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Introduction 
The objective of this thesis is to create and investigate machine learning (ML) algorithms 

for a broad spectrum of tasks in the field of cardiothoracic radiology. This includes data 

curation, a fundamental step at the beginning of most scientific projects, exemplified by 

an algorithm for radiology report classification (Chapter 2). Furthermore, image 

recognition algorithms for detection (Chapters 3 & 4) and segmentation (Chapter 5) of 

cardiothoracic findings in cross-sectional imaging will be addressed, some of which are 

currently clinically deployed. Finally, a model using cardiothoracic imaging biomarkers 

extracted with ML to predict the clinical course of patients infected with SARS-CoV-2 is 

presented (Chapter 6).  Thereby, the chapters of this thesis follow a chronologic sequence 

of tasks, beginning with data curation to finding detection to finding segmentation to 

application of extracted information for clinical decision support. Finally, Chapter 7 

consolidates methodological insights gained during the abovementioned ML projects and 

provides a generalizable framework of best practices for creation and evaluation of ML 

algorithms in clinical practice. 

 

This first chapter includes a brief introduction to ML, discusses the relevance of ML to 

radiology, provides examples of current ML applications in radiology with a focus on 

cardiothoracic imaging, and finally outlines the structure of this thesis. 

A brief introduction to Machine Learning 

Machine Learning is a subcategory of Artificial Intelligence (AI). AI is a very broad term 

that describes the ability of computers to perform tasks commonly associated with human 

intelligence [1]. This includes simple if-then rules. The characteristic feature of ML 

approaches is that they learn from data without being explicitly programmed. Depending 

on the type of learning, the ML subcategories supervised learning, unsupervised learning 

and reinforcement learning are differentiated.  

 

In supervised learning, the algorithm is trained with input-output pairs. An example for an 

input from the field of radiology is an image of a chest CT; the output could be the 

information whether the image shows a lung tumor or not. This is a binary classification 

task. Upon presentation of a certain number of correctly labelled input-output pairs 

during training, the model learns to map input data to output. Later, the algorithm is 

capable to predict the correct output for new, unseen input data (e.g., lung tumor present 
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or not). The vast majority of ML applications in radiology fall into this category. In 

unsupervised learning, no input-output pairs are provided. Instead, the algorithms’ task is 

to identify patterns within the dataset. A clinical example is a model that identifies feature 

clusters within all patients that had been referred to a radiology department. In 

reinforcement learning, no input-output pairs are provided, either. Instead, the algorithm 

receives instant feedback on its decisions, rewarding desirable output. Over time, the 

model learns which behavior is adequate in a given situation. An example in radiology is 

ML for speech recognition. Those algorithms maximize adaption to the voice of the 

individual radiologist over time (feedback being the lack or presence of manual correction 

of a word proposed by the speech recognition system).  

 

The term ML covers a variety of methods with individual strengths and weaknesses. A 

task-approach fit is of upmost importance. Highly relevant to radiology are Support Vector 

Machines (SVM), Random Forest (RF) and Deep Learning (DL). SVMs are used to group 

data points by identifying a hyperplane in a high-dimensional space that separates them. 

This computationally advantageous approach is very useful in classification tasks such as 

the one on radiology report classification provided in Chapter 2. Another approach to 

classification is RF. The forest consists of many decision trees, randomly built to cover 

different sets of features. The decision of the RF model is then reached by collecting the 

votes of all trees. This approach is used in Chapter 2 as well. However, the vast majority of 

applications in cardiothoracic radiology falls into the category of DL, which includes state-

of-the-art approaches to image recognition and segmentation tasks such as U-Net [2]. It 

is based on models with multiple interconnected layers consisting of “neurons”, that is 

nodes that process and forward information. Basic components of DL networks are an 

input layer, an output layer, and a defined number of layers in between, so called hidden 

layers. To provide an example from radiology, pixel grayscale levels of a CT scan can be 

fed into the input layer and are then processed through the hidden layers. Finally, the 

output layer might provide a class (e.g.: image shows the left ventricle, or not). As the 

number of hidden layers has increased over the years, the term deep learning has evolved. 

The networks architecture is part of the so called hyperparameters, that is parameters that 

control the learning process, which are set before interaction with data (number of layers 

being one example). So called node weights are adapted during the exposure to training 

data so that prediction error is minimized. After training, these weights are fixed and the 

DL model is able to predict the correct outcome upon presentation of new, unseen data. 
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The advantage of this approach is its enormous capacity to incorporate relations between 

data. DL is applied in all Chapters.  

ML task categories and standard performance measures 

Machine learning has the potential to solve many clinical tasks. To radiology, the 

following task categories are of upmost importance: Classification, detection, and 

segmentation. Classification can be performed on a per-image level (does the chest X-ray 

show pneumothorax?), per-scan (does the CT scan show intracranial hemorrhage?) or per 

pixel/voxel (does this pixel belong to class “pulmonary embolus”?). An example for finding 

detection is an algorithm that marks coronary stenoses [3]. Results in this task category 

are often visualized with bounding boxes, that is rectangles surrounding a finding of 

interest. The result of a segmentation task is a label attached to each pixel/voxel signifying 

to which class it belongs to (e.g., “aorta – lumen”, “aorta – wall”, “mediastinal adipose 

tissue”, and so on). Segmentations are the basis for many secondary analyses such as 

volumetry and computer-assisted reporting.  

 

Each task category has specific metrics and visualizations of performance, and only the 

most relevant and established ones shall briefly be mentioned. Regarding binary 

classification and detection, those include numbers of true-positive (TP), true-negative 

(TN), false-positive (FP) and false-negative (FN) predictions. The central performance 

measures calculated with this information are accuracy [(TP+TN)/(TP+TN+FP+FN)], 

sensitivity [=TP/(TP+FN)], specificity [=TN/(TN+FP)] the positive predictive value [PPV; 

=TP/(TP+FP)] and the F1-score [=2*(sensitivity*PPV)/(sensitivity+PPV)]. The most 

frequently used visualization for binary classifiers is the receiver operating characteristic 

(ROC) curve, which plots true positive rates against false positive rates over the range of 

classifier thresholds. The area under the ROC (=AUC) is used as aggregate measure of 

performance across all classifier thresholds [4]. The free response ROC (FROC) plots 

sensitivity against the average number of FPs per case and is very useful in radiology, 

because it visualizes the trade-off between sensitivity and false alerts, which both can 

render a solution inappropriate for clinical use. For segmentation tasks, the Sørensen–

Dice coefficient (Dice score) is standard, which is calculated as 2 * |X ∩ Y| / (|X| + |Y|), where 

X represents the pixels/voxels included in the ground truth mask and Y the pixels/voxels 

included in the predicted segmentation mask. It ranges from 0 (no overlap at all) to 1 

(complete overlap). Another standard measure is the Hausdorff distance, which measures 
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the distance of two outer measures in a metric space (e.g., in segmentation tasks the 

boundaries of the ground truth and the predicted mask) [5]. 

Relevance of ML in the field of radiology and current applications 

There are three main reasons why ML and radiology are an excellent match: First, text 

and image recognition are among the core capabilities of modern ML algorithms. In fact, 

ML originates from these two fields that are so important to radiology. Second, data in 

radiology has become predominantly digital and therefore machine-readable, a 

prerequisite for ML. And third, the capacities of modern computer processing units have 

greatly increased over the last years, which is why fast processing of large amounts of 

data, such as DICOM image datasets, has become feasible. This enables clinical 

application. Additionally, ML comes at the right time: both the numbers of imaging exams 

and the demand for advanced analyses requiring complex post-processing are steadily 

increasing [6]. This is especially true in cardiothoracic imaging. The resulting increase in 

workload is not matched by an adequate increase in professional staff due to economic 

pressures. ML shows a way out of this dilemma by supporting radiologists in their work.  

 

The field of image analysis provides some of the most apparent examples of application 

of ML in radiology: Based on finding detection, ML can timely warn radiologists of 

suspected critical findings such as pulmonary embolism [7], which is becoming more 

relevant as the total number of examinations increases. This information can also be used 

for worklist prioritization. Furthermore, ML segmentations can enhance the quality of 

reports, e.g., by providing volumetric information on organs and imaging findings [8]. 

Again, this is especially relevant to cardiothoracic imaging with time-consuming reading 

processes, e.g., for advanced cardiac MRI [9]. The information can also be used to 

prepopulate radiology reports. However, the utility of ML goes beyond pure image 

analysis and in fact includes the whole pipeline of radiology tasks. Algorithms are used 

for scheduling patients [10] as well as for image reconstruction in MRI [11]. They can help 

to optimize the display of series in medical image viewers [12] and provide support for 

clinical decision-making by integrating information from radiology, laboratory medicine, 

and other sources [13]. Furthermore, they can be used for automated image quality 

analysis [14]. Some cardiothoracic-specific applications include automated curved 

multiplanar reformations of the coronaries in CT angiograms [15], automated 

segmentation of the cardiac chambers with DL [16,17] and prediction of coronary stenoses 
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requiring invasive coronary angiography from CT [18]. Other examples are provided in 

the following chapters of this thesis. 

Structure of the thesis 

As mentioned previously, the structure of this thesis follows the chronology of ML 

application during a research project in radiology, from data curation to clinical 

application.  

 
Chapter 2 demonstrates how ML can be applied for data curation. Natural language 

processing is used to determine whether radiology reports of CT pulmonary angiograms 

describe the presence of pulmonary emboli or not. After manual annotation of a small 

subset of reports, an infinite number of reports can be automatically classified. The 

resulting structured datasets build the foundation for scientific projects, case collections, 

and quality control measures. This study demonstrates the potential of NLP for fast data 

curation and at the same time stimulates a discussion about the advantages of structured 

reporting. 

 

Chapter 3 evaluates the performance of a deep convolutional neural network in detecting 

pulmonary embolism on the 1-mm series of CT pulmonary angiograms. For this purpose, 

1465 CTPAs are processed and results reviewed. Besides general performance measures, 

an in-depth analysis of reasons of false-positive findings is conducted to generate ideas 

for algorithm improvement. The resulting algorithm is currently in clinical use to instantly 

notify radiologists about CTPAs with pulmonary embolism. 

 

Chapter 4 investigates the performance of a convolutional neural network for detection 

of acute and chronic rib fractures on a large dataset of whole-body trauma CTs acquired 

at a level-1 trauma center. The analysis distinguishes per-examination and per-finding 

performance and analyzes the influence of fracture features on detection probability. This 

algorithm can help radiologists to avoid missing rib fractures, which, despite not being the 

main concern in an emergency situation with life-threatening conditions, are known to be 

associated with an elevated risks for asynchronous complications such as pneumothorax 

and pneumonia. 

 

Chapter 5 investigates the performance of an algorithm pipeline initially trained to detect 

and segment lung nodules on chest CT for detection and segmentation of pulmonary 
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tumors of various size on FDG-PET/CT. For this purpose, the 320 tumors in the test dataset 

were manually labelled in 3D and classified into T-subcategories according to the 8th 

edition of the TNM lung cancer classification. This study emphasizes the importance of 

investigating the performance of ML algorithms for different stages of disease. 

 

Chapter 6 uses multiple deep convolutional neural networks to extract cardiovascular 

and pulmonary imaging parameters from 120 initial chest CTs of patients with RT-PCR 

confirmed SARS-CoV-2 infection. The predictive potential of those imaging parameters, 

six standard laboratory parameters and demographic information regarding a patient’s 

treatment journey (outpatient treatment vs. hospital admission vs. ICU admission) was 

assessed. The algorithm could identify patients at high risk of needing intensified 

treatment within the following weeks, already at the time of initial hospital presentation. 

 

Chapter 7 is based on the experience gained during the abovementioned scientific 

projects and provides a framework for the design and evaluation of ML studies in 

cardiothoracic radiology. This includes prerequisites of ML projects with regard to 

hardware, software, and expertise, but also a checklist of items that should be reported in 

research articles in the field of cardiothoracic imaging. 

 

Finally, Chapter 8 summarizes and discusses the main findings. Furthermore, future 

directions of ML in radiology with a focus on cardiothoracic imaging are outlined. The 

valuable contributions of other persons to this thesis are acknowledged in the Appendix. 
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Abstract 
Purpose: To design and evaluate a self-trainable natural language processing (NLP)-

based procedure to classify unstructured radiology reports. The method enabling the 

generation of curated datasets is exemplified on CT pulmonary angiogram (CTPA) reports. 

 

Materials and Methods: We extracted the impressions of CTPA reports created at our 

institution from 2016 to 2018 (n=4397; language: German). The status (pulmonary 

embolism: yes/no) was manually labelled for all exams. Data from 2016/2017 (n = 2801) 

served as a ground truth to train three NLP architectures that only require a subset of 

reference datasets for training to be operative. The three architectures were as follows: a 

convolutional neural network (CNN), a support vector machine (SVM) and a random 

forest (RF) classifier. Impressions of 2018 (n = 1377) were kept aside and used for general 

performance measurements. Furthermore, we investigated the dependence of 

classification performance on the amount of training data with multiple simulations. 

 

Results: The classification performance of all three models was excellent (accuracies:    

97—99 %; F1 scores 0.88-0.97; AUCs: 0.993-0.997). Highest accuracy was reached by the 

CNN with 99.1 % (95 % CI: 98.5-99.6 %). Training with 470 labelled impressions was 

sufficient to reach an accuracy of > 93 % with all three NLP architectures. 

 

Conclusion: Our NLP-based approaches allow for an automated and highly accurate 

retrospective classification of CTPA reports with manageable effort solely using 

unstructured impression sections. We demonstrated that this approach is useful for the 

classification of radiology reports not written in English. Moreover, excellent classification 

performance is achieved at relatively small training set sizes. 
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1. Introduction 

The retrospective assessment of whether a certain finding is present or not is a necessary 

first step for the secondary utilization of data accumulated in radiology imaging archives. 

This is true for scientific projects as well as efforts targeted at the development of 

applications that improve clinical workflows. Presuming that the information needed is 

contained in the radiology reports, its extraction is hampered by the fact that these mostly 

are continuous, variable texts, despite efforts towards standardization in recent years [1]. 

This lack of structured content becomes a problem in an increasingly data-driven world 

and with the emergence of methods like neural networks for image analysis that need 

substantial amounts of data to be operational. This is especially pressuring in hospitals, 

where sparse time resources prevent manual classification at large scale [2].  

 

In search of ways to transfer unstructured information to meaningful categories, natural 

language processing (NLP) is a promising approach with beginnings dating back to the 

1950s [3,4]. It has demonstrated its maturity for text mining in radiology in many fields 

of use, including the detection of critical findings [5–8], decision support for clinicians 

[9,10], quality assessment of reports [11,12] and the generation of curated datasets [13–

19]. While in most of these cases, lexical rule systems designed by experts built the 

backbone of NLP, recently methods that allow for an automated model generation based 

on training data were incorporated and demonstrated promising results for the 

classification of radiology reports written in English [17,20–22]. One of the drawbacks of 

lexical rule systems is that they are limited to the language they were created in. That is 

why the use of automated model generation represents a step forward particularly for 

application in Europe with multiple official languages. Once such a model is set up, it 

needs only to be trained with reports in a given language and can therefore be used by 

radiologists in many countries.  

 

To further investigate the potential of those automated NLP solutions in radiology and 

demonstrate their applicability to languages other than English, we developed and tested 

three NLP architectures that have shown good results in classification elsewhere, namely 

based on random forest (RF) [21,23], a support vector machine (SVM) [21,24,25] and a 

convolutional neural network (CNN) [26]. The evaluation was performed on the specific 

task of generating curated datasets from unstructured radiology reports concerning the 

detection of pulmonary embolism (PE) in CT pulmonary angiograms (CTPAs). 
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Furthermore, we assessed the dependence of classification performance on the number of 

impressions used for training.  

 
 
2. Materials and Methods 

This study was conducted under the provisions of the local ethics committee. Informed 

consent was waived due to the retrospective nature of this project and full anonymization 

of the data.  

2.1. Data retrieval, pre-processing and annotation  

To build a study dataset, we retrospectively identified all reports of CTPAs conducted at 

our institution between 2016 and 2018 using an in-house developed RIS search engine 

(n = 4397). The only criteria were the procedure code and the time period (01.01.2016 – 

31.12.2018). Impression sections were automatically extracted with an in-house report 

segmentation tool based on a keyword search. The rationale for using impressions only 

was that the clinical question of interest is answered in this section, and therefore the rest 

of the report is not needed. We deliberately refrained from performing document 

normalization or including pre-filtering of the reports based on lexical rules as we wanted 

to keep manual input as small as possible. In a next step, all impressions were manually 

reviewed by a radiology resident with 3 years of experience (TW). Exams with a clinical 

question deviating from that of the presence of PE (n = 128) and exams with an uncertain 

conclusion (n = 91) were excluded. All remaining impressions were classified as either 

positive or negative for PE. Finally, we uploaded the texts to our in-house developed web-

based NLP platform with the three NLP architectures (CNN, SVM, RF). The study 

workflow is shown in Figure 1. 
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2.2. Modelling  

For model generation, we used Scikit-learn Version 0.19.1 [27] (SVM, RF) and Tensor Flow 

version 1.9.0 [28] (CNN). All models do not require previous definition of lexical rules and 

were downloaded from these platforms; only minor modifications were made. Parameters 

that differed from default are indicated below. We defined 0.5 as fixed classifier threshold 

for all three models. We used two data representations: term frequency-inverse document 

frequency (tf-idf) [29,30] and the Word2vec model [31]. For hyperparameter tuning, we 

assessed the best accuracy on a 3-fold cross-validation.  

 

CNNs are neural networks that rely on the mathematical operation of convolution. They 

consist of multiple connected layers. Beginning with an input layer, the representation of 

report texts is propagated through multiple so called “hidden layers” that perform 

computations by which they capture more and more abstract features of the input 

information. Finally, the output of the network we used is a classifier indicating whether 

a report describes pulmonary embolism or not. CNNs have shown good results when 

applied to imaging problems [32]. With the Word2vec method [31], it is possible to apply 

CNNs to textual problems in a similar manner. Our neural network architecture is 

conceptually similar to Kim et al. [26], but with average global pooling layer [33] instead 

of max pooling layer. As reported by Duque et al., networks that utilize global average 

pooling are more efficient in terms of speed and memory usage while yielding comparably 
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good results with those that rely on fully connected layers after the other types of pooling 

[34]. No hyperparameter tuning was performed. 

 

Support vector machines are supervised machine learning algorithms primarily used for 

binary classification [35]. After transferring data input to feature vectors in a high-

dimensional vector space, a hyperplane that best separates the different classes is 

calculated. We use tf-idf data representation with this algorithm. The parameters were 

selected by performing the grid search on the training dataset. Parameter C was set to 2. 

For gamma we used an inverse number of features (1/n). The kernel type used is linear. 

We also used L2 regularization to penalize the weights. The loss function is the squared 

Hinge loss.  

The random forest approach was first applied in the form of algorithms in 2001 [36]. The 

idea is to randomly generate a large number decision trees assembled by a subset of 

decision relevant variables. We used tf-idf data representation with this algorithm. 

Parameters were selected by performing a grid search. Near optimal parameters on the 

training set: minimum samples split = 3, number of estimators = 20. Time needed to train 

the three models was recorded.  

2.3. Performance measurements  

The clinically approved written report was defined as reference standard. The index test 

was the prediction made by the three NLP architectures.  

 

First, for general performance measurements, the impressions were grouped into a 

training dataset (all exams of 2016 and 2017, n = 2801) and a fully separate testing dataset 

(all exams of 2018, n = 1377). As performance measures, sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), accuracy and the F1 score were 

calculated. The F1 score is a harmonic mean of PPV and sensitivity, with values ranging 

between 0 and 1.   

F1 = $
𝑃𝑃𝑉!" + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦!"

2 1
!"

 

 

Furthermore, receiver operating curves (ROCs) were computed. The corresponding areas 

under the ROCs (AUCs) were calculated to illustrate the discriminative performance of 

the models. Second, to investigate the dependence of performance on the amount of 

training data, we repeatedly calculated accuracies and F1 scores for the three architectures 
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using different training subset sizes. To this end, we used all impressions of 2016/2017 

(n = 2801) and separated a test dataset comprising 900 impressions (∼1/3). The remaining 

impressions (n = 1901; ∼2/3) served as training data. This ratio of training and testing 

dataset is common and well-suited for the size of our dataset [37]. We started training 

with 50 impressions and then incrementally added 60 impressions at each training cycle 

in a random fashion until all impressions of the test dataset were included. Concretely, 

the first training was performed with 50 impressions and the performance on the test 

dataset was determined. Then training was performed with 110 impressions, the 

performance was determined, and so on. To account for the effect of different impressions 

included into the training subsets, this procedure was repeated 100 times, each time 

starting with a randomly selected subset. The workflow for the performance depending 

on training batch size is displayed in Fig. 1b.  

2.4. Statistical analysis  

Statistical analysis was performed with IBM SPSS Statistics for Windows, Version 24.0 

(IBM Corporation). To test for differences between the training and the test cohort, a 

Mann-Whitney-U-Test for age and Chi-Square Tests for gender and PE status were 

calculated. Furthermore, we calculated the percentage of PE-negative reports that 

contained the phrasing “no pulmonary embolism” to determine how many impressions 

could have been identified with a simple word search. Time needed to manually label the 

impressions was recorded. Number of words contained in correctly classified and 

misclassified impressions was determined for the approach with the highest accuracy and 

a Mann-Whitney-U-Test was performed to test for differences. Measures of diagnostic 

accuracy and their 95 % confidence intervals were calculated as mentioned above. 

 

 

3. Results 

The training dataset consisted of 2801 CTPA impressions created in 2016 and 2017. Time 

needed to train the models with the complete training dataset was < 1 s for RF and SVM 

and < 5 min for the CNN. There was no missing data; all impressions were processed by 

all three NLP architectures. In 2018, 68.5 % of the PE-negative impressions contained the 

phrasing “no pulmonary embolism”, while 336 did not. The ratio of impressions of PE 

negative exams containing “no pulmonary embolism” was even lower in 2016 (44.8 %) and 

2017 (66.8 %).  
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3.1. General performance  

The testing dataset covered 1377 reports from 2018. The datasets did not differ statistically 

significantly in respect to age and the ratio of positive and negative exams (see Table 1). 

However, the percentage of men in the testing dataset (50.5 %) was significantly higher as  

compared to the training dataset (46.0 %). Performance results of the models with 95 % 

confidence intervals are listed in Table 2. The CNN showed the best results regarding 

sensitivity, NPV, accuracy and F1 score. The random forest approach achieved the highest 

specificity and PPV. Receiver operating curves for all three approaches are displayed in 

Fig. 2. The AUC values were close to 1 for all three approaches (CNN: 0.997; SVM: 0.993; 

RF: 0.996). Fig. 3 displays example CTPA images with related report impression sections 

and the class attributed to the impressions by the three NLP approaches. Impressions that 

were misclassified by the CNN had a higher mean word count (54.6; SD: 34.4) than those 

with correct predictions (38.8; SD: 21.5). This difference was statistically significant 

(Mann-Whitney-U-Test; p = 0.01). 
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3.2. Training data size effect on performance  

Fig. 4 displays the performance of the models depending on the number of impressions 

used for training. After an initial sharp increase in accuracy and F1 score by adding new 
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impressions to the training dataset, the increase in performance reached a plateau at 

relatively small subset sizes. An accuracy of over 93 % was reached at training subset sizes 

of 170 (SVM), 470 (RF) and 470 (CNN), respectively. By labelling this smaller number of 

impressions instead of the whole training dataset, 223 min (SVM), 198 min (RF) and 198 

min (CNN) would have been saved. This estimation is based on the average time needed 

to manually label one impression (5.1 s). Labelling all 2810 impressions of 2016/2017 took 

238 min. 

 

 

 
 
4. Discussion 

We found that all three models achieved very good classification performance with 

accuracies ranging from 97%–99% and area under the curve values above 0.99. These 

algorithms therefore very well predict the mentioning of PE in a given report solely based 

on the impression section. A second relevant finding is that excellent classification 

performance is reached at relatively small batch sizes. Labelling more data for training 

beyond that point did only slightly improve the performance. The optimization of the 

number of impressions used for training saves time. In our case, e.g., an accuracy of > 93 

% is achieved by labelling a subset of 170 impressions (SVM), which would have saved 223 

min when compared to a full labelling of the 2016/2017 dataset. The specific classification 

performance warranted depends on the research question.  

 

Interpreting these results, it is important to keep in mind that 68.5 % of PE-negative 

impressions in 2018 contained the standard negative phrasing “no pulmonary embolism”, 

which means they would have been identified by a simple word-based search. This is due 

to efforts towards structured reporting in recent years. However, a relevant number of 
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exams would have been missed by this simplistic approach and our NLP architectures are 

superior classifiers by far. Moreover, the ratio of PE negative impressions that contain “no 

pulmonary embolism” had been lower in previous years (e.g., 44.8 % in 2016), underlining 

the usefulness of NLP for reviewing archives. At the same time, this emphasizes the utility 

of highly structured reporting that, if consistently applied, can render secondary 

classification of reports redundant but is currently far from being standard in radiological 

practice. 

 

Previous studies on classification of CTPA reports regarding the presence of PE likewise 

reported excellent results comparable or only slightly inferior to ours: Yu and colleagues 

applied a combination of customized lexical rules and machine learning based on the 

Narrative Information Linear Extraction system (NILE) to achieve a F1 score of 0.96 [19]. 

Chapman et al. introduced the tool peFinder that is looking for lexical cues in a text, 

achieving an accuracy of 92 % and a F1 score of 0.90 [16]. However, the approaches 

presented by Yu and Chapman both need significant manual contributions in the form of 

definition of terms and lexical rules. This implies five important drawbacks: high 

expenditure of time, dependence on the expertise of the people involved, inflexibility with 

regard to different language styles, limitation to the language they were created in and 

constriction to the specific question they were designed for. This restricts practical 

applicability, especially in research where many questions arise at fast pace and thus 

adjustability of algorithms to new challenges is key.  

 

Gerstmair et al. presented a NLP-tool called RadMiner [38]. Based on a test set of 108 

reports, they reported a sensitivity of 0.93 and a PPV of 0.95. As the approach is based on 

an extensive processing pipeline including among others morpho-sematic analysis, 

abbreviation detection and a dictionary of medical terms, the setup of the platform is 

complex and time-consuming. Regarding fully automated algorithms for the classification 

of English reports regarding presence of PE, Chen et al. presented a convolutional neural 

network achieving an accuracy of 99 % and a F1 score of 0.94 [17]. They used a CNN with 

a very similar architecture to ours. However, they did not test other architectures and did 

not evaluate the dependence of performance on the amount of training data. The 

usefulness of automated NLP architectures for labelling radiology reports was also 

demonstrated for other tasks: Brown et al. reported an accuracy of up to 92 % and a 

sensitivity of 83 % for the prediction of downstream utilization of radiology resources in 

patients with hepatocellular carcinoma using a SVM and – in accordance with our results 
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– a moderately worse performance of a RF approach [22]. Li and Elliot reported an 

accuracy of 85 % and a specificity of 95 % for the identification of a group of patients with 

ureteric stones [18]. The excellent classification performance that we found is in line with 

these studies. 

 

We trained and tested on impressions in German language. This demonstrates that even 

German language with peculiarities like the frequent composition of nouns is fully 

accessible to NLP approaches. Despite the fact that there are approximately 400 million 

English native speakers in the world [39] and English is the undisputed lingua franca in 

science, it is important to develop NLP solutions for other languages, too, to facilitate the 

secondary usage of medical texts worldwide. This is why another main insight of our study 

is that NLP works for the generation of curated datasets in radiology for German texts at 

accuracy levels comparable to those reported for English reports. Furthermore, we found 

that wrongly classified impressions had a higher mean word count than those with correct 

predictions. A higher word count might indicate a higher number of secondary diagnoses 

that lower the signal-to-noise ratio of the text. 

 

At this point, we want to give a short practical, four-step-guidance on the application of 

NLP in radiology: In a first step, one should ask if NLP is the right method for a given 

radiology report classification task. If one wishes to classify a low number of, e.g., 100 

reports, the effort for putting up the NLP model clearly exceeds that of manually 

classifying those reports. However, in large sample size studies consisting of several 

thousand data samples, as they are more and more common, application of NLP is time-

saving. Second, we suggest to start with an easily implementable approach like support 

vector machines which demand only moderate computing power and showed good 

performance in our study. Third, a researcher should manually label a limited number of 

e.g., 300 reports (250 for training & validation of the algorithm, 50 independent cases for 

performance testing). The question of how many labelled reports are needed depends on 

many factors as the intended accuracy and report heterogeneity. Fourth, the performance 

of the model should be tested using an independent test set. If it is sufficient for the needs 

of the project, it can be applied to the rest of the data. If not, more training data or the 

use of other NLP models are required. 

 

Our study has several limitations. First, for training and general testing, we excluded 

reports that did not come to a distinct conclusion due to mediocre image quality. However, 
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these reports constitute only 2.1 % of all cases. Interestingly, this number is lower than 

reported elsewhere (e.g., 4.2 % reported by Bates and colleagues [40]). While this might be 

partly due to optimized CTPA protocols used at our institution, in some cases, the 

information on suboptimal image quality might just not have been added to the 

impression section, which is another limitation of our study. Second, we developed and 

tested solely on data of one medical center. The external validity of this approach has to 

be proven. However, this approach can easily be adapted by other centers with 

manageable effort to create a customized, locally applicable NLP solution. Third, 

difference between the gender ratio of the test dataset and that of the training dataset 

was statistically significant. However, we used only the impression sections, where the 

gender of a given patient was never mentioned. Therefore, we do not expect any gender 

bias. Fourth, the question we chose to illustrate the performance of NLP was whether 

there is pulmonary embolism or not. The performance of our NLP systems for other 

questions might vary. Furthermore, the reports on CTPAs with the question of PE at our 

institution are partially standardized with a suggested standard sentence for exams 

negative for PE. The performance on less standardized impressions might vary. Fifth, 

reports were labelled only by one radiologist. Given the low grade of complexity of this 

task (“is PE described in the given impression section or not”) we deliberately refrained 

from a second reading since we expect no variation between readers. Sixth, we used only 

impression sections to train, validate and test our algorithms. For other questions that are 

not answered in impressions on a regular basis, the whole report text has to be included. 

Seventh, NLP is a dynamic research field with a plethora of methodological approaches. 

We limited our analysis to three NLP approaches: a CNN, a SVM, and RF. We did so 

because these are standard approaches readily available to interested researchers. 

However, we recommend to closely follow new developments and to consider other 

approaches, too. 

 

In conclusion, we developed three self-trainable NLP algorithms that classify CTPAs based 

on their impression sections with high accuracy. This enables swift retrospective analysis 

of large amounts of data in radiology archives. Furthermore, we demonstrated that small 

training datasets can be sufficient to reach excellent classification performance.  
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Abstract 
Objectives: To evaluate the performance of an AI-powered algorithm for the automatic 

detection of pulmonary embolism (PE) on chest computed tomography pulmonary 

angiograms (CTPAs) on a large dataset. 

 

Materials and Methods: We retrospectively identified all CTPAs conducted at our 

institution in 2017 (n = 1499). Exams with clinical questions other than PE were excluded 

from the analysis (n = 34). The remaining exams were classified into positive (n = 232) and 

negative (n = 1233) for PE based on the final written reports, which defined the reference 

standard. The fully anonymized 1-mm series in soft tissue reconstruction served as input 

for the PE detection prototype algorithm that was based on a deep convolutional neural 

network comprising a ResNet architecture. It was trained and validated on 28,000 CTPAs 

acquired at other institutions. The result series were reviewed using a web-based feedback 

platform. Measures of diagnostic performance were calculated on a per patient and a per 

finding level. 

  

Results: The algorithm correctly identified 215 of 232 exams positive for pulmonary 

embolism (sensitivity 92.7%; 95% confidence interval [CI] 88.3–95.5%) and 1178 of 1233 

exams negative for pulmonary embolism (specificity 95.5%; 95% CI 94.2– 96.6%). On a per 

finding level, 1174 of 1352 findings marked as embolus by the algorithm were true emboli. 

Most of the false positive findings were due to contrast agent–related flow artifacts, 

pulmonary veins, and lymph nodes. 

 

Conclusion: The AI prototype algorithm we tested has a high degree of diagnostic 

accuracy for the detection of PE on CTPAs. Sensitivity and specificity are balanced, which 

is a prerequisite for its clinical usefulness. 
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Abbreviations 
ADMIRE Advanced Modeled Iterative Reconstruction CAD Computer-assisted detection 

CTPA  CT pulmonary angiogram 

DCNN  Deep convolutional neural network 

DICOM Digital imaging and communications in medicine  

FN False negative 

FP False positive 

FTE File transfer protocol 

IR Iterative reconstruction 

NPV Negative predictive value 

PACS Picture Archiving and Communication System  

PE  Pulmonary embolism 

PGY Postgraduate year 

PPV Positive predictive value 

SAFIRE Sinogram Affirmed Iterative Reconstruction 

SWCCE Sample weighted categorical cross-entropy  

TP True positive 
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1. Introduction 

In times of increasing hospital admission rates and numbers of computer tomography 

(CT) scans performed at emergency departments [1, 2], swift diagnosis and 

communication of critical findings is becoming one of the main challenges in radiology. 

To give a concrete example, at our department, the number of computed tomography 

pulmonary angiograms (CTPAs)—the standard diagnostic procedure for the evaluation of 

suspected pulmonary embolism (PE) [3]—increased by 32.7% from 2014 (n	= 1130) to 2017 

(n	= 1499). In 2017, however, only 15.8% of CTPAs with the clinical question of PE were 

positive. At other centers, the share of CTPAs that contain critical findings is even lower 

[4]. Fast detection of these cases amidst a large number of unremarkable scans is crucial 

for patients faced with this potentially life-threatening condition, as an early onset of 

anticoagulation therapy is associated with better outcomes [5]. An important contribution 

to this end can be made by worklist prioritization. 

 

This challenge can be addressed using algorithms for automated detection such as deep 

convolutional neural networks (DCNNs). One strength of these algorithms is pattern 

recognition [6]. A properly working neural network can assist radiologists by highlighting 

exams positive for PE in the worklist, thereby speeding up the diagnostic and 

communication workflow. Recent studies showed good results of DCNNs in the detection 

of critical findings in CT scans, among others, for intracranial hemorrhage [7], acute brain 

ischemia [8], and critical abdominal findings [9]. Good detection and segmentation 

performance of DCNNs was also reported for other findings and modalities [10–16]. 

Therefore, we hypothesized that the algorithm we tested is able to identify PE in CTPAs. 

Previously presented computer-assisted detection (CAD) algorithms for the automatic 

detection of PE on CTPAs had either relatively low sensitivity [17–21] or high rates of false 

positive findings [22–31] and mostly operated on small and/or unbalanced datasets 

[19,20,22–24,30,32–35]. 

 

The purpose of our study was to evaluate the performance of a trained and validated 

DCNN-based prototype algorithm for automated detection of PE in CTPAs on data 

reflecting clinical reality using all relevant CTPAs conducted at our department in one 

year.  
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2. Materials and Methods 

This study was approved by the IRB (project number 2019-01050) and written informed 

consent was waived. The PE detection algorithm was a prototype algorithm provided by 

Aidoc Medical. There was no financial support for this study. The authors had control of 

the data and the information submitted for publication at all time.  

2.1 Case selection  

We retrospectively extracted all CTPAs conducted at our institution in 2017 using protocol 

name and time period (01 January 2017–31 December 2017) as criteria. Subsequently, we 

downloaded all reports and axial 1-mm slices in soft tissue reconstruction with an in-

house-developed Radiology Information System/Picture Archiving and Communication 

System (PACS) search engine (n	= 1499). In a next step, a radiology resident (T.W., third 

year of residency [PGY-3]) reviewed all reports. Reports with another clinical question 

than PE (n	= 34) were excluded. Exams with suboptimal contrast filling as mentioned in 

the report (n	= 28) were deliberately included into the testing dataset, as they reflect 

clinical realities. The remaining exams were manually categorized into positive (n	= 232) 

and negative (n	= 1233) for PE based on the reports. Furthermore, we determined the 

location of the most central embolus in each exam (central, segmental, subsegmental). All 

resulting 1465 exams of 2017 were then used for testing the performance of the algorithm. 

Figure 1 illustrates the study workflow.  
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2.2. Image acquisition  

The CTPAs were acquired on three scanners: Somatom Definition AS+ (128 slices; iterative 

reconstruction algorithm (IR): Sinogram Affirmed Iterative Reconstruction [SAFIRE]), 

Somatom Definition Edge (128 slices; IR: Advanced Modeled Iterative Reconstruction 

[ADMIRE]) and Somatom Definition FLASH (2 × 128 slices; IR: SAFIRE; all scanners and 

IR: Siemens Healthineers AG). Pitch factor was 1.5; collimation was 0.6 mm. The dataset 

used for automated detection of PE were in soft tissue kernel (I26f) with a slice thickness 

of 1.0 mm. Mean peak X-ray tube voltage was 108.0 kVp (SD 12.3 kVp). As contrast agent, 

iopromide (Bayer AG) at a standard injection rate of 4.0 mL/s (mean injection rate 3.9 

mL/s; SD 0.28 mL/s) and an amount of up to 70 mL (mean 66.8 mL; SD 12.0 mL; bolus 

tracking technique) was used.  

2.3. AI algorithm training and validation  

The cloud-based PE detection prototype algorithm, a fast region-based convolutional 

neural network, was trained and validated on 28,000 independent CTPAs from 9 other 

medical centers, acquired on 17 different scanner models from 4 vendors (Canon Medical 

Systems Corporation, GE Healthcare, Philips Healthcare, Siemens Healthineers AG). 

Training data was generated by board-certified radiologists. The algorithm consists of two 

stages: a region proposal stage and a false positive reduction stage. The first stage is a 3D 

DCNN. Its architecture is based on the Resnet architecture [36], which consists of 

repeated blocks of several convolutional layers with skip connections between them, 

followed by a pooling layer. This network is trained on segmented scans and produces a 

3D segmentation map. The model was trained from scratch. From the segmentation map, 

region proposals are generated and passed as input to the second stage of the algorithm. 

The second stage classifies each region as positive or negative, based on features from the 

last layer of the first stage and traditional image processing methods. A designated loss 

function was developed to minimize false positive findings due to subsegmental location 

and suboptimal contrast timing (sample weighted categorical cross-entropy [SWCCE]). 

The loss function is a central concept in ML and evaluates how precise an algorithm 

models given data. Of the training cases, 43.4% contained pulmonary embolism. Training 

was performed on three kinds of AWS EC2 servers with up to 8NVIDIA GPUs (P3.2× large 

[1 GPU], P3.8× large [4 GPUs], and P3.16× large [8 GPUs]).  
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2.4. Image data processing  

After anonymization, DICOM image data was uploaded to a cloud server through a secure 

FTP (File Transfer Protocol) connection. Uploading times were recorded. The 1-mm series 

in axial plane were preprocessed (normalization, z-axis resizing). They served as only input  

for the core of the PE detection algorithm. Finally, the original series with superimposed 

arrows indicating suspected findings were uploaded to a web-based platform for review.  

2.5. AI algorithm testing  

The performance of the prototype algorithm was tested on a per patient and per finding 

level. The written reports of the CTPAs, which had been approved by at least two 

physicians of the department of radiology, at least one of them being board-certified, 

served as reference standard for the analysis on the per-patient level. On a per finding 

level, the reference standard was established by the visual review of cases in synopsis with 

the written reports as described below. The results of the PE detection software were 

defined as index test in both cases. The visual review of the algorithms output was 

performed by a 3rd year radiology resident (T.W.; PGY-3) using a web-based validation 

platform displayed on a conventional medical imaging workstation (screen resolution: 

1600 × 1200 pixels). Indeterminate findings were second read by a board-certified 

radiologist with 4 years of professional experience (GS), who could overrule the 

assessment of the resident. Exams negative for PE both according to the report and the 

algorithm were accepted to be true negatives and not checked visually. All images of other 

exams were reviewed on the web-based platform. Figure 2 shows how the results were 

displayed on the validation platform.  
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During the reading of the complete image stack, findings of the algorithm were both 

compared with the clinically approved report and visually checked for plausibility. The 

findings were either confirmed (true positive finding, TP) or rejected (false positive finding, 

FP) by clicking on a check-mark or rejection-mark. For FPs, the reader described the 

underlying reason in an associated free text field according to a previously defined 

standard terminology (e.g., contrast agent-related flow artifact). Furthermore, bounding 

boxes were used to mark all emboli that had been missed by the algorithm (false negative 

findings, FN). The per finding analysis was conducted as “per clot”	analysis meaning that 

continuous emboli over multiple segments were marked once. The processing times of the 

algorithm were recorded.  

2.6.	Statistical	testing	 

On a per patient level, sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), accuracy, and the F1 score for the detection of PE were calculated. 

For sensitivity and specificity, 95% CIs were calculated based on Wilson score intervals 

[37]. The F1 score is a harmonic average of PPV and sensitivity:  

 

F1 = $
𝑃𝑃𝑉!" + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦!"

2 1
!"

 

 

To further investigate the influence of embolus localization (central vs. segmental vs. 

subsegmental), the distinct detection rates of exams with (A) central emboli (and 

optionally also segmental and subsegmental emboli), (B) segmental emboli (and optionally 

also subsegmental emboli), and (C) subsegmental emboli only, according to the written 

report, were calculated.  

 

On a per finding level (“per embolus”), we determined the number of true positives, false 

positives, and false negatives as well as calculated the false positive rate per patient and 

PPV. For calculations, Excel 2010 (Microsoft Corp.) and SPSS Statistics, Version 22.0 (IBM 

Corp.) were used. P-values < 0.05 were considered to be statistically significant.  

 

3. Results  

A total of 1465 exams of 2017 were used to evaluate the prototype algorithm. Mean age of 

the patients was 66.0 years (SD 16.9 years). There were 691/1465 male patients (47.2%) and 
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774/1465 female patients (52.8%). The rate of exams positive for PE was 15.8% (232/1465). 

The most proximal location of an embolus was central in 23/232 (= 9.9%) segmental in 

163/232 (= 70.3%), and subsegmental in 46/232 (= 19.8%). Average uploading time per case 

was 25 s (SD 8 s), average processing time was 152 s (SD 17 s). There was no missing data.  

3.1. Per patient  

The performance measures of the algorithm for the detection of PE on a per patient level 

are displayed in Table 1. Of 232 cases being positive for PE according to the report, 215 

were correctly flagged by the algorithm (TP). There were 55 exams incorrectly rated as 

positive (FP). Of 1233 cases being negative for PE according to the report, 1178 were 

correctly flagged (TN). There were 17 exams incorrectly rated as negative (FN). The 

subanalysis revealed that exams containing central emboli had the highest detection rates 

with 95.7% (95% CI 88.0–99.1%), followed by those containing segmental emboli with 93.3% 

(95% CI 87.3– 97.1%). Exams containing emboli in subsegmental location only had the 

lowest detection rate with 85.7% (95% CI 85.7–94.6%).  

 

 

3.2. Per finding  

Of 1352 findings marked by the algorithm, 1174 were true emboli (PPV 86.8%). There were 

178 FPs in a total of 1465 exams, corresponding to a FP rate per case of 0.12. Table 2 

specifies reasons for FPs, the three most frequent being the confusion of contrast agent-

related flow artifacts, pulmonary veins, and lymph nodes with emboli. Figure 3 displays 

one example for each of the three most common reasons of FP findings. There were 203 

FNs that were retrospectively marked by the reviewer. Figure 4 shows two emboli that 

were missed by the algorithm. Table 3 compares the results of our study with previous 

studies. 
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4. Discussion 

This study assessed the clinical performance of an algorithm capable of automatically 

detecting PE on CTPAs. It reached high diagnostic accuracy on the per examination level 

(sensitivity 92.7%; 215/232) at an FP rate of only 0.12 per case. As for human readers, the 

detection rates for exams containing central emboli (95.7%) were slightly superior to the 

one for exams with subsegmental emboli only (85.7%). Testing on all relevant CTPAs 

conducted at our institution within one year ensured the exact representation of clinical 

realities regarding the ratio of positive and negative exams and the distribution of emboli. 

This and the high number of cases included in the analysis (n	= 1465) are unique features 

of this study.  

 

Previous CAD solutions for the automatic detection of PE on CTPAs suffer from three 

shortcomings: first, many algorithms achieved rather low sensitivities [17,19,20,32,34]. In 

a clinical setting, this limits their usefulness, because immediate communication to 

referring physicians is needed in these cases. Second, studies reporting sensitivity levels 

> 85% accepted many FP findings of up to 292 per case [22–24,27–31,35,38]. While such 

algorithms increase the detection rate of PE, FP findings increase workload for radiologists 

27 
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[39], thereby delaying diagnostic workup of other patients. In addition, extra workload 

decreases the acceptance among radiologists. Third, many studies tested on datasets that 

either strongly overweighted the number of PE-positive CTPAs compared to the ratio 

found in clinical practice [20,30,33–35] or even used solely PE-positive exams [19,24]. This 

is a potential cause of distortion to the measures of diagnostic accuracy. Furthermore, 

many of the evaluations operated on small sample size with less than 50 cases in the 

testing set [19,20,22,23,26,28,32,33].  

 

While the previously mentioned CAD algorithms used traditional image processing 

techniques such as segmentation and thresholding [19,23–26], segmentation and feature 

analysis [18,21,22,29–31,33,35], or segmentation, thresholding, and feature analysis 

[17,27,28], only one group used a DCNN to detect PE [40]. Tajbakhsh and colleagues 

reported a sensitivity of 83% at 2 FP findings per case. However, when tested on an 

independent dataset, sensitivity dropped to 34.6% at 2 FP findings per case, rendering the 

solution unsuitable for direct clinical deployment. The same is true for an extended 

approach of the same group that used vessel-oriented representations of emboli 

candidates as input to serveral CNNs [41]. 

 

The F1 score of 0.86 on a per patient level indicates a balanced performance of the 

algorithm used in our study with respect to sensitivity and PPV. This is a prerequisite for 

the usefulness of the algorithm in clinical practice. Given this, it can serve as foundation 

for an automated worklist prioritization that is adding value by speeding up the diagnostic 

workflow without increasing the workload for the radiologist. Concretely, a notification 

can be sent to the radiologist in charge via email or a pop-up window whenever the 

algorithm prototype suspects the presence of pulmonary embolism in a CTPA and thereby 

initiate prompt reading of the case. Because time to therapy initiation is outcome relevant 

in patients presenting with PE [42], this can improve quality of care. The increasing 

number of exams performed and the use of teleradiology cause situations in which a 

radiologist is confronted with multiple potentially urgent exams at the same time. In these 

situations, an assisting tool can make sure that the communication of urgent findings to 

the referrers is not delayed. However, there is no general agreement on what level of 

performance can be considered sufficient for an algorithm to be deployed in a clinical 

setting, and further discussion among clinicians is warranted. Our subanalysis on the 

detection rates’	 dependence on the localization of the emboli revealed that CTPAs 
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containing central emboli were more likely to be detected (95.7%) compared to those 

exams with subsegmental emboli only (85.7%). This is in line with other studies on 

automated PE detection [18,20,25,28,30,33] as well as with reports on the performance of 

radiologists [20,33].  

 

There are several limitations to our work. First, the evaluation was performed 

retrospectively on data acquired on scanners of one vendor. The performance on image 

data provided by systems of other vendors might differ. However, CTPA protocols are 

highly standardized, which makes generalizability probable. Second, the categorization of 

exams regarding the presence of PE and therefore the reference standard for the per 

patient evaluation was the clinically approved report. Initially wrongly classified exams 

regarding PE would therefore affect performance measures. Nevertheless, considering 

that identifying PE on a CTPA is straight-forward and all reports had been approved by 

at least two physicians of the department of radiology, at least one board-certified, the 

influence of this on the results is expected to be small. In addition, this approach of using 

clinically approved reports as standard of reference has also been applied in a range of 

other recent studies [7,43,44]. Third, the prevalence of CTPAs positive for PE at our 

institution in 2017 was 15.8%. It is well known that this ratio varies geographically. As 

prevalence has a strong influence on PPV and NPV, this might translate into an 

application site–dependent performance. However, because the pretest probability of 

15.8% found at our institution is at the center of the spectrum of pretest probabilities 

worldwide [4,45], it is expected that the good performance of the prototype algorithm at 

the per-exam level will be replicable at other centers. Fourth, the fact that the emboli of 

the cases with PE were not marked prior to the processing by the algorithm, but 

afterwards during the check of the algorithms results might negatively affect the validity 

of the results on a per finding level. However, the whole image stack of all cases (TP, FP, 

FN) was subsequently thoroughly reviewed and all PE marks of the algorithm were 

checked for plausibility. Furthermore, all FN findings were marked.  

 

In conclusion, the prototype algorithm tested on a large dataset exhibits a high diagnostic 

performance for the automatic detection of CTPAs containing PE. Of note, the 

performance is balanced in regard to sensitivity and specificity. As such, it constitutes a 

strong foundation for a clinical decision support tool that can speed up the diagnostic 

workup of critical cases by complementing traditional ways of worklist prioritization. To 
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what extent this contributes to a better quality of healthcare provision remains to be 

investigated by further prospective trials. 
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Abstract 
Objective: To assess the diagnostic performance of a deep learning-based algorithm for 

automated detection of acute and chronic rib fractures on whole-body trauma CT. 

 

Materials and Methods: We retrospectively identified all whole-body trauma CT scans 

referred from the emergency department of our hospital from January to December 2018 

(n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures 

according to the clinically approved written CT reports, which served as the index test. 

The bone kernel series (1.5-mm slice thickness) served as an input for a detection 

prototype algorithm trained to detect both acute and chronic rib fractures based on a deep 

convolutional neural network. It had previously been trained on an independent sample 

from eight other institutions (n = 11455). 

 

Results: All CTs except one were successfully processed (510/511). The algorithm achieved 

a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib 

fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-

finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-

negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in 

the written CT reports. A major factor associated with correct detection was displacement. 

 

Conclusion: We found good performance of a deep learning-based prototype algorithm 

detecting rib fractures on trauma CT on a per-examination level at a low rate of false-

positives per case. A potential area for clinical application is its use as a screening tool to 

avoid false-negative radiology reports.  
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1. Introduction 
Rib fractures are a common finding after thoracic trauma, occurring in approximately 40% 

of these patients (1). Efforts in the polytrauma setting are focused on the detection of life-

threatening conditions, such as aortic dissection and organ laceration. This fact in 

combination with the lack of time (2), a noisy work environment (3), satisfaction of search 

(4), and the frequent co-occurrence of multiple traumas on whole-body computed 

tomography (CT) (5) lead to a significant number of missed rib fractures in this setting (6). 

While most rib fractures heal without surgical intervention (7), there are three reasons 

why it is nonetheless important to detect rib fractures: first, they are indicators of trauma-

associated conditions that require immediate treatment, such as pneumothorax, and their 

onset can be delayed for several days (8). Second, often as a consequence of inadequate 

pain control, respiratory complications, such as posttraumatic pneumonia occur 

secondary to rib fractures (9, 10). Finally, the number and type of rib fractures can be a 

basis for further treatment strategies (11, 12). Thus, an accurate detection of rib fractures 

on CT scans contributes to appropriate patient care (13). To address the problem of missed 

rib fractures on trauma CT, some authors have proposed multiplanar (6) and rib unfolding 

reconstructions (14). A complementary approach comprises algorithms based on deep 

convolutional neural networks (DCNNs) (15) that successfully detect other findings on 

CT, such as myocardial infarction (16), intracranial hemorrhage (17), and acute abdominal 

findings (18). Given the efficiency of DCNNs in detection of findings on CT and other 

modalities (19-21), we hypothesized that they are also suited to detect rib fractures. While 

there are multiple studies on deep learning (DL)-based detection of fractures on plain 

radiographs (22-27), the number of algorithms detecting fractures on CT is limited. Studies 

on algorithms detecting vertebral body (28, 29) and skull fractures have been performed 

(30), but only one preliminary study dealt with the detection of rib fractures (31). 

 

Therefore, the aim of this study was a comprehensive assessment of the diagnostic 

performance of a DL-based algorithm for automatic detection of rib fractures on trauma 

CT scans acquired within 1 year at a level-1 trauma center. 
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2. Materials and Methods 

The local ethics committee approved the study protocol and waived the requirement of 

obtaining informed consent (Project ID: 2019-00510). 

2.1.	Case	Selection	

We retrospectively identified all whole-body trauma CT scans and the corresponding 

written reports acquired at our department in 2018 with an in-house developed radiology 

information system/picture archiving and communication system (PACS) search engine 

(n = 511). Selection criteria were the procedure code and time period (January to December 

2018). Examinations were classified into positive (only acute, only chronic, or both acute 

and chronic) and negative for rib fractures according to the written CT reports (Fig. 1). 

Two radiology residents (1st and 3rd year of residency) performed this classification task. 
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2.2. Image Acquisition 

Scans were acquired using three different CT scanners: Somatom Definition AS+ (n = 499; 

128-slice system), Somatom Definition Edge (n = 5; 128-slice system), and Somatom 

Definition FLASH (n = 7; 2 x 128-slice system; all scanners: Siemens Healthineers, 

Erlangen, Germany). Scanning was performed following our standard protocol for whole-

body trauma CT: patients were placed in the supine position with the scan ranging from 

the skull vertex to the upper thighs. Iopromide (Ultravist 370, Bayer Pharmaceuticals, 

Berlin, Germany) at a standard injection rate of 3.0 mL/s and a body weight-adapted 

volume of up to 120 mL was used as contrast agent. The peak kilovoltage was 120 kVp, 

and an automatic tube current modulation was performed. Transversal images in bone 

reconstruction kernel (70f) with a slice thickness of 1.5 mm served as the only input for 

the algorithm. 

2.3. Index Test and Standard of Reference 

The algorithm’s output series with marked areas of suspected rib fractures was defined as 

the index test. The written CT reports established the standard of reference. These CT 

reports had been previously approved by a board-certified radiologist with at least 5 years 

of experience in emergency radiology at a level-1 trauma center. To determine the 

accuracy of the reports on acute fractures, we randomly selected a subset of 50 CT scans 

and performed a second reading without time constraints and without knowledge of the 

reports. 

2.4. Algorithm Characteristics 

The prototype algorithm used for rib fracture detection was trained to detect acute and 

chronic fractures and consisted of two stages: first, a region proposal stage, which was a 

three-dimensional convolutional deep neural network. Its architecture was based on 

ResNet (Aidoc Medical, Tel Aviv, Israel). ResNets enable the training of neural networks 

with many layers (32). The algorithm prototype had been trained using 11455 independent 

chest CT scans from eight other medical institutions, acquired on 15 different scanner 

models. These had been reviewed by two radiologists, one making annotations and 

another confirming those annotations. Hyperparameter optimization included 

approximately 30 experiments, performed with the parallelized stochastic gradient 

descent using the Horovod framework (33). Experiments were processed on different 

servers with one, two, four, and eight NVIDIA GPUs (NVIDA, Santa Clara, CA, USA). The 

DCNN provided suggestions for suspected rib fractures. Subsequently, a second stage 
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based on a Fast Region-based CNN disqualified some of the initial suggestions to reduce 

false-positives and selected locations for arrows indicating final findings. The output series 

is the original transversal series with overlaid arrows pointing at suspected rib fractures. 

On the internal test dataset, the performance was as follows: sensitivity 91.2% and 

specificity 90.7% on the per-examination level; and sensitivity 78.0% on the per-finding 

level. 

2.5. Data Processing and Image Analysis 

We performed full study data anonymization. The 1.5-mm transversal images in bone 

kernel (70f) were transferred to the detection algorithm. Processing the data comprised 

an automated cutting of the whole-body CT to the areas that displayed the ribs based on 

lung segmentation. These cropped series served as the only input for the core algorithm. 

The output series was reviewed on a validation platform using a conventional PACS 

monitor. A radiology resident initially reviewed all cases. Another resident and a board-

certified radiologist discussed to reach a consensus on findings that were inconclusive to 

the first reader (e.g., does the finding display a true rib fracture or an artifact?) and all rib 

fractures that had been detected by the algorithm but had not been described in the 

written CT reports. Table 1 shows the detailed evaluation scheme for suspected findings.  

	

	
	

Acute fractures were defined as fractures without any sign of healing, such as callus 

formation or complete or partial consolidation of the fracture gap. A non-displaced, acute 

fracture was defined as a fracture with cortical disruption but maintained alignment (34). 

Rib fractures missed by the algorithm were marked with a bounding box. 

2.6. Statistical Testing 

Statistical analyses were performed with SPSS Statistics, version 22 (IBM Corp., Armonk, 

NY, USA) and Microsoft Excel 2010 (Microsoft Corp., Redmond, WA, USA). P values 
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less than 0.05 were considered statistically significant. We performed descriptive statistics 

to describe patients’ age and sex. To assess if there were statistically significant differences 

between patients with and without fractures, we performed the Chi-squared test for sex 

and the Mann-Whitney U test for age. On a per-examination level, an examination was 

defined as true positive when the algorithm correctly identified at least one fracture in a 

case with rib fractures according to the report. If the algorithm did not detect any fracture 

in an examination with at least one fracture according to the report, this examination was 

classified as false negative. Cases that were classified negative for rib fractures by both 

the report and the algorithm were rated as true negative. We calculated the sensitivity, 

specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and 

F1 score for the whole dataset and subsets. 

 

On a per-finding level (“per-fracture”), we calculated the number of false-positives per 

examination. To analyze the correlation of location, displacement, and acuteness with the 

detection rate, a binomial logistic regression with location, acuteness and degree of 

displacement as independent variables and detection (yes/no) as the dependent variable 

was performed. In this model, the following categories were used to obtain dichotomy: 

left/right; acute/chronic; nondisplaced/displaced (nondisplaced vs. all other categories). 

Exp(B) is the exponentiation of the B coefficient, which is interpreted as the odds ratio 

within the model (35). To further investigate the association of detection with the 

localization of a fracture within a rib (anterior, lateral, or posterior) and level of the 

fractured rib (upper = rib 1–4; middle = rib 5–8; and lower = rib 9–12), we performed Chi-

squared statistics. 

	

3. Results 

3.1. Examination Characteristics 

The mean age of the patients was 58.4 ± 22.5 years. Patients with and without rib fractures 

did not statistically significantly differ in sex ratio (χ2=0.23; p=0.63) or age (U=19830; 

p=0.44). The rate of positive examinations for rib fractures (acute and/or chronic) 

according to the report was 31.2%. On a per-finding level, 894 rib fractures were described 

in the reports. Table 2 summarizes the characteristics of the fractures. A second reading 

was performed for the 49 findings that had been marked as inconclusive by the first 

reader. Our analysis of a subset of 50 randomly selected CT scans showed that 83.3% (ten 

of 12) of scans showing acute rib fractures were correctly described in the corresponding 
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reports. Of 511 trauma CT scans that were performed at our department in 2018, one scan 

that was negative for rib fractures according to the written CT report could not be 

processed because of failure in automated cropping. 

	

	

3.2. Per-Examination Level 

On a per-examination level, the algorithm produced 139 true-positives, 30 false-positives, 

321 true-negatives, and 20 false-negatives. This corresponded to a sensitivity of 87.4% 

(139 of 159 scans with rib fractures according to the report detected) and specificity of 

91.5% (321 of 351 scans without rib fractures correctly classified as negative) on a per-

examination level. Table 3 provides more details on the performance measures. Figure 2 

shows a typical example of an acute fracture of the 9th right rib that was correctly 

identified by the algorithm and marked with an orange arrowhead. Our sub-analysis 

showed that the detection sensitivity of scans that contained acute fractures was 

significantly higher (91.9%) compared to that of scans that contained only chronic 

fractures (71.4%). 
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3.3. Per-Finding Level 

On a per-finding level, there were 587 true-positives (sensitivity: 65.7%; 95% confidence 

interval: 68.8-92.4) and 307 false-negatives. Furthermore, 97 true rib fractures (65 acute 

and 32 chronic) were detected by the algorithm and confirmed by consensus reading, but 

not mentioned in the written CT reports. The binary logistic regression model set up to 

ascertain the effects of laterality, displacement, and acuteness of fractures on the 

likelihood of detection was statistically significant (χ2=69.2; p<0.001). While laterality had 

no impact on detection rates within the model, displaced rib fractures were 4.84 times 

(Exp(B)) more likely to be detected compared to nondisplaced fractures (p<0.001). Acute 

fractures were 4.60 times (Exp(B)) more likely to be detected compared 

	

	

	
	

to chronic fractures (p<0.001). Furthermore, Chi-squared tests revealed significant 

associations between the fracture location and detection (χ2=36.8, p<0.001 for the position 

within a rib [anterior, lateral, posterior]; χ2=16.4, p<0.001 for the level of the rib [upper, 

middle, or lower]), with anteriorly and superiorly located fractures more likely to be 

missed. Table 2 provides detailed information on detection rates for all subcategories. The 

81 false-positives translated to 0.16 false-positives per examination. Table 4 summarizes 

the number and reasons for false-positives. Additionally, we found 137 “double 

annotations,” fracture was marked multiple times by the algorithm. Figure 3 displays 
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examples of false-positives. To further illustrate the clinical relevance of a rib fracture 

detection tool, Figure 4 shows an example of multiple, traumatic fractures in a 46-year-

old woman after a car accident that required surgical stabilization. A fully anonymized 

basic study dataset containing information on the characteristics of the individual 

fractures and whether they were detected by the algorithm and mentioned in the 

radiology report can be found in Supplementary Table 1. 
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4. Discussion 

Our study assessed the diagnostic performance of a DL-based prototype algorithm for the 

automated detection of rib fractures on trauma CT. On a per-examination level, the 

algorithm reached a sensitivity of 87.4% and specificity of 91.5%. This is comparable to the 

accuracy of practicing radiologists (14). The F1 score was 0.85, and there were 0.16 false-

positives per examination, mostly because of detections of intact ribs, normal intercostal 

vessels, and breathing artifacts. On a per-finding level, 587 of 894 fractures mentioned in 

the reports were detected (sensitivity: 65.7%). Main factors associated with the correct 

detection of fractures by the algorithm were displacement and acuteness. The superior 

performance of the algorithm on a per examination level compared to the per-finding level 

may be explained by the fact that in an emergency setting, multiple rib fractures are more 

frequent than isolated rib fractures. In our dataset, only 9.4% of scans with rib fractures 

contained only one rib fracture. The detection of only one of multiple fractures is sufficient 

to identify a positive case correctly on the per-examination level. Due to a high NPV of 

94.1%, the algorithm prototype preserves its usability as a secondary reading tool on a per-

examination level. Only one preliminary study evaluated an algorithm for the detection 

of rib fractures on CTs: Yan et al. (31) deployed a CNN, yielding a sensitivity of 95.0% and 

a significantly lower PPV of 55.7% for the detection of rib fractures, tested on a set of 244 

fractures. The measure of false-positives and false-negatives per case was not reported. 

Our results are comparable to those of other researchers investigating the performance of 

algorithms for the detection of fractures of other bones on CT. In their study on the 

performance of a support vector machine for detection of vertebral body fractures, Burns 

et al. (28) found a sensitivity of 81.3% on a per-finding level and 2.7 false-positives per case. 

The number of false-positives per case that we found was much smaller (0.16), which 

translates to a better usability in the clinical workflows. Bar et al. (29) assessed an 

algorithm for detection of vertebral compression fractures based on a segmentation step 

and a patch-based CNN and reported a sensitivity of 83.9% and specificity 93.8%. While 

these results are similar to ours, the authors did not include information on false-positives. 

However, comparability is limited because each type of fracture has different 

characteristics and surrounding anatomical structures. We additionally found 137 rib 

fractures that were annotated multiple times by the algorithm. The consequences of this 

depend on the way the algorithm is used: if the algorithm is used to flag scans with 

fractures on the per-examination level, there is no consequence; if the algorithm is used 

to determine the exact number of fractures, and results are checked by a radiologist in a 
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second step, the workflow efficiency is reduced; and if the detailed results are adopted 

without checking, this results in a wrong assessment of the number of rib fractures. 

Altogether, the algorithm detected 97 acute fractures not mentioned in the written CT 

report. This is of interest to clinicians since Battle et al. (36) have demonstrated that a 

higher number of rib fractures is associated with an increased mortality, underpinning the 

importance of correct rib fracture detection. Moreover, we found that detection rates for 

fractures located anteriorly were lower than those for other locations. Interestingly, this 

is in line with the results of Ringl et al. (14) and might have resulted from the 

diagnostically challenging zone of transition from the rib to the cartilage. 

 

Our study has several limitations. First, due to the retrospective design and limited 

availability of fracture-specific clinical data, the results could be linked neither to clinical 

symptoms nor to clinical outcomes. Second, the analysis was performed on data acquired 

on scanners of one vendor and at one center only. Therefore, the performance might differ 

across institutions and scanners. However, CT trauma protocols are highly standardized, 

as they are optimized to target specific clinical questions. Therefore, we do not expect a 

relevant bias. Third, the algorithm output was assessed by one radiologist only with a 

consensus reading of two radiologists in inconclusive cases. However, the fact that the 

assessment of patients with trauma is a task that residents learn early in their professional 

career supports our conclusion that it only slightly affects the validity of the study. Fourth, 

the reference standard was defined by the clinically approved written CT reports. We 

chose this definition because we consider these reports to be a valid basis for a reference 

standard. A complete reading of all 511 cases by multiple readers was not possible because 

of the substantial time required for this task. 

 

Due to the continuum of bone healing and the resulting indefinite cut-off between acute 

and chronic fractures, we decided to include both fracture types. Since the algorithm 

provides good results on a per case level and has a high NPV, the algorithm is usable as a 

screening tool to flag scans with at least one suspected rib fracture. If no rib fractures were 

detected by the radiologist in charge during the first reading of a trauma CT scan flagged 

as suspicious by the algorithm, a quick second check for rib fractures might be appropriate 

to avoid false-negatives. 

 

In conclusion, the algorithm we evaluated on a large dataset independent from its training 

data showed good diagnostic performance for the automated detection of rib fractures on 
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whole-body trauma CT on a per-examination level. Thus, despite lower sensitivity on a 

per-finding level, it constitutes a foundation for a clinical decision support tool for reading 

assistance. 
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Abstract 

Purpose: Automated detection and segmentation are prerequisites for the deployment of 

image-based secondary analyses, especially for lung tumors. However, currently only 

applications for lung nodules ≤3 cm exist. Therefore, we tested the performance of a fully 

automated AI-based lung nodule algorithm for detection and 3D segmentation of primary 

lung tumors in the context of tumor staging using the CT component of FDG-PET/CT and 

including all T-categories (T1–T4).  

 

Materials and Methods: FDG-PET/CTs of 320 patients with histologically confirmed 

lung cancer performed between 01/2010 and 06/2016 were selected. First, the main primary 

lung tumor within each scan was manually segmented using the CT component of the 

PET/CTs as reference. Second, the CT series were transferred to a platform with AI-based 

algorithms trained on chest CTs for detection and segmentation of lung nodules. 

Detection and segmentation performance were analyzed. Factors influencing detection 

rates were explored with binominal logistic regression and radiomic analysis. We also 

processed 94 PET/CTs negative for pulmonary nodules to investigate frequency and 

reasons of false-positive findings.  

 

Results: The ratio of detected tumors was best in the T1-category (90.4%) and decreased 

continuously: T2 (70.8%), T3 (29.4%), and T4 (8.8%). Tumor contact with the pleura was a 

strong predictor of misdetection. Segmentation performance was excellent for T1 tumors 

(r = 0.908, p<0.001) and tumors without pleural contact (r = 0.971, p<0.001). Volumes of 

larger tumors were systematically underestimated. There were 0.41 false-positive findings 

per exam.  

 

Conclusion: The algorithm tested facilitates a reliable detection and 3D segmentation of 

T1/T2 lung tumors on FDG-PET/CTs. The detection and segmentation of more advanced 

lung tumors is currently imprecise due to the conception of the algorithm for lung nodules 

<3 cm. Future efforts should therefore focus on this collective to facilitate segmentation of 

all tumor types and sizes to bridge the gap between CAD applications for screening and 

staging of lung cancer. 
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1. Introduction 
Failure to detect lung cancer on imaging studies is a very common reason for malpractice 

suits [1]. The reasons for misdiagnosis are multilayered and include recognition error and 

satisfaction of search [2]. Strategies for the reduction of observer errors are therefore of 

great importance and computer-aided detection (CAD) of pulmonary nodules has gained 

increasing interest in this context [3]. Most recently, conventional CAD solutions that 

require visual confirmation to reduce false-positive calls [4] are being challenged by deep 

learning algorithms that have an inherent advantage of automatic feature           

exploitation [3]. 

 

The diagnostic task of imaging in lung cancer, however, does not end with tumor 

detection. Tumor staging using 18F-fluorodeoxyglucose(FDG-) PET/CT as the standard of 

care forms an integral part of the clinical diagnostic workup of patients with lung cancer 

[5]. The recent revision on the T-categories for the 8th edition of the TNM lung cancer 

classification emphasized that from 1 to 5 cm, each cm separates lesions of significantly 

different prognosis [6]. However, the implicit assumption that tumors are spherical and 

consequently proportional changes of tumor diameter and parallel changes in tumor 

volume is particularly disrupted for advanced tumors [7]. This clearly underlines the need 

for accurate tumor segmentation and precise tumor volumetry, particularly when it comes 

to therapy response monitoring [7], radiation treatment planning [8], radiomics [9], and 

other new developments in the framework of personalized medicine.  

 

Sexauer et al. have shown that manual annotation and segmentation of lung tumors is 

feasible, but tumor stage and lesion size and count correlate significantly with 

segmentation time [10]. Algorithms for automatic pulmonary nodule detection and 

segmentation are currently under development but are commonly trained and validated 

based on intraparenchymal lesions which are less than 3 cm in size. Therefore, it is unclear 

how pulmonary masses beyond this diameter and with nonspherical shape will be treated 

by these algorithms. Moreover, the vast majority of CAD systems have been evaluated on 

chest CTs that have been acquired in deep-inspiration breath-hold technique [11–21]. So 

far, only few CAD applications were tested for PET/CT and that only for nodules smaller 

than 3 cm [22,23]. 
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It was thus the aim of this study to evaluate the performance of a fully automated 

computer-assisted detection and 3D segmentation algorithm that was initially designed 

for lung nodule detection and segmentation in the context of tumor staging. This was 

done using the CT component of FDG-PET/CT studies of a patient cohort with 

histologically proven primary lung tumors from all T-categories. 

 
 
2. Materials and Methods 

This study was conducted under the provisions of the appropriate Swiss regional ethics 

committee (Ethikkommission Nordwest-und Zentralschweiz). 

2.1. Case Selection 

We compiled two datasets using an in-house-developed Radiology Information 

System/Picture Archiving and Communication System (RIS/PACS) search engine: First, 

we retrospectively identified 18F-fluorodeoxyglucose (FDG-) PET/CTs with histologically 

proven primary lung cancer that were acquired at our institution between 01/2010 and 

06/2016. Selection criteria were protocol name, time period, and verified tumor histology 

according to our pathology archive. This resulted in 320 PET/CTs (lung tumor population). 

Second, for the creation of a dataset with exams not containing pulmonary nodules, 

appropriate PET/CTs were selected with the criteria protocol name, time period (01/2017–

12/2018), and the presence of the text string “no pulmonary nodules” in the clinically 

approved reports. This resulted in 92 PET/CTs (nodule negative population). The study 

workflow is displayed in Figure 1. 
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2.2. Imaging Protocols 

PET/CT examinations were performed on two integrated PET/CT systems: on a Discovery 

STE with 16-slice CT (GE Healthcare, Chalfont St Giles, UK) from 01/2008 to 11/2015 and 

on a Biograph mCT-X RT Pro Edition with 128-slice CT (Siemens Healthineers, Erlangen, 

Germany) from 12/2015 to 12/2016. Scans were obtained 1 hour after intravenous injection 

of 5 MBq FDG/kg body weight at glycemic levels below 10 mmol/L and previous fasting 

for at least 6 h. The CT component of the combined PET/CT examination was acquired 

with the following parameters: Discovery STE: slice thickness 3 mm, i50f kernel, X-ray tube 

voltage 120 kVp (SD: 0 kVp), exposure 80 mAs (SD: 15 mAs), CTDIvol 5.8 mGy (SD: 

1.7 mGy), and DLP 536 mGy  cm (SD: 100 mGy  cm). Biograph mCT-X: slice thickness 3 mm, 

i50f kernel, X-ray tube voltage 120 kVp (SD: 0 kVp), 37 mAs (SD: 18 mAs), CTDIvol 3.1 mGy 

(SD: 1.5 mGy), and DLP 294 mGy  cm (SD: 146 mGy  cm). In 21 cases, Iopromide (Ultravist 

370, Bayer Pharma, Germany, Berlin) was applied as contrast agent at a mean dose of 

87.1 ml (SD: 24.9 ml). All other scans were acquired without contrast. 
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2.3. Ground Truth Segmentation 

Manual tumor segmentations with reference to the clinically approved report were 

performed as previously described [10]. The PET/CT image dataset of each patient was 

segmented via a modified 3D-slicer-based segmentation tool (version 4.6.2, Slicer Python 

Interactor 2.7.11, Boston, USA). Segmentation of the data involved in this analysis was 

performed by a dual-board-certified radiologist and nuclear medicine physician with 

10 years of experience in PET/CT reading (A. S., n = 137) as well as a radiology resident with 

2 years of professional experience that was supervised by A. S. (T. W., n = 183). Tumors 

were segmented as a 3D volume defined by consecutive 2D regions of interest (ROIs) that 

were delineated on all transversal slices of the CT component showing a lesion. Fused PET 

information was used in addition whenever the tumor boundaries were not clearly 

definable on CT. 

2.4. Algorithm Characteristics 

The transversal 3 mm low-dose CT series of the PET/CTs with histologically proven 

primary lung tumor (n = 320) as well as the CT series of the PET/CTs negative for 

pulmonary nodules (n = 94) served as the only input for the in-house-deployed AI-based 

research algorithm for detection and segmentation of lung nodules. The image data were 

processed in three steps: First, lung and lung lobe segmentation were performed by a deep 

image-to-image network (DI2IN) that was trained on chest CTs acquired on scanners of 

multiple vendors. Its architecture has previously been described for liver segmentation by 

Yang et al. [24]. Second, nodule detection was performed by nodule candidate generation 

(NCG) and false-positive reduction (FPR). The NCG is a 3D region proposal network based 

on faster-RCNN [25] that outputs suspicious regions called “nodule candidates” and 

assigns probability scores. Then, for each nodule candidate, a small patch around it was 

sampled and sent to the FPR module consisting of several Res-Net units [26]. The FPR 

module further evaluated the likelihood for the nodule candidate to be a true nodule or a 

false positive by updating the scores generated by the NCG module. The final decision 

was made by taking the weighted sum of the scores generated by NCG and FPR modules. 

The training data for the nodule detection algorithm contained nodules up to a diameter 

of 3 cm. Third, nodules were segmented by an algorithm based on region growing. The 

principle of this method has been previously described by Hojjatoleslami and colleagues 

[27]. In the interest of improved readability, these three interlinked algorithms will be 

referred to as “algorithm” in this paper. None of the selected PET/CTs within the study 

was used to train the algorithm or to adapt hyperparameters. 
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2.5. Data Analysis 

The output of the AI algorithm pipeline was the transversal chest CT component of the 

PET/CT with overlays for lung lobe boundaries and tumor boundaries of detected tumors. 

This output series also contained specifications of volume (VolumeAI), 2D diameter, and 

location (lung lobe) for every detected tumor and served as the index test. The reference 

standard was the CT component of the PET/CT for detection and the volumes that were 

calculated from the 3D tumor masks that resulted from the manual image segmentation 

process (ground truth volumes: VolumeGT). For each case, the segmented tumor was 

visually correlated with the output series of the algorithm and it was recorded whether 

the tumor was detected or not. The correctness of the indication of tumor location (lung 

lobe) was checked. We additionally established whether a lesion contacted parietal pleura 

or not by consensus reading (A. S. and T. W.). Finally, we reviewed the output series of the 

nodule negative population to describe numbers of and reasons for false-positive findings. 

2.6. Statistical Analysis and Radiomics 

Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 22.0 

(IBM Corp., Armonk, NY). Scatterplots and graphs were created with JMP, Version 14.2 

(SAS Institute Inc., Cary, NC). For descriptive analyses of continuous data, we calculated 

the mean and standard deviations. To test for association between two or more categorical 

variables, we used the chi-squared test. To test for statistical differences among the means 

of two or more groups, we conducted a one-way analysis of variance. Normal distribution 

was assessed with the Shapiro–Wilk test, histograms, and Q-Q plots. To analyze the 

influence of histology, location, pleural contact, and maximal axial diameter on detection 

rates, we performed a binomial logistic regression with detection (yes/no) as the 

dependent variable. In this model, the largest histology subgroup and the most common 

location regarding the lung lobe (for location) were set as reference categories of the 

categorical variables. For the analysis of segmentation performance, all tumors with 

automatically calculated tumor volumes (VolumeAI) were considered (=all tumors 

detected). We used the Pearson correlation coefficient to assess the relationship between 

VolumeGT and VolumeAI. Values less than 0.05 were defined to indicate statistical 

significance. 

 

To elucidate the influence of textual features on detection rates, we extracted 200 radiomic 

features with Pyradiomics version 2.1.0 [28]. Least absolute shrinkage selection operator 

(LASSO) regression and extended Bayesian information criterion (EBIC) were used for 
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feature selection in Stata Statistical Software Release 15 (StataCorp, College Station, TX). 

Selected features were then transferred into a logistic regression model and the predictive 

power was assessed. Youden cutoff values were generated for each selected feature [29]. 

 
 
3. Results 
3.1. Lung Tumor Population 

3.1.1. Population Characteristics 

The mean patient age was 66.7 years (SD: 10.7 years). 70.3% of the patients were male 

(n = 225), and 29.7% were female (n = 95). The mean tumor volume was 68.2 cm3 (SD: 

125.6 cm3; T1 = 3.0 cm3, T2 = 17.8 cm3, T3 = 56.7 cm3, and T4 = 210.0 cm3), and the mean axial 

tumor diameter was 5.0 cm (SD: 3.4 cm). Tumors were located in all lobes (right upper 

lobe: n = 101; middle lobe: n = 19; right lower lobe: n = 50; left upper lobe: n = 88; left lower 

lobe: n = 62). All T-categories were represented in the dataset with the following 

distribution: T1: n = 83; T2: n = 106; T3: n = 51; T4: n = 80. There were no statistically 

significant differences between the patients included in the T-categories regarding age 

and gender (χ2 = 1.217, p = 0.749). The distribution of tumor histology is shown in Table 1. 

 

 

 

3.1.2. Detection 

The attribution of a lesion to the corresponding lung lobe was correct in 100% of the 

detected lesions. Detection rates differed significantly across T-categories and declined 

towards advanced tumors: 90.4% for T1 (75 of 83), 70.8% for T2 (75 of 106), 29.4% for T3 (15 
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of 51), and 8.8% for T4 (7 of 80). This detection decline is also reflected in Figure 2(a) that 

shows the number of detected and missed tumors by T-category and Figure 2(b) that 

displays detection of tumors depending on the ground truth volume. Furthermore, mean 

VolumeGT was smaller for detected lesions (18.6 cm3; SD: 39.3 cm3) as compared to missed 

lesions (125.9 cm3; SD: 161.8 cm3). 

 

 

 

Binominal logistic regression conducted to explore factors that influence detection rates 

showed that tumors with a larger maximal axial diameter and tumors with pleural contact 

were more likely to be missed by the detection algorithm (both p < 0.001). The results of 

this analysis are summarized in Table 2. Interestingly, squamous cell carcinomas and 

SCLC had a slightly higher likelihood to be missed compared to adenocarcinomas 

(p < 0.001 and p = 0.015, respectively). Location of a lesion in a specific lung lobe did not 

influence detection rates. With an Exp(B) of 74.4, pleural contact was by far the most 

relevant factor for nondetection in the model. This is also reflected by the fact that 94 of 

95 lesions without pleural contact were detected (98.9%), while only 78 of 225 lesions with 

pleural contact were correctly identified (34.7%). 
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Table 3 summarizes the results of the radiomic analysis. It revealed that first order, shape, 

and texture features were significantly different in detected and missed tumors 

(p < 0.001). Tumors with finer, less heterogeneous texture (e.g., 

CT_glrlm_GrayLevelNonUniformityN: Lasso coefficient = −1.0776312, Youden 

cutoff = 0.1166608) and rounder shape (e.g., shape_Sphericity: Lasso 

coefficient = 0.2268932, Youden cutoff = 0.4293948) were more likely to be detected by the 

algorithm. Interestingly, three PET features (PET_firstorder_10Percentile, 

PET_firstorder_Maximum, PET_gldm_DependenceEntropy) indicated whether or not a 

tumor is detected on the CT component. 
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3.1.3. Segmentation 

All tumors detected by the algorithm were included in the second step of our analysis that 

investigated the segmentation performance (all: n = 172; T1: n = 75; T2: n = 75; T3: n = 15; 

T4: n = 7). We found a positive correlation between volumes calculated by the algorithm 

and ground truth volumes (Pearson correlation coefficient: r = 0.634, p < 0.001). As for 

detection rates, there were differences regarding T-categories: r = 0.908 for T1 (p < 

0.001), r = 0.797 for T2 (p < 0.001), r = 0.520 for T3 (p < 0.047), and r = 0.748 for T4 (p < 

0.053). This correlation is displayed in Figures 3(a)–3(d). It is worth mentioning that due 

to the low detection rate only seven T4 tumors were included and therefore the high 

Pearson correlation coefficient is likely related to random effects. Automatically 

calculated volumes of tumors that had no contact to pleura had a stronger correlation 

with ground truth volumes (r = 0.971, p < 0.001) as compared to tumors with pleural 

contact (r = 0.586, p < 0.001) for all T-categories. The volumes of larger tumors were 

systematically underestimated by the algorithm. Figure 4 displays a typical example of a 

T1 lesion without pleural contact that was manually segmented (a) as well as correctly 

segmented by the algorithm (b). Figure 4(c) shows an incompletely segmented T3 lesion 

with pleural attachment, and Figure 4(d) illustrates an invasive, completely missed T4 

lesion. 

3.2. Nodule Negative Population 

Mean age of the patients was 63.2 years (SD: 16.6 years). There were 60.6% males (n = 57) 

and 39.4% females (n = 37). There were 39 false-positive findings (FP). This corresponds to 

0.41 FP per patient. FPs were caused by dystelectases (n = 18), intrapulmonary vessels 

(n = 12), hilar calcified lymph nodes (n = 3), detection of ribs (n = 2), and a breathing artifact 

(n = 1). 
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4. Discussion 

The evaluated AI-driven algorithm allows for excellent detection and segmentation of 

pulmonary T1 lesions (detection rate: 90.4%; excellent correlation of VolumeAI and 

VolumeGT: r = 0.91) and good detection and segmentation of T2 tumors (detection rate: 

70.8%; correlation of VolumeAI and VolumeGT: r = 0.80) on the CT component of PET/CTs. 

Given the fact that the algorithm is designed for the detection of lung nodules smaller 

than 3 cm, such good performance on tumors with a diameter of up to 5 cm is remarkable. 

This is even truer considering the fact that the CT series used as input for the algorithm 

had a slice thickness of 3 mm and were acquired in free breathing and mostly 

nonenhanced technique. In more advanced tumors (T3/T4), detection and segmentation 

are more challenging and subsequently detection rates are low. Furthermore, the 

segmentation mask volumes for T3/T4 tumors systematically underestimate ground truth 

volumes. It is therefore an important finding that the tested CAD system has conceptional 

limitations concerning the detection of advanced lung tumors, and human inspection is 

still necessary in these cases. 

 

The first step of CAD systems is to detect the location of lesions in medical images [30]. 

Most previous studies used CT datasets from lung cancer screening trials (e.g., NLST) with 

nodule size between 3 and 30 mm [19]. As an exception, Dandil et al. analyzed 52 

malignant and 76 benign lesions with a size range from 4 to 58 mm, but only 12.5% of these 

nodules were bigger than 20 mm in diameter [20]. They reported a sensitivity of 92.3%, 

which is in line with the detection performance we found for the comparable group of T1 

tumors. Earlier this year, Vassallo et al. compared unassisted and cloud-based CAD of 

pulmonary nodules in patients with extrathoracic malignancy [13]. A total of 215 lung 

nodules with a diameter between 3 and 28 mm in 75 patients were used for evaluation. 

Stand-alone CAD sensitivity was 85%, and the mean false-positive rate per scan was 3.8. 

These performance measures are representative for recently published studies on lung 

nodule CAD software [12,14–18,21]. Our results show a sensitivity of 90.4% for small 

tumors with a diameter of up to 30 mm with a far superior rate of false-positive findings 

per exam of 0.41 on the nodule negative population. This low rate of false-positive findings 

is a prerequisite for integration into existing clinical workflows and acceptance by 

radiologists and nuclear medicine physicians. Liang et al. tested four CAD systems at two 

time points for the detection of nodules with a mean diameter of 4 mm and 11 mm, 

respectively, and found sensitivities ranging from 52% to 82% [11]. Again, false-positive 
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rates of 0.6–7.4 per exam ranged above the ones we found and —in line with our results—

were often caused by detection of blood vessels and bone. They did not identify 

dystelectasis as a reason for FP findings—the most frequent cause we found. This can be 

explained by the fact that we tested on PET/CTs acquired in free breathing technique, 

while Liang and colleagues evaluated on chest CTs acquired in deep-inspiration breath-

hold technique [11]. Of interest and with only one exception, they as well as some other 

authors [31,32] reported higher detection rates of the CADs for isolated cancers as 

compared to those attached to the pleura. This supports our finding that pleural contact 

negatively affects detection. It is important to understand that these features are not 

totally independent from each other. For example, advanced tumors more likely invade 

structures adjacent to the lung, which means that pleural contact exists. Of interest, we 

found no dependency of lesion detection on the location within the lung, whereas Liang 

and colleagues reported a higher probability of detection for nodules in lower lobes for 

three of the four evaluated CAD systems [11]. However, the effect was small and not 

statistically significant. 

 

Our radiomics analysis revealed further features that influence the detection rates: a finer, 

less heterogeneous and rounder texture was associated with better detection. While the 

utility of texture analysis for the differentiation of benign vs. malign lung lesions [33,34], 

the differentiation of histologic subtypes [35,36] and the prediction of progression [37–

39] is well established, more studies on its influence on detection rates are warranted. 

Regarding tumor histology, our analysis revealed slightly lower detection rates for SCLC 

and squamous cell carcinomas as compared to adenocarcinomas. Due to the low number 

of cases in the two groups, however, these results are likely to be influenced by random 

effects. Another explanation could be that no preliminary stages of adenocarcinoma were 

included in our patient population. It is well known that adenocarcinoma with lepidic 

growth pattern has lower detection rates by human readers [40]. 

 

After detection, segmentation of lung lesions is the subsequent step that, if done correctly, 

paves the way to a plethora of secondary analyses that are currently developed within the 

context of AI, radiomics, and personalized medicine. In this context, Owens et al. 

compared contours of 10 lung tumors ranging from 1.1 cm3 to 10.5 cm3 defined by human 

readers in consensus, corresponding to our categories T1 and T2, with 2 semiautomatic 

segmentation methods: Lesion Sizing Toolkit (LSTK) and GrowCut [41]. For these 

semiautomatic tools, the mean Dice similarity coefficients were 0.88 ± 0.06 and 0.88 ± 0.08 
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for LSTK and GrowCut, respectively, indicating very good segmentation quality. Our 

results which reveal an excellent correlation of VolumeGT and VolumeAI for T1 (r = 0.90) and 

a good correlation for T2 tumors (r = 0.70) are in line with these findings. Various other 

studies assessed automated segmentation methods for the segmentation of lung nodules 

on the Lung Image Database Consortium-Image Database Resource Initiative (LIDC-IDRI) 

dataset (diameters: 2 mm–38 mm, again corresponding to T1 and T2-category of our 

dataset) and reported overlaps of ground truth and automatically generated segmentation 

masks of 50.7% [42], 58% [43], 63% [31], 69%, and 71.2% [44], respectively. Furthermore, 

Hassani et al. mention in their review that difficulties of semi-automated and fully 

automated systems in segmenting subpleural nodules are due to masking of margins by 

adjacent normal structures [45]. Our results confirm this finding, showing a much better 

correlation of VolumeGT and VolumeAI for isolated lesions (r = 0.97) as compared to 

attached lesions (r = 0.59). 

 

According to current guidelines, FDG-PET/CT is considered the standard imaging 

procedure of choice for noninvasive staging of lung cancer [5]. The CT component of this 

examination is often acquired in free breathing using thicker slices (3 mm) and a lower 

dose compared to diagnostic chest CTs. In opposition to Marten et al., who reported 

significantly dropping detection rates for increasing reconstruction slice thicknesses 

(0.75 mm: 73.9%, 2 mm: 59.0%, 4 mm: 4.4%) [46], we found detection rates for the 

comparable T1-category collective that are equal or superior to those reported by other 

authors for 1 mm slice thickness. This can be explained by the fact that detection rates of 

DCNN detection algorithms used in our study are superior compared to techniques based 

on histogram analysis and thresholding used years ago. Teramoto et al. evaluated a CAD 

system that used both the CT and PET component to generate candidate lesions with a 

subsequent reduction of false-positive findings through a convolutional neural network 

(slice thickness: 2 mm; 104 cases with 183 nodules) [22]. They report a sensitivity regarding 

detection of 91% that is very similar to the one we found but a higher rate of false-positive 

findings per case (4.9). An inclusion of the information contained in the PET-component 

of the FDG-PET/CT could be a direction of further development of the CAD we tested. 

 

There are several limitations of our work. First, manual segmentation was performed by 

two readers in random order without consensus or double reading. Both, consensus and 

double reading are time-consuming tasks and therefore not practicable in this study with 

a total of 320 lesions. Second, the assessment of segmentation quality was based on 
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comparison of the automatically calculated tumor volumes with ground truth volumes. 

More advanced methods like Dice similarity coefficients or Hausdorff distances could not 

be applied since space coordinates were not accessible in the manually created tumor 

masks. Third, for the creation of manual tumor masks, the FDG-PET component was 

considered whenever tumor borders could not be well delineated on the CT component, 

while automated tumor detection was performed only on the CT component. Inclusion of 

the information contained in the PET components could possibly increase detection rates 

and segmentation quality. Fourth, the analysis was conducted in two steps: detection and 

segmentation. Due to lower detection rates for more advanced tumors, a selection bias in 

step two of the analysis could positively influence segmentation performance in this 

group. 

 

In conclusion, the tested algorithm facilitates a fast and reliable detection and 3D 

segmentation of pulmonary T1 and T2 tumors that also works well on the CT component 

of PET/CTs acquired in free breathing and with a slice thickness of 3 mm. The detection 

and segmentation of more advanced lung tumors is currently imprecise due to the 

conception of the algorithm for lung nodules. Consequently, there is still an unmet need 

for CAD applications that also cope with the more complex segmentation tasks required 

in the context of lung cancer staging. Future efforts must therefore focus on this collective 

to facilitate segmentation of all tumor types and sizes and bridge the gap between CAD 

applications for screening and staging of lung cancer. 
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Abstract 
Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients 

with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based 

approach and assess their potential to predict patient management. 

 

Materials and Methods: All initial chest CTs of patients who tested positive for severe 

acute respiratory syndrome coronavirus 2 at our emergency department between March 

25 and April 25, 2020, were identified (n = 120). Three patient management groups were 

defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit 

[ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT 

images using deep learning. Additionally, six laboratory findings indicating inflammation 

and cellular damage were considered. Differences in CT metrics, laboratory findings, and 

demographics between the patient management groups were assessed. The potential of 

these parameters to predict patients' needs for intensive care (yes/no) was analyzed using 

logistic regression and receiver operating characteristic curves. Internal and external 

validity were assessed using 109 independent chest CT scans. 

 

Results: While demographic parameters alone (sex and age) were not sufficient to predict 

ICU management status, both CT metrics alone (including both pulmonary and 

cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 

0.79–0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white 

blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77–0.94) were good classifiers. 

Excellent performance was achieved by a combination of demographic parameters, CT 

metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85–0.98). Application of a model 

that combined both pulmonary CT metrics and demographic parameters on a dataset 

from another hospital indicated external validity (AUC = 0.77; 95% CI = 0.66–0.88). 

 

Conclusion: Chest CTs of patients with COVID-19 contain valuable information that can 

be accessed using automated image analysis. These metrics are useful for the prediction 

of patient management. 
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1. Introduction 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global 

pandemic with over 1.28 million deaths worldwide as of November 12, 2020 [1]. The 

associated infectious disease, named coronavirus disease 2019 (COVID-19), progresses 

mildly in most cases [2]. However, severe and critical courses of the disease occur in 

approximately 20% of patients [3], mostly demonstrating atypical pneumonia [4]. These 

patients require hospitalization or even intensive care unit (ICU) treatment. There are 

regional differences in utilization of these scarce resources during a pandemic with 

temporary shortages. Therefore, criteria for early prediction of patient management, 

especially whether ICU care is needed or not, are important. 

 

While viral testing remains the only specific method of diagnosis [5], CT plays a role in 

the workup of suspected pulmonary manifestations of COVID-19 and associated 

complications. There is growing evidence that radiographic [6] and chest CT 

[7,8,9,10,11,12,13,14,15] features are associated with disease severity in COVID-19 based 

on (semi)-manual assessment and visual scoring of pulmonary parameters. This study 

intends to build on these approaches and expand them in three aspects: First, by 

introducing a fully automated and user-independent evaluation method, which is 

especially relevant in a pandemic with heavy workloads on healthcare providers. Second, 

this study explicitly focusses on the ultimate patient management status defined by a 

patient's clinical pathway established with sufficient temporal distance. Third, the 

inclusion of five cardiovascular metrics that are derivable from all chest CTs has rarely 

been reported systematically. Notably, preexisting cardiovascular disease is a major risk 

factor for adverse outcomes in COVID-19 [16]. Laboratory findings were included to 

assess the value added by the CT metrics. 

 

We hypothesized that pulmonary and cardiovascular CT metrics are associated with 

ultimate patient management in patients with COVID-19. It is the goal of this study to 

extract these CT metrics using a fully automated deep learning-based approach and assess 

their potential, alone and in combination with laboratory findings and demographic data, 

for the prediction of patient management. 
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2. Materials and Methods 

This study was approved by the local ethics committee (Ethikkommission Nordwest-und 

Zentralschweiz; IRB approval number: 2020-00566). It is part of a research project 

registered on ClinicalTrials.gov on, April 04/29/2020 (Identifier: NCT04366765). 

2.1. Study population 

All reverse-transcription polymerase chain reaction (RT-PCR) results for SARS-CoV-2 

performed at the emergency department (ED) of our institution between March 25 and 

April 25, 2020, were downloaded from our laboratory database (n = 6080 RT-PCR results 

in 5120 patients). RT-PCR for SARS-CoV-2 was performed using specimens from 

nasopharyngeal and oropharyngeal swabs. All patients RT-PCR positive for COVID-19 

were identified (n = 438). In cases with multiple RT-PCRs, a patient was rated positive if 

at least one of the specimens was positive. For the 438 patients, we searched our RIS/PACS 

system for the chest CTs performed during the study period, which resulted in 169 chest 

CTs. At our institution, chest CT is the imaging standard for verifying suspected 

pulmonary involvement in patients with SARS-CoV-2. For ensuring the independence of 

observations, all follow-up CTs from a given patient were excluded from the analysis (n = 

49). This resulted in 120 CT scans in 120 patients. The time interval between the 

presentation at the ED and CT acquisition was determined. Figure 1 illustrates the search 

strategy. 
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2.1. Definition of patient management 

Information on the ultimate clinical pathway of a patient was retrieved from our hospital 

information system 12 weeks after completion of CT data collection (date of 

determination of ultimate patient management: July 20, 2020). Based on this information, 

the following three groups were defined: group 1 (outpatient treatment), group 2 

(inpatient treatment, general ward), and group 3 (admission to ICU). Each patient was 

assigned to the highest category individually reached (for instance, a patient that had 

initially been treated on the general ward and eventually needed ICU care was assigned 

to group 3). 

2.2. CT acquisition parameters 

Chest CT scans were acquired in supine position using two 128-slice scanners: SOMATOM 

Definition AS+ (n = 119) and SOMATOM Force (n = 1) (both Siemens Healthineers). Mean 

tube voltage was 105.0 kVp (standard deviation [SD]: 10.1), mean tube current-time 

product 81.1 mAs (SD: 19.2), and pitch factor 1.05 in all cases. Most of the scans were 

performed without a contrast agent (n = 99), whereas 21 CTs were performed with a mean 

of 71.8 mL (SD: 17.2) of contrast agent (Iopromide, Bayer AG) at an injection rate of 4 mL/s 
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for excluding pulmonary embolism. The 1-mm soft-tissue kernel series served as input to 

the algorithms. 

2.3. Laboratory Findings 

For all patients, the results of six standard laboratory parameters of inflammation and 

tissue damage were retrieved from our laboratory system (blood sample type in 

parentheses): C-reactive protein (CRP; heparin plasma), lactate dehydrogenase (heparin 

plasma), white blood cell count (EDTA), procalcitonin (heparin plasma), albumin (heparin 

plasma), and D-dimers (citrate plasma). Laboratory results were obtained on the day of 

chest CT acquisition. 

2.4. Technical Details of the Algorithms 

Multiple deep convolutional neural networks (DCNNs) were locally deployed on an 

imaging post-processing platform (Siemens Healthineers, Corporate Technology). 

2.5. Pulmonary Metrics 

The 1-mm series in soft kernel reconstruction served as input to an algorithm prototype 

based on a deep image-to-image network for lung and lung lobe segmentation and a 

subsequent DenseUNet for segmentation of opacities. They were trained on chest CTs of 

n = 9549 (Deep-Image-to-Image Network) and 901 (DenseUNet) patients, completely 

independent of the testing dataset used in this study. DenseUNet defined all voxels with 

ground-glass opacity (GGO) or consolidation as positive/foreground and all other areas of 

the lung as negative/background. Subsequently, a Hounsfield unit (HU) threshold of -200 

was applied to the prediction mask for differentiating GGO from consolidations. Table 1 

provides details for all metrics. Further technical details and high diagnostic performance 

of the algorithms have been reported previously [17]. 
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2.6. Cardiovascular Metrics  

The non-electrocardiogram-gated 1-mm series served as the only input to a DCNN based 

on U-Net architecture for segmentation of the thoracic aorta and the total pericardial 

volume (TPV). TPV segmentation, which includes the heart and pericardial structures, 

such as fat and (if present) pericardial effusion, was used to identify candidate coronary 

calcification voxels by applying a threshold of > 130 HU. The calcium detection model 

based on ResNet subsequently predicts true coronary calcifications. The diameters of the 

aorta were computed at key anatomical landmarks. The cardiovascular algorithms were 

trained using 3550 CT scans. Detailed information has been provided elsewhere [18,19]. 

The quantification of coronary calcifications (QCCs) could only be calculated for series 

without contrast (n = 99/120). Table 1 lists all the cardiovascular metrics analyzed in this 

study. 

2.7. Statistical Analysis 

Categorical variables were expressed as counts and percentages. For continuous variables, 

means with corresponding SDs are provided as measures of variance. For comparing the 

differences between groups, one-way analyses of variance for normally distributed 

continuous variables, the Kruskal-Wallis H tests for non-normally distributed continuous 

variables, and the chi-square tests for categorical variables were performed. The statistical 

analysis comprised the following three steps: 
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Step 1: A series of univariable analyses with appropriate post hoc tests to assess 

the association of CT metrics, laboratory findings, and patient characteristics with patient 

management. Studies with contrast were excluded during the analysis of QCC, as this 

measure was only calculated on non-contrast series. 

 

Step 2: A series of multivariable binary logistic regressions to assess the potential 

of CT metrics, laboratory findings, and patient demographics as well as their 

combinations, to classify patients who needed ICU care from those who did not. The ICU 

status of a patient (0 = no ICU; 1 = ICU) served as the dependent variable. CT metrics, 

laboratory findings, and patient demographics (age and sex) served as independent 

variables. Inclusion criteria for CT metrics and laboratory findings were p values ≤ 0.05 in 

the subgroup comparisons between groups 1 and 3 (outpatient vs. ICU) or group 2 vs. 3 

(general ward vs. ICU) in Step 1 of the analysis. Furthermore, the parameters had to be 

available for all patients. This resulted in the following five models: 

 

• D: Patients’ demographics only 

• L: Laboratory findings only 

• PC: CT metrics only 

• PD: Pulmonary CT metrics and demographics 

• PCLD: All parameters (CT metrics, laboratory findings, demographics) 

 

For all approaches, area under the curve (AUC) with 95% confidence intervals (CIs) were 

calculated using prediction probabilities obtained from the binary logistic regression 

analyses. Furthermore, we analyzed the differences in the AUCs between the models 

according to the method proposed by DeLong et al. [20]. 

 

Step 3: Internal and external validation to assess generalizability. For internal 

validation, we processed all chest CTs of patients with positive RT-PCR for SARS-CoV-2 

acquired at our institution during a later period (April 26, 2020–May 20, 2020; information 

on ultimate patient management retrieved on August 12, 2020) with all algorithms. For 

testing external validity, we used data from another hospital (Supplementary Materials, 

Supplementary Table 1). ICU status was predicted using regression equations obtained 

from Step 2 of the analysis. 
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Statistical analyses were performed with IBM SPSS Statistics for Windows, Version 22.0 

(IBM Corp.), using default settings. P values ≤ 0.05 were defined to indicate statistical 

significance. 

 

3. Results 

3.1. Patient characteristics 

The main analysis dataset of this study included 120 patients with a mean age of 60.8 

years (SD: 17.5; range: 18–92 years; 47 [39.2%] females). Table 2 summarizes the patient 

characteristics of the three patient management groups. 

 

 

3.2. Automated analysis of CT metrics 

All datasets were successfully processed using the algorithm. The mean time interval 

between presentation at ED and CT acquisition was 0.98 days (SD: 2.32 days). 

 

Step 1: Association of Metrics with Patient Management  

Table 3 summarizes the results of the univariable analyses of CT metrics and laboratory 

findings. 

 

Pulmonary CT metrics 

PO, PHO, LSS, and LHOS increased continuously from group 1 to group 3, while lung 

volume and %LowHU decreased from group 1 to group 3. All these differences were 

statistically significant. Post hoc testing revealed that differences in PO, PHO, LSS, and 

LHOS were statistically significant at p values < 0.01 between all three subgroups. 

Regarding lung volume and %LowHU, group comparisons 1 vs. 3 and 2 vs. 3 differed 

statistically significantly. Figure 2 displays an image example for each group. 
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Cardiovascular CT metrics 

TPV and D_AAsc differed significantly among the three groups. Post hoc analysis revealed 

that differences in both TPV and D_AAsc were statistically significant only for the 

comparison of groups 1 and 3 (TPV: p = 0.041; D_AAsc: p = 0.033). QCC, D_Arch, and 

D_ADsc did not differ significantly. Figure 3 illustrates the outputs of the cardiovascular 

algorithms. 
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Laboratory findings 

Laboratory analysis for D-dimers and procalcitonin was not performed in some cases 

(11/120 and 36/120, respectively). All laboratory parameters differed significantly among 

the three groups. CRP levels increased steadily from groups 1 to 3, while albumin 

decreased. Subgroup comparisons were statistically significant for all group comparisons 

(CRP, albumin), group comparisons 1 vs. 3, and 2 vs. 3 (lactate dehydrogenase and 

procalcitonin), group comparison 2 vs. 3 only (white blood cell count), and group 

comparison 1 vs. 3 only (D-dimer). 

 

 

 

Step 2: Prediction of ICU Status  

Table 4 specifies metrics and parameters included in the five multivariable models for 

classification of ICU status (yes/no) according to the criteria mentioned in the methods 

section. The best performing model was the PCLD model combining CT-derived, 

laboratory, and demographic parameters (AUC = 0.91). Demographic parameters alone 

could not distinguish ICU patients from non-ICU patients (AUC = 0.55). CT-derived 

metrics (including both pulmonary and cardiovascular metrics) alone, laboratory metrics 

alone, and pulmonary CT metrics combined with demographic parameters were all good 

classifiers with AUCs ≥ 0.84. Table 5 provides detailed information. The AUC of the D 

model differed significantly from that of all other models (p < 0.001). The difference in the 
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AUCs of models with CT-derived parameters alone vs. laboratory parameters alone was 

not statistically significant (p = 0.462). Figure 4 displays the receiver operating 

characteristic curves of the PCLD, PC, and L models. As D-dimers and procalcitonin were 

not available in all cases, these two parameters were excluded from the analysis. 

 

 

 

 

Step 3: Internal and External Validation 

The internal validation comprising 16 new cases of patients with positive RT-PCR results 

for SARS-CoV-2 resulted in a sensitivity of 80.0% (4 of 5 patients admitted to ICU correctly 

classified) and a specificity of 81.8% (9 of 11 patients not admitted to ICU correctly 

classified) for the PCLD model. Table 5 presents the results. In general, the performance 

measures on the internal validation dataset were slightly worse than those on the main 

analysis dataset but still acceptable. The mean age of the internal validation dataset was 

63.0 years (SD: 16.0) and not statistically significantly different from the dataset used for 

the main analysis (p = 0.635). We also found evidence for external validity using the PD 

model (detailed information in Supplement). Table 6 demonstrates that demographic 

information did not differ significantly among the three datasets. 
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4. Discussion 

This study demonstrated that it is feasible to automatically extract pulmonary and 

cardiovascular metrics from chest CT scans of patients with RT-PCR-confirmed COVID-

19. Those metrics are useful for the prediction of patient management. Multiple CT 

metrics continuously and significantly increased or decreased with intensified patient 

management. The same was true for laboratory parameters reflecting inflammation and 

cell damage. The best prediction regarding ICU status was achieved by combining CT 

metrics, laboratory findings, and demographic information, while the latter alone could 

not differentiate the two classes. The CT metrics and laboratory findings were good 

classifiers on their own. Internal and external validation demonstrated marginally inferior 

performance. 

 

Our results regarding the relevance of pulmonary CT metrics in COVID-19 and their 

association with patient management are in line with previous studies and expected, as 

they reflect pathologic changes, concretely inflammatory GGO, and consolidations. Li et 

al. [8] reported an increasing extent of inflammatory pulmonary lesions from light to 

common to severe/critical clinical manifestations. Sun et al. [7] and Tan et al. [21] 

confirmed that quantitative CT parameters strongly correlate with laboratory 

inflammation markers. Lyu et al. [22] showed that the number of lung segments and lobes 

affected by consolidations increased with case severity, which is in line with the increase 

in LSS and LHOS with higher admission status [22]. Similarly, Liu et al. [10] reported an 
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association between a higher lung severity score and extended hospitalization time. A 

significant number of additional studies have successfully applied lung volume 

assessment with or without a combination of clinical and laboratory tests for predicting 

disease severity, treatment intensity, outcome, and mortality [7,10,15,23,24,25,26]. 

Notably, the analyses in these studies required substantial manual interaction and visual 

assessment. 

 

However, in a pandemic with limited human resources, fully automated approaches are 

preferred. In this respect, Huang et al. [27] applied CT-derived opacification measures 

using deep learning to stratify four clinical subtypes according to their baseline clinical, 

laboratory, and CT findings. They provided further evidence of CT as an important tool 

for risk stratification in patients with COVID-19 and reported percentages of lung areas 

with opacities ranging from 0% (mild disease) to 49.6% (critical disease), which is in line 

with the results of the analysis at hand. However, radiological findings used to predict the 

outcomes were at the same time part of the outcome definition criteria of this study [28]. 

As previously shown, preexisting cardiovascular disease is a risk factor for adverse 

outcomes in COVID-19 [24] and, COVID-19 simultaneously affects the cardiovascular 

system [29]. However, the aforementioned approaches did not include quantitative 

measurements of cardiovascular CT metrics. This study included cardiovascular metrics, 

such as TPV, as an estimate of heart size. Indeed, a higher TPV was associated with a 

higher risk of intensified patient management. As age and sex did not differ significantly 

between groups, differences were caused probably by increased heart size or increased 

amount of pericardial fat. The AUCs of the models considering CT-derived metrics only 

vs. laboratory parameters only were both high and did not differ statistically significantly. 

This is probably due to the fact that both reflect inflammation of the lungs and are highly 

correlated. Internal validation indicated good internal generalizability, as did the external 

data for the PD model. 

 

This study had several limitations. First, the internal validation dataset was small, 

resulting in wide CIs; therefore, the results should be interpreted cautiously. However, 

high standardization of chest CT and the fact that other studies on the topic reported 

similar effect sizes provide confidence that the results are generalizable. Second, while the 

main investigator site had access to the algorithms with all pulmonary and cardiovascular 

metrics, the remote site had access to pulmonary metrics only. Third, this study included 

only patients with COVID-19 who underwent a CT scan, the diagnostic standard for 
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patients with suspected pulmonary manifestations of COVID-19 at our center. Therefore, 

the presented approach might be less relevant in medical centers that rarely perform chest 

CT in this context. Fourth, other features, such as the initial severity of symptoms, might 

be useful to classify patient management. Besides the focus on automatically retrieved CT 

metrics, this study also considered demographic parameters and laboratory findings. 

 

To conclude, this study provides evidence that chest CT of patients with COVID-19 

contains valuable information for the prediction of ultimate patient management. 

Furthermore, this information is accessible using a deep learning-based, fully automated 

image analysis workflow, which is especially helpful during the COVID-19 pandemic. 
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Abstract 

Machine learning offers great opportunities to streamline and improve clinical care from 

the perspective of cardiac imagers, patients, and the industry and is a very active scientific 

research field. In light of these advances, the European Society of Cardiovascular 

Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular 

radiology, has assembled a position statement regarding the use of machine learning (ML) 

in cardiovascular imaging. The purpose of this statement is to provide guidance on 

requirements for successful development and implementation of ML applications in 

cardiovascular imaging. In particular, recommendations on how to adequately design ML 

studies and how to report and interpret their results are provided. Finally, we identify 

opportunities and challenges ahead. While the focus of this position statement is ML 

development in cardiovascular imaging, most considerations are relevant to ML in 

radiology in general. 
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Abbreviations 

 

AI:  Artificial intelligence 

ASCI:  Asian Society of Cardiac Imaging 

AUC:  Area under the curve 

CONSORT:  Consolidated Standards of Reporting Trials 

CPU:  Central processing unit 

CT:  Computed tomography 

DCNN:  Deep convolutional neural network 

DL:  Deep learning 

DSC:  Dice similarity coefficient 

ECG:  Electrocardiography 

ESCR:  European Society of Cardiovascular Radiology 

EUSOMII:  European Society of Medical Imaging Informatics 

FDA:  Food and Drug Administration 

FFR:  Fractional flow reserve 

FN:  False negative 

FP:  False positive 

GPU:  Graphics processing unit 

HU:  Hounsfield unit 

IoU:  Intersection-Over-Union 

LV:  Left ventricular/left ventricle 

LVEF:  Left ventricular ejection fraction 

ML:  Machine learning 

MRI:  Magnetic resonance imaging 

NASCI:  North American Society for Cardiovascular Imaging 

NIfTI:  Neuroimaging Informatics Technology Initiative 

PACS:  Picture archiving and communication system 

RIS:  Radiology information system 

RVEF:  Right ventricular ejection fraction 

SCMR:  Society of Cardiovascular Magnetic Resonance 

SPIRIT:  Standard Protocol Items: Recommendations for Interventional Trials 

SSCT:  Society of Cardiovascular Computed Tomography 

STARD:  Standards for Reporting of Diagnostic Accuracy Studies 
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TN:  True negative 

TP:  True positive 

TRIPOD:  Transparent Reporting of Multivariable Prediction Model for Individual 

Prognosis or Diagnosis 

US:  Ultrasound 
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Introduction 

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) are currently 

getting a lot of attention in the public arena and in science [1]. Their relation is 

hierarchically nested as shown in Fig. 1. AI is an umbrella term encompassing all 

techniques that mimic human intelligence, which have been studied and applied for 

decades [2], whereas ML describes a subset of AI algorithms that learn to map input 

parameters to output from training data (supervised ML) or identify previously 

undetected patterns (unsupervised ML). DL comprises a subset of ML algorithms that use 

multiple, connected calculation layers [3]. 

 

 

Fig. 1. Relation and definition of artificial intelligence (AI), machine learning (ML), and 
deep learning (DL) 
 

Open-source programming tools, as well as greater computational power and easier data 

transfer facilitate the current boost in availability and productivity of AI algorithms. 

Concretely, in the most prevalent case of supervised ML, multiple pairs of input (e.g., MR 

image data of the heart) and output (e.g., ground truth segmentation of the left ventricle 

[LV]) are used for training. Subsequently, the trained algorithm can be used to 

automatically solve the learned task upon presentation of new, unseen input data. The 

fundamentals of ML have been described extensively elsewhere [4,5,6]. 

 

ML algorithms are of special interest to radiologists, because main areas of application are 

image processing, image analysis, and detection of findings — all core components of the 

radiological workflow before interpretation. One of their strengths is image segmentation, 

which is a prerequisite for analyses such as calculation of cardiac stroke volumes. 

Consequently, an increasing number of ML algorithms have been designed and evaluated 

in the field of cardiovascular radiology. Segmentation tasks are predominantly solved with 
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DL algorithms, which have shown performances superior to traditional image processing 

methods. However, applications of ML extend beyond image analysis and can support 

many other tasks within the field of radiology such as triage of exams according to 

urgency or provision of a second reading to avoid missing relevant findings. They can also 

help with predicting outcomes and extending the diagnostic capabilities of CT and MRI, 

e.g., by assessing the fractional flow reserve from cardiac CT angiography. 

 

In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a 

non-profit medical society dedicated to advancing cardiovascular radiology, has 

assembled a position statement regarding the use of ML in cardiovascular imaging in close 

cooperation with other leading societies in the field. While the focus of this position 

statement is ML development in cardiovascular imaging, most considerations are relevant 

to ML in radiology in general. 

 

Requirements for successful development and implementation of ML 
algorithms in radiology 

1. Human resources and expertise 

 
Consensus statement 
 

•Machine learning projects in cardiovascular imaging should involve experts with 

different professional backgrounds, mainly medical and ML experts, and in later stages 

also experts in user interface design and regulatory matters. 
 

•The research and business community should agree on common data format standards 

and easy export of segmentation masks from clinically used post-processing software is 

needed to foster data interchangeability and reusability of data. 
 

•Integration of ML algorithms into existing clinical workflows should be smooth, 

preferably into primary systems (RIS/PACS), to assure utility and acceptance by users. 

 

A successful ML project in radiology is almost always multidisciplinary. It can be seen as 

a four-step process, each step requiring special expertise and ideally a close cooperation 

between multiple professionals, mainly medical and ML experts. This section describes 

human resources required for a successful ML project as well as key activities at each of 

the four steps. 
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The initial, crucial question is what problem to solve. For this, one needs clinical domain 

knowledge to identify a relevant problem. On the other hand, knowledge in programming 

is needed to assess whether the identified clinical problem is technically solvable by means 

of ML. Furthermore, one should always ask whether ML is the best solution for the 

problem or if there are other, less complex solutions, such as a manual workflow in the 

case of rarely occurring tasks. Apart from ML, there are many traditional imaging 

processing techniques like region growing that are very effective for e.g., tracing the 

coronary arteries [7]. To clarify these issues, a close cooperation between clinical experts 

and computer scientists is necessary. Furthermore, patients’ interests should be 

considered at this stage. 

 

Once a relevant clinical problem best solved by means of ML is identified, the second step 

is algorithm development. In the predominant case of supervised learning, this starts with 

data selection and establishment of a ground truth. Obtaining a sufficient amount of high-

quality ground truth data, which can be thought of as “gold standard” used for both ML 

training and evaluation (e.g., segmentation masks of the left ventricle) is a necessary 

requirement for creating an algorithm. The amount of data needed depends on the 

complexity of the problem, the ML algorithm used, and the ratio between the finding of 

interest and the whole dataset. As a rule of thumb and providing an example from the 

field of object detection, tasks that are easy to solve for a human reader (e.g., detection 

and segmentation of a healthy lung within a chest CT scan) will require less training data 

than the detection of subtle, small changes in a whole-body CT scan. The less training 

data is available, the better the quality of the data should be. Large training data sets 

allow for some inaccuracies. It is important to keep in mind that training data quality is a 

limiting factor for an algorithm’s performance. Therefore, the required data quality also 

depends on the envisaged performance of the algorithm. The decision how to obtain 

ground truth again requires both clinical and technical expertise. It revolves around 

questions such as how data can be extracted from hospital information systems, whether 

or not to use public databases, and how and by how many experts the ground truth should 

be established. Whenever patient data leaves primary clinical systems, it is of upmost 

importance to ensure complete de-identification. In radiology, this includes erasing or 

overwriting all DICOM tags that contain data privacy relevant information. It is highly 

recommended to double-check the success of this de-identification process by reviewing 

DICOM metadata before sending image data. An approach that allows for collaborative 
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training of an ML model without exchanging data samples is “Federated learning” [8]: a 

copy of an algorithm is downloaded and local data used to further improve it. The 

resulting changes to the model are summarized in an update that is uploaded and merged 

with the central consensus model. Preferably, ground truth data is stored in 

interchangeable formats (e.g., the Neuroimaging Informatics Technology Initiative (NIfTI) 

data format for segmentations) to assure usability for other projects. This is also in 

accordance with the FAIR guiding principles for scientific data management and 

stewardship [9]. Unfortunately, so far, no standards have been established for ML and 

most clinically used post-processing software is not capable of exporting segmentation 

masks, which limits the reusability of data and impedes reproducibility of studies. There 

are many other types of ground truth labels, comprising labels on the level of a whole 

dataset (fracture on radiograph: yes/no) and outcome labels for prediction modeling 

(patient death: yes/no). 

 

In cardiovascular radiology, most algorithms solve segmentation tasks; therefore, 

segmentation masks are the predominant type of ground truth in this field. However, also 

tissue characterization (e.g., T1 and T2 mapping, late gadolinium enhancement) is an 

increasing part of cardiovascular radiology and needs adequate ground truth labels, e.g., 

histological results from endomyocardial biopsies in myocarditis. Awareness for potential 

biases introduced by the composition of datasets is important: an algorithm for clinical 

outcome prediction developed on a training dataset containing 80% males from country A 

might not work well on data from female patients in country B. In general, the dataset on 

which an algorithm is developed should reflect the population on which the algorithm is 

later applied as good as possible. Either one is aware of these limitations or overcomes the 

challenge by using large, heterogeneous datasets. The gold standard is to evaluate an 

algorithm’s performance and influence on clinical workflows in clinical practice. Finally, 

a suitable ML technique has to be selected (e.g., random forest or deep convolutional 

neural networks). This task demands the expertise of the ML expert. This, as other steps, 

also involves ethical considerations, e.g., whether it is legitimate to develop algorithms on 

data of highly developed countries only (resulting in better performance in these patient 

collectives). For a detailed discussion of ethical implications of the use of ML in radiology, 

we refer to a recently published multi-society statement [10]. 

 

The third step is performance evaluation. There is a wide range of statistical tests that can 

be used, beginning with simpler concepts like sensitivity and specificity for detection tasks 
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to more complex evaluations like the Dice similarity score that ranges from 0 to 1 and 

quantifies the overlap of two regions of interest [11]. The evaluation method should be 

defined in advance to avoid method selection bias and involvement of a statistician is 

highly recommended. It is the responsibility of the radiologist to make sure the selected 

evaluation method reflects the clinically relevant endpoint. This demands functionality to 

visually check the validity of the data. Furthermore, the evaluation has to reflect the 

intended clinical use in the specific patient population the algorithm was designed for. It 

is also important to consider multicenter testing on different scanner models and patient 

populations should the algorithm later be used at other clinical centers and in different 

patient populations. 

 

Finally, if assessed as an effective solution to the clinical problem, translation into clinical 

practice follows. This last step is at least as challenging as all previous steps and requires 

expertise in fields that are rarely covered by medical and ML experts, namely in user 

interface design, graphic design, regulatory matters, and in assuring compatibility with 

existing hospital IT environments that are subject to changes over time and location. 

While the creation of a dedicated software package is the most common option, the gold 

standard is the direct integration of an algorithm and its output into existing systems, 

preferably into Radiology Information Systems/Picture Archiving and Communication 

(RIS/PACS) systems and radiology reports. This results in a smooth workflow, thereby 

ensuring acceptance and engagement by users. 

 

In our experience, the best results come from a close cooperation between experts from 

different disciplines. Figure 2 summarizes the four-step process. 

2. Hardware and software requirements 

Consensus statement 
 

•While some less computationally intensive ML applications can be run on central 

processing units (CPUs), most currently applied ML algorithms require hardware with 

dedicated graphics processing units (GPUs). 
 

•Experts involved in ML development should make use of online resources for creating, 

sharing, and discussing ML algorithms. 
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Fig. 2. Expertise needed during ML algorithm development and implementation, illustrated 
with the example of a segmentation task. 
 

Besides human expertise, ML projects have requirements with regard to hardware and 

software. 

Hardware 

Standard CPUs are sufficient to run most non-DL ML algorithms and even DL approaches 

like deep convolutional neural networks (DCNNs) with few layers. However, DCNNs with 

multiple layers, which constitute the majority of currently developed ML algorithms of 

interest for cardiovascular imaging, are more computationally intensive. These algorithms 

need dedicated hardware with GPUs. Commercially available consumer GPUs with 8 GB 

or more system memory currently suffice for many applications. A detailed overview on 

hardware for ML, its performance, and pricing is provided by Tim Dettmers [12]. 

Alternatively, data can be processed using off-site cloud solutions such as Amazon Web 

Services. 

Software 

The ML community is fully digital and publishes mostly open source. Practically all 

relevant resources like software libraries and discussion forums are freely accessible. 

Jupyter Notebook is a commonly chosen web-based platform to compile ML algorithms 

(jupyter.org). The platform allows the use of multiple programming languages, including 

Python, which currently is the most prevalent language in the field of ML (python.org). A 

programming language can be thought of as the vocabulary and rule system that is used 
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to instruct a computer to perform tasks. ML algorithms can be developed using software 

libraries like TensorFlow (tensorflow.org), scikit-learn (scikit-learn.org), and PyTorch 

(pytorch.org). These libraries contain pre-written code and procedures that enable easier 

and faster software code development. Other alternatives are MATLAB (mathworks.com) 

and R (r-project.org). Once the code is created, it should preferably be shared publicly. 

GitHub is a common online Git repository for sharing and discussing software code with 

version control function that allows to retrace a project’s source code history (github.com). 

Furthermore, anonymization tools are important for ML projects in radiology, because 

sensitive patient information is part of the DICOM header of each image and data 

exchange is needed to build large databases with studies from multiple centers. 

Fortunately, there are numerous free stand-alone tools with batch processing function for 

Mac OS (e.g., dicomanonymizer.com) and Windows (e.g., rubomedical.com/ 

dicom_anonymizer). The RSNA’s Clinical Trials Processor (CTP) is open-source software 

that covers the whole image transfer pipeline between data acquisition sites and a 

principal investigator site with build-in anonymization capability (mirc.rsna.org). Figure 

3 provides an overview of useful software and online resources. 

 

 
 
Fig. 3. Useful software at different stages of a ML project in radiology 

 
 

 



CHAPTER 7 

 

 116 

Recommendations regarding study design and reporting 

Consensus statement 

•Based on existing study quality standard frameworks such as SPIRIT and STARD, we 

propose a list of quality criteria for ML studies in radiology. 

 

ML studies should be held to the same quality standards as any other diagnostic or 

prognostic study. Several frameworks exist that define standard protocol items for clinical 

trials as well as for reporting the results of diagnostic and prognostic studies. Clinical trial 

protocols should conform to the Standard Protocol Items: Recommendations for 

Interventional Trials (SPIRIT) checklist [13]. Diagnostic accuracy studies to the Standards 

for Reporting of Diagnostic Accuracy Studies (STARD) requirements and, at a minimum, 

should report essential items listed in the 2015 version of the STARD checklist [14]. For 

prognostic studies, the Transparent Reporting of Multivariable Prediction Model for 

Individual Prognosis or Diagnosis (TRIPOD) guideline and checklist [15] should be 

followed. Although these guidelines were not designed with ML studies in mind, they do 

form a solid basis for providing the details of a ML study in a protocol (SPIRIT), and for 

reporting results of studies in which ML has been applied (STARD and TRIPOD). Because 

these guidelines have not been taken up widely in the ML community, efforts are 

underway to develop ML-specific versions of each of these frameworks. In the meanwhile, 

we attempt to provide guidance by offering a checklist of items for researchers designing 

ML studies and for readers assessing the quality of publications. Our efforts expand upon 

the recently published editorial by Bluemke et al, which also addresses this topic [16]. 

 

Recommended items for designing and reporting ML studies 

In the following section, we provide a list of important considerations when designing and 

reading studies that employ ML. We have summarized these considerations in a checklist 

(Table 1) and apply them to a research article that aimed to design a DL algorithm for 

automatic cardiac chamber segmentation and quantification of left ventricular ejection 

fraction (LVEF; [17]). 
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Application of the checklist to the research article “Automated cardiovascular magnetic 
resonance imaging analysis with fully convolutional networks” by Bai et al [17]. 

1. Which clinical problem is being solved? 

A clear description of the clinical problem and rationale for the study should be provided, 

taking into account existing approaches and how they fall short. This includes the 

specification of the disease in question and a clear description of the subjects or patients 

studied. It is also important to hypothesize how ML approaches may improve upon 

existing approaches such as conventional statistical approaches to solve the problem. 

Other relevant questions include the stage of the disease in question and place in the 

diagnostic pathway. 

2. Choice of ML model 

The choice of ML model should be clearly motivated since there is a wide variety of 

approaches, which may result in different results. It is also important to explicitly discuss 

overfitting and approaches used to mitigate this problem. Overfitting occurs when ML 

models are trained to predict training data too well, which results in the inability to 

generalize to new, unseen data. An overview of commonly used ML models and their 

characteristics as well as approaches that can be used to deal with overfitting is provided 

by Liu et al in their review article [18]. Technical details of the algorithm including 

hyperparameters should be specified to foster transparency and replicability. 
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3. Sample size motivation 

In contrast to the recommendations made in the STARD and CONSORT guidelines, most 

ML studies have not explicitly considered sample size when designing the study and are 

often based on convenience samples. However, sample size and a statistical analysis plan 

should ideally be prespecified. Although there are presently no clear guidelines on how to 

calculate a sample size in ML studies, the number of subjects or datasets can be 

prespecified according to considerations such as the minimal clinical difference of interest 

or the expectation that ML is able to generate equivalent results to human observers on a 

certain task. Furthermore, sample sizes used by other researchers to solve comparable 

problems might be a good indicator. 

4. Specification of study design and training, validation, and testing datasets 

Algorithm development demands data for training, validation, and testing. Investigators 

should specify how the data was split into each of these categories. It is of utmost 

importance to strictly separate the testing dataset from the other datasets to obtain a 

realistic estimate of model performance. This is also a requirement for regulatory approval 

of ML-based computer-assisted detection devices from the United States Food and Drug 

Administration (FDA) [19]. Ideally, validation is performed not only on internal data (from 

the same department or institute) but also on an external dataset by independent 

researchers. 

5. Standard of reference 

A key consideration in ML studies is selection and quality of the reference standard or 

ground truth. Researchers should precisely specify how and by whom ground truth data 

were labeled, including the level of experience of each observer. It is important to take into 

account interobserver variability between experts and to describe how disagreements are 

resolved (e.g., by demanding that observers reach a consensus, or by adjudicating any 

differences by a separate observer). It should be noted whether existing labels were used 

(e.g., from radiology reports or electronic health records), or new labels were created. 

Finally, experts labeling the data should ideally work independently from each other 

because this will facilitate measurement of interobserver agreement between human 

experts. 
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6. Reporting of results 

Analogous to conventional diagnostic studies, contingency tables with the number of true 

positive, true negative, false positive, and false-negative classifications should be given at 

the prespecified chosen classifier threshold. Other useful measures include the area under 

the receiver operating curve (AUC) and Bland-Altman plots [20]. It is important to note 

that terminology in ML studies may be different from the terminology used in the medical 

literature. Sensitivity is equivalent to “recall” and “precision” denotes positive predictive 

value. The F1 score is a compound measure of precision and recall and its use is therefore 

highly recommended. Table 3 summarizes measures frequently used in ML. Confidence 

intervals should be reported for all of these measures. In image segmentation and analysis 

tasks, measures of how well the ML algorithm performs compared to the standard of 

reference should be given. These typically include the Dice coefficient (a measure of how 

well the ML generated contours overlap with the standard of reference contours), the 

mean contour distance (the mean distance between two segmentation contours), and the 

Hausdorff distance (the maximum distance between the 2 segmentation contours) [11]. 

7. Are the results explainable? 

Because of the large number of parameters involved, interpreting the results of ML studies 

can be challenging, especially when working with DL algorithms. This consideration is 

particularly pertinent when important treatment decisions are contingent upon the 

results generated by the algorithm. Saliency mapping enables the identification of 

morphological features in the input image underlying the model’s prediction and can help 

to investigate the algorithm’s internal logic. Visual feedback about the model’s predictions 

is very important to understand whether networks learn patterns agreeing with accepted 

pathophysiological features or biologically unknown, potentially irrelevant features. 

8. Can the results be applied in a clinical setting? 

Machine learning studies designed to solve a specific clinical problem should explicitly 

consider whether the results apply to a real-world clinical setting. This includes discussion 

of how representative the dataset used for derivation and testing of the model is of the 

clinical setting in which it will be applied. Any sources of bias, in particular class imbalance 

and spectrum bias, should be identified and discussed. Considering these factors can 

enable more precise identification of patients in which the algorithm can be used 

clinically, or in which groups of patients and clinical scenarios additional validation is 

needed. Investigators should also consider if and how the algorithm can be used at the 
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point of care, including issues like availability of the algorithm (e.g., on-premise or via 

cloud solutions), how fast results are available (e.g., in real-time or with a delay), and how 

results are visualized in order to check the model’s predictions. 

9. Is performance reproducible and generalizable? 

To date, in most reports on ML, model development, tuning, and testing have been 

performed on a convenience sample of locally available data. Although many of these 

reports have demonstrated encouraging results, it is important to investigate the 

reproducibility of the results and to perform an external validation, preferably on multiple 

datasets from other independent institutes and investigators. External validation is 

important to investigate the robustness of the model to e.g., differences in image 

acquisition and reconstruction methods between vendors and institutes and differences 

in referral patterns and variability in the prevalence of the condition of interest. 

Conversely, we also believe it is advisable to validate external algorithms prior to local use, 

especially if the algorithms` results are used for automated analysis with results directly 

transferred into clinical reports instead of use as a second reading tool. 

10. Is there any evidence that the model has an effect on patient outcomes? 

Although one of the first proofs of concept in the development of an ML algorithm is the 

investigation of its diagnostic accuracy, investigators and readers should ask themselves 

the question whether there is any evidence of an effect on patient outcomes. This is 

especially important for algorithms used for treatment recommendations and detection 

of unrequested findings. Ideally, this should be investigated in prospective, randomized 

clinical trials, as is the case for conventional interventions. These considerations also help 

to detect and mitigate reasons for missing impact of diagnostically well performing 

algorithms on patient outcomes, such as suboptimal communication of results. 

11. Is the code available? 

Transparency regarding an ML model’s design and function is key to clinical acceptance. 

Making the computer code available to other investigators is a major step towards this 

goal and is increasingly becoming a condition for obtaining funding as well as acceptance 

of studies in high-quality, peer-reviewed journals. The GitHub platform facilitates free 

and rapid dissemination of software code with basic quality checks. Investigators should 

state whether the source code of their algorithm will be made available and under which 

conditions. If not, specific reasons should be given. Making the software code available 
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enables other researchers to independently investigate whether reported results can be 

reproduced and to improve model performance. Furthermore, it enables the evaluation of 

a model’s performance over a prolonged period of time. 

 

 
 

Insights of a systematic literature review on applications of ML in cardiac 
radiology 

To identify articles on the application of ML in cardiac radiology, a comprehensive search 

for articles in PubMed and EMBASE databases was conducted. The search identified all 

articles in the English language registered no later than 31.01.2020 (n = 599 in 

PubMed; n = 2559 in EMBASE). Supplement 1 documents the search strings. 

Figure 4 displays the exact search and review workflow that included the removal of 

duplicates (n = 506) with the auto-function of the literature management software 

(Mendeley) and the exclusion of articles that were not on ML in cardiac radiology by 

manual screening (n = 2466). In the next step, the remaining relevant articles (n = 222) were 

classified into five categories according to the function of the ML applications: (a) image 

acquisition and preprocessing, (b) detection, (c) segmentation, (d) diagnosis, (e) prediction, 

and (f) other. The relation of those categories is sequential; e.g., detection is a prerequisite 

for segmentation. The studies were attributed to the most advanced category according 

to the purpose of the given algorithm. 
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Fig. 4. Search and review flow diagram 
 

At this point, we briefly mention an example per category; Fig. 5 presents corresponding 

images: (a) Tatsugami et al used a DCNN with 10 layers to reduce the image noise of CT 

angiography images. The mean image noise was significantly lower than that of images 

reconstructed with standard hybrid iterative reconstruction alone (18.5 ± 2.8 HU vs. 

23.0 ± 4.6 HU) [21]. (b) Howard et al developed five neural networks on 1676 images to 

detect and identify cardiac pacemakers and defibrillators on chest radiographs. They 

report an accuracy of 99.6% and even classified specific model groups of the devices [22]. 

(c) Romaguera et al used a DCNN to segment the left ventricle in short-axis cardiac MRI 

images and found a Dice score of 0.92, a sensitivity of 0.92, and a specificity of 1.00 [23]. 

(d) Lessmann et al developed and tested DCNNs for an automated calcium scoring on 

1744 non-ECG-gated CT scans without contrast. They report an F1 score of 0.89 for 

calcium scoring of coronaries on soft kernel reconstructions [24]. (e) Coenen et al used a 

neural network with four layers to predict the hemodynamic relevance of coronary artery 

stenoses from CTA data alone by using the ML-based FFR (fractional flow reserve) with 

invasively measured FFR as a standard of reference. They report an improved diagnostic 

accuracy of CTA-based assessment of stenosis from 71 to 85% (sensitivity: 89%; specificity 

76%) [25]. 

 



 

 

 123 

CHAPTER SEVEN
 

 
 
Fig. 5. Examples of application of ML in cardiac radiology. a Curved multiplanar 
reformation of CTAs with multiple plaques and a stent in the right coronary artery; 
standard hybrid iterative image reconstruction on the left, image processed with an ML 
algorithm with reduced noise on the right [21]. b Correctly identified Advisa device on a 
plain radiograph (left) with the according saliency map (right) that visualizes the neural 
networks attention [22]. c Segmentation of the LV on MRI by a DCNN with automatically 
detected contours in green colorC [23]. d Automated detection and quantification of 
calcifications on non-contrast CT scans (red: left anterior descending coronary artery; 
green: left circumflex coronary artery; yellow: thoracic aorta) [24]. e ML-based CT 
fractional flow reserve predicting obstructive stenosis in the mid left anterior descending 
coronary artery [25] 
 

Figure 6 demonstrates the exponentially increasing number of publications on ML in 

cardiac radiology since 2013. Figure 7 shows the distribution of modalities and the ML 

techniques that were covered in the research articles, with MRI being the predominant 

modality (41.4%) and DL being the most frequently used ML technique (63.1%). 
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Fig. 6. Number of articles on ML in cardiac radiology (Y-axis) published per year between 
2013 and 2019 (X-axis), as resulting from the structured literature review. Studies 
published earlier than 2013 and in 01/2020 are not included for reasons of clarity 
 

 
 

Fig. 7. (a) Modalities involved and (b) types of ML approaches used in studies on ML in 
cardiac radiology (n = 222) 
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Supplement 2 provides a detailed literature review on ML in cardiac radiology 

highlighting and discussing important studies in all categories. Supplement 3 contains the 

complete reference list of all studies resulting from the literature search and a table with 

detailed information on the studies. 

 

ML in cardiovascular radiology: opportunities and challenges 

1. Opportunities 

Consensus statement 
 

•ML algorithms provide opportunities along the whole task-pipeline of cardiovascular 

radiology. 

 

Machine learning offers great opportunities in cardiovascular imaging from the 

perspective of multiple stakeholders. First and foremost, from a patient perspective, there 

are opportunities to avoid unnecessary imaging. Should imaging be deemed necessary, 

ML offers opportunities to do so with shorter imaging protocols and lower radiation doses. 

Once the images are acquired, automated post-processing facilitated by ML offers quicker 

results compared to current workflows and could reduce interobserver variation and aid 

in prioritizing studies with urgent findings. ML can also be used to extract additional 

relevant information from images. Some examples relevant to cardiovascular imaging 

include extraction of volumes of all cardiac chambers instead of just the LV, more detailed 

analysis of cardiac motion patterns, and quantification of the amount of pericoronary and 

pericardial fat as well as the amount of liver fat. When reliable algorithms capable of 

assigning a diagnosis become available, this could reduce diagnostic error by serving as a 

“second reader.” Finally, ML can aid in automatic extraction of unrequested but 

prognostically relevant information. For example, automated detection or exclusion of 

pulmonary nodules or abnormalities in other organ systems depicted in the field-of-view 

would be useful for radiologists specialized in cardiovascular imaging. Furthermore, ML 

algorithms can be used to create detailed local, national, and international databases with 

normal values for clinical comparison. This will also enable the detection of smaller effect 

sizes and more precise results. 
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2. Challenges 
 

Consensus statement 
 

•ML algorithms were initially developed to solve problems in non-medical domains. Due 

to peculiarities of health-related data like high inter-reader variability, dispersed data 

storage, and data privacy issues, ML projects in radiology are facing specific challenges. 
 

•The medical research community should strive for the compilation of multicenter 

datasets that are currently lacking in the field of cardiovascular imaging. 
 

•Further challenges encompass rare disease and/or anatomical variants and compliance 

with legal frameworks. 

 

The compilation of high-quality datasets for ML projects in radiology is hampered by 

some peculiarities of health-related data. First, there is the issue of significant inter- and 

intrareader variability fostered by the fact that many categories in medicine are not as 

distinct as those of everyday objects such as dogs or cars. Second is the complexity of 

medical image interpretation. For example, a small hyperintense streak in late gadolinium 

enhancement imaging may be a hyperintensity artifact or a true scar. For clarification, 

one needs to integrate additional information such as whether there is an implanted 

cardiac device or not. Third, there is a lack of standardization in the acquisition of medical 

data. In radiology, heterogeneity is introduced by differing vendors of hardware, software, 

and unstandardized acquisition parameters. This is true for imaging data, and also for 

other diagnostic tests and therefore prevents “one-fits-all” solutions. The fourth challenge 

concerns the non-standardized format and dispersed nature of health data. While in other 

areas like engineering data is registered in interchangeable systems often designed from 

scratch, data in hospitals are mostly stored in dispersed, historically grown data silos in 

multiple data formats. The fifth challenge, especially relevant to cardiovascular radiology, 

is dealing with higher dimensional imaging data. For example, cardiac cine images are 

four-dimensional, while ML algorithms are traditionally designed to cope with data in two 

dimensions. Solutions to this challenge are either complex, or reduce information 

(processing of a 3D CT dataset as a series of multiple 2D images). Another important 

challenge to ML projects in radiology is strict standards of data privacy. 

 

All this makes the creation of high-quality ground truth datasets in healthcare challenging 

and expensive. As a result, datasets in healthcare-related ML projects tend to be much 

smaller compared to the non-medical domain: the famous contest for everyday object 
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detection, the ImageNet challenge, encompasses over 14 million images (image-

net.org/about-stats), while ML studies in cardiovascular radiology often comprise less 

than 100 cases. Public datasets like the ChestX-ray8 dataset provided by the NIH 

containing more than 100,000 frontal-view radiographs with eight disease labels are 

important initiatives to overcome this problem. However, labels need critical quality 

review, which requires medical domain knowledge. For cardiovascular radiology, 

comparable datasets are currently lacking and professional societies can play an 

important role in the assembly of large publicly available datasets with high-quality 

ground truth labels to allow for an objective comparison of different ML algorithms. 

Registries like the ESCR MR/CT registry (mrct-registry.org), providing large standardized 

data sets for further analyses with currently > 300,000 de-identified examinations [26], are 

also an important contribution in this direction. 

 

Apart from image data–related problems, there are other challenges. First, there is the 

problem of rare disease entities. ML algorithms need a sufficient amount of training 

examples to detect patterns, ideally including examples at the extreme ends of the disease 

spectrum. However, many radiologic disease patterns are rarely seen, like congenital heart 

diseases, and ensuring a fully representative training dataset remains a difficulty. Second, 

legal issues: Machine learning algorithms, although highly accurate for many tasks, are 

never perfect and discussions on legal liability for incorrect or missed diagnoses are 

ongoing [27]. Third, the question of acceptance: will physicians and patients be willing to 

trust judgments of algorithms that are a “black box” to them? However, trust in systems 

not fully understandable to us is part of day-to-day life. 

 

Conclusion 

The number of scientific studies published on ML in cardiovascular imaging has been 

exponentially growing with more than 100 research articles in 2019. The majority 

concerned MRI studies using DCNNs for image segmentation tasks, but ML algorithms 

can also help to shorten imaging protocols and extract more information from the same 

imaging data. The prerequisites for ML to make important contributions in the field of 

radiology are now in place: freely available open-source software, vast amounts of digital 

radiology data in most countries, and an increasing presence of well-trained experts to 

train and clinically supervise ML. Furthermore, online transfer of data and ML models has 

become convenient. 
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However, to accomplish this enormous potential, the field of radiology needs to develop 

common quality standards regarding ML applications and studies. We highlight the need 

for a detailed description of datasets and methodology used. Furthermore, in the course 

of ML algorithm development that aims at having a clinical impact, cooperation of 

professionals from multiple backgrounds is required. 
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Discussion 
Driven by recent technological advancements, a large number of ML applications has 

emerged in the field of radiology. While the main focus was on image recognition tasks in 

recent years, the spectrum of applications is much broader including text-recognition, 

speech-recognition, image reconstruction, quality control, patient scheduling, predictive 

analytics and many more. The thesis at hand combines six articles with a focus on 

cardiothoracic imaging that make a small contribution to the vast body of literature in 

this field. This chapter first summarizes key insights gained during the five projects, then 

discusses chances and challenges for ML in radiology with a focus on cardiothoracic 

imaging, and finally provides a conclusion and outlook. 

Key insights 

This section provides five key insights gained during the projects. 

 
First, ML is the undisputed standard method for image recognition and segmentation 

tasks at this moment, and therefore of high interest to radiologists. While a combination 

with traditional image processing methods may improve the performance in specific 

cases, the “go-to” procedures for detection and segmentation of medical images are based 

on ML. To be more precise, on the ML-subcategory deep learning, which uses neural 

networks. For object detection, ResNets are a frequent choice [19]. The output can be 

visualized as bounding boxes around findings of interest. To each bounding box, a category 

(e.g., “lung tumor”) and probability (e.g., “0.96”) are assigned. Examples are found in 

Chapter 3 (detection of pulmonary emboli) and Chapter 4 (detection of rib fractures). 

For image segmentation, U-Net, a convolutional neural network [2], is state-of-the art and 

was used in Chapter 6 to segment the aorta and define pericardial volumes. For organ 

segmentation in general, U-Nets are an excellent choice. 

 

Second, the answer of whether ML will be part of the future of radiology can be answered 

with a clear “yes”: ML is already highly productive in assisting radiologists. Examples are 

the algorithm for detection of pulmonary embolism discussed in Chapter 3 and the 

algorithm for detection and segmentation of pulmonary nodules used in Chapter 5, 

which have become part of products running in hospitals around the world. On the other 

hand, it has also become clear by now, that the statement by ML-expert Geoffrey Hinton, 

who claimed at a conference in 2016 that “(…) people should stop training radiologists 
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now, it’s just completely obvious that within five years deep learning is going to be better 

than radiologists” [20] was an exaggeration probably based on lacking knowledge of the 

complexity of medicine. To conclude, whereas we are far from complete automatization 

of the radiology workflow, multiple applications have reached a productive stage.  

 

Third, implementation of ML applications in the clinic is at least as challenging as training 

the underlying model. Whereas the body of literature on ML in radiology is vast [21], only 

a tiny fraction finally makes it into clinic. Besides expert knowledge in radiology and 

computer science, many more competences are needed for successful implementation. 

This includes legal expertise to cope with the complex legal framework governing medical 

products and expertise in user interface design to ensure usability. Furthermore, the 

explicit will of all stakeholders is needed. Whereas there is usually a lot of initial 

enthusiasm towards new technologies, the concrete and sustained operation in a clinical 

environment is a challenge demanding perseverance and attribution of resources and 

responsibilities. 

 

Fourth, the visual inspection of outputs and analysis of reason of failure should be part of 

ML studies in radiology, because they can guide the way to further algorithmic 

improvements. An example is provided in Chapter 3, which found that an algorithm for 

detection of pulmonary emboli frequently marked unremarkable pulmonary veins. A 

potential way to improve this algorithm is to additionally segment pulmonary veins and 

disregard all embolus candidates located within the vein vessel mask. Similarly, Chapter 

4 reports that a relevant number of FP detections of rib fractures are found outside the 

region of the body (“out of bounds”) – in this case, an algorithm based on ML or traditional 

image processing techniques such as HU thresholding could improve performance by 

classifying voxels into body region vs. surroundings.  

 

Fifth, the consequences of large amounts of FP findings caused by parallel application of 

multiple algorithms are currently being ignored. Sensitivity and the number of FP findings 

are a trade-off: the more an algorithm is tuned towards sensitivity, the more FP it produces 

and vice-versa. Whereas current algorithms, such as the ones presented in Chapters 3 

and 4, reach high levels of sensitivity at only small numbers of FPs per case, they only 

solve one specific task each: detection of pulmonary embolism and rib fractures, 

respectively. Presumably, the use of ML in radiology will increase and each examination 

will be analyzed by multiple algorithms. An average of 20 false alerts per examination is 
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the consequence of running 100 algorithms for detection of various critical findings, 

assuming an excellent number of only 0.2 FPs per case per algorithm. Those would have 

to be checked by a radiologist and decisively inhibit the radiology workflow. Potential 

solutions include accepting lower sensitivities, adding further layers of analysis as 

mentioned above, or pre-checking algorithmic results by educated auxiliary staff.  

Chances 

Machine learning offers great chances to radiology in general. This is especially true for 

cardiovascular imaging with its time-consuming post-processing workflows and relatively 

radiation-intensive diagnostic methods such as cardiac CT. For example, algorithms can 

help to achieve lower radiation doses by optimizing image acquisition and reconstruction 

[22]. Automated post-processing can save immense amounts of time, especially in cardiac 

MRI and vascular imaging. At the same time, those automated analyses reduce 

interobserver variation and help to replace qualitative statements in radiology reports 

with quantitative imaging parameters. Another opportunity is that ML facilitates the use 

of all information available in an examination. For example, by delivering metrics on the 

amount of fat in the liver that is partially included in the field-of-view of a chest CT. This 

also helps not to miss findings that are not in the focus of the given examination, such as 

pulmonary nodules or osseous processes in a cardiac CT. Prioritization of examinations 

with suspected critical findings can optimize the allocation of resources in radiology. 

Furthermore, ML algorithms facilitate the retrospective analysis of whole imaging 

archives, thereby enabling the creation of databases with normal values on a population 

level. 

Challenges 

There are relevant challenges that ML projects in radiology have to deal with. One is the 

availability of high-quality data. ML models need large amounts of training data. 

Everyday objects such as cars or cats are distinct categories, images are available in large 

quantities, and labelling does not require specific education. This makes high-quality 

training data cheap. In contrast, in radiology, labels are less distinct (is this slight 

thickening of the pleura suspicious or not?), less data is available (also due to regulatory 

barriers protecting individual rights) and expertise in medical imaging is a prerequisite for 

labelling. All this makes high-quality training data expensive. Additionally, in rare disease, 

there is not enough data to reach satisfying performance.  Furthermore, medical imaging 

data is heterogenous due to the variety of vendors, acquisition parameters, and software 
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providers. To complicate things even more, disease prevalence differs between regions, 

which hampers “one-size-fits-all” solutions. Another challenge is legal issues: even if 

modern ML algorithms reach high performance, they will never be perfect and debates 

about liability for mis-diagnoses are ongoing.  

	

Conclusion and Outlook 
This thesis provided examples of application of ML to solve problems in the field of 

cardiothoracic radiology. It was demonstrated that this is not confined to the core duty of 

radiology departments, image analysis, but includes the complete range of tasks, 

beginning from data acquisition and data curation to clinical application and predictive 

analytics. It was found that ML is the state-of-the art for image recognition tasks and that 

performances of current applications are at levels that allow for clinical application. At the 

same time, it was noticed that we are far from a complete auto-analysis of medical images 

and, also due to the complexity of the field, it is fair to predict that radiologists as domain 

experts will be needed in the future.  

 

The most likely scenario for the mid-term future is the ML-enhanced radiology 

department, where algorithms perform repetitive tasks such image pre-processing, 

segmentation of organs, and provide volumetric information to support radiologists in 

their daily routine. Prepopulation of written radiology reports on the basis of algorithm 

findings has tremendous potential. It is then the job of the radiologist to monitor the 

algorithm outputs, adjust their settings where needed, and consolidate as well as interpret 

this information. The time that is saved by unburdening radiologists from repetitive tasks 

can be used to put more effort into timely and comprehensive communication to referring 

physicians and patients. Cardiothoracic radiology is likely to be among the sub-

specializations of radiology that profit most, due to the considerable proportion of time-

consuming and repetitive tasks such as segmentation of ventricles in cardiac MRI. 

 

To make the most of ML, an open discussion among imaging professionals and computer 

scientists on where its application makes sense and where not is warranted. As a general 

rule of thumb, using ML to solve tasks that are repetitive, frequently performed, allow for 

a clear definition of ground-truth, and offer a lot of training data seems promising. This 

involves guideline-compliant diameter measurements of the aorta, cardiac volumetry, and 
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chest CT for follow-up of pulmonary nodules. Furthermore, in recent years, the focus of 

research was the development and evaluation of specific ML applications using 

retrospective data. This was reasonable at this early stage of development. In the future, 

clinical application and impact on clinical workflows as well as patient outcomes need to 

be addressed. For that, prospective controlled clinical trials are needed.  

 

To conclude, ML has already arrived at the heart of cardiothoracic radiology. The 

reasonable integration of resulting applications into clinical workflows is among the 

central fields of activity in the years to come. 
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Summary 

This thesis applies machine learning to a broad spectrum of tasks in the field of 

cardiothoracic radiology.  

	

Data curation: Chapter 2 demonstrates how ML can be used for time-efficient data 

curation. Three methods, a convolutional neural network (CNN), a support vector machine 

and a random forest classifier were trained on the impression sections of 2,801 CT 

pulmonary angiograms, which had been manually labeled by a radiologist according to 

whether they describe the presence of pulmonary embolism or not. The performance of 

the three approaches for report classification (pulmonary embolism: yes or no) was 

assessed on a test set of 1,377 CT pulmonary angiogram impression sections. The CNN 

reached the highest accuracy (99.1%; 95% CI 98.5-99.6%). Of interest, all three approaches 

reached an accuracy of >93% after training with a subset of 470 labelled impressions 

(=16.8% of available training data). Because the time-consuming compilation of large 

curated datasets is a prerequisite for most scientific projects and quality control measures, 

these ML techniques are a valuable tool for both researchers and clinicians. 

 

Detection: Chapter 3 evaluates the performance of a deep convolutional neural network 

(CNN) for detection of pulmonary embolism on CT pulmonary angiograms. In times of 

ever-increasing numbers of imaging tests performed, the swift identification and 

communication of exams with critical findings becomes one of the major tasks in 

radiology. In this study, the two-step algorithm pipeline consisted of a 3D CNN with 

ResNet architecture for embolus candidate generation and a feature-based algorithm for 

false-positive reduction. It had been trained on 28,000 CTPAs from other institutions. The 

test set comprised 1,465 consecutive CTPAs acquired during one year at a university 

hospital. On a per-examination level, the model’s sensitivity was 92.7% (95% CI: 88.3-95.5) 

and specificity was 95.5% (95% CI: 94.2-96.6). Most false-positive findings were caused by 

contrast agent-related flow artifacts and (unremarkable) pulmonary veins. This algorithm 

is currently implemented in various hospitals and used to trigger sending warning 

messages to radiologists and for worklist prioritization.  

 

Detection: Chapter 4 investigates the performance of a ResNet-based CNN for detection 

of rib fractures on a large dataset of whole-body trauma CTs acquired at a level-1 trauma 

center. The CNN had been trained on 11,455 chest CTs from eight medical institutions. 
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The independent test set included 511 whole-body trauma CTs. On the per examination 

level, sensitivity was 87.4% (95 CI: 81.2-92.1) and specificity 91.5% (95% CI: 88.0-94.2). 

Sensitivity on a per finding level was lower with 65.7% (95% CI: 68.8-92.4). Ninety-seven 

true rib fractures that had not been described in the official written radiology reports were 

detected by the algorithm. Therefore, the algorithm can help to avoid underreporting. 

Detection of rib fractures has therapeutical consequences such as close monitoring for 

secondary consequences like pneumothorax. 

 

Segmentation: Chapter 5 investigates the performance of ML for detection and 

segmentation of pulmonary tumors of various size on FDG-PET/CT. Therefore, the 

PET/CTs of 320 patients with histologically confirmed lung cancer were processed with an 

algorithm pipeline consisting of a lung segmentation algorithm (deep image-to-image 

network), an algorithm for nodule candidate generation (faster RCNN) and a false-positive 

reduction stage (ResNet). The mean lung tumor diameter in the test set of 5.0 cm (SD:3.4) 

was significantly larger than the pulmonary nodules that had been used for training (<3.0 

cm). Consequently, the tumor detection rate dropped from 90.4% for T1 tumors to 8.8% 

for T4 tumors. Besides lesion size, pleural contact was the most relevant predictor of non-

detection. Regarding segmentation, predicted volumes correlated strongly with ground-

truth volumes for T1-tumours (r=0.91). Correlation coefficients dropped for larger tumors. 

Whereas this performance pattern was expected due to the structure of the training data, 

the study emphasizes the general importance of performance sub-analyses for different 

stages of disease. 

 

Prediction: Chapter 6 uses multiple CNNs to extract cardiovascular and pulmonary 

imaging parameters from 120 chest CTs of patients RT-PCR positive for SARS-CoV-2, 

acquired at time of initial presentation at the hospital. For cardiovascular metrics, 

algorithms based on U-Net and ResNet were used to extract five cardiovascular metrics, 

including the volume of coronary calcifications, the total pericardial volume and aortic 

diameters. For extraction of pulmonary metrics, a DenseUNet trained on 901 chest CTs 

segmented all pulmonary opacities. On this basis, by means of traditional image 

processing and computation, six pulmonary imaging metrics were calculated. 

Furthermore, patient demographics and laboratory markers of inflammation were 

retrieved at the day of presentation at the hospital and combined to models predicting the 

patients’ future treatment journey (outpatient vs. hospital admission vs. ICU admission), 

which was ascertained 12 weeks after the end of data collection. The model based on the 
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image parameters alone was an excellent classifier for differentiation of patients 

eventually needing ICU-care vs. those who did not (AUC=0.88; 95% CI: 0.79-0.97). Adding 

demographic information and laboratory findings to the model further improved the 

performance (AUC=0.91; 95% CI: 0.85-0.98). Therefore, the algorithm was able to identify 

patients at high risk of needing intensified care within the following weeks at the time of 

initial hospital presentation. 

 

Framework: Chapter 7 provides a framework for the design and evaluation of ML 

studies in cardiothoracic radiology. This includes prerequisites of ML projects with regard 

to hardware, software, and expertise. Furthermore, it contains a checklist of items that 

should be reported in research articles in the field of cardiothoracic imaging.  

 

Conclusion and Outlook: This thesis provided examples of application of ML to solve 

problems in the field of cardiothoracic radiology. It was demonstrated that this is not 

confined to the core duty of radiology departments, image analysis, but includes the 

complete range of tasks, beginning with data acquisition and data curation to clinical 

application and predictive analytics. It was found that ML is state-of-the art for image 

recognition tasks and that performances of current applications are at levels allowing for 

clinical application. At the same time, it was noticed that we are far from a complete 

automatization of the radiology workflow. 

 

ML has arrived at the heart of cardiothoracic radiology. The reasonable integration of 

resulting applications into clinical workflows will be a central field of activity in the years 

to come. 
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Nederlandse samenvatting 
 

Dit proefschrift past machine learning toe op een breed spectrum van taken in de 

cardiothoracale radiologie.  

 

Data curatie: Hoofdstuk 2 laat zien hoe ML kan worden gebruikt voor tijdsefficiënte 

data curatie. Drie methoden, een convolutioneel neuraal netwerk (CNN), een support 

vector machine en een random forest classifier werden getraind middels 2.801 CT 

pulmonale angiogrammen, die handmatig door een radioloog waren gelabeld op basis van 

de vraag of ze de aanwezigheid van longembolie beschrijven of niet. De prestaties van de 

drie methoden voor rapportclassificatie (longembolie: ja of nee) werden beoordeeld met 

een testset van 1.377 CT-pulmonaire angiogrammen. Het CNN bereikte de hoogste 

nauwkeurigheid (99,1%; 95% CI 98,5-99,6%). Van belang is dat alle drie methoden een 

nauwkeurigheid van >93% bereikten na training met 470 gelabelde samenvattingen (16,8% 

van de beschikbare trainingsdata). Omdat de tijdrovende compilatie van grote gecureerde 

datasets een voorwaarde is voor de meeste wetenschappelijke projecten en 

kwaliteitscontrolemaatregelen, zijn de gepresenteerde ML-technieken een waardevol 

hulpmiddel voor zowel onderzoekers als clinici, om de tijd die nodig is voor de 

voorbereiding van de data, duidelijk te reduceren. 

 

Detectie: Hoofdstuk 3 evalueert de prestaties van een diep CNN voor detectie van een 

longembolie op CT angiogrammen (CTPA). Bij het stijgend aantal uitgevoerde 

onderzoeken per jaar, wordt de snelle identificatie en communicatie van onderzoeken met 

kritische diagnosen een van de meest uitdagende taken in de radiologie. In deze studie 

bestond de tweetraps algoritmepijplijn uit een 3D CNN met ResNet architectuur voor het 

genereren van emboluskandidaten en een feature-based algoritme voor  reductie van vals-

positieve resultaten. Het was getraind op 28.000 CTPA's van externe ziekenhuisen. De 

testset bestond uit 1.465 opeenvolgende CTPA's die gedurende een jaar in een academisch 

ziekenhuis waren afgenomen. Per CTPA bedroeg de sensitiviteit van het model 92,7% (95% 

CI: 88,3-95,5) en de specificiteit 95,5% (95% CI: 94,2-96,6). De meeste vals-positieve 

bevindingen werden veroorzaakt door contrastmiddel-gerelateerde flow artefacten en 

onopvallende pulmonale vaten. Dit algoritme wordt momenteel geïmplementeerd in 

verschillende ziekenhuizen en gebruikt. Ook is een workflow gerealiseerd om 

waarschuwingsberichten naar radiologen te sturen en voor hun werklijst te prioriteren.  
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Detectie: Hoofdstuk 4 onderzoekt de prestaties van een ResNet-gebaseerde CNN voor 

detectie van ribfracturen op een grote dataset van trauma CT scans, verkregen in een level-

1 traumacentrum. Het CNN was getraind op 11.455 thorax CT scans van acht medische 

instellingen. De onafhankelijke test set bestond uit 511 trauma CT scans verkregen vanuit 

traumacentra. Per onderzoek gezien was de sensitiviteit 87,4% (95 CI: 81,2-92,1) en de 

specificiteit 91,5% (95% CI: 88,0-94,2). De sensitiviteit per laesie was lager met 65,7% (95% 

CI: 68,8-92,4). Zevenennegentig ribfracturen die niet waren beschreven in het klinische 

verslag werden door het algoritme gedetecteerd. Het algoritme kan dus helpen om 

onderrapportage te voorkomen. Detectie van ribfracturen heeft therapeutische gevolgen 

zoals nauwgezette controle op secundaire gevolgen zoals pneumothorax. 

 

Segmentatie: Hoofdstuk 5 onderzoekt de prestaties van ML voor detectie en 

segmentatie van pulmonale tumoren van verschillende grootte op FDG-PET/CT. Daartoe 

werden de PET/CT's van 320 patiënten met histologisch bevestigde longkanker verwerkt 

met een algoritme-pijplijn bestaande uit een longsegmentatie-algoritme (deep image-to-

image network), een algoritme voor het genereren van nodule-kandidaten (faster RCNN) 

en een vals-positieve reductiefase (ResNet). De gemiddelde longtumordiameter in de 

testset van 5,0 cm (SD: 3,4 cm) was aanzienlijk groter dan de longnodules die voor de 

training waren gebruikt (<3,0 cm). Als gevolg daarvan daalden de 

tumordetectiepercentages van 90,4% voor T1 tumoren tot 8,8% voor T4 tumoren. Naast de 

grootte van de laesie was pleuracontact de meest relevante voorspeller van niet-detectie. 

Wat segmentatie betreft, correleerden voorspelde volumes sterk met de 

refferentievolumes voor T1-tumoren (r=0,91). De correlatiecoëfficiënten daalden voor 

grotere tumoren. Hoewel dit prestatiepatroon werd verwacht als gevolg van de structuur 

van de trainingsgegevens, benadrukt de studie het algemene belang van prestatie-

subanalyses voor verschillende ziektestadia. 

 

Voorspelling: Hoofdstuk 6 worden meerdere CNNs gepresenteerd waarmee 

cardiovasculaire en pulmonaire beeldvormingsparameters uit 120 thorax CTs van 

patiënten die positief zijn voor SARS-CoV-2 kunnen worden gemeten. Alle onderzoeken 

werden verkregen op het moment van de eerste presentatie in het ziekenhuis. Voor 

cardiovasculaire parameters werden algoritmen op basis van U-Net en ResNet gebruikt 

om vijf cardiovasculaire parameters te extraheren, waaronder het volume van coronaire 

verkalkingen, het totale pericardiale volume en de aortadiameter. Voor de extractie van 

pulmonale metriek werden met een DenseUNet, getraind op 901 CT's van de thorax, alle 
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pulmonale verdichtingen gesegmenteerd. Op basis hiervan werden, door middel van 

traditionele beeldverwerking en -berekening, zes pulmonale beeldvormingskenmerken 

berekend. Bovendien werden demografische gegevens van de patiënt en 

laboratoriummarkers van ontsteking verzameld op de dag van de presentatie in het 

ziekenhuis en gecombineerd tot modellen die het toekomstige behandeltraject van de 

patiënten voorspelden (poliklinisch vs. ziekenhuisopname vs. IC-opname), dat 12 weken 

na het einde van de gegevensverzameling werd vastgesteld. Het model op basis van de 

beeldparameters alleen was een uitstekende classificator voor het onderscheiden van 

patiënten die uiteindelijk IC-zorg nodig hadden en patiënten die dat niet hadden 

(AUC=0,88; 95% CI: 0,79-0,97). Toevoeging van demografische informatie en 

laboratoriumresultaten aan het model verbeterde de prestatie (AUC=0,91; 95% CI: 0,85-

0,98). Kortom, het algoritme was in staat om patiënten te identificeren met een hoog risico 

op geïntensiveerde zorg binnen de volgende weken op het moment van de eerste 

ziekenhuisopname. 

 

ML-studiedesign: Hoofdstuk 7 biedt een kader voor het ontwerp en de evaluatie van 

ML-studies in de cardiothoracale radiologie. Dit omvat randvoorwaarden van ML 

projecten met betrekking tot hardware, software, en expertise. Verder levert het een 

checklist met items die gerapporteerd moeten worden in een wetenschappelijk artikel op 

het gebied van cardiothoracale beeldvorming. 

 

Conclusie en vooruitzichten: Dit proefschrift beschrijft voorbeelden van toepassing van 

ML om uitdagingen op het gebied van cardiothoracale radiologie op te lossen. Aangetoond 

werd dat dit niet beperkt blijft tot de kerntaak van radiologie-afdelingen, beeldanalyse, 

maar het complete takenpakket omvat, beginnend bij data-acquisitie en data-curatie en 

rijkend tot de klinische toepassing en voorspellende analyses. ML is de state-of-the-art 

voor beeldherkenningstaken en dat de prestaties van de huidige toepassingen op een 

niveau liggen dat klinische toepassing mogelijk maakt. Tegelijkertijd werd opgemerkt dat 

we nog ver verwijderd zijn van een volledige automatisering van de radiologie-workflow. 

 

ML heeft een belangrijke plek verworven in het hart van de cardiothoracale radiologie. De 

zinvolle integratie van resulterende toepassingen in klinische workflows zal in de komende 

jaren tot de centrale werkterreinen behoren. 
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