deal with overlapping
signals even in a reduced form.
With this simplified setup, we showed that our approach is reliable, with posteriors

consistent with the injected values. Our method takes about one week to train on a
single GPU. After that, it only takes about a second to analyze two overlapped BBHs.
While, in reality, other types of CBC mergers can happen, their inference after training
should not be significantly longer than for BBHs. We also compared our ML method
with standard Bayesian methods for overlapping signals. While our scheme leads to
wider posteriors, it can correctly recover the injected values, even when the Bayesian
approach gets overconfident and misses the injection. In the future, we could possibly
correct for the widened posteriors using importance sampling.
Our method’s combined reliability and speed show that ML is a viable approach to

analyzing CBC mergers in the 3G era. More interestingly, it would even be possible
without needing to account for the future development of more powerful computational
means and could soon enable some more in-depth studies for ET and CE. For example,
once trained for all possible BBH systems, it could help with predictions for our ability
to reconstruct the BBH mass function in the 3G era.

Still, one should note that additional improvements are needed before using our method
in realistic 3G scenarios. One would first need to change our setup to the 3G detectors,
to account for a lower frequency cut-off and extreme SNRs. In addition, we should
account for a wider range of objects. One should account for HOMs and eccentricity that
could play a crucial role in the 3G era. Additionally, we need to account for the change
in noise realization from one event to the other. Some of these steps, such as training
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the NN for the 3G detectors instead of the 2G ones, should be relatively easy. Others
are more complex, as it is hard to perform parameter inference for long-lasting mergers
due to the computational burden. So, additional developments in parameter estimation
using ML would be required to get to the realistic 3G scenario. For overlapping signals,
one would also benefit from developments in the standard Bayesian analysis methods.
For example, knowing how to deal with the noise characterization or other types of
potentially detectable events.
In the end, there is still work to do before ML can be used in realistic 3G scenarios.

However, we believe this work shows it is an interesting avenue and could be practical
on a relatively short time scale.



Part V
Concluding Remarks and
Future Perspectives
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Since its formal study by Newton in 1687, our understanding of gravity has gone a long
way, undergoing some major revolutions. The biggest one was Einstein’s general relativity
(see Chapter 2). His geometrical description of spacetime, where massive objects deform
its fabric, in turn leading to the objects’ motions, explained some shortcomings of
Newtonian gravity. Additionally, it made some interesting predictions. Two of these
are gravitational lensing and gravitational waves. At first, the latter were believed
to be unobservable because of their faintness. The presence of denser objects in the
Universe, such as neutron stars and black holes, made their detection possible. After
years of development to reduce the noise sources in the detectors, model as accurately
as possible signals from merging compact binaries (see Chapter 3), and using adapted
search methods (see Chapter 4), the first gravitational-wave detection was made in
2015. The observed signal corresponded to two merging black holes and was seen by the
two LIGO detectors. In 2017, the Virgo detector joined the network of ground-based
interferometers, making for the first joint binary black hole observation. It was followed
rapidly by the discovery of GW170817, the first observation of a gravitational-wave
signal from a binary neutron star merger. Its detection was crucial as the collision was
also seen in electromagnetic bands, confirming the nature of the objects and pushing
our understanding of such objects further. Since then, more gravitational-wave signals
have been detected, and close to 100 compact binary mergers were reported after the
last LIGO-Virgo-KAGRA observation run.
Other predictions made by general relativity have been verified by now. This is

the case for gravitational lensing (see Chapter 5), where a wave gets deflected by a
massive object along its travel path. For light, it was confirmed by Eddington in 1919
but has been observed many times since. Nowadays, it is routinely used to study the
Universe. For example, it enables one to observe distant objects or search for exoplanets.
Moreover, gravitational lensing, as described by general relativity, should also lead to
lensed gravitational waves (see Chapter 5 and Part II). Depending on the regime, one
would observe (i) distorted waveforms or (ii) multiple repeated events with the same
frequency evolution and separated in time. This has not been observed yet, but the
detection probability increases with each detector upgrade. The predicted detection rate
for the coming years makes the observation of lensed gravitational-wave signals a real
possibility. Many efforts to develop search techniques and science applications specific
to lensed gravitational waves have been developed over the last years, including works
presented in this thesis (see Part II).

Whilst successful in the detection and characterization of gravitational-wave signals in
the past years, current analysis methods will face issues in the coming years. For example,
with future detector upgrades and new detectors joining the ground-based interferometer
network, the detection rate will increase. This requires adapted techniques able to keep
up the pace. In particular, a larger number of detection mean more opportunities for
multi-messenger observations. To extract the maximum information possible in all the
channels, one needs to observe the event in the electromagnetic band at the time of
or even before the merger (see Part III). Another problem arising from the improved
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sensitivity is overlapping signals (see Part IV). For third-generation detectors, such
as Einstein Telescope and Cosmic Explorer, the observed compact binary coalescence
signals will be so numerous that they start overlapping, meaning that several of them
are in band simultaneously. If not accounted for, this can lead to erroneous analysis
results.

In parallel with technological development on the gravitational-wave side, other fields
have also been improving. This is the case for machine learning, now mature enough to
be used for gravitational-wave data analysis (see Chapter 6). Owing to its speed and
flexibility after training, it is an interesting avenue to solve some of the issues present in
gravitational-wave data analysis, such as pre-merger alert, rapid parameter estimation,
and future detector studies.

Gravitational-Wave Lensing

In Chapter 7, we introduced several methods to do Bayesian analysis for strong lensing.
However, because of the number of pairs one needs to analyze, one requires faster and
more precise methods. Therefore, we introduced GOLUM (Gravitational-wave analysis
Of Lensed and Unlensed waveform Models, see Chapter 8), a fast and precise method to
search for and analyze strongly-lensed gravitational waves. It relies on recasting the joint
evidence as a conditioned one, where we use the posteriors obtained when analyzing
the first image as a prior for the second image. This framework is also helpful for the
development of lensing studies where many injections are required. Under the lensed
hypothesis, GOLUM is theoretically equivalent to joint parameter estimation.

We continued in Chapter 9 by showing how one could find smoking-gun evidence for
strong-lensing. One of the main issues in confidently detecting strong lensing is the
associated high false-alarm probability. Therefore, finding particular characteristics not
easily mimicked by unlensed pairs is crucial. This is the case for the Morse phase for type
II images. However, it has been shown in past studies that for single images, one requires
significant higher-order mode contributions to have an observable signature. In our work,
we showed that for a lensed event pair containing a type II image, the signature is visible
at lower total higher-order mode content compared to the single-image case. So, we
would see evidence for lensing faster. Combined with lens models, it could be used to
decrease the false-alarm probability further in the future. Conversely, lensing also helps
the study of the event and its higher-order mode content, enhancing various applications
when such events are observed, such as tests of general relativity, for example.

Even if lensing searches have not yet been successful, it remains crucial to be ready
for the first detection. Therefore, in Chapter 10, we studied a way to decrease the
false-alarm risk. As shown in previous work and confirmed by ours, including a lens
model in the lensing searches enables one to diminish the false-alarm probability for
galaxy lenses significantly. Our work also looked at the impact of errors in the lens
model. We have shown that small systematics in the lens model do not hinder the
benefits of adding a model. Moreover, there is no major disadvantage in using only the
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time delay, dropping the effect of the relative magnification, which is more uncertain.
On the other hand, if one uses a completely wrong model, for example, a galaxy-cluster
lens model for a galaxy-lensed event, strong lensing can be missed. Based on this, we
suggested a strategy to search for strongly-lensed events with reduced false-alarm risks:
first compute a model-independent detection statistic, then correct it for several lens
models. If the event is genuinely lensed, it should keep a high detection statistic for the
lens models resembling each other. The safest way to know whether the event is lensed
or not, in this case, is to use an unlensed background. One simulates a large population
of unlensed events and computes the detection statistic for pairs made of these events.
Then, the detection statistic for the lensed candidate is compared with the values found
for the unlensed background.
Gravitational-wave lensing is a relatively new field in data analysis. Therefore, we

believe there is still room for improvement in the coming years. Additionally, the
perspective of a first detection is exciting. Lensed event allows the Universe to be probed
differently. More searches are needed to reveal the potential of such events in the future.
However, to exploit them, we also need to identify them confidently. Therefore, more
research is required to understand the false-alarm risk and how to decrease it. Some
concrete next steps are studying the impact of triple and quadruple images, looking
at the impact of sub-threshold events, and checking the impact of the inclusion of the
Morse factor information in lens models.

Machine Learning as Tool for Gravitational-Wave Data Analysis

The first multi-messenger observation led to a massive influx of information, motivating
the community to observe more such events. However, since GW170817, no other multi-
messenger event was observed. Nevertheless, to make more such observations, dedicated
search strategies – able to target binary neutron star events better and earlier – should
be designed. Traditional methods can be used, but they are still limited as they are
relatively slow and not very precise. Therefore, in Chapter 12, we introduced a machine
learning-based approach to issue alerts for inspiraling binary neutron stars. In this proof
of concept, we used a convolutional neural network to detect an incoming binary neutron
star coalescence before its merger. We showed that our network can identify events if
they have a sufficiently high signal-to-noise ratio.

Prompted by our first study, we continued the development of our early-alert system
in Chapter 13. Using an improved training strategy (namely, curriculum learning on
the signals’ maximum frequencies), we could reduce the maximum frequency required
for detection. We also tested our network on more realistic noise scenarios and showed
that it could detect some events in an O4 observation scenario. Still, the network had
a relatively high false-alarm rate. This can be reduced by requiring several triggers
in a row, but it would increase the latency for detection. Further upgrades are also
needed before using our network in low-latency online searches. Still, machine learning
techniques are a promising avenue for early-alert systems.
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Complementary to alerts, it is also important to develop fast and accurate sky maps
for mergers. Parameter inference for binary coalescences can be sped up with machine
learning. These techniques often have reliability issues as they are limited to their
training domain. Additionally, people often complain about their black-box nature. In
Chapter 14, we addressed some of these concerns by setting up a hybrid sky location
and mass determination system. As a first step, it used neural networks to have a base
distribution for the component masses and the sky location. Then, we applied importance
sampling, using the usual gravitational-wave likelihood to correct the posteriors and
obtain optimal ones. This method is generally reliable but struggles somewhat with low
signal-to-noise ratio signals. Further upgrades are needed to get sky maps even closer to
the real ones. For example, the reflection of the sky position needs to be added to our
machine learning proposal distribution. This method could be used in the future to get
rapid characteristics of the events, which can then be issued to astronomers.
Combining this technique with the binary neutron star early-alert system would be

valuable for future multi-messenger searches.

Third Generation Detectors: Interesting Science, Tough Analyses

Third-generation ground-based detectors will have a vastly improved detection rate for
compact binary coalescences. In parallel, their increased sensitive frequency range makes
the signals observable for longer, making the presence of overlapping signals probable.
Therefore, using a detector network made of Einstein Telescope and Cosmic Explorer, we
turned to the study of overlapping signals in Chapter 16. First, we assessed the extent of
the overlaps by simulating one year of data for a third-generation detector network. We
observed that tens of thousands of mergers happen. Tens of compact binary coalescence
mergers can be observed while a given binary neutron star inspiral signal is in band, and
it will be common to have two detectable signals ending within the same second. Based
on this, we study the impact of overlapping signals on data analysis. Therefore, we
considered the overlap of two binary black hole signals, two binary neutron star signals,
or one binary black hole and one binary neutron star signal. We overlapped them with
a zero or two seconds shift between their coalescence times. For the overlap of a binary
neutron star and a binary black hole signal, the parameter estimation for the neutron
stars was hardly affected by the overlap, regardless of the difference in merger times.
Conversely, for binary black holes, the recovery was affected. For a high-mass binary
black hole, the sampler was unable to find the signal in the data. For a lower-mass
signal, we retained some measurability but observed some deviations compared to the
case without an overlapping binary neutron star. When the time shift is bigger, the
biases mostly disappeared. For two binary black holes with sufficiently dissimilar masses,
the parameter recovery was unbiased. For two binary neutron star signals overlapping,
when they merge at the same time, the faintest signal was not recovered. The problem
was solved when the merger times were different enough. In the end, this showed that,
when the events’ merger times are close, biases can occur, and one may need to employ
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adapted inference techniques.
Independently of our studies, other authors also showed that biases occur when

overlapping signals are analyzed without accounting for the other signals’ presence.
Therefore, it is important to introduce adapted inference techniques. Such methods
were presented for the first time in Chapter 17, where we compared two approaches:
hierarchical subtraction and joint parameter estimation. For the first, one analyzes the
dominant signal, subtracts the result, and then infers the second one. This can lead to
bias when the first signal is characterized badly. Joint parameter estimation analyzes
the two signals together. It is less keen to bias but is computationally heavier due to the
increased dimensionality of the parameter space. Focusing on high-mass systems due to
limited computational resources, our work shows that these adapted methods can reduce
the biases present in the recovered posteriors. This is crucial for realistic applications
when considering third-generation detectors. However, these methods are still subject to
some instabilities, and further upgrades are needed to have optimal results. Moreover,
the techniques are computationally heavy, making them slow to use. With their current
computation time, it would be impossible to follow the detection rate expected during
the third-generation detector. Therefore, they need to be accelerated, for example, by
using relative binning or adaptive frequency resolution.
Recently, parameter estimation for binary black holes using machine learning tech-

niques has emerged. Even if it is not yet always reliable, these techniques offer major
speed-ups once trained. So, it is interesting to see if such methods are usable for overlap-
ping signals. In Chapter 18, we presented a normalizing flow-based approach designed
to analyze overlapped binary black hole signals. In this proof-of-concept work, we
introduced several upgrades to the existing machine learning-based parameter estimation
frameworks and analyzed overlapping binary black hole signals in a second-generation
detector network. We showed that our network can recover the injected values reliably.
Unfortunately, our posteriors were often broader than those obtained through joint
Bayesian inference. Still, in the future, this could be corrected by using importance
sampling. Moreover, our network is about half the size of those used for single event
parameter estimation, while the parameter space is twice as big. Therefore, increasing
the network’s complexity should improve the final precision of the recovered parameters
while retaining a low computational cost compared to Bayesian approaches. However, it
could mean our network cannot run on low-end GPUs anymore. Our study shows that
machine learning is a viable alternative for studying signals in the third-generation era,
but some progress still needs to be made to deal with the duration and variety of the
signals.

Whether with traditional Bayesian methods or machine learning, developing methods
to analyze signals in the third-generation era is crucial. In addition to mergers that occur
closely in time, other problems remain to be solved. This is the case, for example, for
noise characterization or analyzing an event plagued with tens of mergers occurring over
its duration. These issues should be addressed if we want to extract the full potential
from these detectors. To be ready when the third-generation detectors come online,
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mock data challenges and science cases should be pursued. They need to be as realistic
as possible, meaning the required analysis tool should be developed as early as possible.
Once these bottlenecks are overcome, third-generation detectors should lead to a major
increase in our understanding of the Universe, thanks to their remarkable observational
capacities.

Final Words

We are living in exciting times for gravitational-wave astronomy as current detectors are
getting closer and closer to their design potential. This should unravel new phenomena,
such as lensing. In this thesis, we presented several studies developing frameworks
necessary to search for and characterize strongly lensed gravitational-wave events. We also
showed some interesting applications proper to gravitational-wave lensing. Additionally,
new interferometers are being designed and commissioned. Their construction requires
major technological development. Their exploitation requires the introduction of novel
and fast data-analysis techniques as the observed merger rate increases. In this work, we
have shown that overlapping signals will happen in third-generation detector networks,
and can lead to biased posteriors for the compact binary coalescence parameters if not
accounted for. We also performed the first joint parameter analysis for overlapping
signals, opening the way to the development of more realistic analysis frameworks for
the third-generation detector era. Once mastered, these detectors should push human
knowledge further, beyond previously-explored horizons. In parallel, new research fields
are developing, such as machine learning and quantum computing. To extract the
maximum potential of our detectors, looking at and using the developments done in
other research fields is crucial. Several works presented in this thesis are first steps toward
linking gravitational-wave data analysis and machine learning to prepare for the future.
For example, we showed how valuable machine learning could be for multi-messenger
astronomy by developing an early-alert system for inspiraling binary neutron stars.
Besides, we also illustrated its application for the analysis of overlapping binary black
holes, drastically reducing the analysis time compared to Bayesian methods, and opening
the door to more realistic studies for third-generation detectors.



Public Summary

From Apple to Modern Description of Gravity

Newton’s apple is a story often remembered by people as the beginning of the study
of stellar and planetary motions. However, this is not true. Already in its early stages,
humankind was curious about the shiny little dots in the sky at night. For some, they
were manifestations of the gods. For others, they were revealing the beauty of the
Universe. Already during Antiquity – from the Greeks to the Babylonians, to the
Egyptians, to the Maya, to the Chinese – one can find traces of people studying gravity
and stellar objects. Their basic understanding came from observation and interpretation,
often cast as philosophical arguments. Nevertheless, this is where things started.
After the Middle Age, when people re-discovered antique works, a new interest in

studying the Universe sparked among scholars, making for several new propositions,
even leading to conflict with the Church as people moved away from purely biblical
interpretations to observation-based ones. In particular, we went from a geocentric to a
heliocentric description of the Solar System, where the Earth is only one of the Sun’s
satellites. Several now-famous figures have helped in this development. Post-antiquity,
Copernicus was the first to suggest the idea. It was supported further by Galileo, who
defended it based on the observations he made – using one of the first telescopes – of
Jupiter’s moons. So, the Earth would be a simple satellite from the Sun. Based on
this, Kepler issues his laws of planetary motions. These empirical laws are the first laws
describing the planets’ movements in the Solar System. One shortcoming in Kepler’s
theory is that the cause of this motion is not explained. Newton found the explanation
by introducing his laws of motion, where he introduces the notion of forces and describes
the gravitational force: every massive object attracts other massive ones. This force and
the laws of motion enable one to explain the planets’ orbits.

Years later, Newton’s depiction of gravity was challenged by more precise observations,
as it could not explain the advance of the perihelion – the point of closest approach
to the Sun – in Mercury’s orbit. This was found by Le Verrier, who suggested the
existence of an extra planet between the Sun and Mercury explaining the observed
discrepancy. This planet has never been observed, but another explanation was found,
thanks to a new theory: general relativity, derived by Einstein at the beginning of
the 20th century. At first, it was received with some skepticism as it has a strange
entanglement between a geometric description of spacetime and forces. However, the
theory rapidly gained popularity by explaining observations not justified by Newtonian
gravity (such as Mercury’s orbit) and recovering the same result in cases where the
latter was working. Moreover, the theory led to new predictions. Observing those
would validate it even further. Some of these predictions, considered in this thesis, are
gravitational lensing – when a massive object bends the path of a light ray from source
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to observe – and gravitational waves – where a cataclysmic phenomenon leads to a
perturbation in the spacetime fabric propagating as a wave through the Universe. Such
predictions have been verified, making general relativity a successful theory.

Ripples in Spacetime

Gravitational waves are often called ripples in spacetime by analogy with waves
propagating on a pond when one throws a stone in it. However, the mechanism is a bit
more involved. Because spacetime is rigid, one needs massive amounts of energy and
momentum to be converted into gravitational waves for them to be detectable. Even so,
their direct detection requires measuring relative length changes of about one thousand
of an atomic nucleus.
Gravitational-wave emission was predicted by Einstein, but he thought it would

never be observed because of its faintness. Actually, he was right in the scenario he
considered: the collision of stars. Years later, the discovery of neutron stars and black
holes changed the game. These extremely massive objects can lead to the emission of
gravitational waves with a potentially detectable effect. Nevertheless, to achieve their
direct observation, we needed to overcome many technological challenges. The first hint
of their existence was obtained through the observation of the Hulse-Taylor binary pulsar,
made of a neutron star and a pulsar. Such a system can be seen with a telescope, and its
monitoring showed a decaying orbit consistent with an energy loss through gravitational
waves, compatible with the prediction made by general relativity.

The development of gravitational-wave detectors – aiming for direct detection – started
in the 1960s. Years of theoretical and technological developments lead to the construction
of the LIGO (Laser Interferometer Gravitational-wave Observatory) detectors. More
improvements were required to bring it to a stage where it could detect gravitational
waves emitted by mergers made of the densest objects in the Universe. On the 14th of
September 2015, the first-ever direct detection was achieved when the gravitational-wave
event GW150914 was recorded. It corresponded to the encounter of two black holes with
masses of about 36 and 29 solar masses. This observation is a crucial step in astronomy
as it confirms the existence of black holes, but also that such objects can form, combine,
and merge in a time shorter than the age of the Universe.

More binary black holes were observed, and in August 2017, a new observatory, Virgo,
joined the network. The presence of a third detector helped in determining the events’
sky location. Soon after Virgo joined, another breakthrough happened: the observation
of GW170817, corresponding to the encounter of two neutron stars. Since those objects
are made of matter and do not have a horizon, they also lead to electromagnetic emissions.
Those were observed independently by several facilities, linking gravitational-wave and
electromagnetic data. Observing such a phenomenon led to new ways to understand
how dense elements (such as gold) form in the Universe, test general relativity, and
understand the neutron star equation of state.
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Since then, a third observation run took place. During it, we observed more binary black
holes. We also saw some neutron star binaries but did not identify an electromagnetic
counterpart. Still, some new phenomena were seen. For example, we observed the
first two mergers of a neutron star and a black hole, found a binary black hole with
theoretically unexpected component masses, and detected higher-order modes3 for the
first time. With about one hundred binary mergers detected, we can reconstruct the mass
distributions of black holes and neutron stars, study their merger rates, and perform
tests of general relativity in a regime that is not obtainable on Earth, among other
things.

Gravitational-Wave Lensing

The deflection of a wave by a massive object is also a direct consequence of general
relativity. It was confirmed by Eddington for light when he observed the deflection of
starlight by the Sun during an eclipse. Nowadays, the lensing of light is a tool commonly
used in astronomy. Interestingly, massive objects can also deflect gravitational waves.
If the lens is dense enough, we can distinguish several “images” seen as (pairs, triples,
or quadruplets, ... of) repeated gravitational-wave signals with the same frequency
evolution. This phenomenon – called strong lensing – has not been observed yet, but it
is predicted at a non-negligible detection rate in the coming years. Therefore, we are
already searching for it.
Typically, when looking for strongly-lensed gravitational waves, one looks for event

pairs with the same intrinsic parameters and sky locations, linked by an overall phase
shift, a magnification, and a time delay. Therefore, one needs to analyze all the pairs of
events in the data, which is a rapidly growing number as the detection rate increases.
Moreover, if the search technique is not precise enough, we can have false lensing
claims as parameters seem to match even if they do not. Therefore, in this thesis, we
introduced a new search method combining speed and precision to search for strong
lensing, effectively filling the gap between pre-existing pipelines, where some were precise
but slow and others fast but not precise. We also showed how this framework, called
GOLUM (for Gravitational-wave analysis Of Lensed and Unlensed waveform Models)
reduces the computational cost for joint parameter estimation to that of a usual binary
black hole analysis.
Strong lensing is also associated with a high false-alarm risk. Even with precise

methods, we only have a finite precision and some error bounds on the inferred parameters.
Therefore, we may see matching events by chance when many merger signals are present
in the data. To make a confident lensing detection, one needs to alleviate this. In this

3A bit like an instrument, gravitational waves can be described with different modes (or tones). There
is the dominant one, which we measure the best, but other tones are also present to make the
complete symphony of the black hole signal. These additional modes are generally fainter and harder
to detect.
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thesis, we explored two different avenues to identify strongly-lensed images. The first
consists of using higher-order modes to detect typical lensing signatures not present for
unlensed events. Past studies have shown that, in some cases, the overall phase shift
due to strong lensing can be unequivocally detected, provided the higher-order mode
content is high. However, its detection requires particular events, unlikely for current
detectors. In our work, we showed that if one is confronted with a pair of events and
analyzes them jointly – as done in any strong-lensing search – this particular feature
is detectable at much lower higher-order mode content. Therefore, this smoking-gun
evidence for lensing could be observed in more common scenarios.
A second avenue to reduce the false-alarm probability explored in this thesis is the

inclusion of lens models in the search pipelines. As said earlier, binary parameters can
match by chance. However, one also has so-called lensing parameters linking the two
lensed gravitational waves. For a given lens model, these parameters have expected
distributions. For example, for a galaxy lens, the time delay between images should
not be more than a few months and is most likely between one and a few days. The
chance of unlensed event pairs having matching parameters and appropriate apparent
lensing parameters is much smaller than the chance of simply having similar binary
parameters. Therefore, including this in the search information is important when facing
many events. Generally, search pipelines are independent of the lens model to avoid
missing a lensed event not complying with the model. In this thesis, we showed how one
can include such models after the search is done, avoiding the computationally-expensive
procedure where the analyses have to be repeated for every model. In addition, we
show a consequent reduction of the false-alarm probability when including the correct
lens profile and demonstrate that small systematics in the lens model would not hinder
its decrease. Conversely, using the wrong density profile could make lensing detection
impossible. Based on this, we suggest a search strategy for strong lensing: start with
model-independent searches to identify the most promising candidates. Then, we include
an array of models in the detection statistic with redundancy between lens profiles to
account for systematics. A genuinely lensed pair would keep a high detection statistic
for all the lens models of the same family. While not guaranteeing detection, this is the
safest way to search for strongly-lensed event pairs.

Early-Alert Systems for Binary Neutron Stars Us-
ing Machine Learning

Over the last century, gravitational-wave physics was not the only field having break-
throughs. It is also the case for machine learning, which went from being a concept to a
powerful tool that is commonly used. Nowadays, it is mature enough to be used in other
research fields. For gravitational-wave data analysis, one of its most desirable features
is the speed after training. Indeed, one often has to use computationally expensive
methods requiring a long time to converge or needing to loop over many parameter
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combinations to find a trigger. This can be harmful in some cases. The computational
cost is moved upstream for machine learning, during the training. Once trained, the
algorithm can generally produce results within a few seconds. This is desirable, in
particular in low-latency searches. These are critical for binary neutron stars, where we
want to observe the electromagnetic emission associated with the merger and its early
stages. Studying the event at the merger time or even before would be crucial to better
understand the matter’s behavior under these extreme conditions.

In this thesis, we built the first early-alert system for inspiraling binary neutron stars
using machine learning. We made a convolutional neural network to issuing alerts when
it observes an inspiraling binary neutron star. In the first instance, we took a reduced
time window where the signal starts at 20 Hz and split the binary neutron star into
three mass categories. We trained and tested the network on design sensitivity data
for a single LIGO detector and found that we can detect inspiraling binary neutron
stars provided they are loud enough. In this proof-of-concept study, the setup was not
entirely realistic as we did not yet change the sky location or account for the detector
network. Therefore, in a second step, we improved our framework. We decreased the
minimum frequency seen by our network to something around 12 Hz. In addition, we
increased the window size, removing the need for mass categories. We also used a new
training technique: curriculum learning, where we iteratively increased the difficulty
in the data seen by the network when training. Applying all these improvements, we
trained and tested our network on different noises: simulated noise corresponding to the
third and fourth observation runs, and real noise recorded during the third observation
run. We see that our performances slightly degraded for real, less well-behaved, data.
However, we retained some detectability. Moreover, the improved training strategy
makes for increased sensitivity. For an O4-like observation scenario, about 20 binary
neutron star mergers could be detected over a year. Our network would issue an alert
for about 3 of them, with a 90 s delay before the merger in some cases. Unfortunately,
our algorithm also has a high false-alarm rate, leading to numerous spurious triggers. It
can be decreased by asking for multiple triggers in a row when analyzing data. However,
this solution cuts back the time between the trigger and the merger. In the end, this
work shows that machine learning is a viable alternative for gravitational-wave early
alert, even if further developments are required before it is practically usable.

In addition to a trigger, one needs to tell astronomers where to point their telescopes
when searching for a counterpart. Therefore, it is important to have fast ways to produce
a sky map for an event. This is also a place where machine learning can be helpful.
However, one complaint people often have is the reliability and the dependence on the
noise realization used for training. Therefore, in this thesis, we pursued a hybrid approach,
combining machine learning and Bayesian statistics, to rapidly obtain the sky map and
the mass distribution for a given binary black hole event. We used a neural network to
make a well-posed proposal distribution for the masses and sky location. Then, we used
importance sampling to transform the distributions into the final ones. In the end, our
framework can produce sky maps in a few minutes, compared to days for traditional
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Bayesian methods. Moreover, the number of effective importance samples gauges the
quality of the proposal distribution and the neural network’s behavior. However, this
framework still needs some improvements. For example, our proposal distribution for
the sky location does not account for a possible sky reflection. At any rate, this shows
machine learning is a promising avenue for prompt localization and rapid parameter
inference.

Adapting the sky location inference framework and the binary neutron star early alert
system would make for the first machine learning-based early-alert system.

Third-Generation Detectors

Even before the first gravitational-wave signal was detected, planning for the next
generation of ground-based detectors had started. In essence, these detectors are bigger
and more sensitive than current ones, leading to more observations of compact binary
merger signals and the detection of new phenomena. Next-generation detectors are the
European Einstein Telescope, generally seen as a triangular network with 10 km long
arms, and the American Cosmic Explorer, retaining the L-shaped design but drastically
increasing the arm lengths to 20 or 40 km. In addition to their increased size, their
technologies should be improved, extending the reach for binary black holes up to the
cosmic dawn, where only primordial black holes – originating from inhomogeneities in
the big bang – would exist. Binary neutron stars should be observed up to a redshift of
a few, making for more multi-messenger detections and a better grasp of their spatial
distribution.
Because of their increased sensitivity and reach, third-generation detectors will see

more signals, and signals will have a longer duration. Therefore, it is likely they start
to overlap in the detection band, with several of them visible simultaneously. In this
thesis, we first study how often such overlaps would happen. We simulate one year of
data in a third-generation detector network. Considering only binary neutron stars and
black holes, overlaps seem relatively common, with tens of merger signals happening
throughout a single binary neutron star signal. Moreover, tens to thousands of merger
signals end within the same second, depending on the local merger rate considered. So,
overlapping signals will occur in the third-generation detectors era. Since we know they
will happen, we look at their impact on the data analysis. To that end, we looked at the
overlap of two binary black hole signals, two binary neutron star signals, and one binary
black hole and one binary neutron star signal merging concurrently or two seconds apart.
When neglecting one of the two signals, we find that bias can occur in different situations.
Biases were observed in the parameters recovered for the binary black hole signal when
overlapped with a neutron star signal. In particular, we were not able to find the signal
at all for the heaviest binary black hole considered. The binary neutron star parameter
recovery was not affected by the overlap. When two binary neutron star signals were
overlapped, we were unable to recover the characteristics of the faintest one. The other
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signal was not affected by the overlap. In the other cases, the parameter recovery was
not affected by the overlap. So, current parameter estimation methods may work in
some situations but not others. Therefore, adapted tools need to be developed.

Soon after our study, others confirmed the possibility of obtaining biased results when
not accounting for the overlap between the signals. In particular, for binary black holes
with close characteristics, errors in the recovery can also occur when they have close
merger times. In addition, the bias depends on the exact characteristics of the signal.
Therefore, it is of interest to develop adapted analysis tools. In this thesis, we presented
two possible Bayesian analysis methods: (i) hierarchical subtraction, where we analyze
the dominant signal, subtract it and then analyze the second, and (ii) joint parameter
estimation, where we fit the two signals at the same time. The second approach is more
precise as it accounts correctly for the noise characteristics for the two signals, but it is
computationally heavier due to a larger parameter space. We compared the results of
these two methods with those obtained when analyzing the signals without overlap. Here,
due to computational restrictions, we focus on higher-mass binary black holes merging
0.1 s apart. We found that, as expected, we recurrently have biases when analyzing the
dominant signal for hierarchical subtraction. However, this bias is not always echoed
in the second signal. Therefore, we tried applying a third step where we subtract the
second signal and analyze the first one. We did not observe significant improvement in
the recovered posteriors. For joint parameter estimation, we found more accurate results
than for hierarchical subtraction. However, they are not equivalent to single parameter
estimation due to the increased complexity of the problem and degeneracies. Still, with
some improvements, one could get good results with joint parameter estimation and
eliminate the remaining instabilities. This study performed the first-ever joint analysis
of the two gravitational wave signals and paves the way for future developments.

One of the drawbacks of the Bayesian methods to analyze overlapping signals is their
speed. Currently, they would be unable to follow the detection rate of third-generation
detectors. Therefore, in this thesis, we also explored an alternative analysis method,
using normalizing flows, to jointly analyze overlapping binary black hole signals. With
this machine learning-based method, once the network is trained, we would obtain
posteriors for two overlapping signals in about a second, compared to 20 to 30 days for
Bayesian joint parameter estimation. We found that our machine-learning framework
can recover the parameters of the two signals. It can do so consistently, even if more
variation is observed compared to single parameter estimation using normalizing flows.
When compared to traditional Bayesian methods, our network typically has broader
posteriors. The probable principle cause is the smallness of the network, which is twice
smaller than those used for single signal parameter estimation for a two-times larger
parameter space. Rather than simply increasing the network size – meaning it cannot
run on low-end GPUs anymore – we could get more accurate posteriors by reweighting
the network’s output samples to match those given by the Bayesian methods. Still, this
is not easy due to the difficulty to obtained properly correlated samples. Nevertheless,
this study shows machine learning is a viable avenue to study overlapping signals, even
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when accounting for high detection rates. Some improvements are still needed, but this
technique would also enable one to perform more realistic studies for third-generation
detectors without needing to wait for future developments of more powerful tools.

In the end, third-generation detectors would be facilities helping to push our knowledge
significantly forward. However, some bottlenecks on the data analysis side still exist and
need to be dealt with to extract the full potential of these interferometers. In this thesis,
we have studied some of these bottlenecks and suggested possible solutions.



Openbare Samenvatting

Van de appel tot de moderne beschrijving van de
zwaartekracht

De appel van Newton is een bekend verhaal dat mensen vaak aanzien als het begin
van de studie van stellaire en planetaire bewegingen. Dat is echter niet waar. Al in
vroegere tijden was de mensheid nieuwsgierig naar de glimmende stipjes die ’s nachts
aan de hemel te zien waren. Voor sommigen waren het manifestaties van de goden.
Voor anderen onthulden zij de schoonheid van het heelal. Vanaf de Oudheid – van de
Grieken tot de Babyloniërs, tot de Egyptenaren, tot de Maya’s, tot de Chinezen – zijn
er al sporen te vinden van mensen die zwaartekracht en stellaire objecten waarnamen.
Hun begrip kwam van observaties en interpretaties, vaak in de vorm van filosofische
argumenten. Dit is waar het verhaal echt begon.
Na de Middeleeuwen, toen mensen antieke werken herontdekten, ontstond er onder

geleerden een nieuwe belangstelling voor het bestuderen van het heelal. Dit leidde tot ver-
schillende nieuwe stellingen, die zelfs conflicten met de Kerk opbrachten omdat men van
Bijbelse naar op waarnemingen gebaseerde interpretaties overging. In het bijzonder ging
men over van een geocentrische naar een heliocentrische beschrijving van het zonnestelsel,
waarbij de Aarde slechts één van de satellieten van de Zon is. Verschillende bekende
figuren hebben aan deze ontwikkeling bijgedragen. Na de oudheid was Copernicus de
eerste die op het idee was gekomen. Het werd verder ondersteund door Galileo, die
het verdedigde op basis van de waarneming die hij – met één van de eerste telescopen –
van de manen van Jupiter deed. De Aarde zou dus een eenvoudige satelliet van de Zon
zijn. Op basis hiervan werkte Kepler zijn wetten van de planeetbewegingen uit. Deze
empirische regels zijn de eerste wetten die de beweging van de planeten in het zonnestelsel
beschrijven. Een tekortkoming in zijn theorie is dat de oorzaak van de beweging niet
uitgelegd wordt. Newton vond de oplossing met zijn bewegingswetten, waarin hij de
notie van kracht introduceert en de zwaartekracht beschrijft: elk massief object trekt
andere massieve objecten aan. Samen maken deze kracht en de bewegingswetten het
mogelijk het traject van de planeten te beschrijven.

Jaren later werd Newtons voorstelling van de zwaartekracht in twijfel getrokken door
nauwkeurigere observaties. De theorie kon de vervroeging van het perihelium – het punt
waar het de zon het dichtste nadert – van Mercurius niet verklaren. Dit werd door Le
Verrier ontdekt. Om dit op te lossen stelde hij het bestaan van een planeet tussen de Zon
en Mercurius voor. Niemand heeft deze planeet ontdekt. Er is wel een andere verklaring
gevonden dankzij een nieuwe theorie: algemene relativiteit, opgesteld door Einstein
in het begin van de 20ste eeuw. Eerst werd deze met scepsis ontvangen omdat er een
vreemde verstrengeling is tussen de geometrische beschrijving van ruimtetijd en krachten.
Nadien wint de theorie redelijk snel in populariteit omdat het observaties verklaart
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die niet door Newtoniaanse zwaartekracht kunnen worden uitgeledg (zoals het traject
van Mercurius) en hetzelfde oplevert in gevallen waarin de Newtoniaanse beschrijving
werkt. Bovendien leidt de theorie tot nieuwe voorspellingen. Verificatie daarvan zouden
algemene relativiteit nog verder valideren. Enkele van deze voorspellingen, die in deze
proefschrift bestudeerd zijn, zijn lensing – wanneer een massief voorwerp het pad van
een lichtstraal afbuigt – en zwaartekrachtgolven – waarbij een cataclysmisch fenomeen
tot een verstoring in de ruimtetijd leidt die zich als een golf door het heelal voortplant.
Deze voorspellingen werden waargenomen, wat algemene relativiteit tot een succesvolle
theorie heeft gebracht.

Rimpelingen in de ruimtetijd

Zwaartekrachtgolven worden vaak rimpelingen in de ruimtetijd genoemd naar analogie
met golven die zich op een vijver voortplanten wanneer men er een steen in gooit.
Eigenlijk is het mechanisme iets ingewikkelder. Omdat ruimtetijd star is moeten enorme
hoeveelheden energie en momentum in zwaartekrachtgolven omgezet worden voordat ze
gedetecteerd kunnen worden. Zelf dan vereist hun directe observatie het vermogen om
lengteveranderingen van ongeveer een duizendste van een atoom te meten.
Zwaartekrachtgolven werden al door Einstein voorspeld, maar hij dacht dat ze nooit

gezien zouden kunnen worden omdat ze te zwak waren. In feite had hij gelijk in het
scenario dat hij beschouwde: de botsing van sterren. Jaren later veranderde het spel met
de ontdekking van neutronensterren en zwarte gaten. Deze extreem massieve objecten
kunnen tot de potentieel detecteerbare emissie van zwaartekrachtgolven leiden. Om ze
rechtstreeks te kunnen waarnemen moesten we echter veel technologische uitdagingen
aangaan. Daardoor was de eerste aanwijzing van hun bestaan verkregen door de
observatie van de Hulse-Taylor binaire pulsar, bestaande uit een neutronenster en een
pulsar. Een dergelijk systeem kan met een telescoop opgevolgd worden, en de monitoring
ervan toonde een afnemende baan aan die overeenkomt met een energieverlies door
zwaartekrachtgolven zoals voorspeld door algemene relativiteit.

De ontwikkeling van zwaartekrachtgolfdetectoren – gericht op rechtstreekse detectie –
begon in de jaren 60. Jaren van theoretische en technologische ontwikkelingen leidden
tot het ontstaan van de LIGO (Laser Interferometer Gravitational-wave Observatory)
detector. Meer verbeteringen waren nodig om deze detector in staat te stellen om
gravitatiegolven afkomstig van de dichtstbijzijnde objecten in het heelal te detecteren.
Op 14 september 2015 werd de eerste rechtstreekse observatie gedaan, toen het signaal
GW150914 werd geregistreerd. Het kwam overeen met de ontmoeting van twee zwarte
gaten met massa’s van ongeveer 36 en 29 zonsmassa’s. Deze observatie was een cruciale
stap in de astronomie. Het bevestigde het bestaan van zwarte gaten, maar ook dat deze
objecten zich kunnen vormen, combineren, en samensmelten in een tijd die korter is dan
de leeftijd van het heelal.

Meer dubbele zwarte gaten werden waargenomen. In augustus 2017 voegde een nieuw
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observatorium, Virgo, zich bij het netwerk. De aanwezigheid van een derde detector helpt
in het bepalen van de location aan de hemel van de detecties. Kort na de toevoeging van
Virgo vond een nieuwe doorbraak plaats: de observatie van GW170817, die overeenkomt
met de zwaartekrachtgolfsignaal van twee neutronensterren. Aangezien deze objecten uit
materie bestaan en geen horizon hebben, leiden ze ook tot elektromagnetische emissie. Die
werd door verschillende faciliteiten onafhankelijk gevonden, waarbij zwaartekrachtgolven
en elektromagnetische gegevens samengekoppeld konden worden. Dit soort gebeurtenis
observeren leidt tot nieuwe manieren om te begrijpen hoe zware elementen (zoals goud)
zich in het heelal vormen, algemene relativiteit te testen en de toestandsvergelijking van
neutronensterren te begrijpen.
Sindsdien heeft een derde observatieronde plaatsgevonden. Daarbij hebben we nog

meer binaire zwarte gaten gezien. We zagen ook enkele binaire neutronensterren, maar
identificeerden geen elektromagnetische tegenhanger. Toch werden er enkele interessante
gebeurtenissen geobserveerd. We hebben bijvoorbeeld de twee eerste fusies van een
neutronenster met een zwart gat gezien, een paar zwarte gaten gevonden met theoretisch
onverwachte hoge massa’s, en hoger-orde modes4 voor de eerste keer waargenomen. Met
ongeveer honderd gedetecteerde fusies kunnen we, onder andere, de massaverdeling
van zwarte gaten en neutronensterren reconstrueren, hun fusiesnelheid bestuderen en
algemene relativiteit testen in een regime dat op Aarde niet haalbaar is.

Lensing van zwaartekrachtgolven

De afbuiging van een golf door een massief voorwerp is ook een rechtstreeks gevolg
van de algemene relativiteit. Het werd door Eddington voor licht bevestigd toen hij
de afbuiging van sterlicht door de Zon tijdens een eclips observeerde. Tegenwoordig is
lensing van licht een veelgebruikt instrument in de astronomie. Interessant is dat massieve
objecten ook zwaartekrachtgolven kunnen afbuigen. Als de lens zwaar genoeg is kunnen
we verschillende “beelden” als meerdere herhaalde zwaartekrachgolfsignalen met dezelfde
frequentie-evolutie zien. Dit fenomeen – die sterke lensing genoemd wordt – is nog nooit
geobserveerd, maar heeft een interessante verwachte waarnemingswaarschijnlijkheid voor
de komende jaren. Daarom wordt er nu al naar gezocht.
Bij het zoeken naar sterk gelensde zwaartekrachtgolven zoekt men gewoonlijk naar

paren van detecties met dezelfde intrinsieke parameters en hemelpositie, verbonden door
een algemene faseverschuiving, een versterking en een tijdsvertraging. Daarom moet men
alle detectieparen in de gegevens analyseren, wat een snelgroeiend aantal is naarmate het
aantal detecties toeneemt. Bovendien, als de zoektechniek niet precies genoeg is, kunnen
we valse beweringen van lensing krijgen omdat parameters die niet kloppen samen lijken

4Een beetje zoals muziekinstrumenten kunnen zwaartekrachtgolven met verschillende modi (of tonen)
beschreven worden. Er is een dominante toon die we het beste meten, maar er zijn ook andere tonen
aanwezig om het complete symfonie van het zwaartekrachtgolfsignaal te maken. Deze bijkomende
tonen zijn meestal zwakker en moeilijker te detecteren.
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te passen. Daarom introduceren wij een nieuwe zoekmethode voor sterke lensing die
snelheid en precisie combineert. Het vult het gat op tussen reeds bestaande algoritmes,
waarvan sommige accuraat maar traag zijn en andere snel maar niet nauwkeurig zijn. We
hebben ook getoond hoe dit kader, dat GOLUM (voor Gravitational-wave analysis Of
Lensed and Unlensed waveform Models) heet, de computationele kost voor gezamenlijke
parameterschatting terugbrengt tot die van een gebruikelijk zwarte gat analyse, wat de
onderzoekstijd aanzienlijk verlaagd. De tocht naar sterk gelensde zwaartekrachtgolven is
al een paar jaar bezig. Helaas heeft het tot nu toe nog niet tot een detectie geleid.
Sterke lensing gaat met een hoog risico op vals alarm gepaard. Zelf met accurate

methoden hebben we alleen maar foutgrenzen voor de afgeleide parameters. Als de
gegevens veel fusies bevatten, kunnen we daarom bij toeval overeenkomstige signalen zien.
Om een betrouwbare lensdetectie te maken moet men de kans op een vals alarm verlagen.
In dit proefschrift hebben we hiervoor twee mogelijkheden onderzocht. De eerste bestaat
uit het gebruik van hoger-orde modes om een typische lensingsignatuur die niet aanwezig
is in niet-gelensde signalen te detecteren. Voorgaande studies hebben getoond dat in
sommige gevallen de algemene faseverschuiving die door sterke lensing veroorzaakt wordt
gedetecteerd kan worden voor een enkel gelensd beeld, als de hoger-orde modes sterk
genoeg zijn. De detectie ervan vereist echter bijzondere gebeurtenissen, die voor de
huidige detectoren onwaarschijnlijk zijn. In ons werk hebben we laten zien dat als men
een paar signalen gezamenlijk analyseert (zoals voor elke zoektocht naar sterke lensing
gedaan is), dit specifieke kenmerk voor een lagere hoger-orde mode-inhoud geïdentificeert
kan worden. Daarom zouden we deze herkenbare lensing signatuur in meer scenario’s
zien.
Een tweede manier om de kans op vals alarm in verband met sterke lensing te

verminderen, die in dit proefschrift onderzocht wordt, is het gebruiken van lensmodellen
in de zoekalgoritmes. Zoals gezegd kunnen binaire parameters toevallig overeenkomen.
Er zijn echter ook zogenaamde lensparameters die de twee gebeurtenissen met elkaar
verbinden. Voor een gegeven lensmodel hebben deze parameters verwachte verdelingen.
Bijvoorbeeld, voor een sterrenstelsel zou de tijdvertraging tussen de beelden niet meer dan
een paar maanden mogen zijn, met de grootste waarschijnlijkheid die tussen één en een
paar dagen ligt. De kans dat niet-gelensde paren overeenkomstige intrinsieke parameters
en lensparameters hebben is veel kleiner dan de kans dat alleen hun intrinsieke parameters
overeenkomen. Daarom is het belangrijk om deze informatie in de zoekmethode toe te
voegen. Over het algemeen zijn zoekalgoritmes onafhankelijk van lensmodellen om te
voorkomen dat een gelensde gebeurtenis gemist wordt omdat die niet aan het gebruikte
model voldoet. In dit proefschrift tonen we hoe men lensmodellen in het eindresultaat
kan toevoegen zonder de hele zoekmethode opnieuw te moeten uitvoeren. Daardoor
voorkomen we de intensieve procedure waarbij de analyse voor elk model herhaald moet
worden. Bovendien tonen we een consequente vermindering van de kans op vals alarm als
het juiste lensprofiel gebruikt wordt. We tonen ook dat kleine systematische afwijkingen
van het lensmodeling de vermindering niet aanzienlijk tegenwerkt. In tegendeel, het
gebruik van een verkeerd lensprofiel zou lensdetecties bijna onmogelijk maken. Op basis
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van ons resultaten stellen we een zoekstrategie voor sterke lensing voor: we beginnen met
de gebruikelijke modelonafhankelijke zoekmethode om de meest belovende kandidaten
te identificeren. Vervolgens nemen we een reeks modellen op in de detectiestatistiek.
Ze worden gekozen met redundantie tussen lensprofielen om rekening te houden met
systematische effecten. Een echt lenspaar zou een hoge detectiestatistiek behouden voor
alle lensmodellen van eenzelfde familie. Hoewel deze methode de detectie niet garandeert,
is het een veilige manier om naar sterk gelensde paren te zoeken.

Vroegtijdige waarschuwingssystemen voor binaire
neutronensterren met machine learning

In de afgelopen eeuw was gravitatiegolffysica niet het enige zoekgebied met doorbraken.
Dat geldt ook voor machine learning, dat van een concept tot een krachtig algemeen in-
strument uitgegroeid is. Tegenwoordig is het rijp genoeg om in andere onderzoekgebieden
toegepast te worden. Voor zwaartekrachtgolfanalyse is een van de meest wenselijke
eigenschappen de snelheid na training. Men moet vaak computationeel dure methoden
gebruiken vanwege de tijd die het algoritme nodig heeft om te convergeren of de noodzaak
om vele parametercombinaties te doorlopen om een trigger te vinden. Met machine
learning wordt de computationele kost stroomopwaarts verplaatst, met name tijdens de
trainingfase. Eens het algoritme getraind is, kan het binnen enkele seconden resultaten
produceren. Dit is wenselijk, vooral voor versnelde detecties. Deze zijn cruciaal voor
dubbele neutronensterren, waar we een elektromagnetische emissie in verband met de
vroegste momenten van de fusie willen observeren. De studie van het evenement in de
beginfase is belangrijk om het gedrag van materie onder deze extreme omstandigheden
beter te begrijpen.

In dit proefschrift bouwen we het eerste vroegtijdige waarschuwingssysteem voor binaire
neutronensterren op basis van machine learning. We maken een convolutioneel neuraal
netwerk dat een trigger zendt wanneer het een inspiraliserende binaire neutronenster
opmerkt. In eerste instantie nemen we een verkleind tijdsvenster waarin het signaal
op 20 Hz begint en splitsen we de binaire neutronenster in drie massacategorieën. We
trainen en testen het netwerk op ontwerpsensitiviteit voor één LIGO-detector en stellen
vast dat we het vroege deel van het signaal kunnen waarnemen, mits het luid genoeg
is. In deze proof-of-concept studie is de opstelling niet echt realistisch omdat we de
hemellocatie niet veranderen en het volledige detectornetwerk niet gebruiken. Daarom
verbeteren we ons werkkader in een tweede stap. We verlagen de minimumfrequentie
die door ons netwerk beschouwd wordt tot ongeveer 12 Hz. Bovendien vergroten we de
vensterbreedte en laten we het beginfrequentie van het signaal variëren. Hierdoor zijn
de massacategorieën niet meer nodig. We gebruiken ook een nieuwe trainingstechniek:
curriculum learning, waarbij we de gegevens die het netwerk beschouwd tijden de
trainingsfase iteratief moeilijker wordt. Nadat al deze verbeteringen zijn toegepast
trainen en testen we het netwerk op verschillende detectorgeluiden: gesimuleerde ruis die
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overeenstemt met de ruis voor de derde and vierde observatierondes en echte ruis van de
derde observatieronde. We zien dat onze prestaties licht achteruitgaan voor de echte
gegevens die zich minder goed gedragen. Toch behouden we enige detecteerbaarheid.
Bovendien zorgt de verbeterde trainingsstrategie voor een hogere gevoeligheid. Voor een
O4-achtig scenario zouden er ongeveer 20 binaire neutronensterrenfusies over één jaar
gedetecteerd worden. Daarvan zou ons netwerk er ongeveer drie op voorhand detecteren,
met in sommige gevallen een trigger 90 s voor de fusie. Helaas heeft ons algoritme ook
een hoog percentage aan valse alarmen. Dit kan verminderd worden door meerdere
triggers na elkaar te vragen. Deze oplossing verkort wel de tijd tussen de trigger en
de samenvoeging. Kortom, dit werk toont aan dat machine learning een realistisch
alternatief is voor vroegtijdige waarschuwing voor zwaartekrachtgolven, ook al zijn er
extra ontwikkelingen nodig voordat het systeem praktisch bruikbaar is.

Naast een trigger die zegt dat er een fusie gaat gebeuren moeten astronomen ook weten
waarnaar ze hun telescopen moeten richten om een elektromagnetische tegenhanger te
zoeken. Daarom is het belangrijk om een snelle en precieze manier te hebben om een
hemelkaart te maken. Dit is ook een plek waar machine learning gebruikt kan worden.
Daarbij maakt men zich ook vaak zorgen over de betrouwbaarheid en de afhankelijd
van de trainsingsuis van machine learning. Daarom tonen we in dit proefschrift een
hybride aanpak waar we machine learning en Bayesiaanse statistiek combineren om
snel de hemelkaart en massadistributie van een evenement te verkrijgen. We gebruiken
een neuraal netwerk om goede voorstelverdelingen te verkrijgen voor de massa’s en
de hemellocatie. Vervolgens gebruiken we importance sampling om de verdelingen om
te zetten naar de finale verdelingen. Uiteindelijk kan ons algoritme een hemelkaart
produceren die vergelijkbaar is met die van traditionele Bayesiaanse methoden. Wij
hebben echter slechts enkele minuten nodig vergeleken met dagen voor de traditionele
methoden. Bovendien kan het aantal effectieve steekproeven gebruikt worden om de
kwaliteit van de voorstelverdeling en het gedrag van het neurale netwerk te beoordelen.
Dit systeem moet echter nog verbeterd worden om in de praktijk te werken. Onze
voorgestelde voorstelverdeling voor de hemelkaart moet bijvoorbeeld ook rekening
houden met hemelreflecties. In ieder geval, toont dit ook aan dat machine learning een
veelbelovende weg is voor snelle localisatie en parameterschatting.

Als we het kader voor de bepaling van de hemelpositie en het vroegtijdige
waarschuwingssysteem aanpassen om samen in realistische scenario’s te werken, dan
hebben we het eerste vroegtijdige waarschuwingssysteem voor binaire neutronensterren
dat puur op basis van machine learning gebouwd is.

Derde generatie detectoren

Zelfs voordat de eerste zwaartekrachtgolf gedetecteerd was, was de planning voor de
volgende generatie detectoren al begonnen. Simpel gesteld zijn deze detectoren groter
en gevoeliger dan de huidige. Dit leidt tot meer observaties van compacte binaire fusie
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signalen en de detectie van nieuwe fenomenen. De volgende generatie detectoren zijn de
Europese Einstein Telescope, die meestal als een driehoekig netwerk met 10 km lange
armen wordt aangezien, en de Amerikaanse Cosmic Explorer, die het L-vormige ontwerp
behoudt, maar de armlengtes drastisch vergroot, tot 20 of 40 km. Naast hun grotere
afmetingen zullen deze detectoren ook nieuwe technologieën gebruiken. Daardoor wordt
hun bereik voor zwart gat-paren vergroot tot aan de kosmische horizon, waar alleen
primordiale zwarte gaten – veroorzaakt door inhomogeniteiten kort na de Big Bang –
zouden kunnen bestaan. Binaire neutronensterren zouden tot enkele roodverschuivingen
gezien kunnen worden, waardoor meer multi-messenger detecties mogelijk zijn en een
beter begrip van hun ruimtelijke verspreiding mogelijk wordt.

Door hun hogere gevoeligheid en grotere bereik zullen derde generatie interferometers
meer gebeurtenissen detecteren, en signalen zullen langer zichtbaar zijn. Daarom
vermoedt men dat ze in de detectieband elkaar zullen overlappen. In dit proefschrift
bestuderen we eerst hoe vaak zulke overlappende signalen zullen voorkomen. Daarvoor
simuleren we één jaar aan derde generatie detectornetwerk gegevens. Als we alleen
naar binaire neutronensterren en zwarte gaten kijken, lijken overlappende signalen al
relatief vaak voor te komen, met tientallen fusies die plaatsvinden terwijl een binaire
neutronenster signaal in de detectieband is. Bovendien eindigen binnen een jaar wel
tientallen tot duizenden fusies binnen dezelfde second, afhankelijk van de beschouwde
lokale fusiesnelheid. Overlappende signalen zullen voorkomen wanneer de derde generatie
detectoren in gebruik komen. Daarom bestuderen we hun invloed op de data-analyse.
Daarvoor kijken we naar de overlapping van twee zwarte gaten paar signalen, twee
binaire neutronenster signalen, en een paar zwarte gaten met een paar neutronenster
signaal die tegelijkertijd of twee seconden na elkaar fuseren. Als we geen rekening houden
met een van de twee signalen blijken er afwijkingen voor te komen, afhankelijk van
de situatie. Afwijkingen komen voor in de geobserveerde parameters vor de binaire
zwart gat signaal als het met een neutronenster signaal overlapt. Voor het zwart gat
signaal met de hoogste totaal massa kunnen we het signaal helemaal niet waarnemen.
Anderzijds zien we geen effect op de binaire neutronenster signaal. Voor het overlap
van twee binaire neutronensterren signalen zien we dat we de parameters van het
stilste signaal niet kunnen waarnemen. We observen geen afwijkingen voor het luidste
signaal. In de andere gevallen zien we geen afwijkingen. Dit toont dat de huidige
parameterschattingsmethoden in sommige gevallen werken maar in andere scenario’s
niet. Daarom moeten er aangepaste technieken ontwikkeld worden.

Kort na onze studie over afwijkingen in overlappende signalen hebben andere studies
het effect bevestigd. In het bijzonder hebben overlappende binaire zwarte gaten met
nabije kenmerken ook afwijkingen in de verdelingen indien hun fusietijden dicht bij elkaar
liggen. Bovendien hangt de afwijking af van de precieze karakteristieken van de signalen.
In dit proefschrift presenteren we twee mogelijke Bayesiaanse analysemethoden om
overlappende signalen te analyseren: (i) hiërarchische subtractie, waar we het dominante
signaal eerst analyseren, het resultaat aftrekken van de gegevens en daarna het tweede
signaal bestuderen, en (ii) gezamenlijke parameterschatting, waarbij we de twee signalen
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tegelijkertijd fitten. De tweede methode is nauwkeuriger omdat het op de correcte manier
rekening houdt met de ruiskarakteristieken van de gegevens, maar de computationele
kosten zijn hoger omdat de dimensie van de parameterruimte groter is. We vergelijken
de resultaten van deze twee methoden met die verkregen wanneer de signalen zonder
overlap geanalyseerd worden. Wegens computationele beperkingen concentreren we ons
hier op binaire zwarte gaten met hoge massa’s die 0.1 s uit elkaar fuseren. Zoals verwacht
vinden we een afwijking bij de analyse van de dominante signaal door hiërarchische
subtractie. Deze afwijking komt niet altijd terug in het tweede signaal. Daarom proberen
we een derde stap toe te passen waarbij we de tweede signaal van de gegevens aftrekken
en het eerste terug analyseren. Wij constateren geen significante verbetering in de
herstelde waarschijnlijkheidsverdelingen. Voor gezamenlijke parameterschatting vinden
we nauwkeurigere resultaten dan voor hiërarchische aftrekking. De resultaten zijn niet
gelijkwaardig aan die van de afzonderlijke parameterschatting, waarschijnlijk door de
toegenomen complexiteit in het probleem. Toch zou men met enkele verbeteringen nog
betere resultaten met gezamenlijke parameterschatting kunnen bereiken. Deze studie is
de allereerste die gezamenlijke analyse van twee zwaartekrachtgolfsignalen doet. Het
maakt de weg vrij voor toekomstige ontwikkelingen.
Een van de nadelen van de Bayesiaanse methoden om overlappende signalen te

analyseren is hun gebrak aan snelheid. Momenteel zouden ze de detectiesnelheid van de
derde generatie detectoren niet kunnen volgen. Daarom hebben we in dit proefschrift
ook een alternatieve analysemethode onderzocht. Het maakt gebruik van normalizing
flows om overlappende binaire zwarte-gatsignalen gezamenlijk te analyseren. Met
deze methode, die op concepten uit machine learning gebaseerd is, krijgen we de
parameterverdelingen voor de zwarte gat-paren in een seconde na training, vergeleken
met 20 tot 30 dagen voor gezamenlijke parameterschatting. We stellen dus vast dat
ons algoritme de parameters van twee overlappende signalen correct kan schatten. Het
kan dit consequent doen, ook al zien we meer variatie dan voor de parameterschatting
van individuele signalen met normalizing flows. In vergelijking met de traditionele
Bayesiaanse methoden heeft ons netwerk typisch bredere verdelingen. Vermoedelijk is de
oorzaak de beperkte grootte van ons netwerk, dat tweemaal zo klein is als de netwerken
gebruikt voor de parameterschatting van individuele signalen voor een dubbel zo grote
parameterruimte. Inplaats van het netwerk te vergroten – wat zou betekenen dat het
niet meer op low-end GPUs kan werken – zouden we nauwkeurigere verdelingen kunnen
krijgen door importance sampling op de output van het netwerk te gebruiken. Dit is
echter moeilijk omdat we goed gecorreleerde gegevenspunten nodig hebben. Toch toont
deze studie aan dat machine learning een haalbaar idee is om overlappende signalen te
bestuderen, zelfs wanneer er rekening gehouden wordt met de hogere detectiesnelheid
van de detectoren. Er zijn nog enkele verbeteringen nodig, maar deze techniek zou het
mogelijk maken om studies voor derde generatie detectoren uit te voeren zonder op
toekomstige ontwikkelingen van krachtigere methoden te moeten wachten.
Uiteindelijk zijn derde generatie detectoren instrumenten die onze kennis aanzienlijk

vooruit gaan helpen. Er bestaan nog enkele knelpunten op het gebied van data-analyse.
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Die moeten aangepakt worden om het volledige potentieel van deze interferometers te
benutten. In dit proefschrift hebben we enkele van deze punten bestudeerd en hebben
we mogelijke oplossingen voorgesteld.
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