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Conical channels filled with an aqueous electrolyte have been proposed as promising candidates for ion-
tronic neuromorphic circuits. This is facilitated by a novel analytical model for the internal channel dynamics
[Kamsma et al., arXiv:2301.06158, 2023], the relative ease of fabrication of conical channels, and the wide
range of achievable memory retention times by varying the channel lengths. In this work, we demonstrate that
the analytical model for conical channels can be generalized to channels with an inhomogeneous surface charge
distribution, which we predict to exhibit significantly stronger current rectification and more pronounced mem-
ristive properties in the case of bipolar channels, i.e. channels where the tip and base carry a surface charge of
opposite sign. Additionally, we show that the use of bipolar conical channels in a previously proposed iontronic
circuit features hallmarks of neuronal communication, such as all-or-none action potentials and spike train gen-
eration. Bipolar channels allow, however, for circuit parameters in the range of their biological analogues, and
exhibit membrane potentials that match well with biological mammalian action potentials, further supporting
its potential for bio-compatibility.

I. INTRODUCTION

Iontronics is an exciting emerging platform that aims to
harness the transport of ions for the use of signalling. The
ability to control ion transport in confined geometries offers
unique opportunities compared to traditional electronic sys-
tems, such as the ability to mimic biological processes or in-
terface with cells and tissues [1–3]. A particularly exciting
direction is that of neuromorphic (brain-inspired) iontronic
circuits [1–6], which offer the unique feature of closely re-
sembling biological processes as signalling in the brain also
relies on ion transport [11, 12]. A promising candidate for
the realisation of such circuits are ionic microfluidic memris-
tors (memory-resistors) [7–10, 13–24]. The dynamical prop-
erties of memristors make them artificial analogues to biologi-
cal synapses, the connections between neurons [25–29]. Over
the past few years, a vast array of different memristors has
been extensively investigated as components for neuromor-
phic circuit architectures [51–53]. Not only are memristors
analogues to synapses, the biological ion channels present in
neuronal membranes that facilitate signalling [11, 30–43] are
also memristors [12, 25], offering even more perspectives for
brain-inspired circuits. Due to the prospect of more energy-
efficient computers [44, 45] and bio-compatibility [26, 46–
50], memristors and neuromorphic circuit architectures have
drastically increased in popularity over recent years [51–53].
However, the emphasis has mostly been on memristors that
require electrons or holes as charge carriers [45, 51–53], lim-
iting their applicability in fully ionic fluidic systems.

In the past few years, however, some interest has been
shown in microfluidic neuromorphic components [7–10, 13–
23]. Candidates of specific interest for the present work are
conical channels containing an aqueous electrolyte and a ho-
mogeneous surface charge, which are known to act as ion-
tronic microfluidic memristors [13–23]. Recently, an analyt-
ical model was derived that explains in a quantitative man-
ner how transient concentration polarisation in such channels
is responsible for a volatile conductance memory and it was
demonstrated that these channels could carry the potential to

be used in experimentally accessible neuromorphic iontronic
circuits [8]. The underlying functionality which underpins the
memristive behaviour of conical channels is that they exhibit
current rectification in steady-state [54–58]. Although coni-
cal channels with a homogeneous surface charge distribution
are desirable as relatively simple model systems for investigat-
ing iontronic systems [55, 57, 59–72], they are not necessarily
the best performing channels for current rectification [73]. In
fact, conical channels with a surface charge distribution that
changes sign as a function of the distance to the tip are known
to exhibit a much stronger current rectification than homoge-
neously charged ones [74]. These so-called bipolar conical
channels are therefore promising systems to advance the field
of iontronic (neuromorphic) systems.

In this work we present an analytical model that quanti-
tatively captures both the steady-state and the dynamical be-
haviour of conical channels with an inhomogeneous surface
charge distribution, based on the methodology in Refs. [8, 55].
Our model contains no free parameters and can quantitatively
predict the steady-state and time-dependent ionic charge cur-
rents as a result of static and dynamic applied voltages, re-
spectively. An understanding of these current-voltage rela-
tions and the dependence on system parameters could allow
for a targeted development of new circuits of these channels
and more effortless scanning of possible applications thereof.

Recently some fully microfluidic circuits that display neu-
ronal behaviour have been theoretically and numerically ex-
plored. These circuits, through which an imposed current can
be driven, consist of artificial ion channels, batteries, and a
capacitor [7, 8]. In Ref. [7] a circuit was modelled contain-
ing quasi two-dimensional nanochannels that connect aque-
ous electrolytes, which generated a train of voltage spikes,
a feature of neuronal communication [31–35]. In Ref. [8],
a more experimentally accessible circuit containing conical
channels with homogeneous surface charge was proposed that
also obeys the defining all-or-none law for action potentials
[11, 30, 31]. Here we will demonstrate that bipolar conical
channels can be used in the circuit from Ref. [8] to achieve
the same all-or-none action potentials and spike trains, how-
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ever with more biologically relevant salt concentrations and
battery potentials. Furthermore, the circuit’s membrane po-
tentials during spiking match typical mammalian values, mak-
ing it more bio-compatible.

II. BIPOLAR CONICAL CHANNEL

To study the steady-state properties and the voltage-driven
dynamics of conical channels with an inhomogeneous surface
charge eσ(x), we consider an azimuthally symmetric long
conical channel of length L, base radius Rb � L at x = 0,
and tip radius Rt < Rb at x = L, with x the longitudinal co-
ordinate, as depicted schematically in Fig. 1(a). The channel
radius is described by R(x) = Rb− x∆R/L for x ∈ [0,L], the
central axis being at radial coordinate r = 0 and ∆R = Rb−Rt.
On the channel surface, at r = R(x), we assume an inhomoge-
neous surface charge distribution eσ(x), with a positive sur-
face charge at the base and middle of the channel, a negative
surface charge at the tip, with a linear increase described by

σ(x) = σ0 +σ
′ x
L
, (1)

where throughout this manuscript we set σ ′ = −3σ0/2 with
eσ0 = 0.1 enm−2, resulting in a bipolar (BP) channel. Un-
less stated otherwise, we set the channel dimensions as length
L = 10 µm, base radius Rb = 200 nm, and tip radius Rt =
50 nm, resulting in a channel geometry similar as realised
before experimentally [75]. The channel connects two bulk
reservoirs of an incompressible aqueous 1:1 electrolyte, with
mass density ρm = 103 kg ·m−3, viscosity η = 1.01 mPa · s,
and electric permittivity ε = 0.71 nF ·m−1. The electrolyte
contains ions with monovalent charges ±e with e the pro-
ton charge and diffusion coefficients D± = D = 2 µm2ms−1,
a typical value for dilute KCl [76] in microfluidic chan-
nels [77, 78]. At the far side of both reservoirs we im-
pose fixed ion concentrations ρ± = ρb = 2 mM, such that
the equilibrium Gouy-Chapman surface potential ψ0(x) =
(2kBT/e)sinh−1[2πλBλDσ(x)] equals ψ0(0) ≈ 92 mV at the
base and ψ0(L) ≈ −61 mV at the tip. Here we introduced
the Bjerrum length λB = e2/(4πεkBT ) and the Debye length
λD = 1/

√
8πλBρb. An electric double layer (EDL) forms

that screens the surface charge with λD ≈ 6.8 nm. The far
sides of both reservoirs are kept at a constant and equal pres-
sure P = P0. On the far side of the reservoir connected to
the base we impose an electric potential V (t), while the far
side of the other reservoir is grounded. The resulting physical
quantities of interest in this system are the electric potential
profile Ψ(x,r, t), the ionic concentration profiles ρ±(x,r, t), an
electro-osmotic fluid flow with velocity field u(x,r, t), ionic
fluxes j±(x,r, t) with j+− j− the charge flux and j++ j− the
salt flux, and the pressure profile P(x,r, t).

The aforementioned physical quantities can be described
by a coupled set of equations. Firstly, the ionic fluxes j± and
concentration profiles ρ± satisfy the continuity equation

∂ρ±
∂ t

+∇ · j± = 0, (2)

Lρ±=ρb ρ±=ρb
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FIG. 1. (a) Schematic representation of the azimuthally symmetric
bipolar (BP) conical channel (not to scale), with channel length L,
base radius Rb, and tip radius Rt <Rb, connecting two bulk reservoirs
of a 1:1 aqueous electrolyte, with bulk concentration ρb. The channel
wall carries a surface charge density eσ(x), with σ(x) = σ0 +σ ′ x

L .
Here σ ′ = −3σ0/2 with eσ0 = 0.1 enm−2 such that the surface
charge is positive at the base (eσ(0) = eσ0) and negative at the
tip (eσ(L) = −eσ0/2). A possibly time-dependent electric poten-
tial drop V (t) is applied over the channel, driving an ionic charge
current I(t) = g(V (t), t)V (t) with g(V (t), t) the channel conductance
that we calculate in this paper. (b) Steady-state current I as a func-
tion of the static potential V as predicted by full FE calculations of the
PNPS equations (2)-(5), for a bipolar (BP) channel (blue) and other-
wise identical unipolar (UP) channels with uniform surfaces charge
−σ0/2 (green) and−σ0 (red). An applied positive (negative) voltage
over the channel results in ion depletion (accumulation) as depicted
in the insets of (b), responsible for the steady-state diodic behaviour
of the cones [55].

and the Nernst-Planck equation,

j± =−D±

(
∇ρ±±ρ±

e∇Ψ

kBT

)
+uρ±, (3)

where the three terms account for Fickian diffusion, Ohmic
conduction, and Stokesian convection, respectively. The fluid
flow u(x,r, t) satisfies a force balance described by the Stokes
equation for an incompressible fluid

ρm
∂u
∂ t

= η∇
2u−∇P− eρe∇Ψ; ∇ ·u = 0, (4)

where −eρe∇Ψ is the electric body force, which depends on
the ionic space charge density ρe = ρ+ − ρ−. This space
charge density affects the electric potential Ψ(x,r, t), that sat-
isfies the Poisson equation

∇
2
Ψ =− e

ε
ρe, (5)
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where Ψ(−∞,r, t) =V (t) and Ψ(∞,r, t) = 0. Eqs. (2)-(5) form
the Poisson-Nernst-Planck-Stokes (PNPS) system of equa-
tions. To make the system closed we impose the boundary
conditions on the channel wall given by the no-slip condi-
tion u = 0, the blocking condition n · j± = 0, and Gauss’ law
n ·∇Ψ(x,R(x), t) = eσ(x)/ε , with n the normal vector of the
wall.

In Fig. 1(b) we show steady-state current-voltage (I-V)
curves as determined by finite-element (FE) calculations, not
only for the BP channel under consideration (blue) but also
for homogeneous and unipolar (UP) surface charge densi-
ties −eσ0/2 (green) and −eσ0 (red). An applied potential V
over the channel leads to a depletion or accumulation of ions,
where for our parameters V < 0 results in salt accumulation
while V > 0 depletes the channel of salt, as shown in the insets
of Fig. 1(b), thereby changing the channel conductance. This
concentration polarisation is responsible for the ion current
rectification found in conical channels [55]. It is clear that the
BP channel exhibits a significantly stronger current rectifica-
tion, with the ratio ICR = |I(−0.8 V)/I(0.8 V)| of the current
I(V ) at voltages V = ±0.8 V being as large as ICR ≈ 21 for
the BP channel (blue), while it is as small as ICR≈ 3 and 2.4
for the UP channels with surface charges −σ0/2 (green) and
−σ0 (red), respectively.

III. ANALYTIC APPROXIMATION FOR BIPOLAR
CHANNELS

The full PNPS equations (2)-(5) cannot be solved analyti-
cally for the system of interest here in steady-state. However,
with a few reasonable assumptions we can simplify them to
obtain some closed-form analytic descriptions [55]. Under
the assumption that the Debye length is small compared to the
channel radius, i.e. λD� R(x), we can make the approxima-
tion that for all r at least a few λD away from the surface, the
salt concentration ρ+(x,r)+ ρ−(x,r) = ρs(x,r) ≈ ρs(x) and
the electric potential Ψ(x,r)≈Ψ(x) are radially independent.
With this assumption, as in Ref. [55], the slab-averaged elec-
tric field −∂xΨ(x) and the total salt flux js(x,r) = j+(x,r)+
j−(x,r) can be radially integrated to obtain expressions for the
cross-sectional averaged electric field

−∂xΨ(x) =
V
L

RbRt

R2(x)
, (6)

and the total salt flux Jx(x) = 2π
∫ R(x)

0 dr rjs(x,r) · x̂ through
the channel

Jx(x) =−D
(

πR2(x)∂xρs(x)+2πσ(x)
eV

kBT
RtRb

R(x)L

)
+Q(V )ρs(x),

(7)

with Q(V ) = −πRtRbεψeffV/(ηL) the electro-osmotic fluid
volume flow, which is similar to the expression for the fluid
flow of a UP channel [55] except for the surface potential
term ψeff. In BP channels it is not immediately clear how the
inhomogeneous surface charge dictates the electro-osmotic
flow. For our standard parameter set we use ψeff ≈ −25 mV

as a fit parameter, which will be discussed further in Sec.
IV. Eq. (7) represents the diffusive, conductive and convec-
tive components of the salt flux, respectively. In steady-state
the condition ∂xJ(x) = 0 must hold, yielding for given σ(x),
R(x), and Q(V ) a differential equation for the unknown ra-
dially averaged salt concentration profile function ρs(x). In
Ref. [55] this differential equation is solved for a conical chan-
nel with a homogeneous surface charge and boundary condi-
tions ρs(0) = ρs(L) = 2ρb. Here we consider the case where
the surface charge distribution is given by Eq. (1). By solving
∂xJ(x) = 0 for a given static potential V we obtain the follow-
ing expression for the radially averaged salt concentration

ρs(x,V ) = 2ρb−
1

Pe/V
2e(σ0∆R+σ ′Rb)

kBT R2
tRb(1− x/L)

R(x)
− e−Pe (1−x/L)Rt

R(x) −1

e−Pe Rt
Rb −1

 ,

(8)

with Pe = Q(V )L/(πDR2
t ) the Péclet number at the nar-

row end. Note that for our case with solely a voltage-
driven flow without any pressure-driven contribution, Q(V ) =
−πRtRbεψeffV/(ηL) is proportional to V , and hence the ratio
Pe/V that appears in Eq. (8) does not depend on the static po-
tential V . In Sec. IV we will see that for our case of ψeff < 0 a
negative applied voltage (V < 0) will cause an enhancement of
the ion concentration in the channel (and hence an increased
conductivity), whereas a positive potential (V > 0) gives rise
to an ionic depletion and a reduced conductivity, where the
effect of ion accumulation and depletion becomes stronger
upon increasing |V |. For V > 0 we will see that the profile
as predicted by Eq. (8) can even become negative, which is
obviously an unphysical result that stems from a break-down
of the λD � R(x) assumption that underlies Eq. (8). How-
ever, we will discuss in Sec. IV how we can still ensure good
agreement on the current-voltage relation over a wide voltage
range.

Interestingly, Eq. (8) suggests that it can also explain and
predict current rectification in cylindrical channels [79–81]
as long as σ ′ 6= 0, since in this case a non-trivial source
term remains in Eq. (8) even for ∆R = 0. Hence our cur-
rent work suggests to unify the theories for non-linear trans-
port through cylindrical and conical channels carrying homo-
geneous or inhomogeneous surface charges. Additionally we
note that Eq. (8) seems to suggest that bipolar and conical rec-
tification mechanisms can oppose each other, even to the ex-
tent that no current rectification is expected if σ0∆R =−σ ′Rb
(which for our linear surface charge density profile implies
σt/σb = Rt/Rb with σt and σb the surface charge at the tip and
the base, respectively). Probing this unification will be left for
future work, while we will focus here on a more constrained
parameter set to investigate the iontronic neuromorphic circuit
in Sec. V.

The static electric conductance of the conical channel can
be found by treating the concentration profile as a series of re-
sistors of thickness dx and cross-sectional area πR2(x). Since
the electric field scales with the inverse of R2(x) according to
Eq. (6), the contribution to the resistance of each slab equals
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(g0ρs(x)/(2ρb))
−1 dx with the homogeneous channel conduc-

tance g0 = (πRtRb/L)(2ρbe2D/kBT ) [55, 82], yielding for the
static channel conductivity

g∞(V ) =g0
L

2ρb
∫ L

0 (ρs(x,V ))−1 dx
. (9)

In order to account for the possibility of unphysical nega-
tive concentration profiles at high positive voltages, we re-
place ρs(x,V ) by max [0.2ρb,ρs(x,V )] in the actual (numer-
ical) evaluations of Eq. (9), such that we effectively take the
surface conductivity into account by not allowing the concen-
tration profile to drop below 10% of the bulk salt concentra-
tion 2ρb. This ad hoc cut-off can certainly be improved upon,
although the details of the cut-off have limited effects for the
system parameters that we use and discuss below. The steady-
state current is then given by

I(V ) =g∞(V )V. (10)

As we will show in Sec. IV, Eq. (10) predicts a diodic be-
haviour of the conical channel through ion depletion (and
hence a low conductivity) for V > 0 and ion accumulation
(and hence a high conductivity) for V < 0.

It was found in Ref. [8] that the process of ion accumulation
and depletion is not instantaneous and occurs over a diffusion-
like timescale. To derive an expression for the timescale of
this process and thus the typical memory retention time τ of
a BP conical channel from the PNPS equations (2)-(5), we
apply the same methodology. We consider two quantities, the
total number of ions N = π

∫ L
0 R2(x)ρs(x)dx and the net salt

flux Jx(0)− Jx(L) into the channel. The change of N given
by Eq. (8) upon a small voltage perturbation V ′ around V = 0
yields

∂N
∂V

∣∣∣∣
V=0

V ′ =
π

6
L

e(∆Rσ0 +Rbσ ′)

kBT
V ′ ≡ αV ′, (11)

where α < 0 for the standard parameter set of our BP channel,
in agreement with the enhanced (reduced) conductance of a
negative (positive) potential V ′.

At V = 0 the concentration profile is at equilibrium, so for
a small voltage perturbation V ′ we can assume ρ̄s(x) = 2ρb.
With this assumption the first and third terms in Eq. (7) van-
ish. The net salt flux into the channel, Jx(0)− Jx(L), is then
determined by the remaining conductive terms

Jx(0)− Jx(L) = 2π
D
L

e(∆Rσ0 +Rbσ ′)

kBT
V ′ ≡ γV ′, (12)

where γ < 0 for our parameter choices. The typical time it
takes for ion depletion or accumulation, and thus the typi-
cal memory retention timescale is then approximated by τ =
α/γ . This yields, perhaps surprisingly, the purely diffusive
timescale

τ =
L2

12D
, (13)

identical to the expression for UP channels [8], which is re-
markable as the conductive terms in Eq. (7), through which

Eq. (13) is obtained, differ from those in Ref. [8]. For
our standard parameter set we find τ ≈ 4.17 ms. By assum-
ing that ∂tg(V (t), t) ∝ g∞(V (t))− g(V (t), t), an assumption
proven to be effective before [8, 9, 83], we can describe the
time-dependent conductance g(V (t), t) at a given applied volt-
age V (t) as

∂g(V (t), t)
∂ t

=
g∞(V (t))−g(V (t), t)

τ
, (14)

and the current I(t) as

I(t) = g(V (t), t)V (t). (15)

Despite the fact that Eq. (9) needs to be evaluated numeri-
cally, we will refer to Eqs. (8), (10) and (15) as an analytic
approximation (AA) for the voltage-dependent salt concentra-
tion profiles, steady-state current, and time-dependent current,
respectively. In Sec. IV we will verify these three equations
against full FE calculations of the PNPS equations (2)-(5).

IV. FINITE-ELEMENT VERIFICATION

In Sec. III we derived an AA for the voltage-dependent
salt concentration profiles, steady-state current, and time-
dependent current. Here we will verify these results against
full FE calculations of the underlying PNPS equations (2)-(5).
Throughout this section we will use our standard parameter set
and vary the applied voltage. Firstly, in Fig. 2(a) we compare
for a variety of positive and negative static voltages V the ra-
dially averaged concentration profiles as predicted by Eq. (8)
(solid lines) with the FE calculations (circles). For V < 0
we observe ion accumulation and excellent agreement with
almost indistinguishable results for AA and FE. For V > 0
the agreement is still reasonable and qualitative, however a
quantitative discrepancy is now clearly visible, especially at
larger positive voltages. Whereas the FE concentration profile
at the highest voltage (V = 200 mV, purple circles) shows a
depletion of salt down to about 30% of the bulk concentration
at x/L ' 0.75, the FE-generated concentration at this point
remains strictly positive, of course. By contrast, the corre-
sponding AA profile (purple line) falls below 10% of the bulk
concentration (indicated by the horizontal line) and in fact
even becomes negative in a neighborhood of x/L ' 0.75. As
we stated before, the extremely low local salt concentration at
high V causes a break-down of the AA-assumption of a small
Debye length λD (compared to Rt ), a problem that we cure in
an ad hoc fashion by replacing ρs by max [0.2ρb,ρs(x,V )] in
Eq. (9).

In Fig. 2(b) we translate the concentration profiles at static
potentials V to the steady-state current-voltage relation I(V )
through Eqs. (9) and (10) (red) and compare them with I(V ) as
obtained from FE calculations (blue). There is a good agree-
ment, most notably a very similar strongly diodic effect is
found through both methods, with quantitatively similar cur-
rents. The agreement also seems to hold for strong positive
potentials, despite the aforementioned decrease of accuracy
of the AA for this voltage regime.
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(a) (b) (c)

FIG. 2. Comparisons of finite-element calculations (FE) of the full PNPS equations (2)-(5) and our analytic approximation (AA) of Eqs. (8),
(10) and (15), all for our standard parameter set of a bipolar conical channel (see text). (a) The radially averaged salt concentration profiles
as determined by Eq. (8) (solid lines) and by the FE calculation (circles) for various static potentials V ∈ [−200,200] mV as indicated by the
colours. (b) Steady-state current-voltage relation as predicted by our AA of Eq. (10) (red) and by the FE calculations (blue), featuring strong
(diodic) current rectification. (c) Current-voltage diagram for an applied periodic triangle potential V (t) with amplitudes ±1 V and frequency
f = 45 Hz, revealing a clear pinched hysteresis loop.

We propose that the I-V relation still matches well since
the prediction that the channel is locally nearly completely
depleted of salt for high static potentials does in fact match
with FE calculations. Therefore, replacing ρs(x,V ) by
max [0.2ρb,ρs(x,V )] in Eq. (9) effectively captures, for this
parameter set at least, this depletion and ensures an I-V rela-
tion agreement over a wider voltage range than perhaps could
have been expected. We do note that the circuit we propose
in Sec. V relies on potentials in the range ±0.2 V, therefore
operating on voltages within the AA range of validity.

Lastly, in Fig. 2(c) we plot the current-voltage relation I(t)-
V (t) for the case of an applied periodic triangle potential
V (t) with amplitudes ±1 V and frequency f = 45 Hz, is in
line with the prediction that τ f ≈ 0.19 yields the most pro-
nounced memory effect [8]. We compare the time-dependent
current determined through Eq. (15) (red) against FE calcu-
lations (blue). In both instances a similar pinched hysteresis
loop is found, the hallmark of a memristor [84]. We note that
this hysteresis loop shows a much more pronounced opening
compared to a loop of a similar UP channel [8], showing that
the stronger current rectification of BP channels translates to
a stronger memristive effect.

Before we consider iontronic circuits of BP conical chan-
nels in Sec. V, which essentially only involve the AA approx-
imation of the current-voltage relation, let us consider to what
extent the radially averaged electric field −∂xψ(x) and the
fluid flow Q(V ) are accurately described by our AA for BP
channels for various static V . In the AA −∂xψ(x) is given by
Eq. (6), which shows good agreement for UP conical chan-
nels in the present parameter regime [55]. In Fig. 3(a) we
compare the electric field for various static potentials V as
predicted by Eq. (6) (solid lines) with FE calculations (cir-
cles). For negative and moderately positive potentials we find
good agreement, as expected on the agreement we found in
Fig. 2(a), however a clear disagreement is observed for larger
positive static voltages V & 0.2 V. As before, we expect this
to be due to the strong ion depletion at high positive potentials,
typically in the vicinity of x ≈ 2L/3. The resulting overlap-
ping EDLs in combination with the longitudinal dependence

of σ(x) create a local buildup of a longitudinally varying ionic
charge density, creating a peak in the (no longer divergent-
free) electric field around the location of the strongest deple-
tion at x ≈ 2L/3. This explanation relies on the longitudinal
electric field within the EDL that is inherently present in BP
channels due to the surface charge inhomogeneity; this lon-
gitudinal field is not present in UP channels with similar pa-
rameters as the surface charge is homogeneous. Moreover,
the salt depletion is much weaker in UP channels and thus
the underlying assumption that λD� R(x) remains valid for a
wider voltage regime [8, 55]. This is probably why the peak
in −∂xψ(x) for V = 300 mV in Fig.3(a) is not observed in UP
channels in a similar parameter regime [55].

The underlying Eq. (8) of the reported result is dependent
on the fluid volume flow Q(V ) =−πRtRbεψeffV/(ηL), which
we show in Fig. 3(b) (red) compared to FE calculations (blue).
The relation of fluid flow Q(V ) to surface potential ψeff is
not immediately clear. In UP channels, Q(V ) ∝ ψ0 with ψ0
the (homogeneous) surface potential [55], but in BP chan-
nels such a relation is not obvious as the surface potential
ψ0(x) is inhomogeneous. In Fig. 3(b) we show that using
ψeff = −25 mV as a fit parameter based on the linear regime
of Q(V ) (i.e. for V . 0.4 V) yields good agreement (red) with
FE calculations (blue) for roughly the same voltage regime as
where we find good agreement for the electric field. Fasci-
natingly, from Fig. 3(b) we conclude for stronger positive po-
tentials V & 0.4 V that the BP channel acts as a fluidic diode.
Remarkably, the tip polarity (here negative) determines the
direction of the electro-osmotic flow, positive for positive V
and negative for negative V , despite the majority of the chan-
nel carrying a positive surface charge. Additionally, also the
strength of ψeff =−25 mV seems to be similar to the average
surface potential of the tip

∫ L
2/3L ψ0(x)dx/(L/3) ≈ −34 mV.

Whether the tip polarity is a general predictor for the strength
and direction of the electro-osmotic flow and whether the flu-
idic diode behaviour emerges for other parameter configura-
tions requires a more extensive investigation of the parameter
space. We leave this topic for future studies and instead here
focus on our standard parameter set in order to continue with
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(a)

(b)

FIG. 3. (a) Steady-state electric field −∂xΨ(x) inside the channel
as predicted by Eq. (6) (solid lines) and as measured on the central
axis of the channel through the FE calculations (circles) of the PNPS
equations (2)-(5) for various static applied potentials V . (b) Steady-
state fluid volume flow Q(V ) as a function of the static potential V
as predicted by Q(V ) = −πRtRbεψeffV/(ηL) with ψeff = −25 mV
a fit parameter for the linear regime (V . 0.4 V) of Q(V ) (red) and
as determined by FE calculations (blue).

investigating the iontronic neuromorphic circuit in Sec. V.
We conclude this section by stating that although we find

deviations for the salt concentration profiles, electric field pro-
files, and fluid volume flow for relatively large positive poten-
tials, these deviations seem to have a limited impact on the
overall I(V ) relations as demonstrated in Figs. 2(b) and 2(c),
which are most relevant in the context of iontronic circuitry.
Furthermore, the iontronic circuit presented in Sec. V oper-
ates within a voltage regime where the electric fields and fluid
flows predicted by the analytic approximation are reasonably
consistent with FE calculations.

V. NEUROMORPHIC MICROFLUIDIC CIRCUIT

We proceed to investigate the use of BP channels in ion-
tronic circuits, specifically we are interested in neuromorphic
circuits. In biological systems the process of neuronal sig-
naling is enabled by the transport of various ionic species
through the neuronal cell membrane. Upon a stimulus of suf-
ficient strength and duration a process is set in motion which
results in a voltage spike over the membrane due to modulated

ionic charge transport through biological ion channels. Such
voltage spikes are known as action potentials (APs) and fol-
low the characteristic all-or-none law, meaning that the mem-
brane does not spike at all for stimuli below a critical threshold
[11, 30, 31]. Neurons are also able to generate a series of APs,
known as a spike train, which plays a vital role in neuronal
communication [31–35]. Inspired by Hodgkin-Huxley (HH)
circuits [36–43], developed by treating the neuronal mem-
brane as a circuit [36], some iontronic HH circuits were pro-
posed that reproduce neuronal spiking features [7, 8], where
the circuit in Ref. [8] applies UP conical channels. Since the
BP channels of interest in this manuscript show more pro-
nounced memristive properties compared to UP channels, we
expect to be able to improve upon the circuit described in
Ref. [8] by considering parameters that are experimentally
more accessible and closer to their biological analogues.

In an attempt to reproduce the all-or-none APs and the spike
train found in biological neurons and in the iontronic circuit
in Ref. [8], we consider the circuit architecture presented in
Ref. [8], shown in Fig. 4(a), where we replace the UP chan-
nels with BP channels with conductances g+, g− and gs and
consider a new set of circuit parameters. To separate out the
response times of these channels we set the channel lengths to
be L± = 1 µm and Ls = 15 µm. Through Eq. (13) this trans-
lates to τ± ≈ 0.042 ms for the two fast channels, while the
slow channel has a timescale τs ≈ 9.4 ms � τ±. The batter-
ies, with which the conical channels are connected in series,
have potentials E± =±114 mV for the two fast channels and
Es = −180 mV for the slow channel. These batteries are the
circuit analogues of the Nernst potentials due to concentration
gradients over neuronal membranes, where we note that these
battery potentials are within the range of typical mammalian
Nernst potentials [11]. Moreover, the bulk concentration of
ρb = 2 mM is close to typical mammalian extracellular K+

concentrations [11]. A capacitor is connected in parallel to the
channels, with a capacitance C = 0.05 pF that again is close
to typical biological values, as this corresponds to the capaci-
tance of mammalian neuronal membrane of area∼ 2−5 µm2

[85–91], which is of similar dimensions as the surface area of
the channels.

The electric potential Vm(t) over the circuit shown in Fig.
4(a) is equivalent to the membrane potential over a neuronal
membrane [36] and responds to the imposed stimulus cur-
rent I(t), which acts as the control parameter and determines
whether spiking occurs. The time-evolution of Vm(t) is pro-
vided by Kirchhoff’s law

C
dVm(t)

dt
= I(t)− ∑

i∈{+,−,s}
gi(Vi(t), t)(Vm(t)−Ei) , (16)

where the conductances gi(Vi(t), t) each evolve according to
Eq. (14) with the corresponding τi. The voltage arguments
Vi of gi,∞(Vi) are given by V−(t) = Vm(t)− E−, V+(t) =
−Vm(t)+E+ and Vs(t) =−Vm(t)+Es, with the different signs
of the potentials corresponding to the different orientations of
the channels as depicted in Fig. 4(a). Eqs. (13), (14) and (16)
form a closed set, which we numerically solve with initial con-
ditions V (0) =−0.1 V and gi(0) = g0,i.
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Vm(t)

Extracellular

Intracellular

(a) (b) (c)

E+ E-

IC

Es

g+ g-

gs

FIG. 4. (a) Schematic representation of the circuit proposed in Ref. [8], however now with three bipolar rather than three unipolar channels,
connected in series to individual batteries and in parallel to a capacitor. The electric potential difference Vm(t) over the capacitor can be driven
by an imposed stimulus current I(t). (b) The membrane potential Vm(t) resulting from an imposed subcritical (red) and supercritical (blue)
current pulse I(t) of duration 20 ms and strengths 17.5 pA and 17.6 pA respectively, as determined by Eq. (16), displaying an all-or-none
action potential, as can be seen by the jump in spike amplitude around IAP = 17.5 pA as shown in the inset. (c) The membrane potential Vm(t)
as a result of an imposed subcritical (red) and supercritical (blue) sustained currents I(t) of strengths 18 pA and 18.1 pA respectively, where
a spike train emerges for I(t) > Itrain = 18 pA. The magnitude of the membrane potentials before and during the APs are similar to those
observed in mammalian APs [31].

In Figs. 4(b) and 4(c) we show that we reproduce the same
neuronal behaviour as found in Ref. [8], in the form of all-or-
none action potentials (Fig. 4(b)) and a spike train (Fig. 4(c)).
Excitingly, the membrane potentials before and during the
APs range from ∼ −70 mV to ∼ 50 mV and are therefore of
similar magnitude to those observed in mammalian APs [31].
This, combined with the biologically more relevant battery
potentials Ei and bulk concentration ρb compared to the cir-
cuit with UP channels from Ref. [8], may prove to be crucial
for the integration of such an iontronic circuit with biological
systems in future applications.

VI. CONCLUSION AND OUTLOOK

In summary, we have presented a theoretical approximation
of the voltage-dependent steady-state current and the dynamic
conductive properties of conical channels that are filled with
an aqueous electrolyte and carry an inhomogeneous surface
charge. Specifically, we focus on a channel with a positive
surface charge at the base and middle, and a negative sur-
face charge at the tip, thus forming a bipolar channel. This
channel exhibits significantly improved current rectification
when compared to unipolar conical channels with homoge-
neous surface charges and otherwise identical parameters. For
negative and moderately positive static potentials V . 0.2 V,
our analytic approximation of salt concentration profiles and
time-dependent currents are found to be in good agreement
with finite-element calculations of the PNPS equations (2)-
(5), providing a solid foundation for further investigation of
the use of these channels in (neuromorphic) iontronic circuits.
While the steady-state and time-dependent current-voltage re-
lations also show good agreement for large potentials, we do
observe some qualitative deviations for V & 0.2 V in the salt
concentration profiles and electric field profiles compared to

finite-element calculations. Additionally, for large static po-
tentials V & 0.4 V we observed a non-linearity in the relation
of fluid volume flow and applied potential, where the bipo-
lar channel acts as a fluidic diode. We hypothesize that this
is due to the strong salt depletion that bipolar channels ex-
hibit at large potentials, which implies that the small-Debye-
length assumption λD� R(x) that underlies Eq. (8) becomes
increasingly less accurate. Although the microscopic salt con-
centration profiles and electric field profiles are not accurately
predicted by the present analytical model, the overall steady-
state and time-dependent conductance is still in good agree-
ment, indicating that our presented analytical approximation
is an effective tool for the exploration of bipolar channels for
iontronic circuits.

By extending the analytical methodology of Refs. [8, 55]
to bipolar conical channels, we have demonstrated its gener-
alizability and potential for predicting features such as current
rectification in a wider range of geometries and surface charge
distributions. Our derived equations suggest that the model
we present here may be directly applicable to predicting cur-
rent rectification in bipolar cylindrical channels, rather than
solely conical geometries, which is previously experimentally
demonstrated [79–81]. Furthermore, since our model allows
for any any general linear increase in surface charge along the
longitudinal axis, our approach may also aid in identifying op-
timized surface charge values, distributions, and geometries
for iontronic systems, beyond the parameter set on which we
focus in this work. These findings point towards the general-
ity, utility and potential of this analytical methodology in the
field of iontronics.

In addition to the implications for optimizing and un-
derstanding individual channel properties, this work has
also highlighted the potential of this analytic approximation
method in the context of exploring iontronic circuits. By mod-
eling a Hodgkin-Huxley circuit with bipolar channels we are
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able to present a system that relies on battery potentials and on
salt concentrations comparable to their biological analogues,
and which produces all-or-none action potentials and spike
trains with voltage membranes that closely resemble the val-
ues observed in biological systems. This suggests that further
research in this direction may prove beneficial in the devel-
opment of advanced iontronic devices with improved perfor-
mance.
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