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High Mountain Asia (HMA), the Earth’s most important and 
vulnerable water tower1,2, is warming at a rate that is dou-
ble the global average (0.32 °C per decade compared with 

the global average of 0.16 °C per decade (refs. 3,4)) and is charac-
terized by a rapidly changing cryosphere5,6 and related changes in 
the hydrological and sedimentary regimes of mountain rivers7–9. 
The projected declining meltwater supply from HMA’s glaciers and 
snow packs in the near future (for example, slightly before or after 
2050) coupled with population growth will probably exacerbate 
water stress and social instability in the region10–12. Dam construc-
tion and the creation of reservoirs to temporarily store meltwater 
for subsequent release during the dry season for irrigation and con-
sumptive use are key strategies for water resource management1,13–15. 
Dams also have the potential to mitigate climate change by produc-
ing clean hydropower and thus to support the achievement of car-
bon neutrality for HMA countries16–19. However, there are social and 
environmental concerns associated with the development of hydro-
power projects (HPPs, both run-of-river systems and dams with 
large reservoirs), including human losses to HPP-related hazards, 
ecological fragmentation and biodiversity loss20–22. The hydropower 
potential in HMA exceeds 500 GW, which could support over  
350 million homes17; however, most is untapped (Fig. 1c). There are 
currently over 650 HPPs (~240 GW) under construction or planned 

in HMA, in addition to the nearly 100 existing large HPPs mainly in 
the upper Indus–Ganges–Yangtze river basins (with a median stor-
age capacity of 0.25 km3), according to the Global Dam Watch20,21. 
Importantly, the new HPPs are being planned in locations closer 
to glaciers and glacial lakes in higher-altitude areas, making them 
more hazard prone (Fig. 1a).

Dams and reservoirs are increasingly facing climate-related 
mountain landscape instabilities, including glacier collapses 
or detachments (and related hazard cascades)23, rock–ice ava-
lanches24–26, permafrost thaw and related landslides27, debris flows28, 
extreme lake outburst floods11, higher erosion rates29 and elevated 
sediment loads9 that impact the short-term safety and longer-term 
sustainability of dams and reservoirs (Fig. 2 and Supplementary 
Table 1). The rock–ice avalanche that triggered a flood in India’s 
Chamoli district, Uttarakhand, in February 2021 destroyed two 
HPPs (including one still under construction) and resulted in 204 
dead or missing persons (190 of them workers from the HPPs)24,26. 
The 2013 Kedarnath disaster, also in Uttarakhand, started with 
extreme rainfall and snowmelt and resulted in a hazard chain 
including landslides, the Chorabari Lake outburst, flash floods and 
debris flows, which killed more than 6,000 people and damaged at 
least ten HPPs30,31. Such catastrophic disasters, together with many 
other HPP failures and related loss of lives (Fig. 2), illustrate the 
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increasing risks to hydropower development and public safety in the 
steep mountain valleys of HMA18,19.

In this Perspective, we present an overview of climate-related 
mountain landscape instabilities and their threats to hydropower 
dams and reservoirs in HMA. We characterize mountain landscape 

instabilities across three broad categories: (1) melting and thawing of 
the cryosphere and slope instability (for example, glacier detachments, 
rock–ice avalanches, rockfalls, landslides and debris flows); (2) gla-
cial lake outburst floods (GLOFs) and landslide lake outburst floods 
(LLOFs) associated with cryospheric changes and slope instability;  

Sources: Esri, USGS, NOAA
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Fig. 1 | GLOFs, HPPs, and erosion rates in HMA. a, Existing large HPPs and planned (or under construction) HPPs20,21. Yellow dots denote locations of 
key examples of cryospheric hazards: I, Baige LLOF (2018); II, Yigong LLOF (2000); III, Tianmo periglacial debris flows (2007; 2010); IV, Gyalha glacier 
detachment–debris flow–LLOF (2018); V, Gongbatongsha Tsho GLOF (2016); VI, Seti rockfall–debris flow (2012); VII, Chamoli rock–ice avalanche–debris 
flow (2021); VIII, Kedarnath GLOF–landslide–debris flow (2013); IX, Aru glacier detachment (2016); X, Kyagar GLOF (frequently); XI, Attabad landslide 
and landslide-dammed lake (2010), XII, Merzbacher GLOF (frequently). GLOFs are from refs. 11, 69–71. Boundaries of glaciers and permafrost are based 
on refs. 116,117. Base map and inset courtesy of ESRI, USGS and NOAA. b, A comparison of modern erosion rates (1950s–2000s) in the Himalaya versus 
global29,118. The box ranges from the 25th percentile to the 75th percentile. The whiskers denote the 1.5 interquartile range (IQR). c, Hydropower potential 
and developed hydropower as a percentage in eight major HMA countries (updated from International Hydropower Association121 and ref. 17). d, The 
statistics of the hydropower installation capacity of the planned HPPs in HMA.
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(3) erosion and sediment loads associated with changing slope  
processes and extreme floods. We detail each of these first, and  
then discuss their impacts on dams and reservoirs and provide rec-
ommendations for climate change-resilient hydropower develop-
ment in the region. Finally, future research priorities, challenges 
and opportunities for a deeper understanding of mountain land-
scape instability and cryospheric hazards and their societal impacts  
are presented.

Melting and thawing of the cryosphere and slope instability
Global warming has caused the rapid melting or thawing of the 
cryosphere (for example, glaciers, snow and permafrost) in the 
world’s high-mountain areas, with accelerating ice-mass losses in 
recent years5,6. The rapid decline in glaciers and permafrost thaw 
have altered the magnitude and frequency of related slope insta-
bilities such as glacier detachments, rock–ice avalanches, rockfalls, 
landslides and debris flows5,32,33.

Melting and thawing of the cryosphere. HMA is characterized by 
accelerating glacier retreat and permafrost thaw, shifting glacier 

equilibrium lines and permafrost boundaries to higher altitudes5–7. 
The glaciers experienced substantial mass loss of 21.1 ± 5.2 Gt yr–1 
during 2000–2019, particularly in southeast HMA (Fig. 3a)34–36. 
Future projections indicate that HMA glaciers will shrink by ~40% 
under representative concentration pathway (RCP) 2.6, ~50% 
under RCP 4.5 and ~70% under RCP 8.5 by 2100 (Fig. 3b), with 
equilibrium line altitudes rising up to 800 m (refs. 5–7,37,38). The per-
mafrost ground temperatures are increasing, and the active layer 
is thickening39,40. Active layer thickness over the Tibetan Plateau 
is projected to increase from the present 2.3 ± 0.7 m to 3.1 ± 0.9 m 
(RCP 4.5) and 3.9 ± 1.0 m (RCP 8.5) by 2100 (Fig. 3c), with a reduc-
tion of the permafrost area up to 42% (refs. 41,42). The snow-water 
equivalent of mountain snow packs has also declined in recent 
years and is projected to decline drastically in spring and early sum-
mer in the future12.

Changing slope instability. Glacier retreat and permafrost thaw 
cause slope instabilities (for example, glacier detachments, rock–
ice avalanches, rockfalls, landslides and debris flows)43–46. Climate 
change alters the thermal and basal properties of glaciers and can 
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Fig. 2 | Field photos, outburst flood discharges and destruction of HPPs caused by three types of hazard chain. a–c, The destruction of the Upper Bhote 
Koshi HPP (Nepal) caused by the 2016 Gongbatongsha Tsho (Tibet, China) GLOF: glacial lake after breach (a); destroyed Bhote Koshi HPP (b); outburst 
peak discharges (c). In c, the peak discharges of outburst floods in 2016 (Gongbatongsha GLOF from Zhangzangbu Valley) and 1981 (Cirenmaco GLOF, 
a nearby GLOF from Zhangzangbu Valley) at different downstream sites were substantially higher than monsoon flood peak discharges (grey dotted 
line)77. Error bars indicate estimated uncertainty. d–f, The Baige landslide-dammed lake on the upper Yangtze River in November 2018 (d), the impacted 
Suwalong dam site after the Baige LLOF (e) and downstream hydrographs following dam breaching (f). In f, the dotted line denotes the monsoon flood 
peak discharge and the numbers in brackets indicate the distances downstream from the barrier lake66. g,h, The damaged Tapovan Vishnugad HPP (h) after 
the 2021 Chamoli rock–ice avalanche (g) in Uttarakhand, India. The dam and valley were fully covered by sediment and debris, including large boulders up 
to ~8 m in diameter. Credit: a,c, M. Liu; d,e, Y. J. Zhou for the Changjiang Water Resources Commission; g,h, M. F. Azam.
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Fig. 3 | Melting of glaciers and thawing of permafrost in a warming HMA. a, Changes in glacier mean elevation in HMA34. The dark-grey boundary marks 
the Tibetan Plateau. Base map courtesy of Esri, USGS and NOAA. b, Observed past and projected future glacier mass loss. The five glaciers (black stars 
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cause large-scale detachments of low-angle valley glaciers such as 
the collapses of the Aru twin glaciers in 2016 (this event caused the 
deaths of nine herders)23,47. Valley slopes newly exposed after glacier 
retreat are unstable paraglacial landscapes due to the debuttress-
ing effect48–52. Degradation of bedrock permafrost and increased 
water availability during the thaw season also destabilize slopes45,46. 
Permafrost degradation also intensifies thermokarst development 
(for example, thaw slumps and active layer detachments; Fig. 3c and 
Supplementary Fig. 1), particularly in ice-rich environments53.

The magnitude and frequency of slope instabilities have 
increased in high-mountain areas such as the European Alps and 
New Zealand in recent decades43–45 and are projected to increase 
further in the near future, causing increasing risks to expanding 
population and infrastructure5. However, robust trend statistics 
for slope instability over the recent decades are currently lacking 
across HMA5. Recent examples of slope instabilities include the 
2021 Chamoli disaster, which was triggered by a rock–ice avalanche 
that impacted older mass wasting deposits in previously glaciated 
terrain in the valley bottom and resulted in a disastrous debris 
flow24–26; the 2012 Seti disaster, caused by a rockfall onto a glacier 
that generated debris flows in the Seti valley, central Himalaya, and 
caused 72 deaths54; and the 2010 Attabad landslide in the Hunza 
Valley, Karakoram, and the resulting landslide-dammed lake 
that occurred in a periglacial environment, damaging over 200 
houses and causing 20 deaths55 (Supplementary Fig. 2). Modelling 
studies suggest that future landslides in the Himalaya (for 
example, the border region between China and Nepal where consid-
erable glacial lakes exist) will increase in response to more-frequent  
rainstorm events56.

Loose sediment exposed by glacial retreat or deposited by land-
slides can be remobilized during heavy rainfall or by further slope 
failures and evolve into debris flows57–59 (Supplementary Fig. 1). The 
2010 debris flows in Tianmo Valley, Tibet, were attributed to heavy 
rainfall and meltwater in a periglacial environment where frequent 
landslides increased sediment availability57,60. Precipitation is pro-
jected to increase in HMA associated with more rainstorms that 
may exacerbate slope instability5. Increased rainfall and its occur-
rence earlier in the year, coinciding with snowmelt, can increase the 
incidence of debris flows in valleys filled with glacial deposits (for 
example, the 2013 Kedarnath disaster)30.

Extreme floods
Slope failures triggered by rapid climatic change and cryosphere 
degradation typically have notable local impacts (that is, several 
kilometres downstream), but they can also trigger a cascade of other 
hazards such as lake outburst floods that can extend hundreds of 
kilometres downstream and have important implications for the 
safety of mountain communities and infrastructure5,55,61–63.

LLOFs. Large-scale mass movements often occur on the slopes of 
deeply incised valleys and can block rivers, temporarily impounding 
lakes and potentially triggering LLOFs63–65 (Supplementary Table 2). 
These temporary natural dams can either be rapidly overtopped 
or continue to impound water for several days or months63. When 
such dams fail, large volumes of water can be suddenly released, 
causing floods with peak discharges up to several orders of mag-
nitude greater than monsoon flood discharges65. In 2018, the Baige 
landslide blocked the Upper Yangtze River (an environment transi-
tioning from permafrost to seasonally frozen ground; Fig. 1a) and 
created a landslide-dammed lake, which suddenly drained after ten 
days. This resulted in a peak discharge of 33,900 m3 s–1 (the 10,000 yr 
return period discharge estimated for the site is 11,500 m3 s–1 (ref. 66)),  
which was 10 times higher than the normal flood discharge and had 
a runout distance exceeding 500 km (Fig. 2f).

LLOFs in paraglacial environments have been frequently 
recorded in HMA. In October 2018, a glacier detachment-triggered 

debris flow blocked the Yarlung Tsangpo River Gorge23,67. The 
resulting lake reached a volume of 550 million m3 before overtop-
ping and draining, generating a peak discharge of 32,000 m3 s–1  
(Fig. 4c). The debris flow originated from a very steep tributary val-
ley characterized by an elevation drop of ~5,000 m within 10 km 
(Fig. 4b). Similar large-scale LLOFs include the Yigong, Tianmo 
and Guxiang LLOFs57,60,64. In 2000, a large landslide-dammed lake 
on the Yigong River breached after 62 days, resulting in an unprec-
edented peak discharge of ~120,000 m3 s–1 (Fig. 4c) impacting as 
far downstream as India and Bangladesh68. Such slope failures and 
associated LLOFs in paraglacial environments are likely to increase 
in a rapidly warming atmosphere33 (Supplementary Fig. 3).

GLOFs. GLOFs, another type of lake outburst flood, have caused 
devastating human and infrastructure losses in HMA69–75. Glacial 
lakes, impounded behind a moraine or ice dam, have the potential 
for sudden outburst, triggered by heavy rainfall, glacier avalanches 
or surges, increased hydrostatic pressure and rapid ice melt62,75. 
Many moraine-dammed GLOFs are caused by ice avalanches or 
landslides into the lakes that generate displacement waves and result 
in dam failure through overtopping and erosion of the moraines62,70 
(Supplementary Fig. 1b). The 1985 Dig Tsho GLOF was triggered by 
a rock–ice avalanche and destroyed the Namche HPP, causing five 
deaths and over US$3 million damage61,76. Heavy rainfall-related 
GLOFs that destroyed downstream HPPs have also been reported in 
recent years (Supplementary Table 1), including the 2013 Chorabari 
GLOF30 and 2016 Gongbatongsha GLOF77,78. Schwanghart et al.18 
estimated that two-thirds of the existing and planned HPPs in 
the Himalaya are located in potential GLOF pathways, and up to 
one-third of the HPPs could face GLOF discharges exceeding the 
local design flood.

Globally, rapid glacier retreat has expanded the number and 
size of glacial lakes, probably increasing the magnitude and fre-
quency of GLOFs74,77,79–81. An updated inventory for the Himalayas 
suggests that the frequency of GLOFs increased after ~1950  
(Fig. 4e)11. In the Karakoram, 179 GLOFs have been recorded 
from 1533 to 2020 (mostly associated with ice-dammed lakes), 
with an increasing trend in recent decades69. From 1810 to 2018 in 
Kyagar, 34 GLOFs were recorded, due mainly to glacier surges; 26 
of those GLOFs occurred since 1960, indicating a marked increase 
in occurrence frequency82. In the central Tien Shan, GLOFs from 
the ice-dammed Merzbacher Lake have also increased in recent 
decades, with 65 being recorded during 1932–2011 and half of them 
occurring after 199083. In the northern Tien Shan, the occurrence 
of GLOFs and related debris flows has increased since the 1950s, 
but their frequency reduced after 200084. The attribution of GLOFs 
to anthropogenic global warming has strengthened85 but remains 
uncertain, in part because of the relatively short period since the 
advent of the satellite era62,72 and biases in GLOF reporting73 but 
also due to the competing topographic and seismic factors19. 
However, it is clear that the risks of GLOFs in HMA will increase 
in the next few decades70, associated with glacial lake expansion80, 
more-frequent precipitation extremes5 and avalanches86, possi-
bly shortened glacier surge cycles87 and growing population and  
infrastructure exposure18.

Heavy rainfall and snowmelt floods. In addition to LLOFs/
GLOFs, the incidence of floods triggered by heavy rainfall, snow-
melt and rain-on-snow events is also changing in HMA5. Climate 
change is likely to affect future rainfall patterns, and more extreme 
rainfall events are projected4,88. These changes in the rainfall regime 
also translate into changes in river discharge. Wijngaard et al.88 pro-
jected a substantial increase in the 50 yr return period discharge in 
the upstream Indus, Ganges and Brahmaputra. A shift from snow-
fall to rainfall and rain-on-snow events in a warming atmosphere 
are also likely to trigger more flash floods in HMA5.
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Erosion and sediment fluxes
As HMA has overall been getting warmer and wetter over the 
recent decades4,9, both run-off and fluvial sediment yields have been 
increasing, the latter in response to expanding erodible landscapes, 

increasing thermally and pluvially driven sediment sources and 
increasing rainfall erosivity and sediment transport capacity9,89–92. 
Observations from 28 quasi-pristine headwater catchments in HMA 
indicate that their annual fluvial sediment yields have increased at 
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Fig. 4 | LLOFs, GLOFs and changing sediment fluxes in a rapidly warming HMA associated with glacier retreat. a–c, The Yigong landslide-dammed lake 
(May 2000; Landsat 5) (a), the Gyalha (Sedongpu Valley) debris flow-dammed lake (October 2018; Sentinel-2A) (b) and their outburst floods67,68 (c). 
d, Glacier retreat at nearby Namcha Barwa due to atmospheric warming (data processed from Landsat 5–8 images). e, Increasing GLOF frequency in the 
Himalaya and Karakoram11,69. f, Increasing fluvial sediment fluxes from 28 quasi-pristine headwaters in HMA9. The inset shows the comparison between the 
present-day sediment flux and the projected sediment flux under a conservative (extreme) climate change scenario of an increase in temperature by  
1.5 °C (3 °C) and an increase in precipitation by 10% (30%) from 1995–2015 to the middle of the twenty-first century. Error bars indicate estimated 
standard errors. a.s.l., above sea level.
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an average rate of ~13% per decade (notwithstanding substantial 
sediment storage along river pathways93) (Fig. 4f), much faster than 
the increase in annual run-off (~5% per decade)9. Approximately 
40% of HMA is underlain by permafrost4,9, and the increasing 
permafrost disturbances28,53, especially channel-connected thaw 
slumps89, in a warming climate will increase sediment sources from 
slopes to river systems.

With glacier mass loss, glacial erosion will change due to the 
reduced glacier velocity94 on average, eventually reducing sediment 
supply. However, the basal sliding velocity of cold and polythermal 
glaciers, which are particularly common on the northern-central 
Tibetan Plateau6, may initially increase (and hence also the erosion), 
driven by an increase in lubricating subglacial meltwater before the 
peak water discharge95,96. Moreover, sediment yields from glacier-
ized basins will probably initially increase and continue to remain 
high, even after peak water discharge, as increased meltwater in pre-
viously hydrologically less-active subglacial zones at higher altitudes 
begins to export accumulated sediment97, followed by an eventual 
decline95. Similarly, as glaciers shrink, sediment yields from newly 
exposed proglacial landscapes will also exhibit a similar trend, with 
an initial increase in sediment yield due to the increased availability 
of unconsolidated sediment on oversteepened slopes, followed by a 
decline when paraglacial landscapes progressively stabilize via neg-
ative feedbacks48–52. How long the increase in sediment yield lasts is 
likely to be scale dependent, with a rapid decline occurring close to 
the source region but the increase potentially lasting decades to cen-
turies (and even a millennium) at more distal locations49,50. Further, 
initial increases in supply will be modified by changing transport 
capacity90. Glacier retreat initially increases sediment transport 
capacity as a result of the increased meltwater but also because the 
intensity of discharge variation increases98. Higher daily peak flows 
can substantially increase sediment transport capacity since the lat-
ter is commonly a nonlinear function of discharge excess over the 
critical value required for sediment transport. As peak water dis-
charge passes, meltwater and the intensity of discharge variation 
will fall, and so will sediment transport capacity. Thus, peak sedi-
ment yield may occur close to, or just after, the peak water discharge 
(~2050 on average under RCP 4.5 in HMA8) close to the source 
region but much later farther downstream49.

With glacier retreat, sediment transport will probably become 
more dependent on extreme flood events51,99. Extreme floods can 
further increase fluvial sediment yields by exceeding topographic 
and erosional thresholds and flushing previously stored sediment. 
LLOFs and GLOFs scour riverbanks, undercut hillslopes and even 
cause secondary landslides and thus transport substantial amounts 
of sediment downstream77,100. The 2000 Yigong LLOF triggered 
translational landslides and resulted in substantial hillslope erosion, 
which accounted for ~70% of the total landslide-induced erosion 
occurring over a 33 yr period100. The 2016 Gongbatongsha GLOF 
mobilized channel-defining boulders and produced a peak of sedi-
ment flux in a Himalaya river77. Extreme rainfall events can also 
abruptly increase sediment loads, as shown in the headwaters of the 
Yangtze89 and Brahmaputra92.

Impacts of mountain landscape instability on dams and 
reservoirs
Current infrastructure in HMA may face more damage in the 
future due to the increasing magnitude and frequency of multiple 
hazards. LLOFs and GLOFs are the most destructive hazards since 
they have downstream impacts extending over tens to hundreds of 
kilometres and will continue to cause major socioeconomic losses 
involving roads, bridges and HPPs66,76 (Supplementary Table 1). 
Rainstorm- and snowmelt-induced flash floods can also threaten 
HPP safety by exceeding normal reservoir storage capacity and 
spillway design thresholds. Thus, existing HPPs that were designed 
using short-term historical gauge records, or climate-driven models 

where there are no records, may be exposed to higher-magnitude 
damage (Box 1). For planned HPPs at higher altitudes that are close 
to glaciers and glacial lakes (for example, <90 km in the Himalaya; 
Fig. 1a), the likelihood of HPP failures due to extreme floods will 
probably increase11,18.

The high erosion rates and the increase in fluvial sediment flux 
in a changing climate can threaten the sustainability of both reser-
voirs and run-of-river systems (Figs. 1a and 4f and Box 1). Higher 
sediment loads increase sedimentation in reservoirs and reduce 
their storage capacity, jeopardizing their role in water supply, irri-
gation, flood control and hydropower generation22,101. The design 
of many existing reservoirs in HMA underestimates the potential 
for increasing sediment inflow (Supplementary Table 1). The Koshi 
(China/Nepal) and the upper Indus (China/India/Pakistan) have 
high specific suspended sediment yields (over 1,800 t km–2 yr–1) and 
high reservoir sedimentation rates93,102. Compared with suspended 
sediment, bedload (commonly over 10% and up to 50% of the total 
load in mountain rivers and proglacial rivers, respectively103) is 
more destructive to dams and reservoirs since this coarse sediment 
(for example, gravels and boulders) is readily deposited and can-
not be readily flushed through a dam, even with a sediment-sluicing 
strategy22.

In addition, the deposition of coarser sediment behind a dam 
may block bottom outlets, and the finer fractions enter water 
intakes, causing severe abrasion of turbine blades and damage to 
hydraulic structures102. Many examples of turbine abrasion and 
subsequent reduction of power generation efficiency have been 
reported in the Himalaya and Tien Shan (Supplementary Table 1), 
where the sediment contains high proportions of harder minerals. 
The turbines of the Nathpa Jhakri HPP (1,500 MW, the largest HPP 
on the Sutlej River) had to be replaced shortly after commencing 
operation due to abrasion102.

Towards climate change-resilient hydropower systems
To minimize the adverse impacts of climate-driven mountain land-
scape instability on dams and reservoirs, we identify the following 
future actions (Box 1). First, maps of the distribution of paraglacial 
zones, sediment yield and hazard susceptibility that better delineate 
current and future unstable landscapes and erosion-prone regions 
should be produced, particularly for the HPP hotspots. Policy 
development regarding maintaining existing HPPs and planning of 
new HPPs should be guided by such hazard and risk maps.

Second, sediment issues must be viewed as a fundamental con-
sideration for hydropower development. Sustainable sediment 
management strategies should be developed before reservoir con-
struction. When planning future reservoirs, storage capacity design 
should consider potential storage losses associated with increasing 
sediment loads due to climate change9 and provide additional stor-
age to cope with climate-related hazards66. Sediment bypassing, 
sluicing, dredging and drawdown flushing need to be considered as 
possible means of minimizing reservoir sedimentation and increas-
ing reservoir lifespans22. Catchment management plans targeted at 
reducing slope instability and erosion rates, and involving measures 
such as reforestation and check dams, should be developed and 
implemented to reduce sediment discharge into new reservoirs104,105. 
For existing reservoirs, a reassessment of sediment management 
solutions aimed at enhancing sustainable sediment management is 
recommended.

Third, monitoring, forecasting and early-warning systems 
(EWSs) should be further developed and implemented. Strategically 
oriented monitoring networks that measure high-altitude climate 
(for example, >4,000 m above sea level), glacier and permafrost 
dynamics, glacial lakes, unstable slopes and water and sediment 
fluxes should be expanded for high-risk areas. High-resolution 
optical and synthetic-aperture radar satellite imagery and seismic 
data offer a means of continually monitoring and assessing slope 
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evolution, glacial lakes, potential LLOF/GLOFs and hazard cas-
cades24,25,106. Importantly, open data-driven dialogues among HMA 
countries must be enhanced to support both scientific research and 
risk reduction.

EWSs are in general lacking although several GLOF EWSs (for 
example, the Kyagar GLOF EWS82) have been recently established. 
New EWSs should be forward-looking70 and coupled with effective 
land-use zoning, community participation, social awareness and 
emergency response strategies and drills24,107. When potential haz-
ard conditions are forecast, response mechanisms should be in place 
to permit reservoir regulation, such as drawing down the reservoir 
to limit the impacts of incoming floods. Where cascade reservoirs, 
particularly in a transboundary setting, exist or are planned, there 
is a need to establish coordination and data-sharing schemes and to 
adopt joint-operation strategies to better cope with hazards and to 
flush sediment through the cascade.

Summary and perspectives
In HMA, atmospheric warming, cryosphere degradation and 
mountain landscape instability will probably increase over the next 
few decades and even into the next century. The potential increase 
in multiple cascading hazards adds more uncertainty to the sustain-
ability and resilience of the fragile HMA, with major implications 
for the safety of humans and infrastructure.

Future research in the region must target less-studied landscape 
responses to climate change91, including paraglacial adjustments, 
slope instability, hazard cascades and glacial/permafrost erosion and 

related sediment yields rather than focusing solely on cryosphere 
reduction and changes to freshwater supply1,2,7,8,10–12,15. Recently, gla-
cier status and glacial lakes in HMA have been mapped34–36,79–81,108–110, 
and knowledge regarding glacial lake evolution in relation to glacier 
changes has improved79,111. Predictions of future glacial lake devel-
opment and GLOF risks are also being produced70,86,112. However, 
well-validated, high-resolution, regional-scale maps of mountain 
permafrost, slope instability, evolving paraglacial landscapes and 
sediment yields across HMA do not exist, and their absence needs 
urgent attention.

The challenges are to better understand the climatic, topographic, 
tectonic and cryospheric drivers and potential increases of the com-
pound and cascading hazards associated with climate change (for 
example, uncertainties remain as to whether climate change and 
permafrost thaw played a role in triggering the 2021 Chamoli disas-
ter24). Many of the disasters cited in the preceding occurred in steep 
paraglacial terrain and are characterized by hazard-cascading pro-
cesses24–26,67,68,77,113. Slope instabilities and megafloods produce high 
sediment loads that have important geomorphological, ecological 
and societal implications.

Opportunities are emerging. Real-time monitoring networks 
that integrate data from remote-sensing images, seismic signals, 
hydro-meteorological stations, community observations and social 
media are being developed24,25,114 and need rapid expansion into 
higher altitudes at finer resolution and larger scales. The real-time 
monitoring networks need to be integrated with improved artificial 
intelligence and process-based modelling56,115 and forward-looking 

Box 1 | Conceptualizing the increasing threats to dam and reservoir sustainability due to climate change with recommended 
solutions

The outer light-grey ring denotes broad types of mountain land-
scape instabilities (slope instability, floods, and erosion and sedi-
ment fluxes) associated with a changing climate. The dashed lines 
highlight interactions between different components of mountain 
landscape instability. The inner ring highlights specific threats to 
dams and reservoirs from different components of mountain land-
scape instabilities. Consideration of these interactions in a chang-
ing climate must be seen as a fundamental requirement when 
planning adaptation and mitigation strategies.

Recommendations and future needs to create climate 
change-resilient hydropower systems
•	 Expand satellite- and ground-based mapping and monitoring 

networks for the climate, glaciers and permafrost, glacial lakes, 
paraglacial landscapes, unstable slopes, erosion rates and sedi-
ment yields

•	 Understand the cascading links between climate change, gla-
cier retreat and permafrost thaw, slope instability, evolution of 
glacial lakes and landslide-dammed lakes, lake outburst floods 
and downstream impacts

•	 Predict future fluvial sediment loads and reservoir sedimen-
tation in response to a changing climate and the associated 
evolving glacial, paraglacial and fluvial processes

•	 Develop forward-looking and sustainable sediment manage-
ment solutions to minimize reservoir sedimentation and tur-
bine abrasion

•	 Establish real-time early-warning systems using seismic sig-
nals25 and enhance social awareness and drills and response 
strategies, especially for HPPs under construction, to mini-
mize human and infrastructure losses

•	 Further enhance transboundary cooperation by establishing 
data-sharing schemes and adopting joint-operation strategies 
to better cope with hazards and optimize sediment flushing

•	 Assess the long-term trade-offs of using hydropower as an 
adaptation solution for climate change, including the eco-
nomic effects on hydropower generation of changing run-off, 
sediment load and hazard, the environmental effects on eco-
system fragmentation and biodiversity, societal effects on 
population migration and the reduction in greenhouse gas 
emissions contributed by hydropower

•	 Promote the inclusion of indigenous and local knowledge in 
policy, governance and management and secure local gains 
from dam and reservoir construction

Mitigation

Erosion and sediment flu
xes

Sl
op

e 
ins

tability

Adaptation

Floods

Suspended sedim

en
t

Turbine 
ab

ra
si

onB
edload

R
oc

k–
ic

e
av

al
an

ch
e

Pe
rm

af

rost

Dam failure

Outburstflood

la
nd

sli
de

Debris

flow Heavy-rainfall
S

now
m

elt

flood

flood

Dam/reservoir
sustainabilityR

eservoir sedimentation

Nature Geoscience | VOL 15 | July 2022 | 520–530 | www.nature.com/naturegeoscience 527

http://www.nature.com/naturegeoscience


Perspective NATuRe Geoscience

EWSs70 to benefit reductions of both the short- and long-term risks 
facing both humans and infrastructure systems. The engineers, 
practitioners, policymakers and stakeholders responsible for plan-
ning, designing, constructing and managing infrastructure (in par-
ticular, dams and reservoirs) in the region are urged to take account 
of these emerging processes, develop proactive adaptation measures 
and adopt sustainable solutions to minimize the negative impacts of 
climate change on these systems.

Data availability
The data shown in the figures are available in the publications 
cited and at https://github.com/geolidf/HMA-hydropower. Air- 
temperature data are sourced from the China Meteorological 
Administration. Satellite images are available from the ESA/EC 
Copernicus Sentinels Scientific Data Hub (Sentinel-2 data) and the 
United States Geological Survey (Landsat data). Glacier boundary is 
available at the Randolph Glacier Inventory (RGI 6.0; https://www.
glims.org/RGI/rgi60_dl.html). Data on existing and planned HPPs 
are available at the Global Dam Watch (http://globaldamwatch.
org/fhred/; http://globaldamwatch.org/grand/). Data on hydro-
power potential and developed hydropower are available from 
the International Hydropower Association (IHA; https://www. 
hydropower.org/status-report).

Code availability
The code used to produce Figs. 3 and 4 is available from the cor-
responding author on request.
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