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Analyses of healthcare databases (claims, electronic health records [EHRs]) are useful supplements to clinical trials for
generating evidence on the effectiveness, harm, use, and value of medical products in routine care. A constant stream of
data from the routine operation of modern healthcare systems, which can be analyzed in rapid cycles, enables incremental
evidence development to support accelerated and appropriate access to innovative medicines. Evidentiary needs by
regulators, Health Technology Assessment, payers, clinicians, and patients after marketing authorization comprise
(1) monitoring of medication performance in routine care, including the materialized effectiveness, harm, and value;
(2) identifying new patient strata with added value or unacceptable harms; and (3) monitoring targeted utilization. Adaptive
biomedical innovation (ABI) with rapid cycle database analytics is successfully enabled if evidence is meaningful, valid,
expedited, and transparent. These principles will bring rigor and credibility to current efforts to increase research efficiency
while upholding evidentiary standards required for effective decision-making in healthcare.

Patients, particularly those with conditions that currently have
limited treatment options, desire faster access to new medications
that are safe and promise to reduce their suffering. Adaptive bio-
medical innovation (ABI) is a “multistakeholder-driven approach
to improving the effectiveness and sustainability of biomedical
innovation by accelerating clinical value delivery to patients while
continuously improving the knowledge of new medical
treatments” (Hirsch G. et al. in this issue).
Some new medications are produced based on an unprecedent-

ed understanding of the underlying biology and target a highly
selected patient group by severity or genomic markers, providing
regulators with greater confidence to approve medications with
less clinical experience earlier than traditional approval pathways.

Independent of the specific regulatory pathway, including acceler-
ated approval, adaptive pathways, etc.,1 any effort to bring inno-
vative medications to patients faster requires (1) decision-making
with less certainty at the time of initial licensing and (2) an
explicit plan to quickly reduce uncertainty after initial licensing
for a targeted patient population and later possibly expanding use
to follow-up populations by closely monitoring the effectiveness,
harm, utilization, and value in rapid analysis cycles.
The requirements and strategies for evidence development

throughout this process are quite variable and depend on the
condition, the target population, the drug, and available treat-
ment alternatives. The process is further complicated by the fact
that regulators and payers may have different evidence needs for
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deciding on licensing and coverage and different timelines for
formulary positioning. The ideal evidence-development plan
would combine a number of study designs with or without base-
line randomization and various data types (primary data collec-
tion, secondary health care databases, registries, etc.) in a
complementary way to maximize the understanding of a drug’s
net benefit in an expedited and foreseeable yet adaptive way. Key
evidentiary needs during the postmarketing phase include:
(1) monitoring of medication performance in routine care,
including materialized effectiveness, harm, and value; (2) identify-
ing new patient strata in which a drug may have added value or
unacceptable harm; and (3) monitoring targeted utilization and
evaluation of utilization control mechanisms.2

Healthcare databases are longitudinal patient-level data pro-
duced by the operation of modern healthcare systems (see
Box 1). Such real world data (RWD) are frequently used in
assessing the added value of medications after marketing. A key
advantage of health care databases is that they record utilization,
health events, and financial data in routine care. A key limitation
of health care databases is that data were not recorded for
research. In addition to patient selection into treatment groups,
some relevant information may be miscoded, incompletely
recorded, or not recorded at all. To be useful for research the
data need to be fit for the specified purpose.
Focusing on health care databases and their analysis in rapid

cycles, we identify four key requirements to satisfy the evidence
needs for successful accelerated-approval pathways. We seek to
outline the choices and tradeoffs when considering health care
databases for postmarketing monitoring activities to support
ABI. This article illustrates the decision-making process with
selected examples and addresses external constraints imposed by
local, regional, or national regulations. We conclude by identify-
ing areas in which health care databases and rapid-cycle analytics
currently have the greatest value, useful regulatory and coverage
adjustments in the near future, and recommended longer-term
legislative changes.

Evidence requirements from routine health care data to
support ABIs
The analysis of electronic data streams collected during the provi-
sion of healthcare has been developing over the past 25 years3

and has begun to reflect recurrent principles recognized by
researchers,4 regulators,5,6 and Health Technology Assessment/
payers.7 However, despite advances, there is still tremendous vari-
ation in the transparent conduct and validity of RWD analyses.8

To meaningfully support incremental decision-making for
ABI, several principles make evidence from RWD analyses more
likely to be useful for understanding the materialized effective-
ness, harm, and value, identifying new patient strata with added
value and monitoring targeted utilization. Four key principles of
successful RWD analyses make up “MVET”9:

1. Meaningful evidence: Relevant and context-informed evidence
based on fit-for-purpose data sufficient for interpretation and
making decisions.

2. Valid evidence: Evidence that meets scientific and technical
quality standards to allow causal interpretations.

3. Expedited evidence: Incremental evidence generation that is
synchronized with timely decision-making.

4. Transparent evidence: Evidence that is produced transparently
and therefore becomes reproducible, replicable, and trusted by
decision-makers.

Evidence that meets the MVET requirements is expected to be
above a critical threshold for meaningful decision-making, as laid
out previously.9 At this point, MVET can be seen as a tool to
structure and clarify discussions around RWD analysis. It will
help the stakeholder and research communities to converge on
the best possible solution to study the net health benefit of an
innovative product in a specific context. Supplementary
Table S1 online provides a worksheet to assess the MVET crite-
ria in specific settings. In contrast to existing guidance, docu-
ments that provide more depth on processes to implement

Box 1
Health care databases for assessing use, effectiveness, and safety of drugs
Health care databases are produced by the operation of health care systems. They may contain information provided by physi-

cians and other health care providers documenting the provision of care, which is typically stored in EHRs. Other databases are
recordings of financial transactions and the administration of care, including claims data, pharmacy dispensing, hospital and phy-
sician billing, medical devices implantation, etc. Health care databases are considered part of RWD.
A key advantage of health care databases is that they record the routine operation of a system. Patients and providers are not

aware that they might be studied using these data. Utilization and financial data reflect the reality of routine care. Therefore, the
insights that can be gained from such data are directly applicable to a system that provides clinical care under usual circumstan-
ces. This might not always be optimal care and terms of who receives what treatment (e.g., off-label use) and how treatment is
delivered (e.g., nonadherence) compared to a highly controlled trial.
A key limitation of health care databases is related to its advantage, the fact that data were recorded for operating a health care

system and not for research. In addition to patient selection into treatment groups, some relevant information may be miscoded,
incompletely recorded, or not recorded at all. This may lead to biased treatment effect estimates through residual confounding
and exposure/outcome misclassification.70 Although methodologies to overcome these limitations have improved substantially,
there may be situations in which bias may represent a challenge in interpreting findings.
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database studies,4,5,7,10 MVET is intended to provide targeted
guidance for decision-makers on how to effectively use health
care database analytics for incremental evidence generation sup-
porting ABIs.

Meaningful evidence
In order for evidence for health care databases to be meaningful,
it needs to contain the relevant information of sufficient quality
to answer a specific question even if this information is found
selectively in disparate data sources, data access should be such
that ongoing monitoring is possible, and analyses need to provide
measures relevant for decision-makers.

Finding the most suitable data sources for a study question
For any health care database analysis to be meaningful, of course,
the appropriate information to answer the central question at
hand needs to be available. It does neither mean that information
needs to be comprehensive all the time nor that it needs to be
perfect in all aspects. However, in most cases, this should include
reliable information on drug exposure, outcomes that matter to
patients, providers, regulators, and payers, and measurement of
important confounders or proxies thereof. The accurate record-
ing of dates is critical to establish temporality. Increasingly, bio-
marker information and other disease subgroup indicators to
identify patients most likely to benefit and/or experience harm
from highly targeted therapeutics (Table 1).
Unfortunately, there is no generalizable advice regarding where

optimal information for a given question can be found. Today,
most health care systems have some mechanism of electronically
capturing all professional services provided, including diagnostic
and procedural information. This is often linked to payments
and aggregated into claims databases. Such information is more
reliable in areas in which audits are frequent (hospitals) or

fraudulent charging practices may lead to lawsuits (procedures).
Pharmacy dispensing is considered a more reliable source of
information on drug use than patient reporting11 or physician
prescribing, as 20–60% of initial prescriptions are not filled.12

Although neither of these features alone is sufficient for drawing
robust conclusions, meaningful combinations of codes can sub-
stantially improve the measurement of events. Having three diag-
noses of diabetes within 6 weeks plus the dispensing of an oral
antidiabetic medication make it more likely that a patient has
diabetes than a single diagnostic code would.13

Electronic health records (EHRs) increasingly help augment
such claims databases (Table 1). EHR systems may contain labo-
ratory test results, imaging test results, biomarker status, and
genomics information. However, because EHR systems usually
do neither to cover the full population nor the entire care contin-
uum, better methods are needed to fill in the many “blanks,” for
example, by calibrating claims data information using a subset of
patients for whom we have richer information.14,15

Analyze suitable data locally and aggregate insights globally
If investigators require more detailed information than is cap-
tured through routine health care operations in their local sys-
tem, they may link several local sources to add the missing details
or search elsewhere for the most suitable data source, sometimes
outside their jurisdiction.
It is critically important to work closely with local experts who

know the exact interpretation of “their” data based on a deep
understanding of the specific data generation mechanism. Despite
attempts to catalog claims and EHR databases in multiple coun-
tries,16,17 much information about the existence, quality, and
accessibility of databases is dynamic and often orally shared
among local expert users. Ongoing efforts to improve the infor-
mation available about databases internationally should provide a

Table 1 Frequently suggested study/data types based on routine data collections in support of ABI

Relevance to adaptive innovation Limitation

Study options based on routine data for adaptive innovation

� Claims data studies � Reflects routine care with major clinical end-
points, utilization, costs
� Most complete capture of professional care
encounters

Lack of clinical detail, endpoint adjudication not
always feasible, no systematic assessment of
clinical conditions, no PROs

� EHR study � More clinical details
� Opportunity to reach back to patients for addi-
tional information

Frequently missing data, no systematic assess-
ment of conditions, limited PROs

� Disease registry studies � Systematical assessment of investigator-
designed measurements of relevant clinical
parameters
� Capture of PROs

Limited availability, time-consuming to initiate,
may not represent routine care, no relevant cost
outcomes

Likely less valuable options for adaptive innovation

� Exposure-based registries Easier to implement and often aligned with cur-
rent regulator/payer requirements

Complete lack of comparators may reduce the
utility of evidence

� De novo cohort studies Can be highly targeted to address specific knowl-
edge gaps

In most cases, too time-consuming to be mean-
ingful for adaptive innovation

The focus of this enumeration is on the scientific principles, not the exact regulatory definition, although they are largely aligned. ABI, adaptive biomedical innovation; HER,
electronic health records; PRO, patient reported outcomes.
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broader capability to combine, contrast, and compare research
results.
Many data generators (providers, payers, and registries) today

insist that their data remain locally stored, citing data security
and patient privacy concerns; only aggregate-level results may
leave their systems after local analysis of individual-level data.18

Linkage of additional data sources to enrich clinical information
faces fewer privacy hurdles when conducted locally by the data
generators. This leads logically to a network of multiple analytic
nodes, each of which may be the result of local linkage activities
itself (Figure 1). The US Sentinel System, Exploring and Under-
standing Adverse Drug Reactions, and European Medical Infor-
matics Framework follow this principle.19,20 The data remain at
the site of the data generators, including all local security and pri-
vacy precautions, and mostly aggregated results will be shared in
the network.21 New privacy regulations, for instance, in Europe,
directive 2016/680, may make the organization of such networks
more complicated.
Database flexibility requires us to work with data that vary in

terms of quality, content, and coding; this may not be terribly sat-
isfying for researchers used to working with de novo generated
(primary) data collected for specific research purposes. Learning
to cope with data-quality issues is the price we pay for under-
standing how medications work outside highly controlled
research environments and getting a candid picture of utilization
patterns in routine care without a researcher’s interference. Thus,
database researchers frequently choose to work with clever proxy
definitions of the underlying health constructs in terms of out-
comes22 or patient characteristics for confounding adjustment.23

Such proxies are often specifically linked to the intricacies of

each health care system, and how it covers and records health
services.
The quantity and completeness of data recorded for an indi-

vidual depends on the frequency of health care encounters. A
chronically ill patient has many opportunities to have his/her
health status assessed and recorded and is less likely to move and
change health plans than healthy adults, leading to voluminous
and longer-term data collection, but also to possibly unintended
selection of patients for whom data are most complete. In addi-
tion, highly integrated health care systems and national systems
often have more complete information than typical US commer-
cial insurances.

Tracking use in a target population
Part of an adaptive strategy for innovation is to characterize, tar-
get, and track the population who should and actually will receive
a new drug. Health care administrative data can track the dis-
pensing of outpatient pharmacies and i.v. administration of spe-
cialty medicines almost in real time and are quite valuable in
tracking both intended and unexpected uses reliably and expedi-
tiously. This lays the foundation for analyses stratified by specific
indications (whether approved or not) and monitoring a variety
of usage patterns, including switching, discontinuations, and sub-
optimal adherence.

Treatment effect measures that support decision-making
To fully evaluate the net value of new medications, decision-
makers consider multiple endpoints of benefit and harm simulta-
neously. A net benefit is established by ascribing preference or
quality of life weights to absolute treatment effect measures of

Figure 1 A flexible network of analytic nodes will support global information needs and comply with local privacy and governance rules. *Each analytic
node first satisfies local evidence needs for care management and secondarily can be used for rapid-cycle analytics as part of a network. Local and
regional governance models will be implemented for each node.
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intended and unintended effects.24 It is therefore imperative that
RWD analysis produce measures of the absolute effect size,
including risk differences, rate differences, or differences of mean
costs. Under an additive causal model, which is most frequently
assumed,25,26 difference measures do not vary with baseline
risk,27 and have population denominators, which make them
immediately useful for care management. Epidemiologists under-
utilize risk-adjusted difference measures, although propensity
score matching28 and regression models enable such estimation
for dichotomous and continuous outcomes.29,30

It makes sense to provide treatment effect measures for each
outcome separately; this allows decision-makers to assign weights
according to population preferences and quality of life measures
that specifically reflect their constituency. Net benefits can then
be computed based on customized assumptions.
Rapid cycle evaluation of economic outcomes can be equally

important and actionable for many stakeholders in the health
care system, particularly if the budget impact is large and signifi-
cant value judgments must be made. Most of the same consider-
ations around data completeness, linkages, and treatment effect
estimation enumerated here apply to economic outcomes as well,
although sometimes with specific nuances depending on the vari-
ables and populations involved.31

Valid evidence
To meaningfully inform regulators and payers, findings need to
be of sufficiently high validity to allow causal conclusions with
confidence. In medicine, noncausal associations are insufficient to
justify providing access to innovations.
Identifying the most appropriate choice of study design and

analytic strategy, in search for the best possible approximation of
a counterfactual experience in patients had they not received the
innovator drug, does not only require substantial expertise but
unavoidably comes with tradeoffs; a perfect solution to evidence
generation is rarely possible in a single study regardless as to
whether it is a database analysis or other. It is frequently necessary
to combine different methodological approaches to the same
question (e.g., pairing baseline randomization with secondary
data and observational analyses). This dilemma is reflected in
guideline documents that share a nonprescriptive attitude toward
design and analytic choices.4,5,7,10 Structured tools for selecting
optimal study designs also help in the selection process and make
design choices and tradeoffs more transparent.32

Study design options for health care data analysis of
comparative effects
There are three fundamental types of study designs that can be
used to compare the effect of medical products using health care
databases: (1) parallel-group cohort designs; (2) self-controlled
designs; and (3) cluster designs for group-level comparisons.33

The cohort design is the most versatile and by far the most
commonly used. New users of the newly marketed drug are com-
pared to new users of a clinically reasonable comparator drug.34

The groups are compared in terms of event risk after medication
start during the same calendar time, so that health system changes
or changes in recording practices are inherently taken into

consideration (Figure 2). If additional information like bio-
markers or genomics data are collected and linked to a database
study, sampling plans like case-control, case-cohort, or two-stage
sampling can be implemented to increase statistical efficiency. In
cohorts, it is straightforward to estimate outcome rates, resource
use, and costs over defined time periods and to estimate absolute
effect sizes (risk differences). The main concern of the cohort
design is whether a balance of relevant risk factors between the
two comparison groups can be achieved without the help of base-
line randomization. This is a case-by-case decision that requires
expert assessment, knowledge of the underlying database, and
some diagnostics.35

Self-controlled designs take advantage of the fact that patients
initially unexposed to an agent then become exposed, and their
health status may change accordingly. Such designs are indexed
either by an event (case-crossover design)36 or by exposure (pre-
post design or self-controlled case series; see Figure 2).37 Because
self-controlled designs compare health outcomes within the same
patient between an exposed and an unexposed time period, they
inherently control for time-invariant patient characteristics; this
is a substantial advantage in database studies, in which concerns
persist that not all confounding factors can be measured fully.
However, self-controlled designs are somewhat susceptible to bias
introduced by externalities that may modify the risk of health
outcomes independent of the study exposure. Therefore, this
design is limited to establish the effectiveness of newly marketed
medications when the underlying condition is stable or predict-
ably worsening over time without treatment changes and there is
little variation in this decline among patients. The design is also
suitable if the new drug almost completely replaces existing medi-
cations in a very short time, or if the onset of the new drug’s
effect is immediate and the effect size substantial.38 Such observa-
tional versions of self-controlled designs can be enhanced by ran-
domization through a stepped-wedge design, which will mitigate
any self-selection of patients by rate of declining health.39

Tradeoffs to be considered when making analysis choices
Any design and analytic choice comes with tradeoffs. The larger
process of choosing the appropriate evidence-generation mecha-
nism can be subdivided into consideration of the study design,
the data source, and the analytic strategy (Figure 3). The study
designs described above can be analyzed in many different ways.
Most analytic choices are tied to methods that have been used for
confounding control and modeling follow-up.40

The primary goal of confounding adjustment is to achieve bal-
ance of observed baseline characteristics between treatment
groups. In health care databases, the information collected is not
under the control of the investigator, therefore, the constructs of
interest may be measured in indirect ways using combinations of
observable events in various coding systems. Propensity score
methods have established themselves as the preferred methodolo-
gy in database analyses because they can reduce a large number of
potential confounders and proxies thereof into a single score vari-
able improving estimation robustness.23,41

The decision on the follow-up model is tightly linked to the
underlying biology and proposed drug effect. For short-acting
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oral medications an as-treated model may be most appropriate,
whereas longer-term effectiveness may be better reflected in first-
exposure-carried-forward models, which is similar to an
intention-to-treat analysis and reduces the concern about infor-
mative medication stopping.42 Other therapies may have delayed
onsets and such a lag time needs to be modeled accordingly.43

As the number of choices grows, it is difficult to give detailed
recommendations for design and analytic approaches that do not
result in a textbook. The purpose of Figure 3 is instead to
encourage investigators to be clear about their evidence needs, be
fully transparent with their research design choices to satisfy such
evidence needs, be aware of the tradeoffs they are making, and
justify them in light of the research question and stakeholders
involved.

A few dimensions drive study design choices with RWD
One can readily identify four dimensions that drive study design
choices and data needs for ABI (Figure 4), although additional
considerations may arise. One may wish to principally establish
existing evidence on the effectiveness and safety of the initial indi-
cation or supplement it; if the goal is to test the claim of a new sec-
ondary indication, this may require a different level of evidence.
The nature of the treated condition (e.g., whether it is a chron-

ic disease with monotonically declining health or an acute episod-
ic condition), may determine the approach to evidence
generation. Historically, controlled studies and prepost self-
controlled analyses can be valid choices in evaluating highly tar-
geted therapies with well-characterized molecular mechanisms for
treating conditions that would otherwise result in a steady declin-
ing health; such designs have been permitted by regulators to

establish effectiveness in these contexts.44 A strictly observational
prepost study can be enhanced by stepped-wedge designs that
introduce a baseline randomization component delaying treat-
ment in some patients.45

The rapid vs. delayed onset of a therapeutic effect and its
expected effect size may determine the choice of study design.
Treatments that promise substantial effect sizes that materialize
quickly may be evaluated with self-controlled prepost designs.
Interrupted time-series analyses are viable options when new
breakthrough medications are quickly and nearly universally
adopted by the provider community, leaving almost no patients
on comparator treatment.
Last, multiple stakeholders may focus on different aspects of

effectiveness and safety, although all wish to measure those effects
with the highest possible validity. Some Health Technology
Assessment institutions desire measuring quality of life endpoints
or other patient-reported outcomes, which has implications for
choosing data sources with direct reach-through to patients.
The dimensions outlined above produce a matrix of preferred

design choices for decision-makers to consider; Table 2 illustrates
the numerous possible combinations of study characteristics.
This table is further stratified according to the purpose of the
generated evidence (i.e., whether to demonstrate effectiveness,
harm, utilization, or value; cost per net benefit). This additional
stratification is necessary because data needs may differ substan-
tially. For example, claims data are particularly strong in monitor-
ing utilization and assessing cost to a care system under routine
circumstances; for harm investigations, the key question is wheth-
er RWD can capture the outcomes of concern; and for effective-
ness assessment, the central consideration is whether sufficient

Figure 2 Two frequently used design classes for non-randomized evidence generation with health care databases.
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confounding control can be achieved without randomization.
The supplementary materials include four worked examples
(Supplementary Tables S3–S6 online).

Expedited evidence from dynamic data sources
In an ABI process, the clock is constantly ticking; decision-ready
evidence needs to be developed and updated rapidly to ensure
that patients are treated with effective and safe drugs based on
the best possible knowledge at a given time point. The incremen-
tal development of evidence requires expeditious analyses of con-
stantly refreshing dynamic data sources generated by health care
systems.46 Three key factors that influence the speed with which
evidence can be generated from RWD like health care databases
are (1) time between data generation and data access; (2) time
elapsed between data access and completed analysis; and (3) the
size of the combined source population in which new users of
the target drug are identified.

Shortening time from data generation to data access
Electronic health care data are generated almost instantaneously
as care is provided. However, typical health care data sources are
made available for analysis only after substantial lag time. Most
commercial databases lag 6 to 9 months behind until data
become available to researchers. Lag time can be up to 3 years, an

unacceptable delay for meaningful support of iterative decision-
making with RWD.47 There are, however, a number of health
care systems that aggregate a constant stream of the most relevant
health care data in almost real time. Such systems with real-time
data access may not want to send their data to external parties for
analysis and may have limited interest in participating in multire-
gional analysis of the effectiveness of new drugs. In order to
actively involve them in ABI, they can be supported with local
analytic nodes to satisfy local evidence needs for value-based care
management, but secondarily can be used for rapid-cycle analytics
on drug effects as part of an analytics network (Figure 1). An
added advantage is that linkage to relevant data sources (e.g., vital
statistics, socioeconomic indicators, or behavioral data), can be
achieved more easily on the level of the data generator than on a
higher aggregated level. Local analyses that follow a standardized
implementation protocol will yield findings that will be pooled
across multiple participating nodes, avoiding unnecessary wait-
times that may arise if data refresh asynchronously.
Interjecting the data aggregation with high-level common data

models may slow the process as new mapping needs to be complet-
ed each time data refresh, may lead to misrepresentations of the
data,48,49 and may ultimately be misconstrued as data standardiza-
tion, although like-looking data constructs may be based on quite
different information content (e.g., a myocardial infarction may be

Figure 3 An overview of study design choices structured by design, data, and analysis choices. *Although this tree characterizes the principles of
choices and tradeoffs it represents only a limited set of choices that are frequently made but is by no means comprehensive.
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recorded based on a single diagnostic code or on troponin labora-
tory test results). Common data models do not solve any underly-
ing discrepancy in information content between data sources.50

Shortening analysis cycle time
Shortening analysis time when working with health care data-
bases is today no longer a question of computing power. Overall
analysis time is determined more by how data are prepared and
aggregated, how efficiently complex longitudinal queries can be
implemented and run in a reliable way, how fast study designs
and sensitivity analyses can be implemented, how statistical analy-
ses can be parallelized and automated, and how comprehensively
an automated reporting mechanism informs its users.51 Once
analysis cycles can be shortened without compromising analytic
quality, we can move beyond traditional one-off analyses
(Figure 5a) toward a system that dynamically monitors develop-
ing evidence on the effectiveness, safety, and utilization of newly
marketed drugs.52 In such systems, analyses can be repeated each
time the data stream refreshes in a local data warehouse, or when-
ever the number of new drug users grows by a fixed increment
that is relevant to decision-makers (Figure 5b).53

Such a rapid-cycle monitoring system has distinct advantages.
Precision of a given point estimate for a drug-outcome relation-
ship becomes slightly less relevant, because precision improves as
more patients use the new drug, and to some degree precision
gains can be extrapolated based on observed trends. There is
some uncertainty among decision-makers of how to deal with
multiple comparisons that arise from such a system. Because no
health care intervention/program takes place in a hypothesis-free

space, typical approaches like P values with corresponding adjust-
ments for multiple testing that may reject true benefits,54,55 and
shrinkage of effect estimates toward the null, are of little value to
decision-makers. Decision-makers are more likely focused on
benefit-harm considerations that are driven by the absolute effect
size (difference measures) across several weighted endpoints.

Increasing source population
RWD on newly marketed medications from health care databases
always suffers from the “catch 22” that if providers adopt a new
drug slowly, few data on safety and effectiveness are generated by
health care databases, which in turn will slow its use. A reason-
able approach to mitigate this problem is to dramatically increase
the source population that is monitored. Even if the proportion
of target patients receiving the new drug is small, the absolute
number of users can be increased for evaluation purposes, which
will improve the precision of the estimated treatment effective-
ness in early interim analyses.
A flexible multidatabase system with decentralized analytics can

be scaled to fit the evidence needs for a new medical product of
varying market penetration. Regional differences in effectiveness
can be identified (Figure 5c), and pooled estimates across regions
will stabilize more quickly with higher precision (Figure 5d), opti-
mally supporting incremental decision-making. Models for combin-
ing results from multiple database analyses19,56–58 are capable of
analyzing population sizes exceeding 50 million at a given point in
time. However, they require comprehensive governance models
that accommodate different local regulations for data access.

Figure 4 Dimensions driving study design choices and data needs for incremental evidence generation as part of adaptive biomedical innovations.
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Transparent and reproducible evidence
Ultimately, big data analyses should inform evidence-based deci-
sions by people who usually are not the ones generating the evi-
dence. Typically, when the decision-maker is not the evidence
generator, there would need to be tremendous trust in the way
the relevant evidence was produced. However, because trust is

neither objectively measured nor scalable, it needs to be replaced
by good governance in the production and handling of the rele-
vant evidence so that there can be confidence in the processes
and outputs. Such an approach starts with maintaining the high-
est possible transparency and accountability in conducting data-
base studies, which will allow reproducing and verification of

Table 2 Context-driven study design choice matrix

A. Confirmation of initial approval: Design options and RWD

Initial approval Likely INCREMENTAL improvement Likely SUBSTANTIAL improvement

Effectiveness
intended trt.

effects

Harm
Un-intended trt.

effects Utilization Valuea

Effectiveness
intended trt.

effects

Harm
Un-intended trt.

effects Utilization Valuea

Small molecule
or biologic with
biomarker
endpoint

Rare disease,
e.g. gene
therapy, enzyme
replacement
therapy

Targeted indica-
tion, e.g.
expression-
based anti-
cancer med’n,
anti-cancer
immunotherapy

a Cost per net benefit

B. Expansion of initial indication: Design
options and real world data (RWD)a

Initial approval Likely INCREMENTAL improvement Likely SUBSTANTIAL improvement

Effectiveness
intended

trt. effects

Harm
Un-intended trt.

effects Utilization Value

Effectiveness
intended trt.

effects

Harm
Un-intended trt.

effects Utilization Valuea

Small molecule
or biologic
with biomarker
endpoint

Rare disease,
e.g. gene
therapy,
enzyme replace-
ment therapy

Targeted indi-
cation,
e.g. expression-
based
anti-cancer
medication,
anti-cancer
immunotherapy

Study design and data source considerations are influenced by several dimensions leading to a matrix of design options: Initial approval vs. expansion of indication; incre-
mental vs. substantial effect; type of study purpose (i.e., whether to demonstrate effectiveness, safety, utilization, or value). As individual choices are highly context-
dependent, the design choices are illustrated in four worked examples in the Supplementary Tables S3–S6 online.
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results using the same data source. Reproducibility is, in turn, the
foundation for replication and robustness checking to support
causal conclusions.59

Transparency
Confidence in database analytics is grounded in transparency,
which makes it possible to reproduce results using the same data.
Decision-makers lose confidence in findings if reproduction of
the results is not possible due to the lack of transparency or
because one tried and failed to reproduce. Researchers engaging
in primary data collection have developed several vehicles to
deposit original research data to allow reproduction outside a reg-
ulatory environment and journal editors have decided to require
data deposition for randomized controlled trials alongside a pub-
lication. However, when working with secondary data that were
not collected for research purposes and were not curated, many
decisions must be made when implementing a specific study. If

the specifics of those choices are not explicitly stated, a researcher
trying to reproduce a study will obtain numerically different
results even when working with the same source data. Let us take
as an example this question: Does follow-up begin on the day of
first exposure or the following day? This might seem irrelevant
but could have a substantial impact on study findings, including
qualitatively different conclusions. A spurious association
between benzodiazepines and gastrointestinal bleeds was reported
because the first benzo exposure was allowed to occur the same
day as the gastrointestinal bleed outcome.60 Although this could
have been an immediate, dramatic adverse event caused by ben-
zos, it is much more likely that benzos were simply used in the
treatment of the gastrointestinal bleed.61

Recent work showed that many published database studies still
have suboptimal transparency, largely because sharing the details
of study implementation and coding is insufficient to transform
raw data into meaningful variables.8 An infrastructure in which

Figure 5 Expedited evidence generation through increasing frequency of analyses and larger size of source population. *Synthetic data for illustration
only.
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to deposit study protocols or code lists is being developed for
database studies, including the European Network of Centres for
Pharmacoepidemiology and Pharmacovigilance,62,63 and its use is
encouraged by decision-makers. The requirement of maximum
transparency is independent of whether study details are prede-
fined and protocols registered/deposited, or whether full disclo-
sure of the presented analysis and all precursor analyses happens
once a study is completed. The RECORD guideline is a starting
point to encourage clearer reporting of database studies. Howev-
er, more prescriptive guidance on the reporting of technical
details may be necessary to enable reproduction. The US Food
and Drug Administration Sentinel program is implicitly estab-
lishing best reporting practices by making public all key parame-
ters necessary to run any of their preprogrammed software tools
to implement a study.32,64

Replicability
Once reproducibility is achieved, either through fully transparent
reporting or by actually reproducing a study, a causal biologic
relationship is more likely if the findings can be replicated in dif-
ferent populations. This may be in the same geographic region or
in different health care systems. A key issue for replication of evi-
dence is that, in secondary database studies, the information con-
tent may vary (sometimes substantially) even if the same codes
are used to define medical constructs. A study conducted using
Danish claims databases identified a meaningfully lower preva-
lence of cardiovascular conditions than a comparable study with
US claims data; the Danish database did not include information
from outpatient visits,65,66 which lowered the number of oppor-
tunities for the electronic health care data stream to record the
existing conditions of study subjects. To achieve the highest
validity with a given body of data, it is advisable to let the
researchers who are most familiar with the local data-generation
mechanisms —and therefore the data quality—design and imple-
ment the optimal coding.

Robustness
Quite often, there are disagreements among decision-makers or
researchers and reviewers regarding design assumptions and ana-
lytics choices in implementing a study. In reproducible and repli-
cable studies, which is enabled by transparency, one can then test
how robust the reported findings are toward slightly different
design choices (e.g., differences in the included patient popula-
tion,67 variations in follow-up model, inclusion of new users ver-
sus a mix of existing and new users,65 and many other choices).33

The US Food and Drug Administration Sentinel program imple-
mented a systematic assessment of sensitivity analysis in database
studies and prioritized possible activities.64

Such sensitivity analyses of existing studies are powerful tools
for decision-makers who will feel much more confident if the
qualitative interpretation of a study does not change after
assumptions are slightly altered.33,68 Currently, sensitivity analy-
ses involve cumbersome reanalyses of data or collaboration with
the original investigator team to change their analysis. Such
robustness checks should be built into the workflow of newer
software to avoid those labor-intensive processes.

External constraints
The generation and analysis of RWD takes place in an increas-
ingly regulated environment. Adaptive innovations may disrupt
older, accustomed pathways, and local, regional, and national sys-
tem architectures, processes, responsibilities, and regulations may
not yet be developed or coordinated accordingly.
Among the issues raised by regional health plans are the per-

ceived lack of a legal, organizational, and financial framework to
facilitate adaptive evidence generation and regulatory decision-
making. Specifically, this includes unresolved questions about
local data quality and enforcing data quality standards, more
stringent requirements regarding transparency and demonstrated
replicability and robustness checks, legal means to ensure that
data collection and evidence generation are completed in a prede-
fined time frame, and a legal framework to dynamically adjust
product prices according to growing evidence of incremental ben-
efit or the lack thereof. The legal authority of a regulatory agency
in charge for marketing approval may not overlap with the legal
framework of the payer organizations that provide coverage,
which leads to uncertainty in the planning of and decision-
making for ABIs.69 In order for the evidence to serve both regulators
and payers, the logical orchestration and temporal arrangement of
multiple studies needs coordination. Such coordination is increasing-
ly a focus of activity.
A consequence of expedited evidence development through

rapid-cycle analytics is that decision-makers have many more
opportunities to review incremental findings to inform their deci-
sions. In a paradoxical way, this may cause hesitations. Even very
important insights may initially be difficult to spot when uncer-
tainty is large and confidence intervals wide. Furthermore, it is not
resource neutral for agencies to review all incoming findings. In
the most extreme, this could theoretically result in a wish to review
only the final study results after a protracted period of study time.
Clearly, requirements for continuous monitoring of emerging evi-
dence must accord with patients’ justified demand that the respon-
sible agencies closely monitor the effectiveness and harm of the
products they use. In addition to obvious resolutions of the staffing
need, this issue can be remedied by providing highly transparent
and semistandardized reports. The assessor needs to gain a high
level of confidence in an analysis faster than usual without compro-
mising the quality of the review. This may be facilitated by using
validated analysis tools and highly structured reporting that eases
reading and does encourage fullest transparency.
For many plans, it is difficult to incorporate new evidence into

existing benefits plans outside of a set calendar that is agreed with
external parties. In addition, all changes to a plan result in mem-
ber notifications. Together, this results in a discrepancy between
the capability to incrementally develop evidence as data refresh
and the effective opportunities for changing past decisions.
These concerns regarding iterative evidence development on

the part of health system decision-makers need thoughtful con-
sideration in order for an ABI system to work most effectively.

CONCLUSION AND OUTLOOK
Electronic health care data streams are ubiquitous in any modern
health care system, offering plentiful sources of meaningful
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information to decision-makers committed to adaptive innova-
tion. Two key characteristics make such data sources uniquely
valuable: (1) they reflect how medical products impact health in
a target population under routine care outside a highly controlled
research environment; and (2) the constant stream of data, which
can be analyzed in rapid cycles, enables incremental evidence
development for real-time capture of benefit-harm profiles. In a
single payer/provider organization with their longitudinal data
assets, evidence generation can be directly linked to care manage-
ment; further, evidence may be pooled across many entities to
achieve faster reduction of clinical/value uncertainty typically
associated with new drugs and enable more timely, evidence-
based decisions on how to use innovations most effectively. These
aspects are central to an adaptive innovation paradigm.
Two issues that demand continued attention are the quality of

data to answer a specific question and the apparent variation in
the validity of findings. Unfortunately, these parameters are high-
ly dependent upon context, which has made it difficult for the
field to produce prescriptive best-practice statements comparable
to those already accepted for randomized controlled trials. As
shown in the worked examples above, for one therapy, a database
study might be appropriate to demonstrate effectiveness and val-
ue, but for another product, it may be suitable to monitor materi-
alized harm.
The MVET framework presented above is helpful in structur-

ing a discussion on how to most effectively use database analytics
to create an adaptive innovation environment and to confirm
that key requirements for database evidence are of maximum util-
ity for decision-making, whether regulator, payer, provider, or
product sponsor. Over time, the use of a framework like MVET
will enable the community to converge on standards for generat-
ing evidence with health care database studies to inform value-
based care management in target populations.
Given their level of context-dependency, some aspects of the

framework (transparency, expedited evidence) have the potential
to develop into normative standards earlier than others (validity
and data quality) through accumulation of use cases and adapta-
tion of existing guidelines. Simultaneously, stakeholders can begin
to facilitate a process by removing external obstacles (i.e., adjust-
ing rules and regulations), recognizing that some will take longer
than others.
Rapid-cycle analytics of health care databases is maturing as

acceleration of value-based care drives demand for such evidence.
Governance, regulations, and data quality are catching up as the
utility of this resource is demonstrated in multiple contexts.
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