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ERGODIC PROPERTIES OF A PARAMETERISED FAMILY OF SYMMETRIC
GOLDEN MAPS: THE MATCHING PHENOMENON REVISITED

KARMA DAJANI AND SLADE SANDERSON

ABSTRACT. We study a one-parameter family of interval maps {Tﬂt}ae[l,ﬁ]a with 8 the golden mean, defined
on [—1,1] by To(z) = B'FItlz — tBa where t € {—1,0,1}. For each T, o > 1, we construct its unique,
absolutely continuous invariant measure and show that on an open, dense subset of parameters «, the
corresponding density is a step function with finitely many jumps. We give an explicit description of the
maximal intervals of parameters on which the density has at most the same number of jumps. A main tool
in our analysis is the phenomenon of matching, where the orbits of the left and right limits of discontinuity
points meet after a finite number of steps. Each T, generates signed expansions of numbers in base 1/3; via
Birkhoff’s ergodic theorem, the invariant measures are used to determine the asymptotic relative frequencies
of digits in generic Ty-expansions. In particular, the frequency of 0 is shown to vary continuously as a
function of a and to attain its maximum 3/4 on the maximal interval [1/2 + 1/8,1+ 1/82].

1. INTRODUCTION

Dynamical systems given by piecewise monotone maps 7" : I — I of an interval have a rich history:
besides having applications in various fields—including population ecology ([3]) and controlled switching
circuits ([I])—these systems are often used to produce expansions of numbers from the underlying interval
I. Examples include decimal, n-ary, continued fraction, (generalised) Liiroth and [-expansions, though
this list is far from exhaustive. A common theme in the study of these expansions is the investigation
of asymptotic relative frequencies of digits occurring in typical (i.e. Lebesgue—almost all) expansions. To
this end, the standard procedure is the construction of an ergodic, T-invariant measure p equivalent to
Lebesgue measure A and a calculation of the y-measure of the subinterval of T corresponding to the digit(s)
in question. Birkhoff’s ergodic theorem asserts that the measure of this subinterval equals the desired
asymptotic frequency.

In [I3], invariant measures and frequencies of digits are studied for a family of symmetric doubling maps
{Dy}nep,2) defined on [—1,1] by D, (z) = 2 — d(x)n with d(x) € {-1,0,1}. These maps produce signed
binary expansions of numbers x € [—1,1] of the forma =7 ., d,/2" with each d,, € {—1,0,1}. It is shown
that each D,, n > 1, admits an ergodic, invariant measure equivalent to Lebesgue measure. The authors use
a curious property called matching—defined in the sequel—to prove that there is a countable collection of
disjoint, open subintervals of [1, 2] whose union has full measure, and such that on each such subinterval, the
densities of the corresponding invariant measures are step functions with at most the same, finite number of
jumps. These explicitly constructed measures are then used to study the asymptotic frequency of the digit
0 in generic expansions. This frequency is shown to be continuous as a function of 1 and attains a maximal
value of 2/3 on the maximal interval [6/5,3/2]. Moreover, the frequency function is either constant, strictly
increasing or strictly decreasing on each of the aforementioned subintervals of [1, 2].

The present article continues these themes of inquiry with a parameterised family of skewed symmetric
golden maps {To}aen g, With B = (v/5+1)/2 the golden mean, i.e. the positive real solution to 3% = 8+ 1.
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Each T, : [-1,1] — [-1,1] is defined by
%z + Ba, x€[-1,-1/B)

To(z) := { Bz, x€[-1/5,1/0];
/82.’,5—[3&, ‘Te(l/ﬂal]
see Figure Setting J_1 :=[-1,-1/p), Jo :=[-1/8,1/p] and J; := (1/3, 1], the map T, may be written
more succinctly as
To(x) = B0l —t(x) o, (1)

where t(z) € {—1,0,1} is the unique index for which & € Jy,). For j > 1, set to;(2) = t(T27*(x)); the
sequence of digits (ta,;(z));>1 € {—1,0,1}" records indices of the subsequent subintervals J_;, Jy or J;
entered by the forward orbit of . With this notation, equation gives for each j > 1

T3() = B0 NI @) — to 1 (x) B

Solving this for 77! (z), induction shows that for any n > 1,

_ ta,;(@) 75 (z)
e O‘Z; Bt (@) | B Hen @]
]:
Taking the limit n — oo and recalling that |T7(x)| < 1 gives
_ ta,;(2)
e az BI=1+ o ek (@)

Jj=1

Note that for fixed «, this process determines a unique expansion for each z € [—1,1]. We refer to both this
expansion and the corresponding sequence of digits (¢4 ;(x));>1 as the T, -ezpansion of z.

Phenomena analogous to those observed in [I3] are found to occur for the skewed symmetric binary maps
Tw. In particular, we prove:

Theorem 1.1. For each « € (1, 3], the map T, has a unique—hence ergodic—absolutely continuous in-
variant probability measure .. Moreover, L., is equivalent to Lebesgue measure A, and there is a countable
collection {Ia}acm of disjoint open subintervals of [1, 8] of full Lebesque measure, such that for fired d € M
the density of each po with a € Iq is a step function with at most the same, finite number of jumps.

Via Birkhoff’s ergodic theorem, these measures are employed to show the following;:

Theorem 1.2. The asymptotic relative frequency of the digit 0 in Lebesque-a.e. Ty-expansion depends
continuously on € [1, 8] and attains a mazimum value of 3/4 on the (maximal) interval [1/2+1/8,1+1/52].
Furthermore, the frequency function is either constant, strictly increasing or strictly decreasing on each lq.

As in [13], the main tool used to construct the T,-invariant measures is a property called matching. An
interval map T : I — I is said to have matching if for each critical point ¢ € I, the orbits of the left and
right limits y+ := lim,_,.+ T(x) agree after some finite number of stepsE| That is, for each critical point
c € I there are integers M, N > 0 for which T (y_) = TN (y4).

Matching has gained considerable attention in recent years. Intricacies of the metric entropy function
of Nakada’s a-continued fraction maps have been studied using matching in [20], [7], [§], [18], [2] and [9].
In particular, matching is used in [I8] to determine the natural extension for each a-continued fraction
transformation, and it is shown that the set of @ € [0,1] for which matching does not occur has zero
Lebesgue measure. The Lebesgue measure of this set of non-matching parameters—in addition to the fact
that its Hausdorff dimension is 1—is also shown in [8]. Matching is used in [I6] to determine invariant
measures for the related family of a-Rosen continued fraction transformations. A parameterised family of
linear maps with one increasing and one decreasing branch are considered in [4], and matching is used to show
that in some parameter regions, the Lyapunov exponent and topological entropy are constant. A geometric
explanation of matching for a similar family of maps is given in [12], and further implications of matching for
these maps—including smoothness of entropy on an open dense subset of parameters—is considered in [6].

1Some authors require that the one-sided derivatives also agree at these times, in which case the map may be said to have
strong matching ([I5]). This extra condition is not needed for our purposes.
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The notion of matching is extended to random dynamical systems in [I5] and is used to study the asymptotic
frequency of the digit 0 in typical signed binary expansions arising from a family of random interval maps.
Matching has also been investigated for generalised S-transformations, a certain class of continued fraction
expansions with finite digit sets, and Lorenz maps (see [5], [I0] and [II], respectively).

The present paper exploits the phenomenon of matching in a fashion similar to that of [I3]. There the
authors use results of [I7], which gives formulas for densities of the absolutely continuous invariant measures
of piecewise linear expanding interval maps. These densities are—in general—infinite sums of (finite) step
functions which are determined by the orbits of the left and right limits at critical points of the underlying
interval map. However, when matching occurs the infinite sum becomes finite, and the density itself is a
finite step function depending only on these orbits before matching. In [I3], it is shown that matching
occurs for the symmetric doubling map D,, on a set of parameters 7 in [1,2] of full Lebesgue measure. For
these matching parameters, the orbits of the left and right limits at the critical points before matching are
studied in detail, and this information is used to provide an explicit formula for the density of the (unique)
absolutely continuous invariant probability measure for each D,, with matching. The parameter space [1, 2]
is divided into a countable union of (maximal) open intervals—called matching intervals—where each D,
has matching, and a Lebesgue-null set of non-matching parameters with Hausdorff dimension 1. On each
matching interval, matching occurs after the same number of steps, and for each left/right limit at a critical
point, the digits of the corresponding signed binary expansions agree before matching.

While the results of the present paper imply that the same direct approach of understanding matching
for the skewed symmetric golden maps 7T, can be applied to construct the invariant measures asserted in
Theorem we find that the unequal slopes of the different branches present difficulties. To circumvent
these, we instead study matching for a family of symmetric golden maps {Sa}acp g of constant slope for
which the skewed symmetric golden maps {T%, }acj1,) are jump transformations, and it is subsequently shown
that the parameters « for which the maps T, and S, have matching coincide (Proposition . Equipped
with this result, one could then use the formulas from [I7] to determine invariant densities for the T, with
matching; however, we proceed in the simpler setting of the symmetric maps S,—determining invariant
densities and the frequencies of digits for these—and finally use the fact that T, is the jump transformation
of S, to determine invariant measures and frequencies of digits for the original skewed symmetric golden
maps.

The paper is organised as follows. In §2|the symmetric golden maps {Sa}aep1,g are introduced. These
are shown in to have matching for Lebesgue—a.e. o € [1, 3], and we also prove here that the matching
parameters of both families {Sa }aep1,5 and {Ta}aepi g coincide. Subsections and are devoted to
understanding the finer structure of the set of matching parameters. The former provides a classification of
all matching intervals and of the orbits of all left and right limits at critical points before matching occurs.
In the latter, it is shown that all (but two) of the matching intervals generate in a natural fashion a whole
‘cascade’ of countably many matching intervals with adjacent endpoints. In we use the results of the
preceding section to prove Theorems and In particular, explicit formulas for densities of the unique,
absolutely continuous invariant measures of the symmetric golden maps S, are provided in and the
invariant measures of the skewed maps T, are expressed in terms of these. These measures are used in §3.2]
to determine expressions for the asymptotic frequencies of the digit 0 in typical S,- and Tj,-expansions. The
maximal frequencies of the digit 0 as functions of « are considered in §3.3]. Proofs of some technical results
are provided in an appendix (

Acknowledgments. This work is part of project number 613.009.135 of the research programme Mathe-
matics Clusters which is financed by the Dutch Research Council (NWO).

2. SYMMETRIC GOLDEN MAPS S,

As mentioned in I we determine invariant measures and the frequencies of digits for a family of symmetric
golden maps {Sa}aep,p) for which the {74 }qep1, g are jump transformations. These invariant measures and
frequencies are then used to determine the invariant measures and frequencies of digits for the original T,.
The maps S, are defined as follows: for a € [1, ], let S, : [-1,1] — [-1,1] be given by

Sa(x) := B — t(x)a,
3
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FIGURE 1. The maps T, (blue) and S, (red) with o = 1.4. Note that T,, = S, on the
middle interval Jy = [-1/3,1/83].

with ¢(z) € {—1,0,1} as in see Figure [I} Note that S, (z) € Jy for each x € J_; U J;. Using this, one
readily verifies that

T, (z) = {Sa(w)’ v (2)

Si(x), reJ Uy ’

i.e. T, is the jump transformation for S, with respect to the sweep-out set Jo = [—1/3,1/0] (see, e.g. §11.4
of [14]). For each j > 1, let s, j(z) := (527! (x)). With induction one finds that for each k > 0,

k
Shia) =8 |2 =) say(@)/B )

(with the summation for k = 0 understood to be 0). Since |S¥| < 1, dividing both sides by 8* and taking
the limit as k approaches infinity gives

r=a say@)/H. (4)

Jj=1

Following our convention from we refer to both the right-hand side of Equation and the corresponding
sequence (sq,j(x));>1 of digits in {0,£1}" as the S,-expansion of x. Again this process determines—for
fixed a—a unique expansion for each x € [—1, 1]; moreover, if 2,y € [—1,1] have the same S,-expansion,
then Equation can be used to show that z = y. Also note that not every sequence in {0, +1}" is an
S,-expansion; in particular, a 1 or —1 is necessarily followed by a 0.

As the orbits of 1 and 1 — « will be studied in detail below, we fix special notation for their S,-expansions:
let do; == sq,;(1) and eq; := sq,;(1 — ) for each a € [1,5] and j > 1. When « is understood, it is
suppressed from the notation, and we simply write d; := do ; and e; := eq ;.

2.1. Matching almost everywhere. In this section, we show that the maps S, (and T,) have matching
on a set of full Lebesgue measureﬂ The map S, has two critical points +1/8. Due to symmetry, it suffices
to consider the matching criteria only for the positive critical point 1/8. Note that lim,_,;/5- Sa(z) = 1
and lim,_,1 g+ Sa(x) = 1 — a. Hence S, has matching if and only if there are integers M, N > 1 for which
SM(1) = SN - a).

We begin by investigating matching in a number of specific cases. First, note that 1 € J; and 1 —«a € Jj
for all a € [1, 3]

2The general approach to proving this result largely follows that of §2.2 of [I3]; however, we shall see that the dynamics of
the symmetric golden maps S, are—in a sense—more delicate than those of the previously studied symmetric binary maps
(compare, e.g. Proposition below with Proposition 2.1 of [13]).
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(i) If « € (14 1/B% 3], then
Sa(1)=p—-ac[0,1/8%) CJy, Sa(l—a)=p—-pac|[-1,-1/8)C J 1,
S2(1) = B% — Ba € Jy and S2(1—a)=p%-p2at+a=p%*—pPacy

shows that S, has matching with M = N = 2.
(ii) If « =1+ 1//3?, then

Sa(l)=B-a=1/ €y, Sa(l-a)=p~Pa=-1/5¢J,
S2(1) =1/p% € Jy, S2(1—a)=-1€J_4,

Sa(1) =1/B € Jo, Sal —a) =-1/B% € Jy,
Siy=1¢e.J, and Si1l—a)=-1/82=1—-ac Jo,

so S, has a Markov partition, namely

{(-1/8°/1/8%), £(1/8°,1/6%, £(1/6%1/B), £(1/B,1]},
and no matching.
(iii) Fae (14+1/8%1+1/5%),

Sa(l) =B —a e (1/8°1/8%) C J, Sa(l —a) = = Ba e (=1/8,-1/8%) C Jo,
S2(1) = B> - Ba e (1/8%1/B) C Jo, S2(1—a)=p%-pB*ac(-1,-1/8) C J_4,
Sa(l) = p° = f*a e (1/8,1) C Ju, So(l—a) = ﬁ?’ (8% = Da € (-1/5%,1/6%) C Jo,
Sty =p*~ (B2 +1)acJy and S2(1—a)=p*—(B* - B)a € Jo.
Since p* — 32 = 2 = B+ 1, we find that S*(1) = S4(1 — a), so S, has matching with M = N =4.

(iv) fa=1+1/8,

Sa(1)=B—a=1/p*c Jy, Sa(l—a)=p8—pBa=—1/8¢€ Jy,

S3(1) =1/8 € Jo, Sa(l—a)=—1/B € Jo,

S3(1)=1¢€Jy, S(1-a)=-1€J; and
Sa(l—a) = =1/5% € Jo,

so S, has a Markov partition and no matching.

(v) f a € (1,1 +1/B3), then
So(1)=B8—ac (1/8%1/8) C Jo, So(1—a)=p—pBac (~1/52%0) C Jo,
Sa(l) =% = pa e (1/8,1) C J1, Sa(l—a)=p* - p*a e (~1/8,0) C Jo,

21 =8~ B+ Daec(-1/8%1/8)CcJy  and S2(1—a)=p>~pac(~1,0)C J_1UJo.
This case will be considered more closely in what follows.

(vi) If @ = 1, then S,(1) =1/8 € Jo, S2(1) =1€ J; and S,(1 —a) =0=1—a € Jy. Thus there is a
Markov partition and no matching.

Note that in the cases above in which there is matching—namely (i) and (iii)—we have M = N (a property
called neutral matching in [6]). We shall see below that this is always the case, i.e. S, has matching if and
only if there is some m > 1 for which S7'(1) = SJ*(1—«). For this we need the following proposition—key to
a number of arguments throughout—which states that the difference between subsequent points in the orbits
of 1 and 1 — « can take on at most four values. Recall that (d;),;>1 and (e;);>1 denote the S,-expansions of
1 and 1 — «, respectively.

Proposition 2.1. For every a € [1,5] and j > 0,
S(1) = S5(1 - a) € {0,a/B, @, fa}.
Proof. For o ¢ (1,1+1/33), the statement is verified with the cases above, so assume a € (1,1+1/3%). We
use induction on j. The result clearly holds for j7 = 0; assume for some j = k —1 > 0 that
Sa (1) =Sy 1—a)=y
5



for some y € {0,a/B, , Ba}. If y = 0, then also S%(1) — SJ(1 —a) =0 for all j > k — 1. Suppose y # 0,
and note that
Sh(1) = S(1 —a) = (BSE™(1) — dra) — (BSS'(1 — a) — exar) = By — (di — ex)a.
We determine the difference above for each y € {«/f, «, fa}:
(i) y = «/pB: Since 1/8 <y < 2/8, we have (d,ex) = (1,0), (0, —1) or (0,0). In the first two cases
Sa(l) = S5(1 —a) =0,
and in the third
S*(1) = 851 - ) = o
(i) y = a: Since 1/8 <y < 1+1/8% = 2/, we again have (dy, ex) = (1,0), (0, —1) or (0,0). In the first
two cases
Sh(1) = Sh(1 - a) = fa —a = a/B,
and in the third
SH(1) — 84(1 — ) = B
(iil) y = Ba: Since y > 2/, we must have (dj,er) = (1,—1), and hence
Sk(1) — S5(1 — o) = f2a — 2a = a/pB.

The previous proposition can be used to give an equivalent definition of matching:
Proposition 2.2. The map S, has matching if and only if there is some m > 1 for which ST(1) = ST (1—a).

Proof. One direction is immediate; for the other, suppose there are distinct M, N > 1 for which SM(1) =
SN (1 — «). Assume for the sake of contradiction that SJ (1) # S4(1 — «) for all j > 1. By Proposition

S3(1) = Si(1—a) > /8 2 1/8,
and hence _ _
S(1-a)<S(1)-1/8<1-1/8=1/5
for each j. If S (1 — a) € (0,1/3?], then there is some k > 0 for which S77*(1 — a) = B¥SI (1 — a) > 1/52,
contradicting the above, and thus S7 (1 —«) < 0 for each j. A similar argument implies S (1) > 0 for each j.

But SM(1) = SN (1 — ), so this common value must be 0. Since 0 is fixed by S,, we have the contradiction
that S7(1) =0 = SI*(1 — ) with m = max{M, N}. O

We can now define a canonical index to describe when matching occurs:

Definition 2.1. The matching index of S, is
m(a) :=inf{m >1|S7(1) =571 —a)} € NU{oco}.

The cases above together with the proof of Proposition [2.1| reveal a strong interdependence between the
orbits of 1 and 1 — «, which is summarised in the graph of Figure |2l In particular, note that if matching
occurs with matching index m := m(a), then ST~1(1) - S"~1(1—a) = a/B and (dm, em) € {(1,0), (0,—1)}.
Since S,-expansions cannot contain consecutive non-zero digits, this implies S772(1) — ST 2(1 — a) = «
and (dp—1,em—1) € {(1,0),(0,—1)}. For m > 2, this further implies S™=3(1) — ST 3(1 — a) = «/B
and (dy—2,€m—2) = (0,0). Thus if S, has matching with index m > 2, then the final three digits of the
Sa-expansions of 1 and 1 — « before matching are given by

o1, 010\ (001
(o) = L om)- (om) ) ®

where W := —w for w € {0, £1}. Conversely, if for some m > 2, three consecutive digits of the S,-expansions
of 1 and 1 — « are given by , then the proof implies that S, has matching with index m.

A number of characterisations of matching for S, can be derived from Proposition and Figure 2| For
these we fix some notation: for each z € [—1,1] and o # 1, let

bo(@) = Inf{S4(Ja]) < 0} - 1,
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FIGURE 2. A graphical representation of the interdependence of the orbits of 1 and 1 — «
for a € [1,]. Vertices represent the differences S?~1(1) — S2-1(1 — «) for j > 1, and the
beginnings and ends of edges are marked (‘eij ) and (Cel;ﬁ ), respectively, where w := —w for
w € {0,£1}. Cyan edges are taken if and only if S, has matching,.

and set

lo = min{l (1), £, (1 — a)}.
Lemma 2.3. For o # 1, S, has matching if and only if £, < co. Moreover, if £, < oo, then m(a) €
{lo + 1,0, 4+ 2}.

Proof. Let £ :={,. That matching implies ¢ < oo is immediate. Now suppose ¢ < oo, and assume without
loss of generality that £ = £, (1 — «) and thus S“T!(1 — a) > 0 (the other case is similar). The definitions of
¢ and m(«a) give £+ 1 < m(«). By Proposition S41(1 —a) >0 and a > 1 imply
Sa™H(1) = Sgt (1 - a) € {0,0/p}.
The result holds if the difference is 0. If the difference is /3, we must have (dgy2,ep2) = (1,0). From
Figure [2] this implies
SEF2(1) — 842 (1 —a) = 0.

Corollary 2.4. For a # 1, S, has matching if and only if there exists some j > 1 such that
S3(1) € (1/B.a/B] or Si(1-a)e[-a/B,~1/B).
Moreover, £,(1) and £,(1 — «), respectively, are the infimums over all j for which the above inclusions hold.

Proof. This follows from Lemma [2.3] and the facts that
S H([=1,0) N (0,1] = (1/8,a/B]

and
S:H[0,1) N [=1,0) = [~a/B,1/B).
O

Due to symmetry, the above corollary states that S, has matching if and only if the orbit of either 1 or of
a—1 enters the region (1/8, «/B]. We shall see that this occurs for Lebesgue—a.e. « by relating the beginnings
of these orbits to the beginnings of certain orbits of the (ergodic) S-transformation B : [0,1] — [0, 1] defined

by B(z) = fx (mod 1). Set
b(z) = {0, x<1/p

1, z>1/8’
7



and for each j > 1, let
bj(z) = b(B’ ().

We call the sequence (b;(x));>1 the B-expansion (also referred to as the greedy-expansion) of . Via induction,
one finds that for each k > 0,

a k
Bﬂm=ﬁkm—§)wwmf. (6)

Lemma 2.5. Let x € {l,a — 1}, a # 1. Then
(i) S%(z) = aBi(z/a) for each 0 < j < £, (),
(i) Sa,j(x) =bj(z/) for each 1 < j < lo(x) and
(iii) £o(z) is the infimum over all j for which B’ (xz/a) € (1/Ba,1/3].
Proof. Claim (iii) will follow from claim (i), Corollary [2.4] and the fact that £, (z) = €4 (—2). We prove claim

(i) via induction on j. Certainly S/ (z) = aB’(z/a) for j = 0. Now suppose this equality holds for some
j=k—1with0<k—-1</,(z). By Corollary Sk=1(x) € [0,1]\(1/8, /8], and we find

Sk( ) — /BSQ_l(Q?), Sﬁ—l(w) € [O’ 1/5]
“ BSa~Ha) —a, S§H(z) € (a/B,1]

:{&m“%wm7 B! (z/a) € [0,1/Ba]
BaBF(z/a) —a, B (x/a) € (1/8,1/d]

= aB*(z/a),
so the first claim holds. Furthermore, the equality in (i) gives for each 1 < j < £, (x) that SJ~(z) € [0,1/8]

if and only if B/~!(z/a) € [1,1/Ba] and Si~1(z) € (a/B,1] if and only if B~1(z/a) € (1/8,1/a]. Thus
Sq,j(x) = bj(x/a) for such j, proving claim (ii). O

Corollary 2:4] Lemma [2.5] and symmetry of S, give yet another characterisation of matching in terms of
the map B:

Corollary 2.6. For a # 1, S, has matching if and only if there exists some j > 0 such that
B/(1/a) € (1/Ba,1/B] or B'(1-1/a)e (1/Ba,1/5).

Moreover, £,(1) and £,(1 — «), respectively, are the infimums over all j for which the above inclusions hold.

The previous results together with ergodicity of B can now be used to prove that S, has matching for a
set of parameters « of full Lebesgue measure. The proof is nearly identical to that of Proposition 2.3 of [13]
but is included here for the ease of the reader.

Proposition 2.7. The map S, has matching for Lebesque—a.e. a € [1,f3].

Proof. Let a € (1,5] and k € N with k > 33. By ergodicity of B with respect to Lebesgue measure (§4 of
[22]), for Lebesgue-a.e. = € [0, 1] there exists some j > 1 such that B/(z) € (1/8 — 1/k,1/8]. Note that
1/Ba < 1/8—1/k if and only if @ > k/(k — 8). Thus for Lebesgue-a.e. « € (k/(k — ), 3], there exists some
7 > 1 such that

B'(1/a) € (1/8 —1/k,1/p] C (1/Ba, 1/B].
By Corollary S, has matching for Lebesgue-a.e. a € (k/(k — f8),0]. Let Ay denote the set of a €

(k/(k —pB),B] for which S, does not have matching. Then Uy gs A, has Lebesgue measure 0 and equals the
set of all « € (1, 8] for which S, does not have matching. O

The finer structure of the set of matching parameters a € [1, ] is considered in § and below.
Before investigating this structure, we show that matching occurs for S, if and only if it occurs for the
corresponding jump transformation 7Ti,. The following lemma may be deduced from the general theory of
jump transformations, but a proof is included for completeness.
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Lemma 2.8. Fiz x € [—1,1] and let j; < jo < j3 < ... be an enumeration of the set
{i >0 8i(x) € Jo}.
Then TF(z) = Six+1(z) for all k > 1.

Proof. The claim is immediate for £ = 1 by and the fact that S, (J-1 U J1) C Jo. Now suppose the
result holds for some k£ > 1, and let i € {0,1} be minimal such that S’ (S?+*!(x)) € Jy. By definition, then,
Jk+1 = Jk +i+1, and

ThHly = T, (S 1z) = SIHL(SixHlg) = S§oeritly,

Proposition 2.9. The matching parameters o € [1, 8] for T,, and for S, coincide.

Proof. Recall that T, has critical points at 1/, and note that lim,_,; /5~ To(2) = 1 while lim,_,; 3+ T (7) =
B(1 — @). Due to symmetry, T, has matching if and only if there are integers M, N > 0 for which
M (1) = TN (8(1 - a)).
Suppose first that T, has matching. Then T2 (1) = TV (8(1 — «)) for some M, N > 0. By and the
fact that S, (1—a) = B(1— ), this implies the existence of some M’, N’ > 0 for which SM'(1) = S¥'(1—«).
Conversely, suppose S, has matching with matching index m := m(«). From the proof of Proposition
it is clear that S7'(1) = S(1 — a) € Jo. By Lemma[2.8] there are M, N > 0 for which

TR1(1) = SgtH(1) = SiH (1 — ) = S (B(1L - @) = T (B(1 — a)).
O

2.2. Matching words and intervals. When S, has matching, we call the first m(a) < oo digits of the
Sa-expansion of 1 the matching word corresponding to a. A maximal subinterval of [1, 8] on which matching
words coincide is called a matching interval corresponding to the common matching word. Here we classify
matching words and matching intervals (Corollary; as all matching parameters belong to some matching
interval, this gives a complete classification of matching parameters « € [1, 8]. (Propositions and
imply that this also classifies the first m(a) < oo digits of the S,-expansions of 1 — « for S, with
matching and the maximal subintervals of parameters o on which these digits coincide.) Note that matching
words and intervals for a € [1,8]\(1,1 + 1/3%) have been implicitly determined via the cases considered in
For instance, (1 + 1/82%, ] is the matching interval corresponding to the matching word 10, and the
Sa-expansion of 1 — « for each o € (1 + 1/42%, 8] begins with 0(—1). Similarly, (1 + 1/8%,1 + 1/3?) is the
matching interval corresponding to the matching word 1001, and the S,-expansion of 1 — « for each « in
this interval begins with 00(—1)0.

Denote by < the lexicographical ordering on {0,+1}". Note that < may also be defined on the set
{0, £1}* of finite words with alphabet —1,0, 1 by first sending w € {0, £1}* to w0>°.

Definition 2.2. Let
wp := 00 < w; := 001 < wy :=01.
We say that d € {0,1}* is in admissible block form if d = 10 or
d = 1W7;1W2'2 ce Win(l — Zn/2)

for some i1,...,i, € {0,1,2}, n > 1 with 4, # 1, and, when n > 2, iy = 2. The collection of all words in
admissible block form is denoted B.

The condition that a word in admissible block form ends in w; (1 —4,/2), i, # 1, guarantees that the
final three digits are either 001 or 010 (recall ); however, not every word ending this way belongs to B:

Example 2.10. One verifies that
d .= Iwawgowiwgl = 10100001001 € B,

whereas
d’ := 1010001 ¢ B.
9



Note that the indices i; for d € B are uniquely determined; that is, if
Iwi, Wiy Wy (1 =i, /2) = Iwj wi, - 'ij(l — Jm/2),

then m = n and iy = jj for each 1 < k < n. Define ¢ : B — {0,—1}* by ¢(10) = 01 and for each d € B of
the form

d= 1W1'1Wi2 H Wzn(]- — Zn/Q),
by

QD(d) = OW2_¢1W2_¢2 e Wo g, (Zn/2),
where W := —w for each w € {0, £1}*.

Let o : {0, £1} — {0, £1} denote the left shift defined by o((w;);>1) = (wjt1);>1 for each (w;);>1 €
{0, £1}N; as with the lexicographical ordering, o is also defined on the set {0, £1}* of finite words by sending
w € {0,£1}* to w0™®. We remark that for each T" € {S,, Ty, B}, the left shift of the T-expansion of z
equals the T-expansion of T'(z).

Definition 2.3. A word d € B satisfies Property M if, for each j > 0, both ¢7(d) < d and ¢7(¢(d)) < d.
Denote by M C B the collection of all words d satisfying Property M. We call 10 and 1001 the exceptional
words in M and denote by My := M\{10,1001} the collection of unezceptional words in M.

Example 2.11. Let d € B be as in Example[2.10, Then
¢(d) = Owowawi w20 = 00001001010,

and since both o7(d) < d and o7 (p(d)) < d for all j > 0, we have d € M.

We shall see that Property M classifies matching words of the maps S,. To show that M contains all
matching words we need the following observation, which is not novel, but for which a proof is included for
completeness:

Lemma 2.12. Fiz o € [1,5] and z,y € [-1,1]. Then = < y if and only if (Sa,;(x))j>1 < (Sa,j(¥))j>1-
Similarly, for xz,y € [0,1], x <y if and only if (bj(x));>1 < (b;(y));>1-

Proof. Suppose x,y € [—1,1] with 2 < y, and let n := min;>1{sa () # sa,;(y)}. We first claim for each
0 < j <nthat SJ(z) < S%(y). This is true by assumption for j = 0. If n = 1, we're finished. Assume n > 1
and that the claim holds for some j =k —1 with 0 <k —1 <n — 1. Since sq 1(2) = Sq,x(y), we have that
S, restricts to a linear function with positive slope on an interval containing S~!(z) and S¥~1(y). But
Sk=1(z) < Sk~1(y) by assumption, so also S¥(z) < S¥(y) and the claim holds. Since s4 () # Sa.n(y) and
Sn=l(z) < Snl(y), it must be true that g, (%) < Sa.n(y) and hence (sq,;(2))j>1 < (Sa,j(¥))j>1-

Now suppose x > y. If equality holds, then by uniqueness of S,-expansions, (sq,;(2));>1 = (5a,;(¥))j>1-
If the inequality is strict, the argument above applies with x and y interchanged.

The proof of the second statement is identical, mutatis mutandis. O

Proposition 2.13. Suppose for some a € [1,[] that S, has matching with index m := m(«a), and let
d:=d; - -d,, denote the corresponding matching word. Then d € M, and e := ¢(d) agrees with the first m
digits ey - - - ey, of the Sy -expansion of 1 — «.

Proof. From the cases of the result holds for a ¢ (1,1 + 1/3%); in particular, a € (1 + 1/42, 3] and
a€ (1+1/p3,1+1/B2) correspond to the exceptional words d = 10 and d = 1001, respectively, in M, and
©(10) = 01, ¢(1001) = 0010. Now assume a € (1,1 + 1/3%). Note that d; =1, e; =0, and

Sal1) = Sa(l—a) = (B —a) — (1 — a) = /8.
Recall from Equation and the discussion preceding it that

dim—admrdm) _ [ (001 (0L0\\ _ [ (wol) (ws0
Cm_2€m_16m 010/ °\001) [ — | \w20) \wol) [~

and S™3(1) — S"73(1 — a) = a/B. The remaining digits

dodz -+ - dp—3
€2€3 - €Em-3
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are thus determined by edge labels of cycles in the graph of Figure 2| beginning and ending at vertex a/f.
There are three possible cycles, whose edge labels give

djdja ) _ (OL) _ (wa) - (didia) _ (00 _ (wo) =g (didinadiva) _ (001} _ (wi))
€5€541 00 Wio ’ €5€541 01 Wo ’ €5€54+1€542 001 w1
It follows that d = 1w, , w;, - - - w;, (1—i,/2) and eq - - - €y, = OWo_j, Wo_y, - - Wa_; (i, /2) for some iy, ..., i, €
{0,1,2}, n > 1 and i, # 1. Moreover, note from case (v) of that didadsd, = 1010, so ¢; = 2. Thus

deBande=e; e, =¢(d). From Lemmal[2.12] the facts that S7(1), S%(1—a) € [~1,1] for each j > 0
imply that ¢7(d),o?(e) < d for each 5 > 0. Thus d € M. O

The previous result states that every matching word belongs to M. Before proving the converse (Propo-
sitions and , we define and investigate properties of the valuation function v:S — R given by the
(absolutely) convergent series

((wj)jz1) = ij/ﬂ7

j>1

where & C Z" consists of all sequences (w;);>1 whose entries are bounded above and below. The valuation
function is also defined on the set S* C S of finite words by considering the corresponding finite sum and
setting v(e) = 0 for the empty word . It is not difficult to check for finite words w, w’ € {0, £1}* with no
consecutive nonzero digits that w < w’ if and only if v(w) < v(w’).

Lemma 2.14. If w:= wywy - wi € {0,1,2}* is e (in which case we set k =0) or consists solely of blocks
of 01’s and 002’s, then

o(w) = 1/8 -1/,
Proof. The case that w = ¢ is trivial, so suppose w # €. One easily verifies that
v((01)%) = v((002)?) and  ©(01002) = v(00201).
These observations, together with the fact that for each 1 < j <k,
v(w) = v(wy - wy) + (/8 )o(wjg - wp),

imply that

v((002)*/3), k=0 (mod 3)
v(w) = < ((002)*=9/3(01)2), k=1 (mod 3) .
v((002)*=2)/301), k=2 (mod 3)

Notice that for any j7 > 1,

J

((002)7 Z (1/8%)

Y

1—1/8°
o, 1-1/p%
=2 m_oq
L 1-1/p%
_Q.T

=1/ —1/5%%".
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If =0 (mod 3), setting j = k/3 gives the result. If £ =1 (mod 3), we compute
v(w) = v((002)*~73(01)?)
= ((002)4=D/3) 1 (1785 4)u((01)?)
— /8- 17848+ (18 )(1/8% +1/8Y)
=18 - 1/858 £ 1/852 +1/6"
—1/5 -1/,
Similarly, if £ =2 (mod 3),
v(w) = v((002)*=2/301)
= v((002)*727%) 4 (1/8**)v(01)
1/ -1/ + 176"
—1/5 - 1/8M.
(Il

For equal-length words x,y € {0, £1}*, define x+y,x—y € {0, £1,+2}* where addition and subtraction,
respectively, are performed entry-wise. Note that

wo —wWo =01, wog—Ww3=01, and w;—w;=002.

Suppose d satisfies Property M with m := len(d). Since d is in admissible block form, the definition of
e := ¢(d) implies that d — e = 1w1 for some word w consisting solely of blocks of 01’s and 002’s or w = e.
Using Lemma we compute

v(d—e)=v(lwl) =1/ +(1/B)(1/8 - 1/8""1) +1/8" = 1.
This proves the following:
Proposition 2.15. Ifd € M and e := ¢(d), then
v(d) —v(e)=v(d—e)=1.
For d = 10, set Iq = (a3, o] := (1 +1/8%, 8], and for all other d = d; - - - d,,, € M, define

[ Bmapin gm_pidn
Iqg = (adaad) = <6m1}(d) + 6dm” ﬁm’U(d) — ﬁl—dm) .

Proposition 2.16. For each d € M, I is a nonempty subinterval of (1, ).

Proof. The result is true for d = 10, so assume d # 10. We first show that I4 # &, i.e. that
Bm 4 ﬂdm - Bm . Blfdm
pmo(d) + pdm  pmo(d) — prodm’

or
(57 + B ) (B u(d) — B < (B — 5 (5mo(e) + 5.
Distributing and cancelling terms gives that this is equivalent to
Bm+dm’v(d) _ 6m+1—dm < Bm—i—dm _ ﬁm+l_d’"v(d),
or v(d) < 1. Since d has no consecutive 1’s, one finds that v(d) < v((10)*°) =1 (see also Lemma 1 of [2I]).

Next we show that Ig C (1, 5]. The left endpoint of I4 is greater than 1 again since v(d) < 1. It remains
to show that
IBm _ /Bl_dm

< B.
Fro@ - i = F
Recall that dy = 1, and if d,,, = 0, then d,,,_; = 1; thus v(d) > 1/8 + =% /3™, and
Brtly(d) — g2 > g (1B + B /BT — BT > g — Bl

Dividing both sides by ™v(d) — 3'~%m gives the desired inequality. O
12




For each u € {0,1}*, let A(u) denote the cylinder of points = € [0, 1] for which the S-expansion of z
begins with u. One finds for each u = uy - - - up, With wju;11 =0, 1 < j <n, that

1/8" =
[v(w),v(u) +1/8"*Y), u, =1
The following lemma is needed in Proposition below.
Lemma 2.17. Letd € My. Then Bi(1/ay) < 1/ag and B(1—1/a}) < 1/af for all j > 0.

(8)

Proof. This is a corollary of two technical results (Lemmas and , whose statements and proofs are
provided in the appendix. O

The next result—together with Proposition [2.16}—states that every word d € M is in fact a matching
word, thus completing our classification of matching words as the set M. Moreover, it states that the interval
14 is contained in a matching interval corresponding to the matching word d.

Proposition 2.18. For any d € M and « € Iq, the S, -expansions of 1 and 1 — « begin with d and ¢(d),
respectively. Moreover, S, has matching with matching index m(a) = len(d).

Proof. The result is shown for exceptional words d € {10,1001} in so assume d € My . Suppose the
first statement holds. That S, has matching with index m(a) = len(d) is implied by the final three digits
of d and e (see the discussion surrounding Equation )7 so we need only prove the first statement. Let
a € Ig, and writed = dy - - -d,, and e := p(d) = ey - - - €,,,. We must show that

Aoy o =dy - dp,
and

ea71...€a,m:el...em_

dm—2dm—1dm\ _ (001
(em 2€m— lem) N (010> ’
and set ag := 1/v(d) (the case that d,,, = 0 is similar). Proposmlon“together with the fact that v(d) < 1
imply o~ < ag < at, where, for ease of notation, a* := ad We claim that it suffices to show the following:

(i) ifa € (a’,ao), then £y (1) >m —1, lo(1 —a) =m —2,
bi(1/a)+ bp(l/a) =dy - dp,

Assume that

and
bi(1=1/a)- - bpa(l —1/a) = €1 €n_2;
(ii) if a € (ap, ™), then £, (1) =m —1, £, (1 —a)>m-—2,
bi(l/a) - bpo1(l/a) =di - dm-1,
and
bi(1—1/a) - byu(l—1/a) =1 €n;

and

(iii) if @ = a, then £o,(1) =m — 1, Lo(1 —a) =m — 2,

bl(l/a) m 1(1/&) - dl dmfh
bl(l—l/a) m 2(1—1/&)—61 *€m—2,
and B"1(1/a) = B"2(1-1/a) = 1/,8.
Indeed, suppose (i) holds. Lemmaimplies

da,l"'dam—dl"'dm

and
€a,1 " €am—-2 = €1 Em—2.
Since £, (1 — o) = m — 2, Corollarygives Sm=2(1—a) € [~a/B,—1/B), 50 eam—1 = —1 and eqm = 0.
In case (ii), Lemma again gives
doc,l to da,m—l = dl to dm—l
13



and

€a,1° " €am—1 = €1 €Em_1-
Moreover, £,(1) = m — 1 implies S™~1(1) € (1/8,«, B8] and hence dy ., = 1. Since eqm-1 = €m—1 = —1, it
follows that eq,m = 0 = e,,. In (iii), we have

da71 T da7m—1 = dl T dm—l

and
€a,1°" " €am—2 = €1 Em_2.
Moreover, Lemma, gives ST71(1) = —S"72(1 — o) = /B, 50 daym = €am—1 = 1 and €4, = 0.
By Corollary [2.6] (1), (ii) and (iii) are implied by showing:
(a) 1/Ia C A(dy-+-dpm—1) and 1 = 1/Iq € A(er€m2);
(b) Bi(1/a) ¢ (1/Ba,1/8] for each 0 < j < m—1,and BY(1—-1/a) ¢ (1/Ba,1/5] for each 0 < j < m—2;
(c) if a € (™, ap), then B™1(1/a) > 1/ and B™ (1 — 1/a) € (1/Ba,1/8];
(d) if a € (ag, ), then B"~(1/a) € (1/Ba,1/p) and B™2(1 — 1/a) > 1/; and
(e) if a = ag, then B™" 1(1/a) = B™%(1 - 1/a) = 1/8.
We prove each of (a), (b), (c), (d) and (e):
(a) The first inclusion is equivalent to
U(dl . "dm—l) < l/oﬁ < 1/0&7 < U(dl . "dm—l) + 1/6m71. (9)
Note that v(dy -+ - dpm—1) < 1/a if and only if
fmo(d) — 1
1
Multiplying both sides by 5™ —1, cancelling and rearranging terms, this is equivalent to v(d) > 1/6™.
This latter inequality holds since v(d) > v(dy) = 1/8 and m > 1. Next, 1/a™ < v(dy - dm-1) +
1/p™~ 1 if and only if

v(d) — 1/8™ <

BB gy —1/pm 4 1m0,

g™+ B
Using the fact that 1/8™~1 = 1/8™+1/8™*! and multiplying both sides by ™+ 3, this is equivalent
to
BTu(d) + 5 < (8™ + ) (v(d) +1/5™F),
or

p"o(d) + 6 < f™o(d) +1/6 + fo(d) +1/5™.

Simplifying, this is equivalent to showing 1 < Bv(d) + 1/8™, which again holds since v(d) > 1/5.
Thus 1/Id g A(dl . 'dm_l).

The second inclusion is equivalent to

vEerTem2) <1—-1/a” <1—1/at <v(er—emn_2) +1/8m 2
Now v(e1 - €n_2) < 1—1/a™ if and only if 1/a~ < 1— (v(e) —1/8™~1). By Proposition the
fact that v(€) = —v(e) and (9),
1= (v@) -1/ =v(d) + 1/ > v(dy - dpt) +1/677" > 1/a”,
Lastly, 1 — 1/a® < v(er€m_2) + 1/8™ 2 ifand only if 1 — 1/a™ <w(e) —1/8™" 1 +1/8™2, or
v(d) < 1/a* +1/8™. From (9, we find
v(d) —1/8" =v(dy - dm_1) < 1/a™.

Thus 1 —1/I4 € A(er€m_2).

(b) Fix 0 < j <m —1. If dj1; = 1, then part (a) and Lemma imply that B/(1/a) > B/(1/at) >
1/B8. Now suppose dj11 = 0. By (a), B/(1/a™) € (1/Ba—,1/8] if and only if B’T}(1/a™) €
(1/a~,1]. Lemma [2.17| thus implies BY(1/a~) ¢ (1/8a~,1/5]. By Equation @, it also holds for
each x € A(dy -+ d,,—1) that BY(z) ¢ (x/8,1/8] if and only if

Bz —v(di---dj)) < z/B,

14




or .
Biv(dy - - dy)
Top-1B
Since 1/a,1/a~ € A(dy -+ dym—1) and BI(1/a~) ¢ (1/Ba~,1/3], we have
- B v<d1'~~dj)7
- 1B
which implies B’(1/«) ¢ (1/Ba,1/8]. Thus B/(1/a) ¢ (1/Ba,1/8] for each 0 < j < m — 1.
The proof that BY(1 —1/a) ¢ (1/Ba,1/8] for each 0 < j < m — 2 is similar.
(¢) Suppose a € (™, ag). From Equation @ and part (a), we have for each x € 1/I4 that
B™ Hx) =" —v(dy - dpm_1)) (10)
= 8" o — (v(d) = 1/8™))
Since 1/a > 1/ay = v(d), we have B™ }(1/a) > 1/B. Also from Equation @, part (a) and
Proposition for each z € 1/I4,
B"?1—2)=8"2*(1-x—v(Er en-2)) (11)
=" 21—z +uv(e)+1/mh)
=B~z fu(d) +1/87 )
:_ﬁm72x_~_ﬁm 2,0( )"_1/6

X

/o< 1/a™

Hence
B™2(1—1/a) < B" (1 —1/ag) = 1/,
and B™%(1 — 1/a) > 1/Ba if and only if
B *u(d) + 1/
—— > 1/o.
Bm—Q + 1/6 /OL
But the left hand side equals 1/a~, so the inequality holds.
(d) Suppose a € (ag,a™). From Equation (10), 1/a < 1/ag = v(d) implies B™ 1(1/a) < 1/B.
Moreover, B™~1(1/a) > 1/Ba if and only if
g™ tu(d) —1/8
ST
The right-hand side equals 1/a™, and o < a™ by assumption. We also find from Equation (11)) that
B2 (1—1/a) = f"*(v(d) —1/a) +1/8 > 1/

since 1/a < 1/ag = v(d).
(e) This again follows from Equations and (1)), setting = = 1/ag = v(d).

1/ >

O

The following proposition states that the interval Iq contains the matching intervals corresponding to
the matching word d; together with Proposition [2.18] this characterises matching intervals as the collection
{Iataem.

Proposition 2.19. If S, has matching with m(a) = m, then o € Iq, where d = dy -+ - d,y, is beginning of
the S -expansion of 1.

Proof. By Proposition 2.13] d € M, so Iq is defined. The result holds for m < 2 by the cases in §2.1] so
assume m > 2 and let e = e; - - - e, denote the beginning of the S,-expansion of 1 —a. Recall from Equation

that
<dm_2dm_1dm> c {(010) <001>}
€m—2€m—1€m 001/’ \010 )
Assume d,,, = 0 (the other case is similar). Lemma Corollary and the final digits of d and e imply

that either
(i) Sy2(1) € (1/B,/B] or (i) Syl —a)€[-a/8,~1/P).
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It suffices to show that both (i) and (ii) imply

@ ¢ la= (G T @)
Fro(d)+ 1" Bro(d) - 8

(i) Equation gives
S™=2(1) = B 2(1 — aw(dy - - dm_2)) € (1/8,a/B].
Note that v(dy - - - dp_2) = v(d) — 1/8™7L, so
L—a(v(@d)—1/8""1) € (1/8" 7, a/8™ 1],

Now
1—a(v(d) -1/ > 1/6m"
implies
R S V- et B
v(d) - 1/pm=t pmo(d) - B
Moreover,

1-a(v(d) -1/8""") <o/
gives 1 < av(d). Thus we have

o € 1 Bm — 6 )
o(d)’ gmo(d) - B/’
and it suffices to show that
B+ 1 1

o)+ 1 o(d)’
But this is true since v(d) < v((10)*°) = 1.
(ii) Again from Equation (3),
Sa T 1—a)=p""1-a(l +v(er - em-1))) € [-a/B,~1/B).
The assumption that e,, = —1 together with Proposition [2.15|give
14+wv(er---em_1)=1+wv(e)+1/™ =v(d)+1/6™,
S0
1—a(v(d)+1/8™) € [—a/B™,—1/8™).
Now
1—av(d)+1/™) 2 —a/B™
implies 1 > aw(d). Furthermore,
1—afv(d)+1/8™) < -1/8™
gives
L+1/pm™  Bgm+1
o(d) +1/8m  pro(d) + 1

g™+ 1 1
“Emem+1wm>’

o >

Hence

and it suffices to show
1 _ B8
v(d) = Bmu(d) - B

This is true again since v(d) < 1.

The implications of Propositions .13} 2.16] [2.18] and 2.19] are summarised in the following:

Corollary 2.20. The sets M and {Iq}acm classify the matching words and intervals, respectively, of the
maps Sy .
16



Remark 2.21. The results of this subsection also imply that o(M) classifies the first m(a) < oo digits of
the Sq-expansions of 1 — a for matching parameters « € [1,8]. Moreover, the intervals Iq in {Ia}dem =
{I,-1(e) Yeep(Mm) classify the mazimal subintervals of matching parameters o for which these first m(«a) digits
coincide (and equal e = p(d)).

Remark 2.22. While not needed for our purposes, we briefly mention that the sets M (or p(M)) and
{Ia}dem also give rise to classifications of the T,-expansions of 1 (resp. B(1 — «)) before matching and
the mazimal intervals of parameters « on which these expansions coincide. In particular, if d € M (resp.
e = p(d) € p(M)), then the corresponding To-word d' (resp. €') ‘forgets’ each non-terminal 0 which
immediately follows a 1 (resp. —1, and €' also forgets the initial 0 of e). The matching intervals Iq are
unchanged. For instance, d = 10100001 and e = ¢(d) = 00001010 give rise to the words d’ = 110001 and

e’ = 000110 for Ty, and each of these words corresponds to the matching interval Iq = (%, %)

2.3. Cascades of matching intervals. Here it is shown that each unexceptional matching interval 1q, d €
My, generates a whole ‘cascade’ of unexceptional matching intervals with adjacent endpoints. Define 7 :
My — {0,1}*, where ford =dy -+ dy, € My and e := p(d) = €1 - - €,

1Md):{de, dp =0

des——e,, dp=1"
Recall the definition of the matching interval Iq = (a7, o) from .

Proposition 2.23. The map ) preserves Property M, i.e. )(My) C My. Moreover, ag = a$(d) for each
dec M.

Proof. Let d = d; ---dy,, € My, and assume d,,, = 0 (the other case is similar). We first show agy = o@(d),
assuming ¥ (My) C My. We compute
al = 7ﬂ2m -1
¥(d) — g2my(de) — 1
_ (8" +1)(B™ —1)
-~ B2m(v(d) — (1/8m)v(e)) — 1
_ "+ 1™ 1)
pFro(d) — fm(v(d) —1) -1
(B HnEn -
(Bmo(d) +1)(B™ —1)
_ B+l
~ Bmy(d) +1

as desired. Now we prove that d’ := ¢(d) € My. Clearly d’ ¢ {10,1001}, so we need only show d’ € M.
Write
d=1w,; ---w; 0

tn

with 4, = 2 and

e = (p(d) = OWQ_il ce Wg_inl.
Then

sod’ € Bis in admissible block form. To prove d’ € M, it remains to show for each j > 0 that (i) o7(d’) < d’

and (i) 07 (p(d’)) < d’. (Recall that d € M implies the analogous inequalities hold for d.)
17



(i) If j > m, then
ol(d') =o'(de) =0’ ""(e) xd =< d
Assume j < m, and suppose for the sake of contradiction that o7 (d’) = d’. Since d’ begins with 1,
so does ¢7(d’). Thus either

1 /
o’ (d ) = 1Wi2 Wi, WoWo gyttt Wg_inl
for some 1 < £ < n, or
j li
o’ (d ) = 1W0W2,Z‘1 s WQ,Z'"L
Since wy < wg = w;,, the second case is impossible and we must have
1Wi¢ e WinWOWQ_il tee Wg_i" 1 b 1Wi1 s WinWQWQ_il s Wg_inl
for some ¢. Since o7(d) < d, it follows that
]‘WTZ e Wl'n = 1W11 ... Wln7[+1
and thus
WoWo_g, * Wg_inl - Wi, ppo Wi, WoWa_j, = - Wa_; 1.
Then either there is some 1 < p < ¢ — 3 for which
(0,2 —id1,...,2 —ip1) = (in—e42,in—043, - inyp—t41)
and 2 — 4, > ip4p—g42, OF
(07 2 — ilv ey 2 - Z.ZfQ) = (in7f+27 infl+37 R 7Zn)
In the first case,
(2 —in—42:2 = Gn—t43;- -, 2 = dptpr41) = (2,01, .., ip-1)
and 2 — 4,4 p_¢42 > i,. Thus there exists some k > 0 for which
k@) =1 . ... . . - 1
a (e) = 1W2—i, 443 W2 —imtpt41 W2—ipyp o Wa—i,
- 1Wi1 Wi, Wt Wino
= d7
contradicting the fact that d € M. In the second case,
(2 - Z.n—Z+27 2— in—E—FSa ceey 2 — Zn) = (2a Z.la cee 7if—2)~
Since 7, = 2 implies iy_o = 0, there is again some k > 0 for which
k /—
o'(€) =1waj, , 5~ Way, Wa_;,1
=1wo i, g Wi, W1
- 1Wi1 Wi Wi, e wi"O
= d’

contradicting d € M.
(ii) Set € :=p(d’) = ey - e, and recall that d,,, = 0 implies e, = —1. Then

1
e = OWQ,Z‘1 o Wo g, WoWy, - - win()
= €1 em_lod.

If j <m —1, then

ol(&)=e€q1 em_10d <51 en =0’(e) =d < d.
If j =m — 1, then
ol(e)=0d <d,
and if j > m, then
ol(e)=0l""(d) <d=d.
This concludes the proof that d’ = ¢(d) € M and thus »(My) C My. O
18



3. INVARIANT MEASURES AND FREQUENCIES OF DIGITS

As noted above, our main interest in matching arises from results of [I7] which provide explicit expressions
for the densities of absolutely continuous invariant measures. These densities depend on the orbits of the
left and right limits at critical points and are in general infinite sums of (finite) step functions; however, the
infinite sum becomes finite when either matching or a Markov partition occurs. These observations are used
in this section to obtain explicit invariant measures v, and pu, for the maps S, and T,, respectively, and
asymptotic relative frequencies of digits occurring in their respective generic expansions. These measures
and frequencies are used in the proofs of Theorems [I.I] and

Recall that B(z) := Bz (mod 1). It is well known that

543V5 - 2 e [0,1/8)
h(z):={ _ 10 ’
®) {” e [1/8,1]

is the density of a unique, ergodic, B-invariant probability measure which is equivalent to Lebesgue measure
A ([22])). By Birkhofl’s ergodic theorem, the frequency of 0 in M-a.e. -expansion is f[O,l/B) hd\ = (5++/5)/10.
When « = 1, the map S, = S; restricts on [0,1]\{1/8} to B and on [—1,0]\{—1/8} to —B(—=x). Since S;
is invariant on [0, 1], we find that the frequency of 0 in M-a.e. Sj-expansion is also (54 +/5)/10. Define f; :
[-1,1] — [-1,1] by fi1(x) = h(]z|)/2, and recall the definitions of the subintervals J; C [-1,1], i € {-1,0,1}
from Note, then, that the measure v; defined on Lebesgue-measurable A C [—1,1] by v41(A4) = fA fidA\
satisfies v1(Jp) := (5 4+ /5)/10.

A similar analysis (with Lebesgue measure) reveals that the frequency of 0 in A-a.e. Tj-expansion is 1/0.
Setting p1 := A/2 as normalised Lebesgue measure gives u1(Jp) = 1/8. In what follows we consider o # 1.

3.1. Invariant measures. Let a € (1,]. Following a procedure completely analogous to that in §2.1 of
[13], results of [I7] imply that the collection of absolutely continuous S,-invariant measures forms a one real-
dimensional linear space and thus there is a unique—and hence ergodic—absolutely continuous invariant
probability measure v,. Moreover, its corresponding probability density is given explicitly by

1 1
fal) =5 > gt (L1=1,8 (a—1)) () = 11,8 (1)) (®) + 11,8t (1) (@) — Li—1,8t (1—a)) (@) 5
>0
where C' € R is some normalising constant. Symmetry of S, together with Proposition allow us to
rewrite f,(z) as
1 1
fal@) = & 2 g (Hst-nistia-1)@) + Lisy a-ar,550) @) - (12)
>0
Note that f, is bounded away from 0 on [—1,1), so v, is in fact equivalent to Lebesgue measure \. Also
observe that when matching (or a Markov partition) occurs, the summation becomes a finite sum and f, (z)
is a (finite) step function (see Figure [3).
The measure v,, can now be used to obtain a unique, absolutely continuous Tj-invariant measure p, =
J gadA. For each a € (1, 8], define a probability measure

Va (S5 1(A) N Jo)
Va(Jo)

on [—1,1], where A C [-1,1] is Lebesgue-measurable. Note that S;1(A) N Jy = %A SO fio may also be

written pq(A4) = Va(%A)/Va(JO).

;u'oc(A) = (13)

Theorem 3.1. The measure g is the unique—hence ergodic—invariant probability measure for T, which
is absolutely continuous with respect to Lebesgue measure. Moreover, i, is equivalent to Lebesque measure.

Proof. Since T,, is an expanding, piecewise C? monotone map, results of [19] imply the existence of an
invariant probability measure p, for T, which is absolutely continuous with respect to Lebesgue measure.
Let Jy1 := J_1UJ;. As T, is a jump transformation for S,, the measure p, induces an S,-invariant measure
defined by
pa(A) = pa(A) + pa (S5H(A) N T11) (14)
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FIGURE 3. The invariant densities f, for S, (red) and g, for Ty, (blue) with v = 1.16 (left),
a =1/v(1010) =~ 1.17082... (center) and a = 1.2 (right).

(see, e.g. Proposition 11.4.1 of [14]). Note that for any A C Ji; we have S;1(A) C Jo, so gives
Pa(A) = pa(A). Then for any measurable A C [—1,1],

ﬁa (S;I(A) n J:l:l) = Pa (S;l(A) n J:tl)
and gives
pa(A) = palA) = fo (ST (A) N J11) .

Since p, is Sy-invariant, the previous line may be rewritten
pal(A) = pa(S51(A)) = Pa (S5 (A) N Ja1) = palS5H(A) N o).

Recall that v, is the unique invariant, absolutely continuous probability measure for S,, so p, = cv, for
some ¢ > 0. Thus

pa(A) = cvo (SHA) N Jo),
and setting A = [—1,1] gives ¢ = 1/v4(Jp). Hence po = pig.

That p, is equivalent to Lebesgue measure A follows immediately from the fact that v, is equivalent to
A and the observation above that p,(A) = ya(%A)/ua(Jo). O

We are now ready to prove Theorem [1.1

Proof of Theorem[1.1 Theorem asserts the existence of a unique, absolutely continuous T,-invariant
probability measure p, which is in fact equivalent to Lebesgue measure. It remains to show that for fixed
d € M, the density g, of each u,, a € Iq, is a step function with at most the same, finite number of jumps.
Using a change of variables, one finds that

el L 1
Va(Jo)  va(do) /;A fo(z)d\(z) = BVQ(JO)/Afa(x/ﬁ)d,\(x)’

_ Ja(@/B)
Ja(T) = Bra(Jo)

Since, by (12), fa is a linear combination of at most 2m(«) indicator functions and m(a) is constant on Iq,
the result follows. O

fa(A) =

SO

Remark 3.2. The number of jumps of the invariant densities fo and g, for S, and T,, respectively,
are non-constant on matching intervals Iq. Figure [J shows these densities for three values of a in the
matching interval Iq ~ (1.14589...,1.23606...) with d = 1010. Note that the number of jumps is fewer
for a =1/v(d). One can show that this phenomenon generalises to all matching intervals; in fact, for each
d € M, the number of jumps of fo and g, respectively, are constant for all but finitely many o € Iq, and
the number of jumps decreases for o = 1/v(d) € Iq.
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FIGURE 4. The frequency functions fg(a) (red) and fr(«) (blue) plotted on all matching
intervals Iq with len(d) < 20. The visible plateaux correspond to the interval [1/2+1/8, 1+

1/5%].

3.2. Frequencies of digits. We are now in a position to determine the frequencies of digits in generic S,-
and T,-expansions. Define fg, fr : [1, 5] — [0,1] by

fs(a) :=vq(Jo) and  fr(a) := pa(Jo).

For « # 1, Birkhoff’s ergodic theorem—together with the equivalence of the ergodic measures v, and pi,
with Lebesgue measure A—implies that the asymptotic frequencies

n—1 n—1

1 i 1 !
lim_ 5;1J0(5a(:v)) and  lim_ E;IJO(TQ(SE))

of the digit 0 in Lebesgue-a.e. S,- and T,-expansion are given by fs(a) and fr(a), respectively. Indeed, with
the discussion and notation given at the beginning of fs(1) and fr(1) also give the generic asymptotic
frequencies of the digit 0. Note, too, that the frequencies of the digits +1 are readily obtained from the
frequency of 0.
As in the proof of Theorem set Jyq :=J_, UJ;. Using and the S,-invariance of vy, one has for
any measurable A C [—1,1],
Va (S5 ' (A) = va(Sa ' (A) N Jx1) _ va(A) — va(S5'(A) N 1)

Ha(A) = Va(Jo) - Va(Jo)

Setting A = Jy and using the fact that S, 1(Jo) N Jx1 = J+1, we find

~ Val(Jo) = va(J11)  va(Jo) — (1 —va(Jo))
MQ(JO) N Voc(JO) B Va(JO)

() =2 - @ (15)

Proposition 3.3. The frequency functions fs and fr are continuous.

Proof. Arguments completely analogous to those in §4 of [13] give that fs is continuous. Continuity of fr is
immediate from [[5 O

The remainder of this subsection is devoted to finding—for matching parameters a—an explicit expression
for fg(a) in terms of a and its corresponding matching word d (see Figureld]). Density of matching parameters
in [1, 5], continuity of fg and equation then allow us to determine fg(«) and fr(a) for any « € [1, ]
as limits of these explicit expressions. These expressions are then used in §3.3] to determine the maximal
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frequency of the digit 0 occurring in generic S,- and T,-expansions, and it is shown that these maximal
values are attained for « in the interval [1/2 +1/8,1+ 1/5?].

Assume that o € Iy, d € M, with matching index m := m(«a) < oo, and recall the density f, from
equation . We first find an expression for the normalising constant C'. By symmetry of S,

1 =v,([-1,1])
:/_1f (x)dA(z)
2 m—
e z/ B+ List (1—a),st (1)) (T)dA ()
t=0
B % t—_o gt1+1 (SL(1) = SL(1— ).

Assume a < 1+ 1/4% and write

For each i € 0,1,2, let £(i) € {2,3} denote the length of the block w;—explicitly, £(0) = ¢(2) = 2 and
(1) =3—andlet p:=pq: {1,...,n} = {1,...,m—3} be defined by p(k) = 1+Z;€;11 £(i;) so that o?*)(d) =
wi, - w; (1 —1i,/2). Recall from Figurethat S9(1)-S°(1—a)=a, S?1(1)-S" }(1-a)=a/B, and
that the remaining differences S? (1) —S! (1 — ) are determined by cycles of length two or three beginning at
vertex a/. In particular, if iy, € {0, 2}, then Sg(k)(l)—Sg(k)(l—a) = a/f and Sg(k)Jrl(l)—Sg(k)H(l—a) =«
give a cycle of length two, while if i, = 1, 2™ (1) — SEF (1 — o) = /8, SEFT (1) — 2T (1 —a) = a
and SEMT2(1) — SET2(1 _ o) = Ba give a cycle of length three. We find for each k € {1,...,n} that

p(k)+£(ik)—1 1

t t £(i
Z B+l (Sa(l) - S, (1 - Ol)) = Bpgkl)cl?a,

t=p(k)

and thus

o

=0
1, t
c %+Z Z B+ (Sa(l)*Sa(l—a))+W

“~/
26& ( + Z < Br(k) Zk+2 5n}+1> ' (16)

Note that also holds for a > 1+ 1/8?% (i.e. d = 10) with the summation over k set to zero. Define
a substitution & : {wq, w1, w2} — {02,030} by &{(wp) = &(w2) = 02 and {(wy) = 030, and let = : M —
{0,1,2,3}* be given by =(d) = 101 if d = 10, and

E(d) = 1&(wi,) - - - £(wi, )01
ifd = 1wy, - -w; (1 —4,/2) € M\{10}. The left- and right-most sides of may be written more

succinctly as 1 = 2¢v(Z(d)), and thus C' = 2av(E(d)).
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Having found C, we are now in a position to determine fs(«). Again by symmetry of S,,

fs(@) = va(Jo)
=1- Va(Jfl) — I/a(Jl)

-1/ 1
o /_ | @@ = [ folz)dAz)

P eV | 1o
:1*52 /,1 5t+11[8;(1—@,3;(1))(56)“(@+/1/ﬁﬁt+11[5(2(1—@)753(1))(“3)”(5”) '

t=0

Write e := ¢(d) = €1+ ep,. Since by Proposition 2.1 S (1) ¢ J_1 and S%(1 — ) ¢ J; for t < m, the

previous line may be rewritten as

s@=1-5| 3 gUs-Sii-a)+ 3 (i) -1

0<t<m—1 0<t<m—1
ety1=—1 diy1=1

2 1, 1,
:1_6 Z Bt+1sa(1)_ Z Bt_;,_lsoz(l_a)_l/ﬂ )
0<t<m—1 0<t<m—1
diy1=1 etr1=—1

where we have used Proposition together with the facts that

> 1/ =—v(e) and > 1B =o(d).

0<t<m—1 0<t<m-—1

er+1=—1 di41=1

Let d9 = e! = ¢ be the empty word, and for 1 <t <m —1set d} :=dy---d; and e} := ey ---¢;. For each
0 <t <m—1, equation (3) gives St (1) = 84(1 — av(d})) and S%(1 — a) = B(1 — a — av(e!)). Setting

nd)=#{1<j<m|dj=1}-#{1<j<m|e =—1}, (17)

the frequency function may be written as

s =1-5 | ¥ gmfl-ad)- Y gmA-a-ae) - 13

/Bt
0<t<m—1 0<t<m—1
dir1=1 erp1=—1
2
:17570 Y (-av@d)— Y (I-a-av(el)) -1
0<t<m—1 0<t<m—1
diy1=1 et41=—1
2
Si-Z@oa| Y - Y G | 1
0<t<m—1 0<t<m—1
dip1=1 ety1=—1

Letting
Ka:= Y o(d)- > (1+wv(e)
0<t<m—1 0<t<m—1
di41=1 etr1=—1

and recalling that C' = 2av(2(d)), we find

fs(a) =1~

1 nd) -1
oy (e ) (18)



Example 3.4. Let d = 1001. Then e = 0010, so n(d) = 1. Moreover,

- 1 2 1
v(E(d)) = v(10201) = 5 + 5 + 5
and :
Kq = v(g) +v(100) — (1 — v(00)) = 5
Thus for all o € 1901,
1
s =1 maprymE i - >

A similar calculation with d = 1010 reveals that fs(a) = 4/5 also for all o € Ip1p.

Before turning toward the maximal frequency of the digit 0, we give an alternate expression for Kq which
will be helpful below. Note that the first summation in the definition of Kg may be rewritten as the sum
of all v(d?), 1 <t < m, for which d;=1, excluding the greatest such index t. The second sum may be
similarly rewritten (though an extra term 1 appears from the first non-zero summand of the original sum).
Now suppose d # 10. Recalling that {d,,—odm—1dm, €m—_—26m—_16m} = {001,010}, we have

Ka= Y wd)-|1+ Y (1+u(e})
1<t<m-—3 1<t<m-—3
di=1 er=—1

=o(M)+ > ollwywy) = |1+ D) (1= v(0wa g, - Wayy))

1<k<n-—1 1<k<n-—1
ie{1,2} 2—i,€{1,2}

Recall that p(k + 1), 1 < k < n — 1, gives the power for which o?*+1(d) = w;,,, -~ w; (1 —i,/2); in
particular, p(k + 1) equals the length of 1w, ---w;,. By Lemma

1 1/1 1
'U(lwil P Wlk) + U(0W27i1 e W2*ik) = E —+ B (/8 — ﬂp(k«l»l)) =1 1/517(]@4’1)*‘1’1.
Then
1
Ka==+ > oflw,-wy)— |1+ Y (v(lwh w,) 1/5p(k+1)+1>
B 1<k<n—1 1<k<n—1
ir€{1,2} 2—ix€{1,2}
1
:—E—l— Z v(lwy, - wy, ) — Z v(lwy, - wy, ) — Z 1/pPF+L
1<k<n—1 1<k<n—1 1<k<n—1
=2 1, =0 2—i,€{1,2}

The latter summation equals

1
Z 1/ﬁp(k+1)+1 = Bv(OwQ,il S Wag, )

2 Sneia)
_ % (v(e) - /3733”(“‘”"/2))
- % (1 —v(d) — ﬂi_gv(wzinin/m)
_ % (1 —u(dy - dyg) — Bi_gv(ml))
_ % _ %v(dl-ndm,g) - ﬁ



and thus for d € M\{10},
1

Fi (19)

Kgq=-1+ Z U(lwil -~~W,L'k) — Z v(lwil Wzk) =+ %’U(dl"'dm_g)—F
1<k<n—1 1<k<n
in=2 ix=0
3.3. Maximal frequency of zero. Here we prove that the frequency functions fs and fr attain their
maximums on the (maximal) interval [1/2 + 1/3,1 + 1/3%]. We first need some preliminary results. Note
that by , on the matching interval I4 the frequency function fg is strictly increasing with « for n(d) > 1,
strictly decreasing for n(d) < 1 and constant for n(d) = 1. By , the same monotonicity conditions hold
for fT-
The first of our preliminary results states that fs (and hence fr) is constant on ‘cascade’ intervals:

Lemma 3.5. For each d € My, we have n(¢p(d)) = 1. In particular, for each d € My, the frequency
function fg is constant on [lim, o a;n(d), agl.

Proof. Tt suffices to prove the first statement; the second follows immediately from this, Proposition [2:23]
and continuity of fs. Write

d=dy-dp=1w; ---w; (1 —-4i,/2) and e:=¢(d) =e€1 - ep =0Wa_; - Wa_; (in/2).
Observe that

de, dm =0
des—¢e,, d,=1

_ 1Wi1 s Wi OOWQ,Z'1 o Wo g, (in/Z), d
Iwi, - Wy, 001wa_, - Way, (in/2), dip =

_ )Wy W WoWa g, e W, (in/2), d
Iwg, - Wi, WiWa_g, - Wa, (in/2), dm =

SO

fim o(d) = 0wy, -~ Wa i, Wawy, - Wy (1 —i,/2), dp =0
OWQ,Z‘1 o Wo g,  (W1IWG, s Wi,,L(l — in/Z), dm =1

_ 61"'6,7171067 dm =0
N €1 -em20d, dy=1"

Recall that if d,, = 0, then &,, = 1. In this case d’ has exactly one more digit 1 than does e’. If d,, =1,
then €, 1€, = 10. Since e; = 0, we see that in this case, too, d’ has exactly one more digit 1 than does e’.
Thus in both cases n(d’) = 1. O

‘We make note here of some computations which will be useful below. Let ¢, £ € Z with £ > 0:

‘ c — 2¢ c
w00 =S 1y = & LTUE ey g (20)
j=1

g2 11/ B

! C — 3¢ C
v((00¢)") = C; 1/8% = Eh 711 11//653 = ﬁ(l —1/6%) (21)
v((0c0)") = Bu((00)") = (1 —1/8%) (22)

4
O — . 4j7£1*1/54l7 C . 40

v((000¢)") = ;w =mTymE - st YA (23)
0((0e00)) = F2u((0000)") = 5 (1 - 1/%) (24)
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Lemma 3.6. If o € Iq for some d € M with n(d) = 1, then fs(a) < 4/5. Moreover, equality holds if and
only if d < 1(wowg)>®

Proof. Note that n(10) = 0, so we may assume d = 10. That fs(a) = 4/5 for all a € I1910 U 1991 was shown
in Example Thus we may assume that d = 1010. Write

d=dy - dpm=1w; --w; (1 —i,/2) =1X,Y1 - XeYew, (1 — i, /2),

where each X, and Y, 1 < s < ¢, consists solely of wa;’s and wy’s, respectively, and each X, Y, # ¢
except possibly Y. Let fos_1 := %len(Xs) and fog 1= %1en(Ys) denote the number of blocks w; in X, and
Y., respectively, and set £; := 0 for j > 2t. Analogous to the function p = pq defined in §3.2] set p; := 1
and for each s > 1, let pos := pos_1 + 20251 and pasy1 1= pa2s + 3las; note, then, that

('J'pzs_1 (d) = XSYS e XthWin(l — ’Ln/z) and O'p25 (d) = YSXS+1 e XthWZn(l — Z?L/2)
Let kas—1,kas € {1,...,n} be the indices for which
oP>=t(d) =wy,  oowi, Wi, (1—id,/2)  and o (d) =wy, -owy, Wy (1 —in/2).

Using and , we compute

v(Z(d)) = v(1(02)%1(030)* - - - (02)*2+-1(030)*2*0201)

— 1 : 1 v 225—1 L’U 625 L’U
= +Z( ((02) )+ﬂp25 ((030) )) + 5 (0201)

B pt 5102571
_ 1 - 2 1 1 20051 3 1 1 3l 2 2 1 4
—g+z W<—/ﬂ Hw,,%(—/ﬁ ) Bmg(/ﬁJr/B)

(5,,2{1 ( s)+ﬁis ((001)425)>
:%Jr (67021“ Tv(Xs) Qﬁpiﬂ(ll/ﬁu%))

1
Kd——B—i— E v(Iwy, Wy, ) — E v(Iw;, - wy,)
1<k<n—1 1<k<n—1
=2 iK=0

t ) 1 1
- ; (ﬂpzs—lﬂv(XS) + W(l — 1/ﬁ3ézs)) n T
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Then

38 1

= : 2 251 2s
5m4d»+ma—ﬂ+§;<w%4a—Lw%a>+2W%a—1muﬂ)+ﬁm4@ma+um>
—§—|—5 Z v(lwy, - wy, ) — Z v(Iw;, - wy,)
B 1<k<n—1 1<k<n—1
in=2 in=0
i 1 1 3las 5
+ 5; <5p2.g_1+1”(X3) + 93p2at? (1-1/8 )> + g1
t
::1"‘%‘*EE:Z§LS(35/2‘%5/252)(14*1/ﬂ3“5)4*Zg%:g(2/5*+5/524%1/ﬂ3)
s=1
! 2 ot 5
+ Z <ﬂp231 (1 - l/ﬁ > 1) + ﬂpzsl-‘rlv(xs))
s=1
+5 Z v(lwy, - wy, ) — v(lwy, - wy,)
1§k§g—1 151«;%—1

One easily verifies that both 38/2+5/232 and 2/8+5/8% +1/83 equal ¢ := 5 — 3. We claim that it suffices
to show that

s=1

1<k<n—1 1<k<n—1
=2 1=0
i C
_ 20251
B D i)

with equality if and only if d < 1(waw()*°. Indeed, suppose the claim holds. Then the computation above
becomes

C

(1—1/8%1) + Gm=3

Bu(E(d)) +5Kq < 1— > +ey (

1
ﬁ p /Bp2571 ﬂp% (1 o 1/6%25)) +

t
=1 % +CZ(1/BP2S_1 _ 1/61’25 + 1/61’25 _ 1/ﬁp25+1) + 67:_3
s=1
1 S+ el1/B - 1)+
5 ¢
~1TEYs
=0

with equality if and only if d < 1(wow()®. Rearranging, this inequality is equivalent to Kq/fv(Z(d)) <
—1/5. From and the assumption that n(d) = 1, this gives

fs(a) =1+ Ka/Bv(Z(d)) < 4/5

with equality if and only if d < 1(waw()>, as desired.
27



It remains to show the claim from . The constant ¢ defined above may be rewritten as ¢ = 2+5/(3%+1)
Subtracting ZZ -

_,(2/BP25-1)(1 — 1/B%%25-1) from both sides, dividing by 5 and noting that i, € {0,2} only
when kos_1 < k < ko, 1 < s <t, equation becomes

t
Z ﬁpze 1+1 X ) + § : U(lwil o Wzk) - E U(]-Wil .
s=1 kos—1<k<kas koo 1 <k<kss

e =2 ix=0

Wi, ) (26)

1 1 3
Pl ; G (1= 1/8%%7).

Fix 1 < s < t, and write

X, = W;Ls.,l (WgWo)ns’ngs’g (W0W2)n9 4 N drg—3 (W2W0>ns,4r572wgs,4rsfl (WOWQ)”SATS ’ (27)

where the powers n,, > 0 are chosen so that Zj,isl ng¢ is minimal and no three consecutive ng, are zero
except possibly the first or final three ns¢. Set ps1 := p2s—1 and for each 1 < j <rg,

Psdj—2 = Ps.aj—3 + 2Ns 4j_3,

Ds,4j—1 1= Ps4j—2 + 4713,4;’-2,
Ds,45 ‘= Ps,4j—1 + 27’1574]'_1,

Ds,4j+1 = Ps,aj + 4ns74j.

Note that with these definitions, ps,4r,+1 = p2s. Equations (20)-(24) give

1 7L54 3 1 Moty
W S B E : <pr 45— 3 J= ) + oo U((W2W0) 4 2)
1 MNs, 45— 1 n v
+ W’U(Wo 4 1) + Bps,élj U(<w0W2) 5,45 ))

— s 1 1 2Ny gj_ 1 1 P
_;(51)&“52(1—1/5 4 s)+mm(1_1/5 a-2)
1 1

_ Ang 4
+ Bpeas B2(B% + 1)(1 1/p ))

and

E v(lwy, - Wy, ) — E (1w, Wi,
kas—1<k<kas kos—1<k<kzs
=2 in=0
Ns,45-3
Ns,1 L Vi
= E ( E 1X1Y1 X1 YWyt (W0W2)ns,4J 4W2)
j=1 (=1
Ng,45—1
Ms,1 s 4i— ¢
o Z U(1X1Y1 e X1 Y qwy T (Wgwo)n 4] 2W0)
(=1

+ ’U(leYl v Xslesilwgs‘l .. (WOWQ)nS’4j)

— U(leYl v XS,1YS,1W;LS’1 . (WQW())"S’M2wgs'4j_1W0)>

Ns, 45
= Z ( ZJ 3 1X1Y1 X871Y871W72’Ls,1 .

- (Wowo) i —iwh)
j=1 (=1
_ ns,4j_1v(1X1Y1 C. Xs—le—lwgﬁ’l
1 1
+o— (1 — 1/8%=49) ).
BPsai B(B2 + 1)( /B )>
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Thus the left-hand side of (26)) equals

_ 2Ms 453 1 1 _ Angs 452 1 1 _ 4Ang 45
ZZl(ﬂ SBQ VB e gy (U 1B 4 o s (L 1)

+ Z 1X 1Yq -~ Xs_le_lwgs'l cee (WOWQ)”S’4]‘74W£)

_ TLS74j_1”U(1X1Y1 e Xs_le_lw;s,l . (WQWO)nS'4j2)> .

Moreover, using the definition of ps 4;_;, we find that each summand on the right-hand side of may be
expanded

1

B (1 _ 1/ﬂ2@2571) :1/6P2571 _ 1/5;025

:1//8175,1 _ 1/5PS,47-5+1
=3 (G - v+ 1)
j=1 ' h
1

1
+ 5175,4]‘71 Bps,ékj (1 — 1//84715,4]‘)) .

Subtracting Zé 1 Z] 1 WWH (1 —1/p4ns4i=i) 5 = 0,2, from both sides, becomes

(1—1/p%=w1) +

t Ns,45—-3

ZZ (Bps s ﬁ? — 1/t V(IX Y- X Y qwy ot (Wowg) ot - w)

s=1j=1 /=1

—Ngaj—1v(1X1Y7 - .Xsileilwgs,l - (W2W0)n5,4j2)>

t T
s 1 2ns 453 #L _ s aj 1
X_:Z(/gps@ 3@( -1/ )+ﬁps,4j—1 524—1(1 1/8 ))

Rearranging and using the fact that 1/5%—1/(8%2+1) = 1/(8%(8%+1)), the previous inequality is equivalent
to

t Ns,4j-3
ZZ< Yo vIXi Y X Yaeawy Tt (Wow) "t wy) (28)

s=1j=1 (=1
1 1
+ ,
fpeai=s 2(52 + 1)

(1= 1))

1 1
ﬁps,z;]‘fl /62 +1

t Ts
<> > (nsAj—w(llel X YW (Waw )4 (1- 1/62”*"‘“'1)) '

s=1j=1
Consider the summand (with respect to the summation over j) on the left-hand side of the previous inequality.
We will show that this is less than or equal to ns4;—_sv(d), with equality if and only if ng4;_3 = 0. If
Ns.4j—3 = 0, both the summand and n, 4;_3v(d) are zero; assume ng 4;_3 > 0. We must show

Ns,45—-3 1 1

Ns,1 Mg 45— 4
Zz::l (’U(d) — ’U(].XlYl e Xslesflwg T (WOWQ) * 4W2)) > ﬁPsAjfB Bg(ﬁg + 1)

(1—1/p%mes-2).
(29)

The left-hand side of the previous line equals

MNs,45—-3 1
Ns —£ Mg, aj— ) .
> (M (wy 7" (waw) "t 2~~wzn(1—zn/2))>.

{=1
29



Note that (wawg)™ 42 - - - w; (1—i,/2) = (Wow2)™: if not, then the former word begins with (wows)™ wow;
for some n’ > 0 and ¢ € {0,1}. But then

Ng 453 Ns,4j—3—1

5 7 (Wow) "2 w1 — iy /2) = W, (WOWZ)”IWOWZ' =w,

Wo (wowQ)”/“wi,

contradicting the minimality of the sum of powers Z;i&i ng . Thus the left-hand side of is strictly
greater than

Ns,45—3
\ 1 Nsaj—3—4 1 00
Z (5ps,4,7—3+2€v(w2 o )+ BPs.ai-2 v((wows) ))

(=1

1 Ns 4j—3 1 1 1
J— . 2?7,51 j— —2/
 BPs.ai-s Z <52é+1 (1 —1/B7 =) + 3211 62n5,4j3+1>

(=1
_ 1 1 20 ;- Ns,45-3 1 N 45—3
7@ <52(1 - 1/6 - 3) - /3277,5,41-,3«%1 + 62 + 1 /827’7,5,4]'73*%1

1 <1(1 _ 1//82715,4)‘—3) _ ﬂ2 N 4j—3 ) .

:Bps,4jf3 62 62 +1 ﬁ2n5,4j,3+1

It suffices to show that the right-hand side of the previous line is greater than or equal to the right-hand
side of . Multiplying both quantities by BPs4i-3+2(32 4 1), this is equivalent to showing

Moo A Ns 453 1
(62+1)(1*1/62 5,45 3)75362T,J4];3217W7
which simplifies to
Ns 453
1 - ﬂ2n5.4j,3 2 552n5,4j—3 '

The left- and right-hand sides of the previous line increase and decrease, respectively, as functions of integers
Ng4j—3 > 0. Since the inequality holds for ns 4;_3 = 1, we conclude that holds. Thus the summand on
the left-hand side of is less than or equal to ng 4;_3v(d), with equality if and only if ng4;_3 = 0.

Next, consider the summand on the right-hand side of . We shall show that this is greater than or
equal to ng4;—1v(d) with equality if and only if ng 451 = 0. Again if ns 451 = 0, both the summand and
ns.4;—10(d) equal zero, so assume ns 451 > 0. The desired inequality is equivalent to
1 1

ﬁps,ékj—l m(l — 1/52’/%»,43'71)' (30)

ns74j,1(v(d) — ’U(].XlYl e Xs,le,lwgs’l e (WQWO)nS’M*z)) <
The left-hand side of the previous line equals

W (W) ows, (1= /2)) = P

Ns 45-1

BPsai—1 v((wowz)" =4 - wy, (1 —ip/2)).

For similar reasons as above, one finds that (wowa)™% ---w; (1 —4,/2) < (Waw()™. It follows that the
left-hand side of is strictly less than

Ns 451 0o\ Ns 451 ﬁ
6?5,4]‘ ’U((WQWO) )_ BPS’M /82—‘-1

Multiplying both sides of by BP=4i (8% + 1) and recalling that ps4; — ps.aj—1 = 2ns4j—1, it thus suffices
to show that

Brgaj—1 < preti—t —1,
which clearly holds for each ns45-1 > 1. This proves that the summand on the right-hand side of is
greater than or equal to n,4;—1v(d) with equality if and only if ng4;—1 = 0.
Note that may be rewritten as

nd)=(0+#{1<k<n—-1[ic{l,2}}+1)-(#F{l<k<n-1[2-d €{1,2}} +1)
1+ #{1<k<n—1|i=2}—#{1<k<n—1]|i=0}
Since n(d) = 1 by assumption, we have

#{1<k<n—1|iz=2=#{1<k<n—1]i=0}
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Recalling that d = 1X,Y; - - X, Yyw,, (1 — i), /2), and the fact that each Y, consists solely of wq’s, we
find

t Ts
#U<k<n—1]ix=2} = (neaj-s+nsaj2 +Nsaj)
s=1 j=1
and
t Ts
HI<k<n—1]ig=0}=> % (neaj2+nsa-1+ns1;),
s=1j=1
s0
t rs t s
PR BUNTEEDB) DI (31)
s=1 j=1 s=1j=1

Using this and our prior observations regarding the left- and right-hand sides of , we have

t Ts MNs,45—3
ZZ( Yo vIXa Yy X Y wy e (wows) et wh)

(=1
L 1
fBPeti=s (2(5% 4 1)

t rs
<v(d) Z Zns,4j73

s=1j=1

(1)

s=1j=1
t Ts
=v(d) Z Z Ngdj—1
s=1j=1
<§: (n 4 1v(IX0 Y - X 1Y gwy ™t (Wawg) " 4i-2) 4 ;#(1 — 1/,82"5*4-1—1))
= £ s,45—1 111 s—1Ls—-1Wo 2W0 /BpSAj—l ﬁ2+1

Jj=1
with equality throughout if and only if each 14451 = ns4j—3 = 0. Thus the inequality in —and hence
in —holds. It remains to show that d < 1(waw()™ if and only if each ng4j—1 = ns4j-3 =0.
Suppose that d = 1(waw()>. Then d begins with 1(wawg)"™ wow; for some n’ > 0 and i € {1,2}. This
implies that either ny 1 or ny 5 is positive. For the converse, suppose that some ns 4;_3 or ns 451 is positive.
By (1)), we can choose some ng 453 > 0 with (s, j) (lexicographically) minimal. Note that

oP=ai=37H(d) = dywy 7P (wawg) 2 owy (1 — 4, /2)
with d; € {0,1}. Suppose d; = 0 (the case that d; = 1 is similar). Then j > 1, and
gP=4-7(d) = wy VT (Waw ) S Y T (Wowg ) tw, T (Wawg )2 -y, (1 — 0, /2).
Since d; = 0, we must have ng 454 = 0. Moreover, ng 4;_5 > 0 contradicts the minimality of Z;}:l Ng 0, SO

ns.4j—5 = 0. Since no three consecutive n, ¢’s can be zero (except possibly the first and final three ng (), it
follows that ng4j—6 > 0. Thus

oP=4i-671(d) = dy (Waw) 40wy 72 (wowg) =42 . owy (1 — i, /2) (32)
for some d;s € {0,1}. Suppose d;s = 0. Then j > 2, and
Ups,élj—ll(d) :W;’«s,élj—ll (W2W0)ns,4j—lowg’5v4j—9 (W0W2)ns‘4j—swg‘5=4j—7(W2W0>ns,4j—6wg‘sv4j—3 (W2W0)ns,4j—2
cewy (1=, /2).
Since di = 0, we have ng4j—8 = ngj—7 = 0. If ng4;_9 > 0, the fact that ns4;-3 > 0 contradicts the
minimality of 22251 Nge. But ng45_9 = 0 is also a contradiction since this implies three consecutive n,,’s

are zero. Thus d;; = 1. Now suppose JPMJ’*G_l(d) =< 1(wawg)®. From , we find that n, 43 =1 and

’

gPeti=07H(d) = 1(wawo)"* = wa(Wowa)" WowWir -+ w;, (1 —i,/2)
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for some n’ > 0 and i” € {0,1}. In any case, this contradicts the minimality of Z;isl ns¢. Thus (using the
fact that d € M),
d > 0p5’4j7671(d) >~ ].(WQWO)OO,

and we conclude that d < 1(wawyg)> if and only if each ng 4j—1 = ng4;-3 = 0. O

Note that for each n > 1, the word d™ := 1(waw()"001 < 1(waw)® satisfies Property M. Moreover,
v(d"™) approaches v(1(waw()*®) = 28/(5+2) from below, and thus 1/v(d™) approaches (5+2)/(26) = 1/2+
1/8 from above. If d € M satisfies d < 1(waw()°°, then there is some n > 1 for which d < d™ < 1(wow()™
and 1/2 4+ 1/8 < 1/v(d™) < 1/v(d). Since Iqn NIq = @ and Ig» and Iq contain 1/v(d"™) and 1/v(d),
respectively, it follows that Iq C (1/2 + 1/, 5]. Similarly reasoning shows that if d = 1(wow()®°, then
Iq C (1,1/2+1/p), and in fact 1/2 + 1/5 is a non-matching parameter.

With these observations and the previous lemmas, we are now ready to prove the main result of this
section:

Theorem 3.7. The frequency functions fs,fr : [1,8] — [0,1] attain their mazimums fs(a) = 4/5 and
fr(a) = 3/4 on the mazimal interval [1/2+1/8,1+ 1/5?].

Proof. By , it suffices to show the statement for fg. Recall from Example that fs equals 4/5 on
Tioto U Toor = (1 +1/84 1+ 1/8%)\{1 + 1/8%}. Moreover, fg is decreasing on I1o = (1 + 1/82, 8] since
n(10) = 0. By continuity of fg, the statement is proven for a € [1 + 1/8%, A].

We now show that fs(a) < 4/5 for a € [1,1+1/5%), with equality if o > 1/2+1/83. Since fs is continuous
and is monotone on each matching interval I4, and since the set of matching parameters Ugeaqlq is dense,
it suffices to show the desired statements for the endpoints a of matching intervals in [1,14 1/4%). Notice
that each endpoint az, ag €[1,1+1/ %) is the limit (from above) of some sequence of endpoints of cascade
intervals. In particular, if d € ¥ (My), then I4 is itself a cascade interval and we take constant sequences.
Suppose d € My\¢(My). Since each lower endpoint ay equals the upper endpoint alt(d) of Iyq) by
Proposition we can again take the constant sequence. Now consider aj. Let € > 0, and choose some
matching parameter o’ € I4/ satisfying aj <o < ajj' + e. Since matching intervals are disjoint, Proposition
implies that the cascade interval Iy,gy lies strictly between ozér and o/, and thus its endpoints are within
a distance of € of of. It follows o is the limit (from above) of a sequence of endpoints of cascade intervals.
Again by continuity of fg, it now suffices to show the desired statements for endpoints of cascade intervals.
These follow directly from Lemmas and and the observation above that if Iq C (1/2+ 1/8, 5], then
d=< ].(WQWO)OO.

Maximality of the interval [1/2 4+ 1/8,1 + 1/3?] follows from the fact that fg is strictly decreasing on
(1+1/832, 3], density of matching parameters in [1, 8] and Lemmas [3.5{ and O

Theorem [T.2] is now a collection of previous results:
Proof of Theorem[1.4 This is a direct consequence of Proposition Theorem and Equations and
). O
4. APPENDIX: PROOFS OF TECHNICAL LEMMAS

We include here two technical results, which together with Lemma [2:12] prove Lemma [2.17 Recall that
A(u) denotes the cylinder set of points x € [0, 1] for which the S-expansion of x begins with u.

Lemma 4.1. Letd = dy---dy, € My and e := p(d) = €1 ---e,,. The -expansions of 1/ay, 1/043 and

1— 1/043' are given by

d€2 s em_20)°°, dm =1

der €, -10)°, dp =0’
dl"'dmflo)oo7 dm =1
dy - dpm—20)®, d,=0

{oo, dm =1

e
0@ em)™, dn=0

and



Proof. We consider only the -expansion of 1/ay for d,,, = 1; the proofs of the other expansions are similar.
It suffices to show that 1/ay € A(dez - €,-20) and B*"?(1/ag) = 1/ag. First, note that

v(dézen—20) = v(d) — (1/8™)v(e2 - em—2)
=o(d) — (1/8™ "v(er - em—2)
=v(d) — (1/8" ")(v(e) +1/8™)
=u(d) - (1/8" ") (v(d) =14+ 1/8™71)

(1-1/8""1)(v(d) +1/8™7).
Using this and Equation , 1/ay € A(dez~-€,-20) if and only if

(1 =1/8" " (v(d) +1/8™71) < 1/ag < (1 -1/ )o(d) +1/6™ 1.
Since d,, = 1, the first inequality holds if and only if

1ty noay o B £ 5
(1= 1/ o(d) +1/87) < =S

or
(8™ + B)(1 = 1/8™ 1) (0(d) + 1/871) < f™u(d) + B.
Factoring 8™ from the first and multiplying it through the third term, the left-hand side is equal to
(1+1/8m"H (1 = 1/gm 1 (B™v(d) + B) = (1 = 1/82"2)(™v(d) + B),

which is less than ™v(d) + 8. The second inequality is true if and only if

pmu(d) +

g™+ B
Multiplying both sides by 8™ + 3, this is equivalent to
Bru(d) + B < (8™ —1/8™*)u(d) + B +1/8772,
or (1/8™ %)v(d) < 1/8™~2. This holds since v(d) < v((10)>) = 1. Thus 1/ay € A(dez - €,-20). With
this and Equation @,
B 2(1/ag) = 82" 7*(1/ag — v(dez— €m—20))

__ 22m-—2 ﬂmv(d) + 6 _ _ m—1 m—1

=2 (22D 1ot + 1/ )

_ gam-2 (ﬁmv(d) +B8— (B —1/8""?)(v(d) + 1/ﬁm_1)>

"+ B

<(1-1/8"""u(d) +1/8m 7

_ Brold)+ 8
g™+ B
=1/ag.

Lemma 4.2. Letd=d;---dy, € My and e := p(d) = ey en,. If dy, =1, then for each j > 0,
ol ((dez " €n—20)>) = (dez -~ €7—20)>
and
07 (@) = (dy -+ dm-10).
If d,,, = 0, then for each j > 0,
o’ ((der - €,—10)>) = (der - €,—10)™

and

oI (0(E2€m)™) = (d1 -+ dpm—20)>.
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Proof. We prove the statements for d,,, = 1; the other proofs are similar. Write
d=1w; w;,---w; (1—1i,/2)

and

e= 0wz, Wa_j, - Wa_j, (in/2)
with each iy, € {0,1,2} and 4,, = 0. Due to periodicity, it suffices to show the first inequality for 0 < j < m—2.
Note that d,, = 1 implies €,,—_1 = 1. If 7 > m, then

o ((deg—6m20)™) = (€—mt2  €m—20des € m11)™ < €—mi2  Em—16m = d < (déz~€,-20)>.
Now suppose 0 < j < m. It suffices to show that
djp1---dymey - €n_20d;---d; < dez - e,_20.
This trivially holds if 5 = 0, so assume j > 0. Since 07(d) < d, we have d;1 - dy, < dy -+ dy,—;. If this
inequality is strict, we are finished. Suppose equality holds. Then we wish to show
e em—20dy---dj 2 dm_jt1---dmez - €p_20.
Since €,,—_1 = 1, it suffices to show
€ Em—1 S dm—jt1 dm€2  Em_j_1. (33)

If j = m — 1, this is trivial, so suppose j < m — 1. By assumption, dj41 - dpm = di - dm—j, 50 dj41 =
di =1=dp = dn—j. Now dy = 0 implies j # m — 2, and similarly d,,,_o = 0 implies j # m — 3. Hence
j <m—3, and dj41 = dp,—; = 1 imply that d;;2 and d,;,—j41 are the beginnings of some blocks w;, and
w;,, respectively. (Similarly, €572 and €, _;11 are the beginnings of wo_;, and wy_;,, respectively.) Then
dy---dm—j =dji1---dp may be written as

1wi1 Wi, = IWip s Win71001-
In particular, 7,1 =1, and wa_;, , = wy implies &,,—; = 1.
The desired inequality may be written in terms of blocks:
Wo_j, " Wao_; XW;, - W; W{Wao_; - Wa_j, .
Suppose for the sake of contradiction that this inequality does not hold, and let 1 < k < n be minimal such
that wo_;, differs from the k™ block on the right-hand side. Then
Wi in 1 k<n—{+1
WQ,Z',C> Wi, k‘:n—f—‘rl,
W2if (o)1 k>n—¢+1
and we consider these three cases separately:
(i) f k <n—£+1, then
(2 — i1, '72 - ik—l) = (ify' . 'aif"rk:—Q)
and 2 — iy > dy__1 imply
(2 =g, 2 —dgrp—2) = (i1, ,0k—1)
and 2 —ip_g_1 > ig. This gives
1W2—i£ W2y - 1Wi1 ce W
Recall that €,,—;57 is the beginning of the block wa_;,, so the previous line together with €,,—; =1
imply 0™7~1(€) = d, a contradiction.
(ii) If k =n—£€+1, then
(2—d1,. 2 —dpn—g) = (i) in_1)
and 2 —i,_p41 > 1 imply
(2 =gy 2 —ip_1) = (i1, in_s)
and 4,—g41 = 0. Since 2 — i,, = 2, this implies
1W2_i€ e Wog > 1Wi1 Wi -
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As in case (i), this gives the contradiction that c™~7~1(€) = d.
(i) If k& >n — £+ 1, then
(2—d1,.y2—in—g) = (i, in_1)
and 2 — 4,,_¢y1 = 1 implies
(2 —igy 2 —ino1) = (i1 ... in_s)
and i,_¢+1 = 1. Again since 2 — i,, = 2,
1W27iz e Wo g > 1Wi1 Wi i

and the contradiction of cases (i) and (ii) arises.

This proves for each j > 0 that

Jj((deg e em_g())oo) j (d€2 e em_zO)oo.

It remains to show that

or,

for

07 (@°) =< (dy -+ dpm_10)>,

equivalently,

ej+1 T emeél ...ej —j dl...dm_lo
0 < j < m. Suppose for the sake of contradiction that this inequality does not hold. If there is some

k < m — j for which

G ek - di - dy,

then o7 (€) = d, a contradiction. Thus there is some minimal 1 < k < j for which

ej+1.'.emel".ek>d1“'d’n’7,7j+k:'

The previous line may be written in block form

for

Iwo_j, " Waoj, \WoWoWa_j, -+ Wa_; > 1w, -~ W,

some ¢,p,q € {1,...n}. In particular,
(0,2 = i1, 2= ip-1) = (iqupsiqopits---sig_1)
and 2 — i, > i4 imply
(2= igops2 — igopitsee s 2 —igo1) = (2,1, ip_1)

and 2 — i, > ip. Since wa_;,_, = 01, there is some s > 0 such that

S(a _— . e . . “ .. . . e . . ) . =
of(€) =1wa_j, . - ~Wa i, Wo_j - Wo_ 0>=1wy ---w;,_ w; ---w; 1=d,

contrary to the assumption that d € M. O

=)

(10]
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