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• A novel 1-km air temperature dataset
with high accuracy is used for warming
analysis.

• The well-established snow-albedo feed-
back is less important at high elevations.

• The persistent snow cover prohibits an
increase of warming above 5000 m.
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Fig. Elevation dependent warming affected by snow cover and glaciers. Warming rate of air temperature and as
function of elevation and snow cover days with glacierized pixels excluded (a). Comparison of warming rates
between non-glacierized and glacierized areas (b).
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The Tibetan Plateau (TP) is a global warming hotspot, however, the warming status at high elevation (>5000m)
is poorly understood due to very sparse observations. Herewe analyze spatial patterns in TPwarming rates based
on a novel near-surface air temperature dataset of 1980–2014 recently developed by ingesting high-elevation
observations and downscaled reanalysis datasets. We show that the high snow cover persistence at high eleva-
tion reduces strengthening of positive feedbacks responsible for elevation dependent warming at low-middle
elevations, leading to reversed altitudinal patterns of TP warming above and below 5000 m. An important neg-
ative feedback is induced by the presence of snow and glaciers at elevations above 5000 m, due to their “buffer-
ing” effects by consuming or reflecting energy that would be used for warming in the absence of snow or ice. A
further decrease in snow cover and glacier extent at high elevations may thus amplify the warming on the TP.
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1. Introduction

The Tibetan Plateau (TP) with an average elevation of >4000 m
has great thermal and dynamical influence on regional and even
global circulation systems such as the Asian monsoon (Wu et al.,
2007). The TP has warmedmuch faster than the global average in re-
cent decades (Guo and Wang, 2012; You et al., 2021) and it has been
considered as a typical case of the phenomenon called elevation de-
pendent warming (EDW) (Pepin et al., 2015). Observed environ-
mental changes on the TP due to this rapid warming are well
documented, in particular extensive glacier receding (Yao et al.,
2012), permafrost degradation (Cheng and Wu, 2007) and lake ex-
pansion (Zhang et al., 2019). Considering that the TP is the “water
tower” of Asia providing water for millions of people downstream
(Immerzeel et al., 2010), a detailed understanding of warming and
possible feedback mechanisms is of great importance for regional
water security.

EDW studies on the TP show that the warming rate generally in-
creases with altitude <5000 m, and that it may not increase further at
higher altitudes (Gao et al., 2018; Guo et al., 2019a; Li et al., 2020; Liu
and Chen, 2000; Qin et al., 2009). Due to the high elevations and ex-
treme conditions on theNorth-western part of the TP, the observational
network is biased towards the South-east and elevations <5000m. The
warming status in the North-western part and at high elevation
(>5000 m) therefore remains unquantified. Climate models, reanalysis
(Gao et al., 2018; Palazzi et al., 2019) and remotely sensed land surface
temperatures (Guo et al., 2019a; Pepin et al., 2019; Qin et al., 2009) have
also been used to quantify spatial variation in warming rates. However,
their low resolution, high uncertainty and/or short duration hamper the
understanding of long-term spatiotemporal temperature trends on the
TP and the detection of underlying mechanisms. Some high-resolution
air temperature datasets have also been developed recently by down-
scaling reanalysis (Ding et al., 2018) or Climatic Research Unit (CRU)
(Peng et al., 2019) data while they lack training and validation data
from independent high-elevation stations, especially for glacierized re-
gions.

Snow (Guo et al., 2019b; Palazzi et al., 2019), clouds (Hua et al.,
2018; Yang et al., 2018), water vapor, aerosols (Kang et al., 2019),
land use and vegetation (Liu et al., 2019; Shen et al., 2015) may be
possible factors controlling EDW on the TP with their importance
varying seasonally or interannually (Gao et al., 2019; You et al.,
2020). Among them, snow cover change is considered as one of the
most important factor affecting the altitudinal pattern of TP
warming, known as the snow albedo feedback mechanism (Guo
et al., 2019a; Guo et al., 2019b; Guo et al., 2016; Palazzi et al.,
2017; Palazzi et al., 2019; Pepin et al., 2015; Rangwala et al., 2010).
Due to the high albedo of snow, snow covered surface can reflect
much solar radiation. The strongest warming is expected around
the 0 °C isotherm where the snowline is retreating (Pepin et al.,
2015). Remote sensing temperature data show that the fastest
warming occurs around 5000 m, which is well within the elevation
ranges of snow line of the TP (Pepin et al., 2019; Qin et al., 2009).
Based on station observations, Guo et al. (2021) also found an accel-
erating decrease of snow depth at elevations of 4000–5000 m. How-
ever, the short availability of high-resolution remote sensing data
and limited altitudinal representativeness of station observations
inhibit the understanding of the effects of snow cover on EDW at
higher elevations.

For overcoming these problems, we have recently developed a
machine learning-based approach to create a novel 1-km daily
near-surface air temperature time series from 1980 to 2014 by
combining eight reanalysis datasets and data from 113 weather sta-
tions including 13 unique sites at high elevation (see Fig. 1a and
Section 2.1) (Zhang et al., 2021). Here, we use this dataset to detect
temporal trends in the warming rate and to identify and explain
EDW patterns.
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2. Materials and methods

2.1. Air temperature dataset and other data sources for distributions of
elevation, glacier, snow cover days and cloud coverage

A new 1-km daily mean air temperature dataset during 1980–2014
was used for analyzing TP warming. It was created generally following
three steps: spatially continuousmultiyear averagemonthly air temper-
ature lapse rates were first estimated mainly based onMODIS LST data;
then, the MODIS-estimated temperature lapse rates were used for
downscaling eight major reanalysis air temperature datasets with vary-
ing resolutions (0.25° to 2.0°) to 1-km resolution; finally, the eight
downscaled reanalysis data together with five auxiliary variables were
taken as predictors in amachine learningmodel (i.e., Gradient Boosting)
that was trained and validated using numerous observations from 100
“common stations” and 13 “high-elevation stations” (Fig. 1). “Common
station” represents CMA station. “High-elevation station” represents the
stations set up in the field at generally higher elevations than their
neighboring common stations. The elevations of high-elevation stations
were all higher than the average altitude (~3300m) of the 100 common
stations (Zhang et al., 2021). The detailed information about how the
dataset was developed and evaluated can be found in Zhang et al.
(2021). The new dataset was demonstrated to have significantly better
accuracy than all the original and downscaled reanalysis data, especially
in high-elevation and glacierized areas based on the station-based
cross-validation (Zhang et al., 2021).

Elevation information was derived from Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) dataset, which was fur-
ther spatially aggregated from its original resolution (~90 m) to ~1 km.
The Randolph Glacier Inventory (RGI 6.0) dataset (Pfeffer et al., 2014)
was used to separate glacierized areas from non-glacierized areas. The
original resolution of the glacier data is ~30 m and was resampled to a
coarser resolution of ~1 kmwhich is the sameas that of the newair tem-
perature dataset. The multiyear average annual snow cover days were
calculated from a cloud-free daily snow cover dataset of 2005–2013 de-
veloped by combining MODIS daily snow cover data and Interactive
Multisensor Snow and Ice Mapping System (IMS) data (referred to as
“MODIMS”) (Yu et al., 2016). After removing cloud contamination, the
overall accuracy of MODIMS was reported to be 94% based on daily
snow depth observations from 105 stations across the TP. Though
MODIMS has a short time span, its spatial resolution (~500 m) is suffi-
ciently high. There are some other snow datasets with long availability
such as the “long-term sequence dataset of China snow depth” (Che
et al., 2008; Dai et al., 2012) (referred to as “LCSD”) and the Global
Snow Monitoring for Climate Research (GlobSnow) snow water equiv-
alent dataset (Liyun and Tao, 2015; Takala et al., 2011), however, their
spatial resolutions are generally much lower (≥25 km) and are not
able to accurately capture the altitudinal distributions of snow cover.
Two kinds of data sources were used for calculating long-term
(1980–2014) snow cover trends, the most important of which were
the daily snow depth observations from 32 CMA stations with continu-
ous records during 1980–2013 were used for detecting long-term
trends of snow cover days (SCD). It should be noted that for snow
depth, though there were 100 CMA stations on the TP, there were
manymissing snow depth observations in some stations. Thus, the sta-
tions with the percentage of missing snow depth observations >1%
were excluded and totally 32 stations were left. As auxiliary, the daily
snow depth data from LCSD of 1979–2018 at 0.25° resolution which
were derived from the Scanning Multichannel Microwave Radiometer
(SMMR, 1978–1987), Special Sensor Microwave/Imager (SSM/I,
1987–2008) and the Advanced Microwave Scanning Radiometer -
Earth Observing System (AMSR-E, 2002–2010), and calibrated using
long-term snow depth observations, were also used for calculating
pixel-level trends of snow cover days, and only pixels with snow
depth >1 cm were considered as snow covered. The multiyear average
annual cloud coverage was derived from the “EarthEnv Global 1-km



Fig. 1. The all-yearwarming rates of the Tibetan Plateau. 1980–2014 (a). 1980–1997 (b). 1998–2014 (c). UA: Upper AmuDayra, UB: Upper Brahmaputra, UG: Upper Ganges, HE: Hexi, UI:
Upper Indus, IN: Inner, UM: Upper Mekong, QA: Qaidam, US: Upper Salween, UT: Upper Tarim, UYA: Upper Yangtse, UYE: Upper Yellow, TP: the whole Tibetan Plateau. Shadowed area
means insignificant temperature trends (P > 0.5).
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Cloud Frequency Version 1”which integrated 15 years (i.e., 2000–2014)
of cloud observations from MODIS (Wilson and Jetz, 2016). The multi-
year average annual normalized difference vegetation index (NDVI)
was calculated from the TERRA MODIS Vegetation Indices (MOD13A3)
Version 6 product (Didan et al., 2015).

2.2. Statistical analysis of TP warming

Thewarming rate of each air temperature pixelwas calculated based
on a linear regression between the yearly temperatures of the pixel
and the time series (i.e., years 1980–2014) and the significance level
(P-value)was calculated based on the t-test. Since TPwarming is closely
related to regional water availability, a basin-scale analysis was also
conducted by spatially aggregating the pixel-level warming rates to 12
sub-regions, which were defined as 12 major river basins across the
TP (Fig. 1a). For analyzing the mechanism driving the temperature
change of the TP, the trends of yearly SCD were calculated following
the sameway. The sequential Mann-Kendall test was used for detecting
the turning point in the time series of yearly SCD based on daily snow
depth observations from stations. It generally calculates a positive
(UF) and an inverse (UB) series of Kendall normalized tau's, and the
crossing points of them within the confidence limits are considered as
turning points.

A number of studies have focused on the relationship between snow
cover trends and warming rates on the TP (Guo et al., 2019a; Guo et al.,
2019b; Guo et al., 2016; Palazzi et al., 2017; Pepin et al., 2015; Rangwala
et al., 2010), however, the climatology state of snow cover may also
have important effects. For example, a global climate model simulation
study has recently predicted enhanced warming in spring and autumn
for the TP due to more snow-covered areas transitioned to be snow-
free (Palazzi et al., 2019). To investigate the effects of elevation and
snow cover persistence on warming rates, temperature trends were
grouped by elevation and SCD. 160 kinds of elevation conditions were
defined by making elevation varying from 500 m to 8500mwith an in-
terval of 50 m. 73 kinds of SCD climatology (i.e., the multiyear average
yearly SCD) conditions were defined by making SCD ranging from 0 to
365 days with an interval of 5 days. All pixels were then assigned to dif-
ferent elevation-SCD groups (number = 160 × 73) and for each group,
3

the warming rates were averaged. To reduce the uncertainty, pixels
with insignificant (P-value > 0.05) temperature trends were removed
and the groups with number of valid pixels <50 were not considered.
Finally, a total of 3889 elevation-SCD groups were left. Because 99.9%
of all pixels had elevations <6500 m based on the 1-km DEM data
used here, there was no groupwith elevation >6500mmeeting the re-
quirements. The 2-way analysis of variance (ANOVA) was further used
to quantify the contributions of elevation and snow cover persistence
to the variances of TPwarming (Zhang et al., 2019). However, its results
can be greatly affected by the order of independent variables if the num-
ber of variables is greater than one and the samples are unbalanced (like
in our study) (Hector et al., 2010). To overcome this problem, four
square sub-regions (i.e., Regions I, II, III and IV)with orthogonal samples
of elevation and SCD are created to fit in as many square boxes as pos-
sible to the envelope on each of the panels for each of the major basins
(including the whole TP). fit in as many square boxes as possible to the
envelope on each of the panels The two-way ANOVA was then con-
ducted in each sub-region, and the weighted average contributions
based on all the four sub-regions according to their sample number
are reported for the corresponding basin. Since only orthogonal samples
were used for doing ANOVA and some samples are thus dropped, the
linear regression models that consider all the samples were also imple-
mented for checking the effects of elevation and SCD on explaining the
variation of warming rates. The R-Squared was calculated to measure
the proportion of the variance for warming rates explained by the re-
gression model.

Because cloud cover (Hua et al., 2018) and vegetation (Shen et al.,
2015) may also influence the TP warming as previously reported, the
partial least squares path modeling (PLS-PM) was further used for test-
ing the relative effects of elevation and climatology conditions of snow
cover, vegetation and cloud cover in modulating the spatial distribution
of warming rates. PLS-PM is widely used in social and ecological sci-
ences for integrating complex interrelationships amongdifferent factors
(Nie et al., 2019). The PLS-PM (Sanchez, 2013) produces a path diagram
constructed by different variables linking with each other. A path
coefficient represents the direct effect of a variable on another one. An
indirect effect of one variable on another one (i.e., there is a third vari-
able between them in the path) can be obtained by multiplying the
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coefficients of the indirect paths. The total effect is the sum of indirect
and direct effects. Path coefficients were solved iteratively based on or-
dinary least squares.

3. Results and discussions

3.1. Spatial and temporal pattern of warming

The TP has warmed very rapidly during the period 1980–2014 with
a spatially average rate of about 0.29± 0.13 °C/decade (Fig. 1a) and this
rate is much higher than the global average (0.17 °C/decade) (Team,
2016) for the same period. However, there were large spatial differ-
ences in warming rate on the TP itself too. The northern part showed
higher warming rates than the southern part as previously reported
(Duan et al., 2015) and the eastern part warmed much faster than the
western part. There are even considerable areas with insignificant or
even negative trends in the western TP which is partly consistent with
summer cooling found in upper Indus (Fowler and Archer, 2006)
though contradicting some earlier work (Liu and Chen, 2000). Although
the observational basis to train the machine learning algorithm in this
region is limited, our results are remarkably consistent with a region
where glaciers showed neutral or even slightly positive mass balance,
commonly referred to as the “Karakoram anomaly” (Brun et al., 2017;
Gardelle et al., 2012; Hewitt, 2005; Kapnick et al., 2014; Yao et al., 2012).

Ten of the total 12 major basins of the TP showed significant
warming in annual temperature during the period except for Upper
Amu and Upper Ganges (UG) (see Fig. 2). The lack of significant
warming in UG was probably caused by the occurrence of erratically
cold years between 2011 and 2014 and is partly consistentwith a recent
study reporting southwestern cooling (since 2001) in the TP (Guo et al.,
2019b). If the period 1980–2010 was considered then UG also showed
significant warming, although the results are not shown here. There
were also distinct seasonal differences (Fig. 2). For the whole TP, the
strongest warming (~0.31 ± 0.14 °C/decade) occurred in winter and
the other three seasons showed nearly equal warming rates. However,
the seasonal warming patterns differed strongly between basins and
some clear regional patterns can be distinguished. For the three most
southeastern basins (i.e., Upper Mekong, Upper Salween, and Upper
Fig. 2.Annual air temperature variations (colors) and trends (numbers on the right) across the T
1980–2014 for the corresponding basin. The significance levels of the trends are indicated by ⁎⁎

warming rate; number in blue means the season with the smallest warming rate.
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Yangtse), the warming in winter was the strongest and weakest in au-
tumn, whereas the reversed pattern was observed for themostwestern
basins (i.e., Upper Amu, Upper Tarim and Upper Indus).

Based on relatively dense stations, the EDW pattern below 5000 m
has been well established that the TP warming at higher elevations
(>2000 m) is significantly higher than that at lower elevations
(≤2000 m) (Guo et al., 2021). This pattern is also consistent with our
finding (Fig. 3a). The very high warming rates at 2500–3000 m are
also consistent with several studies that identified the fastest warming
in the Northern part of the plateau, especially in the Qaidam (QA)
(Fig. 1a), but at a relatively low elevation of around 3000m. They attrib-
uted this violation of the EDW hypothesis to decreasing stratospheric
ozone and precipitation (Duan et al., 2015; Guo and Wang, 2012).
What we bring here is some new evidence about the 35-year warming
trends for elevations >5000 m, thanks to the high spatial resolution of
our new air temperature data (Fig. 3a). The warming rate gradually
decreased at elevations between 5000 and 8000 m, which is roughly
consistent with a decreasing trend in the warming rates (1983–2011)
at elevations ranging from 5000 to 6000 m simulated by the Weather
Research and Forecasting model (Gao et al., 2018) and a rapid decrease
of the warming rates (2001–2015) at elevations >4500 m based on the
air temperature data estimated from MODIS (Guo et al., 2019a).

3.2. Buffering effects of snow cover persistence on warming

Due to the high spatial resolution of the new air temperature data,
detailed warming rates as function of elevation and SCD can be quanti-
fied (Fig. 4a). For low snow cover areas (SCD< ~125), along the vertical
direction of Fig. 4a, the warming rate indeed increased until a peak ele-
vation and then decreased. The peak elevation gradually increased from
~2700 m when snow cover was low (SCD < 5), to over 6000 m when
snow cover was persistent (SCD ≥ ~215). The SCD trends from the
satellite-based snow depth dataset are found highly consistent with
the warming trends varying with elevations, especially for areas with
short SCD persistence where two peak regions of decreasing trends in
SCD can be identified, though the SCD trends seem to be fragmentated
and the peak elevation of SCD trends seems somewhat higher than
that of warming trends which could be affected by the coarser
P (1980–2014). dT is the temperature anomaly relative to the average temperature during
⁎: P< 0.001; ⁎⁎: P< 0.01; ⁎: P< 0.05. Number in red indicates the season with the highest



Fig. 3. The altitudinal distribution of warming rate, multiyear average snow cover days (SCD), NDVI and cloud cover (a), and the partial least squares path model (PLS-PM) of vegetation
(NDVI), snow cover (SCD), elevation and cloud cover (CC) effects on theTPwarming for elevations of 1000–8000m(b), 1000–5000m(c) and 5000–8000m(d). In panels (b)– (d), the red
and blue arrows represent the positive and negative effects, respectively. Note that all the path coefficients are statistically significant (P < 0.05) in panels (b)–(d).
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resolution (0.25°) (Fig. 5 and Section 2.1). This indicates that there may
be a strong feedback between snow cover depletion and EDW, which is
consistentwith previous studies considering snow-albedo feedback as a
key control for EDW (Guo et al., 2019a; Guo et al., 2016; Pepin et al.,
2015). It should be noted that the x-axis of Fig. 4a represents the aver-
age state of SCD (see Section 2.2) and does not mean that SCD is con-
stant during the study period.

A recent modeling study shows that this snow-albedo feedback is
active for the low-middle range of elevations over the TP where snow
cover experiences strong seasonal changes (Niu et al., 2021). However,
over high elevations, snow and ice hardly change, making the snow-
albedo feedback insignificant. Another new finding is that at a given el-
evation, the warming rate decreased with an increasing snow persis-
tence (Fig. 4). Snow cover showed a “buffering” effect on warming as
the presence of snow consumes energy for melting and reflects a large
proportion of shortwave radiation. These processes conspire and lead
to less net available energy for the sensible heat flux. This indicates
that warming rates cannot be explained solely by elevation, as snow
covers in low-middle elevations are variable, while for high elevations
snow cover is much more persistent. It is also inspiring that a similar
pattern emerges for most of major basins as shown in Fig. 6 only except
QA and IN. The obviously different patterns of QA and IN comparedwith
other basins could be related with their aridity. For example, the much
lower peak elevation of warming at 2500–3000 m in QA could be re-
lated with the very low vegetation and cloud cover there (Fig. 3a).
5

The 2-way ANOVA based on orthogonal samples (see Section 2.2)
showed that elevation was indeed more important than snow cover to
explain the temperature change for all the 10 major basins. However,
the effects of snow cover were also notable with its contributions
>10% in Upper Brahmaputra, Upper Indus, Upper Salween and Upper
Yangtse, and even >20% in Hexi, Upper Tarim and Upper Yellow
(Fig. 7). The averaged contributions of elevation and snow cover to
the variance of warming rates for the whole TP are 37.1% and 22.3%, re-
spectively. It should be noted that the relatively large contribution of re-
siduals (~29% for the whole TP) may indicate moderate effects from
other factors such as cloud cover (Guo et al., 2019a). The great impor-
tance of snow cover forwarming at different elevationswas further ver-
ified by the results of a linear regression analysis using all samples
showing that when only elevation was considered, only 14.7% of the
total variance in warming rates on the TP could be explained, but
when SCD was included, 61.1% could be explained. A similar analysis
for each of the 10 major basins further supported our hypothesis and,
in all cases, except Inner, including the SCD increased the percentage
of explained variance considerably, although the results are not shown
here. Thus, we conclude that EDW mainly deduced by snow cover de-
pletion is only valid up to 5000 m, above which the buffering effects of
snow could be dominant due to more widespread and persistent
snow cover and prohibit strengthening of warmingwith increasing ele-
vation, explaining the reversed altitudinal patterns of warming rates of
above and below 5000 m on the TP. Following this, the significantly



Fig. 4. Elevation dependent warming affected by snow cover and glaciers. Warming rate of air temperature and as function of elevation and snow cover days with glacierized pixels
excluded (a). Comparison of warming rates between non-glacierized and glacierized areas (b).

Fig. 5. Trends of snow cover days as function of elevation and multiyear average snow
cover days. The snow cover days are calculated based on LCSD (see Section 2.1) data at
the resolution of 0.25°.
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lower SCDs of QA (34 versus 70 days) could be an important reason for
explaining the earlier noted higher warming rate of QA basin compared
with the TP average (0.43 versus 0.29 °C/decade).

Glaciers also play an important role in the TP water cycle. They are
often covered by snow and the similarly high albedo and melt energy
mechanism may suppress the warming rate. This is further verified by
comparing the warming rates between glacierized and non-
glacierized pixels (Fig. 4b). For almost all the elevation bands, the
warming rates of glacierized areas were indeed much lower than
those of non-glacierized areas. The region-wise warming rates of non-
glacierized and glacierized areas were 0.29 and 0.17 °C/decade,
respectively. It may be surprising that EDW seemed to disappear for
non-glacierized regions (Fig. 4b). This is due to the lumped “disturbing”
effects of snow cover. In fact, EDWwas clearly shownwhen snow cover
persistence was considered with glacier pixels removed (Fig. 4a). This
could also explain why non-significant correlation between warming
and elevationwas found in some other studies (You et al., 2008). The al-
titudinal pattern ofwarmingonglaciers seemed very different from that
of non-glacierized areas. EDW was evident on glaciers with the
warming rate consistently increasing from lower elevations to around
6000 m. This could be explained by the mass balance gradients of gla-
ciers, i.e., more ablation occurred at lower altitudes as evidenced in sev-
eral glaciers over the TP (Lin et al., 2017; Yang et al., 2013) and thus
more energy was consumed. This could also be one reason why the
peak elevation of warming for areas with high snow cover was up to
5000–6000 m (Fig. 4a) considering that no obvious dependence of
SCD variation on elevation was found there (Fig. 5). However, for very
high (>6000 m) glacier areas, the warming rate decreased with eleva-
tion, possibly due to the dominant effects of clouds, as indicated by a
steep increase of cloud coverage above 6000m (Fig. 3a). This finding in-
dicates that also for glaciers, warming rates were buffered by ice be-
cause of ice and a large proportion of the energy was used for melt
instead of warming the air. Hence, there is a feedback between glacier



Fig. 6. Definition of sub regions (i.e., Regions I, II, III and IV) used in analysis of variance (ANOVA) of warming rates for the whole TP and 10 major basins. The blue squares delineate the
pixels used for doing ANOVA with the region number displayed on top. Note: Those for UA and UG with most pixels showing insignificant trends are not shown here due to insufficient
samples.

H. Zhang, W.W. Immerzeel, F. Zhang et al. Science of the Total Environment 803 (2022) 149889
retreat and enhanced warming and this should be accounted for in fu-
ture studies.

3.3. The possible mechanisms of different warming patterns below and
above 5000 m

In addition to elevation and snow cover persistence, vegetation con-
ditions and cloud cover persistence may also have effects on the spatial
7

pattern of TP warming. For example, the abrupt increase in warming
rates for elevations from 2000 to 3000 m is well along with the sharp
decreases in NDVI and cloud cover (Fig. 3a), implying possibly impor-
tant effects of vegetation (less vegetation leads to decreased surface al-
bedo and less evaporate cooling) (Shen et al., 2015) and clouds (less
clouds in the daytime bring more insolation) (Duan and Wu, 2006) on
the warming (Fig. 3a). Similarly, the rapid decrease in warming rates
at elevations from 6000 to 7000 m could be related with altitudinal



Fig. 7. Contributions of Elevation, SCD, their interaction term and the remaining residuals to the total variances of warming rates based on ANOVA for TP and 10 major basins. Note: The
results for UA and UG with most pixels showing insignificant warming rates are not shown here due to insufficient samples.
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variations of cloud cover and snow cover persistence. More clouds lead
to decreased downward shortwave radiation and could thus inhibit
warming (You et al., 2020), which is also consistent with Yang et al.
(2018) who found less solar radiation received at higher elevations
due to more clouds in the afternoon in the south of central Himalaya.
Though previous studies paid more attention to the changing trends
of cloud cover, vegetation and snow cover, our result implies that the
climatological condition of these variables themselves could have im-
portant effects on the warming patterns.

The partial least squares path model (PLS-PM) was further used to
distinguish their effects (Fig. 3b–d). Generally, snow cover persistence
was the most important factor among them and it also presented the
largest direct effect on warming for elevations of either below or
above 5000 m. It is interesting that the total effect of elevation on
warmingwas positive (0.19) for elevations below 5000mwhereas neg-
ative (−0.06) at elevations above 5000 m, which is highly consistent
with the altitudinal patterns of warming rate. This indicates that the
PLS-PM used here could at least partly explained such contrasting pat-
terns. For elevations ≤5000m, elevation did have a relatively high direct
effect (0.34) on warming which could be attributed to the dominant
mechanism of snow albedo feedback. Such a positive direct effect
8

could balance over the negative indirect effect (−0.25) from snow
cover persistence (Fig. 3c). The indirect effects from cloud cover (0.06)
and NDVI (0.04) were relatively small. However, when elevation
>5000 m, the direct effect of elevation was much lower (0.09) and the
negative indirect effect from snow cover persistence was still large
(0.20), leading to a negative total effect of elevation (Fig. 3d). It is also
reasonable that the direct effect of NDVI was minimal as there are few
vegetations at high elevations. Thus, the reversed altitudinal pattern of
warming rates could be mainly due to the consistently high snow
cover persistence at higher elevations.

3.4. The step-wise temperature increase and possible causes

It can be seen that the warming rate during 1980–2014 has been far
from homogenous. The year 1997 seemed to be a distinct turning point
with the warming trends for both the periods of 1980–1997 and
1998–2014 much lower than the entire period (Fig. 8) for the TP. This
was further confirmed by themostly insignificant trends for the periods
1980–1997 (Fig. 1b) and 1998–2014 (Fig. 1c), but highly significant
trends when the entire period was considered (Fig. 1a). Interesting
enough, the period around the year 1997 also coincides with other



Fig. 8. Interannual variation of annual, spring, summer, autumn andwinter air temperatures during 1980–2014 for TP. The trend lines based on linear regressions are also plotted. The red
solid line represents the period of 1980–2014; the purple dashed line represents the period of 1980–1997 and the blue dashed line represents the period of 1998–2014. ***: P< 0.001; **:
P < 0.01; *: P < 0.05.
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evidence of abrupt environmental change such as the expansion of
Tibetan lakes after 1997/1998 (Zhang et al., 2017), increased glacier
melt(Maurer et al., 2019) and sediment flux (Zhang et al., 2020), and
a decrease in permafrost area (Wang et al., 2019). The underlying rea-
sons may be related to changes in large-scale atmospheric circulation
(Zhang et al., 2017). Especially, the 1997–1998 El Niño, regarded as
one of the strongest El Niño–Southern Oscillation events on record
may have triggered an abrupt temperature change (Blunden and
Arndt, 2016; Trenberth et al., 2002). This abrupt temperature change
may have promoted an abrupt environmental change that acts as a pos-
itive feedback causing the temperature increase to persist and further
exacerbate global warming rates. Although it may be too early to pin-
point the exact mechanism for this abrupt stepwise increase, a possible
explanation chain is that more net energy is available for the sensible
heat flux, because less energy is required to melt permafrost, glacier
and snow. Furthermore, there was a well-established albedo feedback
in the case of reduced snow cover. The average annual snow cover
day (SCD) during 1980–2013 calculated using daily snow depth obser-
vations from 32 stations (Fig. 1a) showed a significantly decreasing
trend (Fig. 9a), and the sequential Mann-Kendall test interestingly
showed that 1997 and 2000 were two turning points (Fig. 9b) which
9

showed a remarkable resemblancewith the stepwise change in temper-
ature. Although the annual stepwise warmingwas very obvious, its sea-
sonality was rather complex. For the whole TP, similar stepwise
warming after 1997 was observed in spring, autumn and winter, but
less obvious in summer.

3.5. Uncertainties

Firstly, there is some uncertainty related to the new air temperature
dataset. The validation accuracy (root-mean-squared-deviation) of the
new dataset is reported to be 1.7 ± 0.3 °C, 1.8 ± 0.5 °C and 1.9 ±
0.7 °C for CMA stations (Number=100), high-elevation stations (Num-
ber=13), and glacier stations (Number=4), respectively (Zhang et al.,
2021). Such accuracy is considered relatively high comparedwith previ-
ous air temperature estimations with reported errors mostly around
2 °C (Rao et al., 2019; Zhang et al., 2016; Zhang et al., 2018a). In partic-
ular, the validation accuracy of the new dataset on glaciers is much
higher than that of a previous air temperature estimation usingModer-
ate Resolution Imaging Spectroradiometer (MODIS) land surface tem-
perature (LST) (root-mean-squared-deviation >3 °C) which was
conducted on the same four glaciers (Zhang et al., 2018b). The temporal



Fig. 9. The variation of snowcover days during1980–2013 based on32 stations (a) and the turningpoint of snow cover days from the sequentialMann-Kendall test (b). The crossing points
of the positive series (UF) and the inverse series (UB) between the confidence limits are considered as turning points. It should be noted that the snow cover days shown here are
calculated only based on the 32 stations. ***: P < 0.001; **: P < 0.01; *: P < 0.05.

H. Zhang, W.W. Immerzeel, F. Zhang et al. Science of the Total Environment 803 (2022) 149889
trends calculated from the new dataset were also evaluated by compar-
ison with those derived from eight reanalysis datasets and find that the
former is very consistent with the best (i.e., the most accurate) two re-
analysis datasets. However, it should be noted that there were only
three stations higher than 5000m used in the estimation and validation
of the new temperature dataset and more observation from high-
elevation stations should be collected in future to increase the represen-
tativeness in elevation for air temperature estimation. The detailed re-
sults about comparison and validation against eight reanalysis
datasets can be found in Zhang et al. (2021). Comparedwith the reanal-
ysis datasets with generally coarser resolution, the new dataset with
much higher spatial resolution and validation accuracy is expected to
produce more reliable warming rates of TP. Furthermore, we also ac-
knowledge that the long-term microwave-based snow depth dataset
with relatively coarse resolution (see Section 2.1) could bring some un-
certainty. Although it seemed to overestimate SCD of the TP, its multi-
year average SCD during 2005–2013 shows a similar spatial pattern to
that of MODIS-based snow cover data (not shown here), and its annual
snow cover days during 1980–2013 also had a relatively high and signif-
icant (P < 0.001) Pearson correlation coefficient of ~0.6 with those
based on the 32 stations. In addition, the decreasing rates of SCD from
station-based (−2.8 day/10a) (Fig. 9a) and satellite-based (−4.0 day/
10a) data were similar. In addition, the cloud cover and NDVI data
used in this studymay have someuncertainty due to the errors fromde-
tection and removal of clouds during their production process. How-
ever, such effects may not be big because elevation and snow cover
persistence were demonstrated to be two major factors controlling
the warming patterns (Fig. 4).

There may also be some uncertainty in the approach for analyzing
effects of snow cover persistence on TP warming. The short period
(2005–2013) of SCDdatawas a limitation that thederivedmultiyear av-
erage SCDmay have some uncertainty in the representativeness for the
whole study period (1980–2014). Reliable Long-term snow cover data
with high resolutions are thus needed to be developed in future for bet-
ter estimating multiyear average SCDs and SCD trends of the long pe-
riod. It is also difficult for this approach to exactly distinguish the
effect of glaciers from that of snow. On the one hand, glacier surfaces
are often covered by snow while the remote sensing snow cover data
used cannot distinguish glacier from snow; on the other hand, glaciers
have obviously lower albedo than snow further adding the complexity
for distinguishing their effects. Thus, more efforts may be needed in fu-
ture to analyze the combined effects of snow cover and glacier by com-
prehensively using remote sensing and modeling approaches. In
addition to snow cover, clouds and NDVI, winds and air water vapor
10
(Rangwala et al., 2010; Rangwala et al., 2009) may also have significant
effects on TP warming. Future studies are thus needed to develop high-
resolution long-term datasets of wind speed and air water vapor for
achieving a more comprehensive analysis. Another uncertainty is re-
lated with the ANOVA. As mentioned in Section 2.2, the two-way
ANOVA was conducted in four sub-regions separately and the results
could be very different among the sub-regions. The detailed ANOVA re-
sults for all the four sub-regions in the 11major basinswere thus exam-
ined. It is reasonable that for each basin, the weighted average
contribution of each component was more similar to that of the sub-
region with the largest coverage in Fig. 6, although the results are not
shown here.

4. Conclusions

Our high-resolution temperature dataset allowed us to confirmwith
high confidence thatmostmajor TP basinswarm rapidly, in particular in
winter. Notable stepwise warming in annual temperature change is de-
tected in 1997 although the seasonality is rather complex. Such abrupt
warming can explain some observed sudden environmental changes
starting in the late 1990s. Overall, EDW is only valid up to about
5000 m above which the persistent snow cover prohibits an increase
of warming rate with increasing height, making the altitudinal patterns
of elevations below and above 5000 m reversed. For the first time, the
new data covers elevations above 5000 m with the best accuracy
reached so far, which made it possible for us to conclude that the
well-established snow-albedo feedback is less important at high eleva-
tions than in low-middle elevation areas, because of the persistent exis-
tence of snow covers at high elevations. The hardly changed snow
covered and glacierized areas over high elevations effectively constrain
the warming rates. There is an important positive feedback loop and
warming rates are amplified when snow cover and glacier areas are re-
duced. Thus, with the depletion of snow cover and glaciers, more prom-
inent warming may occur on the TP in the future which could further
enhance other environmental changes. The feedback of both snow and
glacier changes onwarming should also be considered in future regional
climate change predictions.

Data availability

The 1-kmdaily air temperature dataset of the Tibetan Plateau during
1980–2014 can be obtained from http://data.tpdc.ac.cn/en/data/
62234872-c39c-4614-a7ac-348c9437e7d5 with doi number: 10.
11888/Meteoro.tpdc.270377.

http://data.tpdc.ac.cn/en/data/62234872-c39c-4614-a7ac-348c9437e7d5
http://data.tpdc.ac.cn/en/data/62234872-c39c-4614-a7ac-348c9437e7d5
http://dx.doi.org/10.11888/Meteoro.tpdc.270377
http://dx.doi.org/10.11888/Meteoro.tpdc.270377
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