
1. Introduction
The United States is a major agricultural producer and breadbasket for the world, making it important to under-
stand how specific crops use irrigation water supplies throughout the country and over time. Irrigation water use 
(IWU) is primarily composed of surface water sources and withdrawals of groundwater, including non-renewable 
withdrawals of groundwater (i.e., groundwater depletion [GWD]). Increased reliance on unsustainable water use 
in agriculture poses a potential future risk to the sustainable production of the global agricultural supply (Godfray 
et  al.,  2010; Siebert et  al.,  2015), making IWU particularly important to consider. In this study, we estimate 
crop-specific surface water withdrawals (SWW), (total) groundwater withdrawals (GWW), and GWD within the 
Continental United States (CONUS). Of note, we refer to total irrigation of all crops as “crop irrigation,” and 
irrigation of particular crops (corn, wheat, etc.) as “crop-specific irrigation” for the remainder of this article. The 
main goal of this study is to better understand how irrigation water supplies (by source) are allocated amongst 
specific crops throughout the country, as well as any changes that have occurred with time. To achieve our goal, 
we create a novel database of IWU by crop and water source in the United States, which we make freely available 
with the paper.

There are several agricultural growing regions in the US with different water demands. The “cornbelt” in the US 
Midwest is known for growing the majority of US corn and soybeans. Globally, the US is the largest producer 
of corn, producing ∼30% of global corn in 2019 (FAO, 2021). As of 2019 Brazil is the largest global producer 
of soybeans, but the US is a close second, producing ∼29% of soybeans globally in 2019 (FAO, 2021). Grain 
production in the US Midwest is primarily rainfed, although farm fields are increasingly equipped with irrigation 
as rainfall patterns shift with a changing climate. California is the “fruit and vegetable basket” for the country, 
with abundant production of predominantly nuts, seeds, and citrus crops, as well as all varieties of fruits and 
vegetables. California agriculture relies on conjunctive use of surface and groundwater irrigation. The USA as a 
country provides 55% of the world's almonds, 37% of pistachios, 13% of walnuts, 13% of lettuce/chicory, 11% of 
strawberries, 9% of sugar beets, 8% of grapes, and 6% of tomatoes (FAO, 2021).
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Only about 15% of harvested land in the US is irrigated, yet this land contributes 40% of the country's agri-
cultural production (Lehrsch et al., 2014). Both surface water and groundwater are important for agricultural 
production. Groundwater use for irrigation has increased dramatically in the US since the Green Revolution 
began in the 1940s. Surface water withdrawals for irrigation also increased from 1950 to 1980, but have experi-
enced a general downward trend from 1980 to 2015 (Dieter et al., 2018; Hutson et al., 2004; Kenny et al., 2009; 
MacKichan, 1951, 1957, 1961; Maupin et al., 2014; Murray, 1968; Murray & Reeves, 1972, 1977; W. B. Solley 
et al., 1993, 1998; W. R. Solley et al., 1983, 1988). In the last several decades, groundwater irrigation has been 
physically unsustainable both globally and throughout the US (Famiglietti & Rodell, 2013; Gleeson et al., 2012), 
occurring at a withdrawal rate that exceeds natural groundwater recharge and consequently leading to GWD In 
fact, the US is one of the largest users of groundwater for irrigation globally, with the US ranked fifth behind 
India, Iran, Pakistan, and China, respectively (Dalin et al., 2017).

Groundwater irrigation has become increasingly important to crops. In 1950, irrigation water came predomi-
nantly from surface supplies (77%), with groundwater contributing 23%. Since then, groundwater has grown 
in importance, now contributing 48% of total irrigation water (total irrigation includes crops, golf courses, and 
parks). The fractions are comparable when only irrigated cropland is considered (e.g., golf courses and parks are 
excluded): surface water accounted for approximately 55% of withdrawals in the US in 2015, with groundwater 
accounting for the remaining 45%. See Figure S1 in Supporting Information S1 for details on how irrigation water 
sources have changed over time in the US. Unsustainable GWD has been increasing over time in the US. Irrigated 
agricultural production supported by groundwater use is particularly concentrated over three aquifers in the US: 
the Central Valley, High Plains, and Mississippi Embayment. About 50% of GWD is concentrated in the High 
Plains and Central Valley (Scanlon et al., 2012). Regions that are being pumped at particularly unsustainable 
rates are the Southern part of the Central Valley Aquifer (i.e., the Tulare Basin) and the Southern High Plains in 
Texas. Importantly, the federal government in the US provides abundant information on its national agricultural, 
climate, and water systems.

In this study, we develop a novel framework to fuse statistical information with a hydrology model to partition 
IWU by crop. Specifically, we employ the global PCR-GLOBWB 2 model (Sutanudjaja et al., 2018) with highly 
resolved data inputs for the CONUS to obtain crop-specific water demand estimates. PCR-GLOBWB (the origi-
nal version, hereafter “PCR-GLOBWB 1”; Van Beek et al., 2011) captures sector-specific water demand, ground-
water and surface water withdrawal, water consumption, and return flows, and has been used in previous studies 
to simulate unsustainable groundwater in irrigation in the United States using a comprehensive water demand and 
irrigation module (Wada et al., 2011, 2012). To do this, PCR-GLOBWB 1 simulates gross crop water demand 
for irrigated crops and the irrigation and rainwater that is available to meet this demand. The model simulates 
groundwater recharge, including return flow from irrigation, to estimate GWD. We input high-resolution data 
on crop parameters and climate within the CONUS to PCR-GLOBWB 2 (here referred to as PCR-CONUS). We 
then scale the US Geological Survey Water Use database (USGS, 2021) with our crop-specific values to ensure 
consistency with widely accepted irrigation information.

The goal of this study is to estimate crop-specific IWU throughout the CONUS. The CONUS has a wealth of 
freely available information related to crop locations, irrigation water withdrawals, and climate that can inform 
crop water use in hydrology models. We develop a data-driven approach that fuses statistical information with a 
global hydrology model to estimate crop-specific IWU within the CONUS. Importantly, our approach to partition 
water demands by crops relies on a well-established hydrology model (e.g., PCR GLOBWB 2) and scaling to 
match total water volumes provided in the benchmark USGS Water Use database. Our research is motivated by 
the following questions: (a) What crops rely on IWU by source of water?, (b) How is crop-specific IWU spatially 
distributed throughout the country?, and (c) How has crop-specific IWU changed with time? Answering these 
questions allows us to generate a novel database of crop-specific IWU by water source at county spatial reso-
lutions and annual time scales (2008–2020) for the CONUS. We make our entire crop-specific IWU database 
publicly available with this study.

2. Methods
We use an established global hydrology model (e.g., PCR-GLOBWB 2: Sutanudjaja et  al.,  2018) with 
high-resolution data inputs for the US to partition IWU for distinct crops. We then constrain model estimates to 
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the U.S. Geological Survey (USGS) Water Use database (USGS, 2021) to 
ensure that our results are consistent with this widely accepted source.

We apply the global PCR-GLOBWB 2 model (Sutanudjaja et al., 2018) to the 
Continental United States (CONUS). PCR-GLOBWB 2 is a “state-of-the-art 
grid-based global hydrology and water resources model” natively support-
ing up to 5 arc-min spatial resolutions and daily hydrology and water use 
temporal resolutions, with hydrodynamic river routing at sub-daily timesteps 
(Sutanudjaja et al., 2018). From Sutanudjaja et al., 2018, “PCR-GLOBWB 
2 simulates moisture storage in two vertically stacked soil layers (S1 and S2 
in Figure 1), as well as the water exchange among the soil, the atmosphere, 
and the underlying groundwater reservoir (S3 in Figure 1).” PCR-GLOBWB 
2 further integrates human water use categorized for irrigation, livestock, 
industry, and households demands. Note that PCR-GLOBWB 2 focuses on 
modeling individual grid-cells, therefore limiting the ability to account for 
water transfers between grid-cells.

Irrigation water specifically is partitioned based on two thresholds for (a) 
surface water irrigation and (b) fossil groundwater irrigation. Both thresh-
olds are applied to surface water abstraction fractions (Siebert et al., 2013) 
to define the preference for surface water versus groundwater for irrigation 
purposes: the surface water threshold maximizes preferential use of surface 
water when above the threshold, while the fossil groundwater threshold only 
allows fossil GWW above this threshold. Irrigation efficiencies then account 
for how much water must be supplied for crop water demands to be met.

Groundwater is overall modeled as changes in storage dynamics. GWW occur 
when surface water irrigation does not meet local water demands, resulting 
in groundwater allocations and changes to modeled groundwater storage. 
Groundwater depletion is not explicitly modeled and is instead calculated 
as (modeled) GWW minus (modeled) groundwater recharge. Groundwater 

recharge is modeled as percolation minus capillary rise, accounting for region-specific aquifer properties consist-
ent with original PCR-GLOBWB 2 model runs. The interested reader is referred to Sutanudjaja et al. (2018) for 
additional details on the PCR-GLOBWB 2 model.

We estimate water use per 5 arc-min grid-cell using model simulations, which we then aggregate up to coun-
ties using zonal statistics methods. Broadly, for each grid-cell in each time-step, we have a particular irrigation 
demand for each landcover type represented in that grid-cell. This irrigation demand comes from crop curves 
constructed using crop coefficients and crop calendars. As each grid-cell represents many landcover types, we use 
a fractional coverage to describe how much of the grid-cell is occupied by each landcover type. These landcover 
types are then related to the crop specific irrigation water demands, taking into account total area covered within 
the grid-cell. Climate inputs then determine how much of the irrigation water demand is met naturally (this is 
almost entirely rainfall), after which we apply available surface water until the irrigation demand is met. If the 
demand is not met through combined natural sources and surface water irrigation, we then irrigate using ground-
water resources. Finally, once we have a modeled estimate of GWW for irrigation in each grid-cell, we then take 
into account the groundwater recharge modeled over that same grid-cell and we take GWD IWU as the difference 
between GWW and the sum of long-term net groundwater recharge and river-bed infiltration for each grid-cell.

Importantly, we do not make any changes to the structure of the PCR-GLOBWB 2 model. This is because the 
novelty of our study is focused in running the model with high-resolution data inputs for the CONUS which 
we then fuse with the USGS statistical database. Specifically, we collect and implement data on the national 
agricultural system, including the locations of specific crops, crop growing seasons, irrigation locations, and effi-
ciencies, and crop coefficients for evapotranspiration demands. Additionally, we utilize high-resolution climate 
forcing data. The new forcing data that we implement in this study is listed in Table 1. The goal of our study 
is to run the PCR-GLOBWB 2 model with CONUS-specific agricultural and climate forcing data to estimate 
crop-specific IWU from both surface water and groundwater. We detail the new input data below.

Figure 1. Overview of PCR-GLOBWB 2 grid-cell and its modeled states and 
fluxes; see Figure 1 in Sutanudjaja et al. (2018) for original image as well as 
abbreviations (reproduced from Sutanudjaja et al. (2018)).
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2.1. High-Resolution Landcover and Crop Locations

Global model runs of PCR-GLOBWB 2 include six unique landcover types: open water, forest, grassland, rain-
fed crops, paddy (rice), and non-paddy (all other irrigated crops). To improve model estimates and simultane-
ously compute crop-specific IWU, we modified the model to include 24 unique landcover types, including 17 
unique  crops: barley, corn, cotton, millet, oats, peanuts, potatoes, pulses, rapeseed, rice, rye, sorghum, soybeans, 
sugar beets, sunflower, sweet potatoes, and wheat. The seven remaining categories include forest, grassland, no 
ET (developed), and some ET (water), as well as three crop categories to capture remaining crops: other grains, 
other produce, and animal feed. These final three groups correspond to groupings commonly used for food clas-
sification (USDOT, 2022).

The original six landcover types are represented as percentage maps in PCR-GLOBWB 2, such that the total 
percentage of landcover when all are summed together is equal to one for all grid-cells. To compute percent 
landcover maps, we retrieved crop data from the CropScape Cropland Data Layer (Han et al., 2012). CropScape 
has annual crop landcover data at 30-m resolution, available for the entire CONUS from 2008 to 2020 at the time 
of writing. Upscaling from 30 m to 5 arc-min allows us to calculate percent landcover as the fraction of all 30-m 

Figure 2. Map of the landcover categories included in this study at 30-m spatial resolution for the Continental United States in the year 2010. Crop locations are 
obtained from the CropScape Cropland Data Layer (Han et al., 2012).

Table 1 
High-Resolution Data Inputs Used in This Study

Data PCR-GLOBWB 2 PCR-CONUS (this study)

Crop locations MIRCA, Portmann et al. (2010) CropScape Han et al. (2012)

Climate WFDE5, Cucchi et al. (2020) GridMET, Abatzoglou (2013)

Crop calendars MIRCA, Portmann et al. (2010) CCD, Sacks et al. (2010)

Crop coefficients MIRCA, Portmann et al. (2010) FAO, Allen et al. (1998)

Irrigated areas MIRCA, Portmann et al. (2010) USGS, USGS (2021)

Irrigation efficiency Wada et al. (2014) Efficiency, Brouwer et al. (1989)

Note. This table only lists PCR-GLOBWB 2 data inputs that were changed in this study. For a full list of model data 
requirements please refer to Sutanudjaja et al. (2018).
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grid-cells of each landcover type in each 5 arc-min grid-cell. We calculate this for all 24 landcover types for each 
of the 13 years from 2008 to 2020. Figure 2 shows original CropScape data at 30-m resolution after converting 
to our 24 landcover types in 2010, before calculating crop fractions. For details regarding how CropScape land-
cover data was translated into our final 24 landcover types, please refer to Table S1 and Figure S2 in Supporting 
Information S1.

2.2. Evapotranspiration Crop-Factors for All Landcover Types

Existing (global) PCR-GLOBWB 2 crop factors were computed using MIRCA2000 crop calendars (Portmann 
et al., 2010) alongside FAO crop coefficients (Allen et al., 1998) for two agricultural landcover groups: paddy 
(rice), and non-paddy (everything else).

New crop coefficients were instead calculated for PCR-CONUS using the Crop Calendar Data set (CCD, Sacks 
et al., 2010) with FAO crop coefficients (Allen et al., 1998). The CCD improves on MIRCA planting dates and harvest 
dates by combining FAO and United States Department of Agriculture (USDA) crop calendar information (Sacks 
et al., 2010). FAO data are similar to original PCR-GLOBWB 2 global inputs, except we select values specifically 
representative of the CONUS climate rather than a global climate (Allen et al., 1998). For example, for Soybeans we 
selected growing stage durations for “Central USA,” as opposed to the alternatives: “Tropics” or “Japan.”

In addition to 17 unique crops, we have three “other” categories: other grains, other produce, and other animal 
feed. For each of these cases we had to make assumptions with the data we had available. The “other grains” 
category is constructed using CCD information for sunflower (closest to growing season of other grain crops), 
growing stage durations for small grains, and crop coefficients for safflower. The “other produce” category is 
similarly constructed using CCD information for pulses, and approximated growing stage durations and crop 
coefficients to try and represent the most significant crops within this group (mostly nuts and grapes, as well as 
some citrus crops).

The “other animal feed” category is particularly challenging because it consists of alfalfa and other hay/non-alfalfa. 
We elected to use alfalfa crop coefficient information to represent this group, as the FAO specifies climate bounds 
for alfalfa. These climate bounds were useful for approximating an animal feed growing season, as the CCD does 
not have planting or harvesting dates for alfalfa or hay. We approximate the growing season as being all days 
between the last −4°C day in Spring and the first −4°C day in Fall (Allen et al., 1998). For crop coefficients, 
we first need to understand that Alfalfa is a perennial and therefore can be harvested many times in 1 year. The 
first harvest is the longest, while subsequent other harvests follow a slightly smaller crop curve pattern (these 
subsequent curves are modeled identically). Using this information, we created repeating alfalfa crop curves over 
the course of the year for each pixel within the CONUS. While theoretically we could reproduce this to have 
year-specific alfalfa crop coefficients (based on climate data), we took 2008 as a representative year and used our 
2008 alfalfa crop coefficients for all subsequent years; this is consistent with all other crops, which are similarly 
modeled on a singular representative year's crop coefficients (rather than time-variant ones). We selected 2008 
as it is closest to the CCD approximations for other crop calendars, which are based on observations of the late 
1990s or early 2000s (Sacks et al., 2010). While we are comfortable using this climate-based approach for alfalfa 
in the mostly temperate climate of the CONUS, this approach may be problematic especially in lower latitudes 
(Sacks et al., 2010).

The final growth stage durations and crop coefficients used in this study for all 20 crops (including “other” cate-
gories) are documented in Table S2 in Supporting Information S1. Note that our crop coefficients are represent-
ative of general conditions and are assumed constant for all years in our study.

2.3. High-Resolution Irrigation Efficiency

PCR-GLOBWB 2 currently relies on global irrigation efficiency estimates from Rohwer et al. (2007). While this 
global coverage is necessary for global models, it is limited when applied to more localized models. For example, 
Rohwer et al. (2007) has only one value for the entire CONUS, set equal to 0.545 everywhere. This value is also 
time-invariant, based around the year 2000.

In contrast, water-use data has been published every 5  years at the US county scale since the year 2000 
(USGS, 2021). These publications include irrigated area information for three different irrigation types: sprinkler, 
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micro, and surface irrigation. Compiling this information with approximate irrigation efficiencies from Brouwer 
et al. (1989), we calculated weighted-average irrigation efficiencies for every CONUS county. To calculate irri-
gation efficiencies for unreported years, we assumed a linear trend between years with available data. For years 
after 2015, we used the 2015 value, as this is the most recent published data available. Our calculated irrigation 
efficiencies for the year 2015 are shown in Figure 3. Note that all values are between 0.6 and 0.9 because these 
are the irrigation efficiencies for surface and micro irrigation, respectively, while sprinkler irrigation efficiency 
falls in-between at 0.75 (Brouwer et al., 1989).

2.4. High-Resolution Climate Forcing Data

PCR-GLOBWB 2 requires three meteorological data inputs that we have changed in this study: precipitation, 
reference evapotranspiration (for grass), and mean daily temperature.

In global model runs, PCR-GLOBWB 2 uses meteorological data from WFDE5 (see Table 1), which is published 
at a spatial resolution of 30 arc-min. For 5 arc-min PCR-GLOBWB 2 global model runs, it is therefore necessary 
to statistically downscale this resolution, which of course means that the spatial distribution of meteorological 
data within each 6 × 6 block of 5 arc-min grid-cells remains static over time.

To improve on this spatial resolution, we used GridMET data (Abatzoglou, 2013), which is available at 4 × 4 km 
resolution. For consistency with our other data sets, we upscale to 5 arc-min resolution, meaning that each of our 5 
arc-min grid-cells represents the higher-resolution grid-cells used to construct them. This is an improvement over 
the downscaling approach used for global 5 arc-min PCR-GLOBWB 2 model runs, as our 5 arc-min grid-cells are 
all unique. Generally, out GridMET-based meteorological forcing variables are smaller than WFDE5 when aver-
aged (temperature) or summed (precipitation and evapotranspiration, separately) over the CONUS, see Figure S3 
in Supporting Information S1 for comparisons.

2.5. High-Resolution Inputs

Using these high-resolution data inputs, we ran various versions of the model to assess the impact of specific 
changes individually, namely climate forcings, landcover, and irrigation efficiency data. To compare outputs, we 
focused specifically on groundwater resources over aquifer regions, summing GWW and GWD individually over 
the High Plains Aquifer, Central Valley Aquifer, and Mississippi Embayment Aquifers. We ran four new model 
iterations with our new landcover types compared against PCR-GLOBWB 2 original results: (a) All original 
PCR-GLOBWB 2 inputs, (b) New irrigation efficiency otherwise original PCR-GLOBWB 2 inputs, (c) New 
forcing data otherwise original PCR-GLOBWB 2 inputs, and (d) New irrigation efficiency and new forcing data 
otherwise original PCR-GLOBWB 2 inputs (these are the results discussed throughout this publication).

Figure 3. Map of irrigation efficiencies used as input to the PCR-GLOBWB 2 model for this study. Values represent a percentage of irrigation water that gets to a crop, 
ranging from 60% to 90% depending on the irrigation methods used. This map is constructed from published water-use data (USGS, 2021) and irrigation efficiencies 
(Brouwer et al., 1989).
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2.6. Constraining Estimates to Match Total Volumes Reported by USGS Water Use Database

After implementing all changes, PCR-CONUS estimates of SWW, GWW, and GWD for all defined crops and 
crop categories. We then scaled these final PCR-CONUS estimates to USGS Census data to resolve any differ-
ences. This has the combined benefit of 1). Allowing us to parse out crop-specific IWU values, and 2). Ensuring 
our total IWU estimates sum to credible USGS data values.

To accomplish this, we first summed PCR-CONUS raster outputs of SWW and GWW for all crops to each 
CONUS county. Using these county sums, we calculated individual SWW and GWW percent contributions by 
all crops for each county, then applied this percentage distribution to available USGS SWW and GWW water-use 
estimates. Specifically, we use USGS county-level crop irrigation census data from 2010 to 2015, scaling the 
years 2008–2014 to the 2010 census data, and scaling the years 2015–2020 to the 2015 census data. We scaled 
only to the years 2010 and 2015 because the USGS census data is only collected in 5-year intervals, and the 2020 
data has not yet been published (USGS, 2021). 2010 and 2015 data were scaled directly to USGS data in these 
two years. For all other years in our 13-year period (2008–2020), we estimated USGS county-level data using the 
relationship of PCR-CONUS estimates between the year we are estimating and the nearest available year with 
USGS data. We then use these modified USGS estimates in off-years with crop-specific PCR-CONUS percent 
contributions to estimate each crop's contribution to SWW and GWW for every year.

Finally, because GWD data is not available from USGS, we used PCR ratios to upscale modeled GWD results. 
To do this, we took the ratio between PCR-CONUS GWD estimates and PCR-CONUS GWW estimates for all 
counties and years, and we multiplied this ratio by our scaled GWW values to get county-level GWD estimates.

Some complications arose with scaling PCR-CONUS data to USGS data, most notably in two cases. The first 
complication occurred when PCR-CONUS crop-specific estimates were extremely small for all years, mean-
ing that when scaling in reference to a USGS year, sometimes the ratio (“scaling factor”) between SWW or 
GWW estimates was very large. This would result in unrealistic estimated USGS values. To avoid this issue, we 
constrained this scaling factor (of the current year we were estimating USGS data for, compared to the USGS 
reference year which was always 2010 or 2015) between 0.5 and 2. For county/crop pairs where the scaling factor 
was outside this range, we set the ratio to the average of all other counties with scaling factors within the accept-
able range. So if a ratio was greater than 2 or less than 0.5, we set it equal to the average of all other counties with 
scaling factors within the 0.5–2 range. Note that this impacted a significant portion of counties: approximately 
25% of counties had scaling factors below 0.5, while nearly 40% had scaling factors larger than 2.

The second complication occurred when PCR-CONUS estimates for all crops were zero in a county that had 
a positive USGS value. In these cases, to best match accepted USGS values, we calculated a ratio between 
the average current year PCR-CONUS values and the average reference year (2010 or 2015) PCR-CONUS 
values,  and we applied this ratio to these counties where PCR estimated zero withdrawals. Effectively this means 
we apply an averaged crop fractional distribution to these counties where no crop-specific IWU was modeled by 
PCR-CONUS, to better match the USGS values. This complication was far less frequent, occurring in only about 
5% of counties.

3. Results
Here we address our research questions and provide estimates of SWW, (total) GWW, and GWD by crop within 
the CONUS. We also compare our findings with other estimates in the literature.

3.1. What Crops Rely on Irrigation Water Use by Source of Water?

Surface water withdrawals, (total) GWW, and GWD values are summarized for all crops modeled in the CONUS 
in Table 2. “Other animal feed” (alfalfa/hay) has the largest IWU across the board, making up approximately 
37% of total IWU, including 49% of SWW, 27% of groundwater abstractions (GWA), and 29% of GWD. “Other 
produce” is the next largest contributor to IWU (18% overall), making up about 14% of SWW, 20% of GWW, 
and 22% of GWD. Wheat, corn, rice, cotton, barley, and soybeans follow in that order when considering average 
IWU across years. Soybeans are interesting because their large GWA (7th largest) contrast with their significantly 
smaller surface water (14th) and GWD (14th) demands; most other crops are more consistent across water types. 
All crops not mentioned use significantly less water, summing to less than 7% of total crop IWU.
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Total IWU values averaged across the 13-year period are 67 (SWW), 48 (GWW), and 33 km 3 (GWW). The 
percent change in IWU between 2008 and 2020 across all crops shows a notable decrease in SWW (20%), while 
GWW and GWD instead both increase during this time-period by approximately 3% each. SWW and GWW 
values of course match USGS data due to our method of scaling model outputs to match USGS data. Notably the 
match is slightly different due to rounding errors and the capping of large scaling factors, but these differences 
are negligibly small. Part of our justification for scaling to USGS data is that PCR-CONUS has been shown to 
over-estimate GWW in certain locations in the CONUS, such as the Mississippi Embayment aquifer system 
(Scanlon et al., 2018). Scaling to USGS data helps mitigate this over-estimation problem.

Visualizations of averaged IWU estimates organized by water source (Figure 4a) and crop (Figure 4b) allow us 
to better see where IWU is being used. SWW is the largest user when averaging across the 13-year period, with 
GWW contributing about 70% as much IWU as compared to SWW (Figure 4a). GWD is a fraction of GWW, so 
Figure 4a also shows us that about 65% of all GWW are unsustainable (GWD), where the sustainable portion 
is only the remaining 35% of total GWW. This is because GWW  =  GWWsustainable  +  GWWunsustainable, where 
GWWunsustainable is equal to GWD. Looking at unique crops, we see that “other animal feed” is the most significant 
user of IWU by far, with SWW making up ∼70% of it's total IWU, setting it apart from other crops (Figure 4b). 
When looking only at the groundwater variables (GWWsustainable and GWD), there is notably less variability 
between crops. As noted previously, soybeans are also interesting due to their lack of reliance on SWW: almost all 
of their IWU comes from groundwater resources, most of which is sustainable (e.g., not contributing to GWD).

When looking at GWD as a fraction of GWW within the CONUS we see that soybeans on average have the lowest 
ratio, with GWD making up only about 5% of total GWW. Peanuts are closest, at 10%, while most other crops are 

Table 2 
Surface Water Withdrawals, Groundwater Withdrawals, and Groundwater Depletion Mean Values, Volumetric Changes, and Percent Changes for All 20 Crops and 
Crop Groups Over the Continental United States

Crop

Surface water withdrawals Groundwater withdrawals Groundwater depletion

Mean (km 3) Change (km 3) Change (%) Mean (km 3) Change (km 3) Change (%) Mean (km 3) Change (km 3) Change (%)

Barley 3.05 −0.66 −18.63 1.19 0.06 5.21 0.71 −0.12 −17.41

Corn 5.79 −2.70 −37.08 5.65 0.62 11.48 3.52 −0.17 −4.61

Cotton 1.76 −0.74 −41.74 2.00 −0.08 −5.19 1.42 0.15 15.10

Millet 0.06 −0.04 −37.50 0.07 0.02 27.21 0.04 0.00 −6.61

Oats 0.66 −0.55 −62.14 0.44 −0.21 −36.84 0.31 −0.14 −32.69

Other grains 0.59 0.12 16.92 0.56 0.47 105.50 0.38 0.25 78.26

Other produce 9.39 −4.95 −43.13 9.66 2.38 26.50 7.00 3.40 57.11

Other animal feed 32.93 1.98 5.78 12.90 4.20 34.47 9.57 2.77 30.03

Peanuts 0.06 0.00 1.54 0.29 −0.05 −14.73 0.03 −0.03 −49.00

Potatoes 1.03 0.23 28.82 0.57 0.12 28.45 0.45 0.06 16.71

Pulses 0.58 −0.21 −33.24 0.26 0.01 4.18 0.15 0.03 32.14

Rapeseed 0.03 0.01 42.55 0.01 0.01 206.58 0.01 0.01 405.45

Rice 2.73 −4.16 −71.38 5.14 −3.89 −48.07 3.85 −3.61 −59.69

Rye 0.08 −0.02 −29.74 0.09 0.06 95.39 0.04 0.01 28.40

Sorghum 0.39 0.05 13.28 0.95 0.09 9.04 0.64 −0.21 −27.58

Soybeans 0.38 −0.27 −64.11 1.71 −1.51 −72.59 0.08 −0.07 −69.16

Sugar Beets 0.41 0.04 16.84 0.24 0.22 231.61 0.19 0.19 210.75

Sunflower 0.08 −0.01 −6.26 0.08 −0.01 −7.34 0.04 0.00 3.87

Sweet Potatoes 0.01 0.00 36.60 0.02 0.00 −26.51 0.00 0.00 −97.61

Wheat 7.35 −3.99 −39.75 6.30 −0.91 −13.23 4.10 −1.57 −30.69

All Crops 67.38 −15.87 −20.17 48.16 1.60 3.21 32.52 0.96 2.82

Note. Mean values include all years from 2008 to 2020, while volumetric change and percent change represent comparisons of the year 2020 to the year 2008.
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generally between the 50% and 80% range. The soybean GWD/GWA ratio is quite small along the midwestern 
corn-belt where soybeans are mostly grown (Figure 5), due to high recharge in these locations, leading soy to have 
the smallest GWD/GWA fraction.

3.2. How Is Crop-Specific Irrigation Water Use Spatially Distributed Throughout the Country?

Crop-specific IWU (km 3) for 2020 is mapped in Figure 6 for the top eight crops/categories. These maps are 
intentionally scaled individually to show where each crop contributes to SWW, GWW, and GWD. SWW and 
GWW are related in that GWW is only modeled when SWW is fully allocated (or was unavailable to begin with), 
while GWD is always smaller than GWW because GWW is the total amount of GWW while GWD is only the 
unsustainable amount of GWW. From these maps we see the top contributors to IWU, specifically barley, corn, 
“other animal feed,” and wheat are scattered throughout the West. Cotton interestingly sees highest IWU values 
in the Southwest, though cotton is of course historically grown in the Southeast; this pattern is likely due to the 
comparatively dry climate in the Southwest. Rice is irrigated most heavily in California, though a significant 
portion of the US rice supply comes from Southern states adjacent to the Mississippi river; this is similarly most 
likely due to climate differences. “Other produce” is unsurprisingly most heavily irrigated in California, where 
most US produce is grown. Soybeans are scattered throughout the Midwest as would be expected. Interestingly, 
we see soybean irrigation in the Midwest and not much corn irrigation in the Midwest; this is because corn is 

Figure 4. Irrigation Water Use averaged for all years, 2008–2020, and organized by panel (a). Water Source and panel (b). Crop. Of note, panel (b) includes a 
“sustainable” groundwater withdrawals (GWW) variable (GWW_sust), which is the difference between total GWW and groundwater depletion.

Figure 5. Ratio of soybean groundwater depletion to soybeans groundwater abstractions for 2010 and 2015.
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Figure 6. Maps of crop-specific irrigation water use by water source in 2020 in km 3/yr. The columns show irrigation water source: surface water withdrawals, 
groundwater withdrawals, and groundwater depletion. The rows show specific crops: barley, corn, cotton, rice, produce, other animal feed (alfalfa/hay), soy, and wheat. 
Note that all maps are scaled individually to their unique values, so they can not be compared directly to each other.
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grown expansively in the West as well, and these climates demand more irrigation. There is of course corn irriga-
tion in the Midwest as well, it is just not as visible due to corn irrigation being comparatively larger in the West.

3.3. How Has Crop-Specific Irrigation Water Use Changed With Time?

As shown in Table 2 comparing 2020–2008, the largest percent changes in IWU are generally seen in more minor 
crops, such as rapeseed and sugar beets; this makes sense because these crops have smaller IWU values to begin 
with, so any difference will register as a larger fractional change. Interestingly, apart from “other animal feed,” 
most major crops have a decrease in SWW over the period. We can also see informative trends when observing 
particular crops. For example, “other animal feed” increases across all water types, while wheat and rice both 
decrease across all water types; this may be a result of changes to cropping patterns.

Figure 7 shows total SWW, GWW, and GWD summed over the CONUS by crop categories. For clarity, we have 
listed only the top 10 IWU based on 2020 GWD ranked values, with all other crops summed into the “other” 
category. This “other” category is always plotted on top for clarity, though because it includes many crops, it is 
often larger than some crops that have less IWU, such as potatoes and sorghum. We also see significantly larger 
“other” values particularly in GWW in 2010, which is likely due to soybeans having on average the 7th largest 
IWU from GWW sources but only the 14th largest IWU from GWD sources (see Table 2).

Comparing our scaled SWW and GWW values to USGS data of course shows very negligible differences because 
we have scaled to the USGS data. Very slight differences that do exist are due to rounding errors. For refer-
ence, the largest county difference we see when subtracting scaled PCR estimates from USGS values across all 
variables and years is 2.22e −16 for GWW in 2015. Mapped comparisons of USGS minus scaled PCR estimates 
are available in Figure S4 in Supporting Information S1.

4. Discussion
4.1. Limitations

Due to a lack of available data detailing IWU by crop (a major motive for this research), we do not have any data 
to validate our results against. Instead, we constrain our PCR-CONUS estimates to match published USGS water 
use data by water source and county. This requires summing the volumetric use of water across crops to match 
these values. This means that our main novelty is the addition of modeled crop dimensionality (across both space 

Figure 7. Time series of irrigation water use by crop and water source across the Continental United States from 2008 to 2020. (a) Crop-specific surface water 
withdrawals (SWW), (b) crop-specific total groundwater withdrawals (GWW), and (c) crop-specific groundwater depletion (GWD). Black dots on the SWW and GWW 
plots show corresponding U.S. Geological Survey (USGS) census withdrawals, which align with our estimates by design. There are no USGS values to compare GWD 
to in panel (c). Legends are stacked in order of top 10 based on GWD values in 2020, with an additional “other” category representing the sum of all un-specified crops 
in this plot.
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and time) to existing USGS water use data, which is generally considered the best available data when consid-
ering the entirety of the CONUS area. We believe our approach offers the best available solutions given current 
data limitations.

It is important to be aware of the limitations of this data set. First, we are restricted to the years 2008–2020 due 
to data input restrictions, most especially from the CropScape data set (Han et al., 2012). Additionally, other data 
sets are available only partially throughout the study period, such as irrigation efficiency (USGS, 2021) which 
is only available for select years; we applied methodologies that we consider reasonable to expand these data 
sets to other years, but of course it would be preferable to use primary data for these intermittent years. We also 
suffer from any existing limitations of the original PCR-GLOBWB 2 model structure, as this is left unchanged. 
For example, PCR-GLOBWB 2 always meets irrigation water demands using surface water resources first, then 
meets any remaining demands using groundwater (Sutanudjaja et al., 2018). Also, aside from the data inputs that 
we have explicitly changed, all other inputs to the model are original global data set inputs. As such, there is likely 
room to improve on our estimates by further changing some of these remaining global data sets to better represent 
the CONUS area specifically. Finally, our approach ultimately requires agricultural water use data to be available, 
for scaling our crop-specific model estimates to.

4.2. Discrepancies Between PCR Estimates and USGS Irrigation Data

The main goal of this work is to use PCR-CONUS estimates to disaggregate USGS irrigation data into crop-specific 
irrigation water allocations. We constrain crop-specific water use volumes to sum to county-level water use data 
provided by USGS. This means that our total surface and groundwater withdrawal volumes in the final model 
estimates match USGS data. However, we recognize that understanding how our unscaled PCR-CONUS esti-
mates compare with USGS irrigation data is valuable for future modeling efforts.

To quantify these differences, we first calculate mean error across all counties as PCR values minus USGS values 
to assess the error in PCR-CONUS estimates. Seeing as all results are negative (see Table 3), we can conclude 
that the PCR model consistently under-estimates withdrawals when compared with USGS values. This trend 
is also visible in scatterplot comparisons of the two variables, where each of the two withdrawals variables are 
normalized to be between 0 and 1 individually and we see that USGS values are almost exclusively larger than 
our PCR-CONUS estimates (see Figures S5–S10 in Supporting Information S1).

In all instances the standard error and Root Mean Squared Error (RMSE) are nearly identical (Table 3), this 
being because USGS values are scales of magnitude larger than PCR values, resulting in differences frequently 
being nearly equal to the USGS values. We can also see that the standard deviation and RMSE both are largest 
for surface water values in 2015, followed by 2010 surface water values which in turn are slightly larger than 
groundwater values in both years. This means simply that groundwater estimates are generally better than surface 
water estimates, particularly in the year 2015.

For an initial assessment of spatial variability, we can plot PCR estimates (Figure 6) and USGS reported values 
against each other (see Figures S5–S10 in Supporting Information S1). From these plots, spatial trends seem to 
be largely similar in California and along the western side of the Mississippi in 2010, though most other Western 

Table 3 
Error Quantification for Surface Water and Groundwater Values in 2010 and 2015

Error quantification Surface water 2010 Surface water 2015 Groundwater 2010 Groundwater 2015

Raw Mean error −0.019 −0.014 −0.012 −0.011

Standard deviation 0.113 0.085 0.065 0.076

Root mean squared error (RMSE) 0.115 0.086 0.066 0.076

Normalized Mean error −0.030 −0.030 −0.024 −0.005

Standard deviation 0.043 0.063 0.038 0.035

Root mean squared error (RMSE) 0.044 0.064 0.039 0.035

Note. Errors here are defined as the difference when subtracting USGS reported county withdrawals from our PCR estimates aggregated to the county scale. All errors 
are calculated across all counties.
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counties seem to have significantly smaller PCR estimates when compared to the USGS values. Interestingly, we 
seem to see considerable differences between the 2010 versus 2015: while 2010 seems to be largely mismatched 
even in California, the Mississippi region seems to match better; contrastingly 2015 seems to spatially match 
better in California, while the Mississippi seems over-estimated.

To better understand some of these differences, we can further consider spatial variability between volumes 
modeled by PCR and those provided by USGS (Figure 8). From Figure 8, we see PCR largely underestimates in 
the Western half of the country, particularly in California across years and water types. Groundwater sees larger 
differences outside California, particularly in Idaho and Oregon in 2010. We also see small positive values show-
ing up in Imperial, CA and Colusa, CA, as well as along the Arkansas side of the Mississippi River, though these 
differences are volumetrically smaller than most other differences seen.

In addition to these spatial differences, we also see noticeable differences when comparing across the years 2010 
and 2015. For example, the Mississippi Embayment surface water difference is negligible in 2010, but negative 
in 2015; the groundwater abstraction difference in this region is positive in 2015. This reiterates previous findings 
showing that PCR over-estimates water use over the Mississippi Embayment aquifer region (Scanlon et al., 2018).

Overall, these comparisons shed light on some important modeling issues. Volumetric PCR estimates are gener-
ally smaller than USGS values across the Western U.S.; this should be better addressed in future similar mode-
ling efforts. Additionally, PCR estimates of surface water have worse (larger) standard deviations and RMSE, 
meaning that improvements to surface irrigation could be addressed in future PCR model runs for the CONUS.

4.3. Model Sensitivity

To better understand uncertainty and sensitivity of our model results, we ran four different model versions. 
All four of these model versions are distinguishable from previously published PCR-GLOBWB 2 results 
(Sutanudjaja et  al.,  2018) in that they incorporate the 20 unique crop types we constructed from CropScape 
data (Han et al., 2012). The differences between our four PCR-CONUS model versions are in some of the date 
inputs, namely the climate data and the irrigation efficiency data. Our baseline PCR-CONUS model uses all 
PCR-GLOBWB 2 data dependencies coupled with our new cropland information; we term this the “old climate, 
old irrigation efficiency” model (OO). Our newest and most complete PCR-CONUS model instead uses all new 
data inputs mentioned in this work, so named the “new climate, new irrigation efficiency” model (NN). Finally, 
we have two intermediary model versions to better quantify and assess the impacts of each of these data sets 
independently; these models are the “new climate, old irrigation efficiency” model (NO), and the “old climate, 
new irrigation efficiency” model (ON).

Figure 8. Difference between PCR estimates and U.S. Geological Survey (USGS) reported withdrawals, calculated as PCR values minus USGS values. Differences are 
provided for surface water and groundwater in 2010 and 2015, in km 3.
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The summed irrigation estimates across all crops for the entire CONUS spatial area are plotted and compared in 
Figure 9. From the figure we can see that the NN model (used for all values analyzed and published in this paper) 
generally results in a larger PCR-CONUS irrigation estimate as compared to other model versions. Additionally, 
we find that the new irrigation efficiency data in particular leads to larger irrigation estimates (NN and ON 
models). The differences between climate inputs also is noticeably smaller than the differences between the irri-
gation efficiencies, and this is consistent across all modeled water types. Another clear difference seen in Figure 9 
is that the spread of the model estimates is largest for SWW and smallest for GWD, with GWW estimates having 
a comparably more even spread.

To investigate each crop individually, we constructed boxplots (Figure 10) showing the fractional contribution 
of each crop to the three different water sources (SWW, GWA, and GWD) in each county. These boxplots show 
the distribution of these fractional contributions to irrigation water estimates according to the same four unique 
model runs described previously. Note that these plots are visualized without outliers, and we've also removed 
any zero and NA values for clarity; this likely results in rice having such high crop fractions in GWD when rice 
actually relies on non-renewable groundwater irrigation in only a very small number of counties.

By comparing these boxplots in Figure 10, we can see that some crops have significantly more variability 
between models than other crops. Corn, for example, seems to have the smallest standard deviations with the 
new climate data inputs as compared to the old climate data inputs, across all water types, and the new climate 
input data also seems to fractionally allocate less surface and (renewable) groundwater to corn as compared 
to other crops where corn is also grown. Cotton seems to function similarly to corn in this way. Animal feed 
instead is fairly uniform across all model types, likely due to the huge coverage of animal feed throughout the 

Figure 9. Total irrigation water use summed over all counties for four different model versions and all three unique water 
sources, where each different model version relies on different data inputs. The different versions are “NN” (new climate data 
and new irrigation data), “NO” (new climate data and old irrigation data), “ON” (old climate data and new irrigation data), 
and “OO” (old climate data and old irrigation data). Please note that “old” data refers to PCR-GLOBWB 2 global data inputs, 
while “new” data refers to PCR-CONUS data inputs.
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country, probably resulting in model differences being compensated in different geographical areas. Soybeans 
and wheat are similarly relatively consistent across model types. Rice is interesting because both surface 
and (renewable) groundwater irrigation seem to be much more sensitive to changes in irrigation efficiency 
over climate data inputs. This has to do with the fact that rice is flood irrigated, consequently relying on 
large amounts of irrigation water regardless of climate (and particularly reliant on irrigation efficiency). 
Note that there is little spatial variability in crop fractional water use (see Figures  S8–S10 in Supporting 
Information S1).

Figure 10. Boxplots showing the mean and standard deviation across all counties where each crop is grown for four different model versions reliant on slightly 
different data inputs. Note that these plots are constructed using only non-zero values. The different versions are “NN” (new climate data and new irrigation data), 
“NO” (new climate data and old irrigation data), “ON” (old climate data and new irrigation data), and “OO” (old climate data and old irrigation data). Please note that 
“old” data refers to PCR-GLOBWB 2 global data inputs, while “new” data refers to PCR-CONUS data inputs.
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4.4. Uncertainty

Estimation of crop-specific irrigation relies on various agricultural data sets as inputs. Each data set meets 
particular purpose necessitating its inclusion in this analysis. First, landcover information is required for assign-
ing each grid-cell's crop coefficient across space and time. Crop coefficients are used together with crop calen-
dars in calculations of evapotranspiration, which represent the crop water demands we are interested in. Climate 
and irrigation efficiencies of course also play a role in how much water is available and how much irrigation water 
must be applied to meet crop water demands, respectively. For irrigation efficiencies to be informative, we also 
need spatial irrigation data in the form of irrigated areas defined by irrigation type, which together create a whole 
picture of irrigation efficiencies by grid-cell.

Ideally, we would like to quantify the uncertainty introduced by these input variables to the PCR-CONUS model 
to better understand their influence on our estimates. As we have access only to the data sets in their published 
forms, we do not have the information required to calculate their uncertainties for them. However, many of these 
data sets are heavily validated, hopefully minimizing any influence of uncertainties on their published results.

CropScape landcover data are validated and accuracy assessed against ground truth data. The USDA also 
publishes accuracy data with CropScape, describing the accuracy of each landcover type by state and year. FAO 
crop coefficients are representative of general conditions gleaned from an extensive area of research. While local-
ized FAO data would have been preferable, this data simply isn't available in any uniform way across the entirety 
of the CONUS, so we opted for consistency across the CONUS rather than gap-filling with more detailed values 
where available. The CCD notes limitations but does not quantify uncertainty propagated from the data sets upon 
which it relies, leaving us no way to carry uncertainties through to our model. GridMET climate data are heavily 
validated against an extensive network of weather stations but similarly do not publish uncertainty information for 
us to consider. Uncertainties of the irrigation efficiencies published by the FAO are also unavailable.

We rely on USGS irrigation areas as a model input, and USGS water withdrawals for correcting systematic bias 
by scaling our model estimates; this data is all contained in published USGS water use data tables. The USGS 
receives most of their water use data directly from the states, which do not have the capacity to perform quality 
control, let alone full uncertainty analyses. Additionally, the USGS uses a variety of methods for data collection 
that differ for each State, and their full suite of methods is not fully transparent: some States measure their water 
use information while others model it with a variety of input variables. For these reasons, any uncertainty analy-
ses will differ markedly across States, and we therefore cannot quantify USGS uncertainties across the CONUS. 
This is a shortcoming that is recognized in the literature, leading to consistency and methodological transpar-
ency becoming two priorities for the USGS moving forward to improve their Water Use Database (Marston 
et al., 2022). Over the next several years, USGS will be developing capacity for nationally consistent modeling 
approaches to estimate water withdrawals, consumptive use, and associated uncertainty at the daily scale for 
12-digit hydrologic unit code subwatersheds (Marston et al., 2022).

While each data set has built-in uncertainty, additional uncertainties are further introduced by extrapolations and 
other estimations necessitated by a lack of data in some cases. For example, crop coefficients are estimated across 
crop groups by using representative crops within each group; these of course do not perfectly capture each crop 
individually, but instead are approximated to represent the whole of the category. The crop coefficients described 
in Supporting Information S1 are also assumed to be uniform in time and space within the CONUS for each crop 
category, due to the FAO publishing extremely limited information within the CONUS regarding spatial varia-
bility and no information about the temporal variability of these variables. While crop calendars were primarily 
taken from the CCD, crop calendars for alfalfa were assigned based on acceptable climate boundaries rather than 
factual planting and harvesting dates, for lack of available data. Additionally, CCD growing periods are based on 
the year 2010 and do not vary in time, which informed our decision to treat alfalfa using 2010 climate informa-
tion rather than computed temporally variant alfalfa crop coefficients, to maintain consistency with other crops. 
Finally, irrigated areas are extrapolated from the years 2010 and 2015 out to all other years in our data set, due 
simply to data only being collected every 5 years. These uncertainties cannot be calculated as uncertainties in the 
input data sets are not provided.

4.5. Implications for Future Work

Estimates of crop-specific IWU creates opportunities for future research and decision-making. While crop-specific 
water footprints have been widely studied (Hoekstra et  al.,  2011), differentiation between surface water and 
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groundwater sources has become increasingly important. Additionally, the most widely used crop-specific water 
footprint data set is representative of averaged climate from 1995 to 2005 (Mekonnen & Hoekstra, 2011), whereas 
our new data set provides annual values over a 13-year period, enabling time series analyses. We also create a path 
forward for calculating crop-specific water footprints in terms of mass, cost, and calorie output, and understand-
ing how these variables may change in time.

Our work is limited to the CONUS region but outlines a new methodology for estimating agricultural water use 
applicable to any region, simultaneously motivating the creation of important, high-resolution, local input data 
sets of variables such as crop locations (Jackson et al., 2019) and irrigation information (Xie et al., 2021). By 
exploring this area of research, we also provide some insights as to what may be some of the more important data 
sets needed for modeling an area of comparable size to the CONUS. For example, the unique trends in soybean 
GWA may point to the need for more detailed information for this particular crop. Additionally, while we have 
elected to use crop coefficients which are solely spatially variant and not time-variant as a result of available data, 
future work may further explore the reasonableness of this assumption.

By improving IWU data, we also enable future water footprint studies in the CONUS. This extends to 
research in virtual water trade (Dalin et al., 2012; Gumidyala et al., 2020), flows (Dang et al., 2015), and 
storage (Ruess & Konar, 2019), which can all benefit from our new data set. Water footprint studies would 
be able to build on our estimates, which use the same commodity coding system as other national databases 
(ORNL,  2022; USDOT,  2022). Additionally, recent work downscaling this trade data to the county scale 
(Karakoc et al., 2022; Lin et al., 2019) combined with our work would enable highly resolved virtual water 
flow studies.

5. Conclusions
In this study, we estimated crop-specific IWU throughout the CONUS. Specifically, we quantify how SWW, 
total GWW, and GWD is allocated to each of 20 crops in each county and year from 2008 to 2020. To do this, 
we integrated statistical information with an existing global hydrological model. Specifically, we employed the 
PCR-GLOBWB 2 hydrological model with higher-resolution and localized inputs for the CONUS area. Then, we 
scaled our model output volumes to ensure matching with the total surface and groundwater irrigation volumes 
provided in the established USGS Water Use database.

Across all crops we see an overall 20% decrease in SWW and increases in both GWW (3.21% increase) and GWD 
(2.82% increase). “Other animal feed” is the largest user of all three sources of irrigation water in the CONUS in 
2020: 33 surface water, 13 groundwater, and 10 km 3 GWD. Conversely, sweet potatoes use the smallest amount 
of water across all sources. Soybeans are interesting because, while they use a significant amount of groundwater 
for irrigation, most of this groundwater use does not contribute to depletion. “Other produce” uses less surface 
water over the 13-year study period, accompanied by increases in groundwater and GWD, particularly in the 
Central Valley of California. Contrastingly, other notable crops, such as rice and wheat, decreased their overall 
total IWU across all three water sources.

Future research could improve upon our work. This study highlights future opportunities to improve agricultural 
water use modeling across the CONUS. Future efforts to collect data on crop-specific irrigation allocation would 
be particularly helpful in validating our work. Our study complements the USGS Water Use Database by break-
ing it down by crop, which can enable future research on water use in agriculture and inform decision-making. 
We make the complete data set on crop-specific IWU available with the paper, including information for 3,142 
counties, 13 years, 20 crops, and 3 unique water sources (nearly 2.5 million data points).

Data Availability Statement
The data that support the findings of this study are openly available:

•  Repository Name: Illinois Data Bank
•  DOI: https://doi.org/10.13012/B2IDB-4607538_V1
•  Access Conditions: Open
•  Licensing/Permissions: Creative Commons (CC0)
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