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Abstract
In this article, we present a proof-theoretical and model-theoretical approach

to probabilistic logic for reasoning about uncertainty about normative state-
ments. We introduce two logics with languages that extend both the language
of monadic deontic logic and the language of probabilistic logic. The first logic
allows statements like “the probability that one is obliged to be quiet is at least
0.9”. The second logic allows iteration of probabilities in the language. We
axiomatize both logics, provide the corresponding semantics and prove that the
axiomatizations are sound and complete. We also prove that both logics are
decidable. In addition, we show that the problem of deciding satisfiability for
the simpler of our two logics is in PSPACE, no worse than that of deontic logic.

Keywords: MDL; Normative reasoning; Probabilistic logic; Completeness;
Decidability.

This paper is a revised and extended version of our conference paper [20] presented at the
Sixteenth European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU 2021), in which we introduced a logic for reasoning about probabilities of a
deontic statement, provided a complete axiomatization for the logic and proved its decidability. In
this paper, we extend those results, by providing the complexity result for the satisfiability prob-
lem. Additionally, we also present in this paper another, richer logic with nesting of probability
operators. For that novel logic we also provide an axiomatization, prove its completeness, and show
that the logic is decidable.
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1 Introduction

Norms govern many parts of human life and these norms need to be learned at
some point. This means that before a norm is learned there is uncertainty about
whether a norm holds or not. To formalize this notion a probabilistic deontic logic
is developed in this paper. The seminal work of von Wright from 1951 [21] initiated
a systematic study on the formalization of normative reasoning in terms of deontic
logic. The latter is a branch of modal logic that deals with obligation, permission,
and related normative concepts. A plethora of deontic logics have been developed
for various application domains like legal reasoning, argumentation theory, and nor-
mative multi-agent systems [1, 5, 11].

Some recent work studied learning of behavioral norms from data [16, 18]. In
[16] the authors pointed out that human norms are context-specific and laced with
uncertainty, which poses challenges to their representation, learning, and communi-
cation. They gave an example of a learner that might conclude from observations
that talking is prohibited in a library setting, while another learner might conclude
the opposite when seeing people talking at the checkout counter. They represented
uncertainty about norms using deontic operators equipped with probabilistic bound-
aries that capture the subjective degree of certainty.

In this paper, we study uncertain norms from a logical point of view. We use
probabilistic logic [6, 7, 8, 10, 17, 19] to represent uncertainty, and we present the
proof-theoretical and model-theoretical approach to a logic which allows reasoning
about uncertain normative statements. We take two well-studied logics, monadic de-
ontic logic (MDL) [14] and probabilistic logic of Fagin, Halpern, and Magido (FHM)
[7], as the starting point, and combine them in a rich formalism that generalizes
each of them. The resulting language makes it possible to adequately model dif-
ferent degrees of belief in norms; for example, we can express statements like “the
probability that one is obliged to be quiet is at least 0.9”.

The semantics for our main logic PMDL consists of specific Kripke-like struc-
tures, where each model contains a probability space whose sample space is the set
of states, and with each state carrying enough information to evaluate a deontic
formula. We consider so-called measurable models, which allow us to assign a prob-
ability value to every deontic statement. We also propose another, richer language
PMDL2 which allows nesting of probability operators. In this case, the semantics
is naturally generalized i.e. that all states are equipped with probability spaces. In
addition to the nesting of operators, we modify the language in such a way that we
allow different agents to place (possibly different) probabilities on norms and events.
So the formulas can express one’s uncertainty about another person’s uncertainty
about norms.
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The main result of this article is a sound and complete axiomatization for our
logics. Like any other real-valued probabilistic logic, it is not compact, so any
finitary axiomatic system would fail to be strongly complete (“every consistent set
of formulas has a model”) [10]. We prove weak completeness (“every consistent
formula has a model”) by combining and modifying completeness techniques for
MDL and FHM. We also show that our logics are decidable; combining the method
of filtration and a reduction to a system of inequalities. In addition, we show that
the problem of deciding satisfiability for the logic PMDL is in PSPACE, no worse
than that of deontic logic.

The rest of the paper is organized as follows: In Section 2, the proposed syntax
and semantics of the logic will be presented together with other needed definitions.
In Section 3, the axiomatization of the logic is given; in section 4, soundness and
completeness is proven. In Section 5, we show that our logic is decidable; in Section
6, the probability structure of the logic is changed such that iterations of probabilities
are possible, and completeness and decidability is proven. Lastly, in Section 7, a
conclusion is given together with future research topics.

2 Syntax and Semantics
In this section, we present the syntax and semantics of our probabilistic deontic
logic. This logic, which we named PMDL, contains two types of formulas: stan-
dard deontic formulas of MDL, and probabilistic formulas. Let N denote the set of
integers.

Definition 1 (Formula). Let P be a set of atomic propositions. The language L of
probabilistic MDL is generated by the following two sentences of BNF (Backus Naur
Form):

[LMDL] ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Oϕ p ∈ P
[LPMDL] f ::= a1w(ϕ1) + · · · + anw(ϕn) ≥ α | ¬f | (f ∧ f) ai, α ∈ N

The set of all formulas L is LMDL ∪ LPMDL. We denote the elements of L with θ
and θ’, possibly with subscripts.

The construct Oϕ reads as “It is obligatory that ϕ”, while w(ϕ) stands for “prob-
ability of ϕ”. An expression of the form a1w(ϕ1) + · · · + anw(ϕn) is called term. We
denote terms with x and t, possibly with subscripts. The propositional connectives,
∨, → and ↔, are introduced as abbreviations, in the usual way. There are also two
additional deontic operators that denote the following: forbidden, Fϕ ≡ O¬ϕ ; and
permitted Pϕ ≡ ¬Fϕ∧¬Oϕ. We abbreviate θ∧¬θ with ⊥, and ¬⊥ with ⊤. We also
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use abbreviations to define other types of inequalities; for example, w(ϕ) ≥ w(ϕ′) is
an abbreviation for w(ϕ) − w(ϕ′) ≥ 0, w(ϕ) = α for w(ϕ) ≥ α and −w(ϕ) ≥ −α,
w(ϕ) < α for ¬w(ϕ) ≥ α.

It is very important to mention that we can also use abbreviations that allow us
to see rational numbers as coefficients of terms i.e. they can be eliminated from any
formula by clearing the denominator. For example, the formula

2
3 t1 + 3

4 t2 ≥ 1

is simply an abbreviation for 8t1 + 9t2 ≥ 12.

Example 1. Following our informal example from the introduction about behavioral
norms in a library, the fact that a person has become fairly certain that it is normal
to be quiet might be expressed by the probabilistic statement “the probability that one
is obliged to be quiet is at least 0.9”. This sentence could be formalized using the
introduced language as

w(Oq) ≥ 0.9.

Note that we do not allow mixing of the formulas from LMDL and LPMDL.
For example, O(p ∨ q) ∧ w(Oq) ≥ 0.9 is not a formula of our language. Before we
introduce the semantics of PMDL we will introduce MDL models.

Definition 2 (MDL model). An MDL model D is a tuple D = (W,R, V ) where:

• W is a (non-empty) set of “possible worlds”; W is called the universe of the
model.

• R ⊆ W ×W is a binary relation over W , such that

(∀w ∈ W )(∃u ∈ W )(wRu). (seriality)

If (w, u) ∈ R, we say that u is an R−successor of w.

• V : P → 2W is a valuation function assigning to each atom p a set V (p) ⊆ W
(intuitively the set of worlds at which p is true.)

We denote the set of all MDL models with D. As formalized in the following
definition, the relation R relates worlds to worlds, with the intention that everything
obligatory at a world holds in its R−successors.

Next, we define the satisfiability relation of MDL.
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Definition 3 (Satisfaction in MDL). Let D = (W,R, V ) be an MDL model, and let
w ∈ W . We define the satisfiability of a deontic formula ϕ ∈ LMDL in the world w,
denoted by D,w |=MDL ϕ, recursively as follows:

• D,w |=MDL p iff w ∈ V (p).

• D,w |=MDL ¬ϕ iff D,w ̸|=MDL ϕ.

• D,w |=MDL ϕ ∧ ψ iff D,w |=MDL ϕ and D,w |=MDL ψ.

• D,w |=MDL Oϕ iff for all u ∈ W , if wRu then D,u |=MDL ϕ.

Now we introduce the semantics of PMDL.

Definition 4 (PMDL Model). A probabilistic deontic model is a tuple M = ⟨S,X ,
µ, τ⟩, where

• S is a non-empty set of states

• X is a σ-algebra of subsets of S

• µ : X → [0, 1] is a probability measure, i.e.,

– µ(X) ≥ 0 for all X ∈ X

– µ(S) = 1
– µ(⋃∞

i=1Xi) = ∑∞
i=1 µ(Xi), if the Xi’s are pairwise disjoint members of

X

• τ is a function that assigns to each state in S a pair consisting of an MDL
model and a world of that model, i.e., τ : s 7→ (Ds, ws), where:

– Ds = (Ws, Rs, Vs) ∈ D
– ws ∈ Ws

Let us illustrate this definition.

Example 1. (continued) Assume a finite set of atomic propositions {p, q}. Let us
consider the model M = ⟨S,X , µ, τ⟩, where

• S = {s1, s2, s3, s4}

• X is the set of all subsets of S

197



de Wit et al.

• µ is characterized by: µ({s1}) = 0.5, µ({s2}) = µ({s3}) = 0.2, µ({s4}) = 0.1
(other values follow from the properties of probability measures)

• τ is a mapping which assigns to the state s1, Ds1 = (Ws1 , Rs1 , Vs1) and ws1

such that

– Ws1 = {w1, w2, w3, w4}
– Rs1 = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w4, w2),

(w4, w3), (w4, w4)}
– Vs1(p) = {w1, w3}, Vs(q) = {w2, w3}
– ws1 = w1

Note that the domain of τ is always the whole set S, but in this example
we only explicitly specify τ(s1) for illustration purposes.

This model is depicted in Figure 1. The circle on the right contains the four states of
the model, which are measured by µ. Each of the states is equipped with a standard
pointed model of MDL. In this picture, only one of them is shown, the one that
corresponds to s1. It is represented within the circle on the left. Note that the

p
ws1 = w1

qw2

p, q

w3

w4

s2

s1 s3

s4

M

S µ

τ

Ds1

Ws1

Figure 1: Model M = ⟨S,X , µ, τ⟩.

arrows depict the relation R. If we assume that q stands for “quiet”, like in the
previous example, in all R−successors of w1 the proposition q holds. Note that,
according to Definition 3, this means that in w1 people are obliged to be quiet in the
library.

For a model M = ⟨S,X , µ, τ⟩ and a formula ϕ ∈ LMDL, let ∥ϕ∥M denote
the set of states that satisfy ϕ, i.e., ∥ϕ∥M = {s ∈ S | Ds, ws |=MDL ϕ}. We
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omit the subscript M from ∥ϕ∥M when it is clear from context. The following
definition introduces an important class of probabilistic deontic models, the so-called
measurable models.

Definition 5 (Measurable model). A probabilistic deontic model is measurable if

∥ϕ∥M ∈ X

for every ϕ ∈ LMDL. Denote the class of all measurable models of PMDL by
PMDLMeas.

In this paper, we focus on measurable structures, and we prove soundness &
completeness, and decidability results for this class of structures.

Definition 6 (Satisfaction). Let M = ⟨S,X , µ, τ⟩ ∈ PMDLMeas be a measurable
probabilistic deontic model. We define the satisfiability relation |= recursively as
follows:

• M |= ϕ iff Ds, ws |=MDL ϕ holds for every s ∈ S, where τ(s) = (Ds, ws)

• M |= a1w(ϕ1) + · · · + akw(ϕk) ≥ α iff a1µ(∥ϕ1∥) + · · · + akµ(∥ϕk∥) ≥ α.

• M |= ¬f iff M ̸|= f

• M |= f ∧ g iff M |= f and M |= g

Example 1. (continued) Continuing the previous example, it is now also possi-
ble to speak about the probability of the obligation to be quiet in a library. First,
according to Definition 3 it holds that Ds1 , ws1 |=MDL Oq. Furthermore, assume
that τ is defined in the way such that Ds2 , ws2 |=MDL Oq and Ds3 , ws4 |=MDL Oq,
but Ds4 , ws4 ̸|=MDL Oq. Then µ(∥Oq∥) = µ({s1, s2, s3}) = 0.5 + 0.2 + 0.2 = 0.9.
According to Definition 6, M |= w(Oq) ≥ 0.9.

Note that, according to Definition 6, a deontic formula is true in a model iff
it holds in every state of the model. This is a consequence of our design choice
that those formulas represent undisputable deontic knowledge, while probabilistic
formulas express uncertainty about norms. At the end of this section, we define
some standard semantical notions.

Definition 7 (Semantical consequence). Given a set Γ of formulas, a formula θ
is a semantical consequence of Γ (notation: Γ |= θ) whenever all the states of the
model have, if M, s |= θ′ for all θ′ ∈ Γ, then M, s |= θ.

Definition 8 (Validity). A formula θ is valid (notations: |= θ) whenever for M =
⟨S,X , µ, τ⟩ and every s ∈ S: M, s |= θ holds.

199



de Wit et al.

3 Axiomatization
The following axiomatization contains 13 axioms and 3 inference rules. It combines
the axioms of proof system D of MDL [14] with the axioms of probabilistic logic.
The axioms for reasoning about linear inequalities are taken from [7].

The Axiomatic System: AXPMDL

Tautologies and Modus Ponens

Taut. All instances of propositional tautologies.

MP. From θ and θ → θ′ infer θ′.

Reasoning with O:

O-K. O(ϕ → ψ) → (Oϕ → Oψ)

O-D. Oϕ → Pϕ

O-Nec. From ϕ infer Oϕ

Reasoning about linear inequalities:

I1. x ≥ x (identity)

I2. (a1x1 + ...+akxk ≥ c) ↔ (a1x1 + ...+akxk + 0xk+1 ≥ c) (adding and deleting
0 terms)

I3. (a1x1 +...+akxk ≥ c) → (aj1xj1 +...+ajkxjk ≥ c), if j1, ..., jk is a permutation
of 1, ..., k (permutation)

I4. (a1x1+...+akxk ≥ c)∧(a′
1x1+...+a′

kxk ≥ c′) → ((a1+a′
1)x1+...+(ak+a′

k)xk ≥
(c+ c′)) (addition of coefficients)

I5. (a1x1 + ...+ akxk ≥ c) ↔ (da1x1 + ...+ dakxk ≥ dc) if d > 0 (multiplication
of non-zero coefficients)

I6. (t ≥ c) ∨ (t ≤ c) if t is a term (dichotomy)

I7. (t ≥ c) → (t > d) if t is a term and c > d (monotonicity)
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Reasoning about probabilities:
W1. w(ϕ) ≥ 0 (non-negativity).

W2. w(ϕ∨ψ) = w(ϕ) +w(ψ), if ¬(ϕ∧ψ) is an instance of a classical propositional
tautology (finite additivity).

W3. w(⊤) = 1

P-Dis. From ϕ ↔ ψ infer w(ϕ) = w(ψ) (probabilistic distributivity)
The axiom Taut allows all LMDL-instances and LPMDL-instances of proposi-

tional tautologies. For example, w(Oq) ≥ 0.9 ∨ ¬w(Oq) ≥ 0.9 is an instance of
Taut, but w(Oq) ≥ 0.9 ∨ ¬w(Oq) ≥ 1 is not. Note that Modus Ponens (MP) can
be applied to both types of formulas, but only if θ and θ′ are both from LMDL or
both from LPMDL. O-Nec is a deontic variant of necessitation rule. P-Dis is an
inference rule which states that two equivalent deontic formulas must have the same
probability values.
Definition 9 (Syntactical consequence). A derivation of θ is a finite sequence
θ1, . . . , θm of formulas such that θm = θ, and every θi is either an instance of
an axiom, or it is obtained by the application of an inference rule to formulas in
the sequence that appear before θi. If there is a derivation of θ, we say that θ is a
theorem and write ⊢ θ. We also say that θ is derivable from a set of formulas Γ, and
write Γ ⊢ θ, if there is a finite sequence θ1, . . . , θm of formulas such that θm = θ,
and every θi is either a theorem, a member of Γ or the result of an application of
MP or P-Dis to formulas in the sequence that appear before θi.

Note that this definition restricts the application of O-Nec. to theorems only.
This is a standard restriction for modal necessitations, which enables one to prove
the Deduction Theorem using induction on the length of the inference. Also, note
that only deontic formulas can participate in a proof of another deontic formula,
thus derivations of deontic formulas in our logic coincide with their derivations in
MDL.
Definition 10 (Consistency). A set Γ is consistent if Γ ̸⊢ ⊥, and inconsistent
otherwise.

Now we prove some basic consequences of AXPMDL. The first one is the prob-
abilistic variant of necessitation. It captures the semantical property that a deontic
formula represents undisputable knowledge, and therefore it must have a probability
value of 1. The second point states that we can derive from the axiomatization that
the weight of falsum equals zero. The third part of the lemma shows that a form of
additivity proposed as an axiom in [7] is provable in AXPMDL.
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Lemma 1. The following rules are derivable from our axiomatization:

1. From ϕ infer w(ϕ) = 1

2. ⊢ w(⊥) = 0

3. ⊢ w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ).

Proof.

1. Let us assume that a formula ϕ is derived. Then, using propositional reasoning
(Taut and MP), one can infer ϕ ↔ ⊤. Consequently, w(ϕ) = w(⊤) follows
from the rule P-Dis. Since we have that w(⊤) = 1 (by W3), we can employ
the axioms for reasoning about inequalities to infer w(ϕ) = 1.

2. Then to show that w(⊥) = 0 using finite additivity (W2) w(⊤∨¬⊤) = w(⊤)+
w(¬⊤) = 1 and so w(¬⊤) = 1 − w(⊤). Since w(⊤) = 1 and ¬⊤ ↔ ⊥ we can
derive w(⊥) = 0.

3. To derive additivity we begin with the propositional tautology, ¬((ϕ ∧ ψ) ∧
(ϕ∧ ¬ψ)) then the following equation is given by W2 w(ϕ∧ψ) +w(ϕ∧ ¬ψ) =
w((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)). The disjunction (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) can be rewritten
to, ϕ∧ (ψ ∨ ¬ψ) which is equivalent to ϕ. From ϕ ↔ (ϕ∧ψ) ∨ (ϕ∧ ¬ψ), using
P-Dis, we obtain w(ϕ) = w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ).

4 Soundness & Completeness
In this section, we prove that our logic is sound and complete with respect to the
class of measurable models; combining, adapting and following the approaches from
[7, 3].

Theorem 1 (Soundness & Completeness). The axiom system AXPMDL is sound
and complete with respect to the class of measurable models PMDLMeas, i.e., ⊢ θ
iff |= θ.

Proof. The proof of soundness is straightforward. To prove completeness, we need
to show that every consistent formula θ is satisfied in a measurable model. Since we
have two types of formulas, we distinguish two cases.

If θ ∈ LMDL we write θ as ϕ. Since ϕ is consistent and MDL is complete [14], we
know that there is an MDL model (W,R, V ) and w ∈ W such that (W,R, V ), w |= ϕ.
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Then, for any probabilistic deontic model M with only one state s and τ(s) =
((W,R, V ), w) we have M, s |= ϕ, and therefore M |= ϕ (since s is the only state);
so the formula is satisfiable.

When θ ∈ LPMDL we write θ as f . Then f is consistent and we prove that
f is satisfiable. First notice that f can be equivalently rewritten as a formula in
disjunctive normal form,

f ↔ g1 ∨ · · · ∨ gn (1)
this means that satisfiability of f can be proven by showing that one of the disjuncts
gi of the disjunctive normal form of f is satisfiable. Note that every disjunct is of
the form:

gi =
r∧

j=1
(
∑

k

aj,kw(ϕj,k) ≥ cj) ∧
r+s∧

j=r+1
¬(

∑

k

aj,kw(ϕj,k) ≥ cj). (2)

To show that gi is satisfiable we will substitute each weight term w(ϕj,k) by a
sum of weight terms that take as arguments formulas from the set ∆ that will be
constructed below. For any formula θ, let us denote the set of subformulas of θ
by Sub(θ). Then, for considered, gi we introduce the set of all deontic subformulas
SubDL(gi) = Sub(gi)∩LMDL. We create the set ∆ as the set of all possible formulas
that are conjunctions of formulas from SubDL(gi) ∪ {¬e | e ∈ SubDL(gi)}, such that
for every e either e or ¬e is taken as a conjunct (but not both). Then we can prove
the following two claims about the set ∆:

• The conjunction of any two different formulas δk and δl from ∆ is inconsistent:
⊢ ¬(δk∧δl). This is the case because for each pair of δ’s at least one subformula
e ∈ SubDL(gi) such that δk ∧ δl ⊢ e∧ ¬e and e∧ ¬e ⊢ ⊥. If there is no such e,
then by construction δk = δl.

• The disjunction of all δ’s in ∆ is a tautology: ⊢ ∨
δ∈∆ δ. Indeed, it is clear

from the way the set ∆ is constructed, that the disjunction of all formulas is
an instance of a propositional tautology.

As noted earlier, we will substitute each term of each weight formula of gi with
a sum of weight terms. This can be done by using the just introduced set ∆ and
the set Φ, which we define as the set containing all deontic formulas ϕj,k that occur
in the weight terms of gi. In order to get all the relevant δ’s to represent a weight
term, we construct for each ϕ ∈ Φ the set ∆ϕ = {δ ∈ ∆ | δ ⊢ ϕ} which contains all
δ’s that imply ϕ. Then we can derive the following equivalence:

⊢ ϕ ↔
∨

δ∈∆ϕ

δ.
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From the rule P-Dis we obtain

⊢ w(ϕ) = w(
∨

δ∈∆ϕ

δ).

Since any two elements of ∆ are inconsistent, from W2 and axioms about inequalities
we obtain

⊢ w(
∨

δ∈∆ϕ

δ) =
∑

δ∈∆ϕ

w(δ).

Consequently, we have
⊢ w(ϕ) =

∑

δ∈∆ϕ

w(δ). (3)

Note that some of the formulas δ’s might be inconsistent (for example, a formula
from ∆ might be a conjunction in which both O(p∧q) and Fp appear as conjuncts).
For an inconsistent formula δ, we have ⊢ δ ↔ ⊥ and, consequently ⊢ w(δ) = 0,
by the inference rule P-Dis. This provably filters out the inconsistent δ’s from each
weight formula, using the axioms about linear inequalities. Thus, without any loss
of generality, we can assume in the rest of the proof that all the formulas from ∆
are consistent2.

Lets us consider a new formula f ′, created by substituting each term of each
weight formula of gi from (1), thus transforming each conjunct (2) into

g′
i =




r∧

j=1
(
∑

k

aj,k
∑

δ∈∆ϕj,k

w(δ) ≥ cj)


 ∧




r+s∧

j=r+1
¬(

∑

k

aj,k
∑

δ∈∆ϕj,k

w(δ) ≥ cj)




Since consistency of the formula f is equivalent to consistency of one of its disjuncts
gi from (1), in the rest of the proof we will focus on one such disjunct, gi. Note
that (3) implies that gi and g′

i are two provably equivalent formulas (and the same
holds for f and f ′). Then we will construct g′′

i by adding to g′
i: a non-negativity

constraint and an equality that binds the total probability weight of δ’s to 1. In
other words, g′′

i is the conjunction of the following formulas:

2We might introduce ∆c and ∆c
ϕ as the sets of all consistent formulas from ∆ and ∆ϕ, respec-

tively, but since we will still have ⊢ w(ϕ) =
∑

δ∈∆c
ϕ

w(δ), we prefer not to burden the notation with
the superscripts in the rest of the proof, and we assume that we do not have inconsistent formulas
in ∆.

204



Probabilistic Deontic Logic

∑

δ∈∆
w(δ) = 1

∀δ ∈ ∆ w(δ) ≥ 0
∀l ∈ {1, . . . , r}

∑

k

al,k
∑

δ∈∆ϕl,k

w(δ) ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k
∑

δ∈∆ϕl,k

w(δ) < cl

Since the weights can be attributed independently while respecting the system of
equations and inequalities, the formula g′′

i is satisfiable iff the corresponding system
of equations and inequalities, that we denote by Sys(g′′

i ) is solvable:

|∆|∑

i=1
xi = 1

∀i ∈ {1, . . . , |∆|} xi ≥ 0

∀l ∈ {1, . . . , r}
∑

k

al,k

|∆ϕl,k
|∑

i=1
xi ≥ cl

∀l ∈ {r + 1, . . . , r + s}
∑

k

al,k

|∆ϕl,k
|∑

i=1
xr+i < cl

Initially we considered a consistent formula gi and transformed it to a provably
equivalent formula g′′

i . Proving satisfiability of g′′
i is equivalent to proving satisfia-

bility of gi; since the set of models of g′′
i coincides with the set of models of g′

i, which
in turn has the same models as gi.

Using proof from the incongruous we assume g′′
i to be unsatisfiable and show

that this leads to a contradiction. Since g′′
i is assumed unsatisfiable this means that

the system of linear inequalities Sys(g′′
i ) does not have a solution. This further

means that in the process of solving the system Sys(g′′
i ) (using any procedure for

solving linear inequalities, e.g. we can use Fourier–Motzkin elimination) we would
obtain an equivalent system containing an equation or inequality without solutions.
Without any loss of generality, assume that the obtained formula is 0 = 1. Now,
since we have the axioms I1-I7 as a part of our AXPMDL, we can “syntactically”
derive all those corresponding steps (of transforming inequalities using the procedure
for solving linear inequalities) from g′′

i using our axiomatization, and therefore we
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obtain that 0 = 1 is a formula (of our logic PMDL) that can be derived from g′′
i .

That means g′′
i is inconsistent, which is a contradiction because we started with gi

as a consistent formula.

5 Decidability
In this section, we prove that our logic PMDL is decidable, and we show that there
is a decidability procedure for the problem that runs in polynomial space. First, let
us recall the satisfiability problem: given a formula θ, we want to determine if there
exists a model M such that M |= θ.

Theorem 2 (Decidability). Satisfiability problem for PMDL is decidable.

Proof. Since we have two types of formulas, we will consider two cases. First, let
us assume that θ ∈ LMDL. We start with the well-known result that the problem
of whether a formula from LMDL is satisfiable in an MDL model is decidable [14].
It is sufficient to show that each θ ∈ LMDL is satisfiable in an MDL model iff it is
satisfiable under our semantics. First, if (W ′, R′, V ′), w′ |= θ for some deontic model
(W ′, R′, V ′) and w′ ∈ W ′, let us construct the model M = ⟨S,X , µ, τ⟩, with S =
{s}, X = {∅, S}, µ(S) = 1 and τ(s) = ((W ′, R′, V ′), w′). Since (W ′, R′, V ′), w′ |= θ,
then M, s |= θ. From the fact that s is the unique state of M , we conclude that
M |= θ. On the other hand, if θ is not satisfiable in MDL, then for every M =
⟨S,X , µ, τ⟩ and s ∈ S we will have M, s ̸|= θ, so M ̸|= θ.

Now, let us consider the case θ ∈ LPMDL. In the proof, we use the method of
filtration [12, 3], and reduction to finite systems of inequalities. We only provide a
sketch of the proof, since we use similar ideas as in our completeness proof. We will
also use the notation introduced in the proof of completeness. In the first part of
the proof, we show that a formula is satisfiable iff it is satisfiable in a model with a
finite number of (1) states and (2) worlds.

(1) First we show that if θ ∈ LPMDL is satisfiable, then it is satisfiable in a
model with a finite set of states, whose size is at most 2|SubDL(θ)| (where SubDL(θ)
is the set of deontic subformulas of θ, as defined in the proof of Theorem 1). Let
M = ⟨S,X , µ, τ⟩ be a model such that M |= θ. Let us define by ∼ the equivalence
relation over S×S in the following way: s ∼ s2 iff for every ϕ ∈ SubDL(θ), M, s |= ϕ
iff s2 |= ϕ. Then the corresponding quotient set S/∼ is finite and |S/∼| ≤ 2|SubDL(θ)|.
Note that every Ci belongs to X , since it corresponds to a formula δi of ∆ (from the
proof of Theorem 1), i.e., Ci = ∥δi∥. Next, for every equivalence class, Ci we choose
one element and denote it si. Then we consider the model M ′ = ⟨s2,X ′, µ′, τ ′⟩,
where:
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• s2 = {si | Ci ∈ S/∼},

• X ′ is the power set of s2,

• µ′({si}) = µ(Ci) such that si ∈ Ci and for any X ⊆ s2,
µ′(X) = ∑

si∈X µ
′({si}),

• τ ′(si) = τ(si).

Then it is straightforward to verify that M ′ |= θ. Moreover, note that, by definition
of M ′, for every si ∈ s2 there is δi ∈ ∆ such that M ′, si |= δi, and that for every
sj ̸= si we have M ′, sj ̸|= δi. We therefore say that δi is the characteristic formula
of si.

(2) Even if s2 is finite, some sets of worlds attached to a state might be infinite.
Now we will modify τ ′, to ensure that every W (si) is finite, and of the size which
is bounded by a number that depends on the size of θ. In this part of the proof,
we refer to the filtration method used to prove completeness of MDL [3], which
shows that if a deontic formula ϕ is satisfiable, it is satisfied in a world of a model
D(ψ) = (W,R, V ) where the size of W is at most exponential wrt. the size of the
set of subformulas of ϕ. Then we can replace τ ′ with a function τ ′′ which assigns to
each si one such D(δi) and the corresponding world, where δi is the characteristic
formula of si. We also assume that each V (si) is restricted to the propositional
letters from SubDL(θ). Finally, let M ′′ = ⟨s2,X ′, µ′, τ ′′⟩ It is easy to check that for
every ϕ ∈ SubDL(θ) and si ∈ s2, M ′, si |= ϕ iff M ′′, si |= ϕ. Therefore, M ′′ |= θ.

From the steps (1) and (2) it follows that in order to check if a formula θ ∈
LPMDL is satisfiable, it is enough to check if it is satisfied in a model M =
⟨S,X , µ, τ⟩ in which S and each Ws (for every s ∈ S) are of finite size, bounded
from above by a fixed number depending on the size of |SubDL(θ)|. Then there are
finitely many options for the choice of S and τ (i.e., (Ds, ws), for every s ∈ S), and
our procedure can determine in finite time whether there is a probability measure
µ for some of them, such that θ holds in the model. We convert our formula f into
a formula in the complete disjunctive form as in (1). We guess S and τ and check
whether we can assign probability values to the states from S, considering each dis-
junct gi and using translation to a system of linear inequalities, in the same way as
we have done in the proof of Theorem 1. This finishes the proof since the problem
of checking whether a linear system of inequalities has a solution is decidable.

Moreover, we show that there is a procedure that decides the satisfiability of any
formula of PMDL in PSPACE.
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Theorem 3. There is a procedure that decides whether a formula of the logic
PMDL is satisfiable in a measurable structure from PMDLMeas which runs in
polynomial space.

Proof. Let us first consider the formulas from MDL. Recall that in the proof of
Theorem 2 we have shown that each θ ∈ LMDL is satisfiable in an MDL model
iff it is satisfiable under our semantics. Thus we can use the result that there is
a procedure for deciding whether a formula θ ∈ LMDL is satisfiable, that runs in
polynomial space [13].

For probabilistic formulas, we want to use some parts of the proof of Theorem
2 (which in turn uses the proof of Theorem 1). Here we will use all the notations
introduced in the proofs: Theorem 1 and Theorem 2. First, note that in the proof
of Theorem 2 we proved, using filtration, that if a formula f is satisfiable, then
it is satisfied in a model M ′ = ⟨s2,X ′, µ′, τ ′⟩ with m states, where m at most
2|SubDL(f)|, i.e., s2 = {s1, . . . , sm}, and where each state si ∈ s2 is represented by its
characteristic formula δi ∈ ∆. Now we will show that we can reduce the size of the
set of states even more. Let DS(f) denote the set of all deontic formulas ϕ such that
w(ϕ) is a term that appears in the formula f (i.e., w(ϕ) is a sub-expression of f),
Let us consider the set of equations and inequalities over the variables x1, . . . , xm:

x1 + · · · + xm = 1, (4)

x1 ≥ 0, x2 ≥ 0, . . . xm ≥ 0, (5)

and, for each ϕ ∈ DS(f), the equation
∑

δi∈∆ϕ

xi = µ′(∥ϕ∥M ′), (6)

where ∆ϕ = {δ ∈ ∆ | δ ⊢ ϕ}. Here we employ the result form linear algebra which
states that if a system of k linear equations has a non-negative solution, then it has
a non-negative solution where at most k values are different than zero [4]. Since the
above system has one solution, namely

(x1, . . . , xm) = (µ′({δ1}), , . . . , µ′({δm})),

then the system of equations (4) and (6) has a non-negative solution with at most
k(f) = |DS(f)| + 1 values different than zero (note that when we calculate the
number of equations, we ignore (5), since it simply states non-negativity, which is
already assumed). Without any loss of generality, assume that this solution assigns

208



Probabilistic Deontic Logic

the values xi = di, where di = 0 for i > k(f). Then we can define M = ⟨S,X , µ, τ⟩,
where S = {s1, . . . , sk(f)}, τ is the restriction of τ ′ to the set S ⊆ s2, and for every
si ∈ S, µ({si} = di. Obviously M ′ |= f implies M |= f , so it is sufficient to consider
the structures with k(f) worlds.

Now we describe our procedure which runs as follows: it systematically cycles
through sets of characteristic formulas ∆ ⊆ ∆ of cardinality k(f). Fixing such
subsets can be obtained in polynomial space. Indeed, recall that each element of ∆
is a conjunction of elements of SubDL(f) and their negations, and the satisfiability
of each conjunction in MDL can be checked in polynomial space [13]. Then, for
each such ∆, we check if we can assign the probability values x1, . . . , xk(f) to its
elements such that f is satisfied. We consider the formula which is the conjunction
of the following formulas:

x1 + · · · + xk(f) = 1,

x1 ≥ 0, x2 ≥ 0, . . . , xk(f) ≥ 0,

and the formula

TransRCF (f),

where TransRCF (f) is obtained from f by applying the following transformations:

• we replace in f each occurrence of every w(ϕ) (for every ϕ ∈ DS(f)) with
∑

δi∈∆ϕ∩∆

xi.

• We rewrite every integer coefficient from f with an expression that uses only
1, 0, and −1, using the binary representation of the numbers, and the powers
are represented using multiplication. For example, number 9 is rewritten as
(1 + 1)(1 + 1)(1 + 1) + 1.

In this way, the size of obtained conjunction stays polynomial wrt. length of f .
With this transformation, we directly follow the approach of [7]. The idea is that
the obtained formula is a quantifier-free formula in the language of real closed fields
(RCF). Then Canny’s procedure [2], which decides satisfiability of quantifier-free
formulas of RCF in polynomial space, can be applied. It is clear that f is satisfiable
in PMDLMeas iff for some ∆ the formula above is satisfied in RCF. This completes
our proof.
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6 The logic PMDL2

In this section, we present the logic PMDL2 whose language extends the language
of PMDL. This new logic assumes a fixed finite set of agents Ag, and it allows
nesting of probabilities, enabling formulas that can express the uncertainty of one
agent about some other agent’s uncertainty about norms. Consequently, the logic
PMDL2 will have a different probability structure, compared to the previous logic.
Instead of having one measure µ over the states, we will have a function P that
assigns a probability space to each agent and state ranging over a subset of all states.
In the following sections, we will introduce the changes made to PMDL in order to
construct PMDL2.

6.1 Syntax and Semantics
Definition 11 (Formulae). Let P be a set of atomic propositions, and let Ag be a
set of agents. The language LPMDL2 is generated by the following two sentences of
BNF:

[LMDL] ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Oϕ p ∈ P
[LPMDL2 ] θ ::= ϕ | a1wi(θ1) + · · · + anwi(θn) ≥ α | ¬θ | θ ∧ θ aj , α ∈ N, i ∈ Ag

The expression wi(ϕ) ≥ α stands for “according to the agent i, the probability of ϕ
is at least α”.

Note that the formula a1wi(θ1) + · · · + anwi(θn) ≥ α contains exclusively one
agent i; such a formula is called i−probability formula. Although we do not allow
combination of agents within one linear combination, the formulas within the scope
of wi might contain probabilities of other agents than i, as illustrated by the following
example.
Example 2. Following our previous example about behavioral norms in a library,
we can now express the certainty of a person about another person’s certainty. For
example, the fact that a person has become fairly certain that another person is
certain about it not being normal to be quiet in a library. This might be expressed by
the probabilistic statement “agent i attributes the probability that agent j attributes
the probability that one is obliged to be quiet to be at most 0.2 is at least 0.9”. This
sentence could be formalized using the introduced language as

wi(wj(Oq) ≤ 0.2) ≥ 0.9.

For the formulas of PMDL2, we introduce the same types of abbreviations as
we have done for PMDL.

Now we introduce the semantics of PMDL2.
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Definition 12 (Model). A PMDL2 model is a tuple M = ⟨S, τ,P⟩, where:

• S is a non-empty set of states

• τ associates with each state s ∈ S a tuple containing an MDL model and one
of its worlds: τ(s) = (Ds, ws) where:

– Ds = (Ws, Rs, Vs) ∈ D
– ws ∈ Ws

• P(i, s) is a function assigning to each combination of agent (i) and state (s)
a probability space P(i, s) = (Si,s,Xi,s, µi,s) where:

– Si,s ⊆ S an arbitrary subset of S that can be interpreted as the set of
states that agent i has conceptions about in state s.

– Xi,s is a σ-algebra of subsets of Si,s
– µi,s : Xi,s 7→ [0, 1] is a probability measure.

Let us illustrate this definition.

Example 2. (continued) Assume a finite set of atomic propositions {p, q}. Let us
consider the model M = ⟨S, τ,P⟩, where

• S = {s1, s2, s3, s4}

• P We will set the probability measures explicitly for each state-agent pair while
the respective set Si,s will be set to S and the respective sigma-algebra Xi,s will
be the power set of S.

– µi,s1 is characterized by: µi,s1({s1}) = 0.5, µi,s1({s2}) = µi,s1({s3}) =
0.2, µi,s1({s4}) = 0.1

– µj,s1 is characterized by: µj,s1({s1}) = µj,s1({s2}) = 0.1, µj,s1({s3}) =
0.0, µj,s1({s4}) = 0.8.

– µj,s2 is characterized by: µj,s2({s1}) = µj,s2({s2}) = 0.0, µj,s2({s3}) =
0.1, µj,s2({s4}) = 0.9.

– µj,s3 is characterized by: µj,s3({s1}) = µj,s3({s2}) = µj,s3({s3}) = 0.0,
µj,s3({s4}) = 1.

– µj,s4 is characterized by: µj,s4({s1}) = 0.5, µj,s4({s2}) = µj,s4({s3}) =
0.1, µj,s4({s4}) = 0.3.
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• τ maps each state in S to a pointed deontic model; specifically for our interest
is the assignment of state s1, Ds1 = (Ws1 , Rs1 , Vs1) and ws1 such that

– Ws1 = {w1, w2, w3, w4}
– Rs1 = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2), (w3, w3), (w4, w2),

(w4, w3), (w4, w4)}
– Vs1(p) = {w1, w3}, Vs1(q) = {w2, w3}
– ws1 = w1

Note that the domain of τ is always the whole set S; but in this example, we
only explicitly specify τ(s1) for illustration purposes.

This model is depicted in Figure 2. The circle on the right contains the four
states of the model. The dotted lines represent probability measure µi,s1 the others
are not drawn to reduce cluttering. Each of the states is equipped, by τ , with a
standard pointed model of MDL. In this picture, only one of them is shown, the
one that corresponds to s1. It is represented within the circle on the left. Note that
the arrows depict the relation R. If we assume that q stands for “quiet”, like in
the previous example, in all R−successors of w1 the proposition q holds. Note that,
according to Definition 3, this means that in w1 people are obliged to be quiet in the
library.

p
ws1 = w1

qw2

p, q

w3

w4

s2

s1 s3

s4

M

S

τ

Ds1

Ws1

Figure 2: Model M = ⟨S, τ,P⟩.

Next, the satisfiability of a formula in a model can be defined. First, the truth
of a deontic formula in a state of a PMDL2 model is given. This definition is in
accordance with the standard satisfiability relation of MDL |=MDL.
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Definition 13 (Satisfaction). Let M = ⟨S, τ,P⟩ be a PMDL2 model, and let
s ∈ S. We define the satisfiability of formula θ ∈ LPMDL2, in state s of model M
denoted by M, s |= θ recursively as follows with ϕ ∈ LMDL:

• M, s |= ϕ iff Ds, ws |=MDL ϕ, where τ(s) = (Ds, ws).

• M, s |= a1wi(θ1) + · · · + anwi(θn) ≥ α iff
a1µi,s(∥θ1∥Mi,s) + · · · + anµi,s(∥θn∥Mi,s) ≥ α.

• M, s |= ¬θ iff M, s ̸|= θ.

• M, s |= θl ∧ θk iff M, s |= θl and M, s |= θk.

For a model M = ⟨S, τ,P⟩, a formula θ ∈ LPMDL2, state s and agent i, let ∥θ∥Mi,s
denote the set of states that satisfy θ, from the perspective of agent i in state s i.e.,

∥θ∥Mi,s = {s2 ∈ Si,s | M, s2 |= θ}.

We omit the super- and subscripts from ∥θ∥Mi,s when it is clear from context. The
satisfaction relation shows that in this model construction formulas θ can occur as the
argument to a weight formula wi, this means that weight formulas can be arguments
of weight operators.

Since the focus is on measurable structures and completeness is proven for this
class of structures, this class is redefined for PMDL2 models.

Definition 14 (Measurable model). A probabilistic deontic model is measurable if

∥ϕ∥Mi,s ∈ Xi,s

for every ϕ ∈ LMDL.

Example 2. (continued) Continuing the previous example, according to Defini-
tion 13 it holds that M, s1 |= Oq. At this point it is also possible to speak of the
uncertainty of agent i about the uncertainty of agent j of the obligation to be quiet
in the library. Assume that τ is defined in the way such that M, s2 |= Oq and
M, s3 |= Oq, but M, s4 ̸|= Oq. Then µj,s1(∥Oq∥) = µj,s1({s1, s2, s3}) = 0.1 + 0.1 +
0.0 = 0.2; µj,s2(∥Oq∥) = µj,s2({s, s2, s3}) = 0.0 + 0.0 + 0.1 = 0.1; µj,s3(∥Oq∥) =
µj,s3({s, s2, s3}) = 0.0 + 0.0 + 0.0 = 0.0; µj,s4(∥Oq∥) = µj,s4({s1, s2, s3}) = 0.5 +
0.1 + 0.1 = 0.7. From this follows that µi,s1(∥wj(Oq) ≤ 0.2∥) = µi,s1({s1, s2, s3}) =
0.5 + 0.2 + 0.2 = 0.9. According to Definition 6, M, s1 |= wi(wj(Oq) ≤ 0.2) ≥ 0.9.
Describing the uncertainty of agent i about the uncertainty of agent j’s obligation to
be quiet in the library.
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6.2 Axiomatization

The following axiomatization AXPMDL2 combines –like AXPMDL– the axioms of
proof system D of MDL [14] with the axioms of the probabilistic logic. In this case,
the probabilistic axioms come from [6].

The Axiomatic System: AXPMDL2

Tautologies and Modus Ponens

Taut. All instances of propositional tautologies.

MP. From θ and θ → θ′ infer θ′.

Reasoning with O:

O-. . . see axiomatization in Section 3

Reasoning about linear inequalities:

I1.-I7. see axiomatization in Section 3

Reasoning about probabilities:

W1. wi(θ) ≥ 0 (non negativity).

W2. wi(θ∨θ′) = wi(θ)+wi(θ′), if ¬(θ′∧θ′) is an instance of a classical propositional
tautology (finite additivity).

W3. wi(⊤) = 1

P-Dis. From θ ↔ θ′ infer wi(θ) = wi(θ′) (probabilistic distributivity)

As before the axiom Taut allows all propositional tautologies. Though since
LMDL is included in LPMDL2 the distinction for Modus Ponens (MP) dissolves and
can be applied to both types of formulas. P-Dis is an inference rule which states
that two equivalent deontic formulas must have the same probability values.
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6.3 Soundness and Completeness
In this section it is proven that the construction PMDL2 is sound and complete with
respect to the class of measurable models, combining and adapting the approaches
from [14, 6].
Theorem 4 (Soundness & Completeness). The axiom system AXPMDL2 is sound
and complete with respect to the class of measurable probabilistic deontic models.
i.e., ⊢ θ iff |= θ.
Proof. The proof is a modification of the corresponding proof for PMDL. To prove
completeness, we need to show that every consistent formula θ is satisfiable in a
measurable model. The modification of the logic gives iterations of weight formulas
of arbitrary depth, also instead of one measure there is a measure for each agent
and state pair (i, s); for this, the proof needs to be adjusted.

For any formula θ we will denote the set of sub-formulas closed under negation
as follows Sub+(θ) = Sub(θ) ∪ {¬θ′ | θ′ ∈ Sub(θ)}. We say that a set of formulas
A ⊆ B is maximal with regards to B when ∀θ ∈ B, A contains either θ or ¬θ.

Let θ be a consistent formula of LPMDL2 . Then let S denote the set of maximal
consistent subsets of Sub+(θ). And define for each s ∈ S the element ξs = ∧

θ′∈s θ
′

to be the conjunction of elements in s. Denote the set of elements ξs as follows
Ξ = {ξs | s ∈ S}. S will be the set of states of our model of the formula θ.
Furthermore, in order to define τ we construct for each state s ∈ S the MDL context
as sMDL = {ϕ ∈ LMDL | ϕ ∈ s} and its conjunction as δs = ∧

ϕ∈sMDL
ϕ. Then we

can define τ in the following way. By completeness of MDL, for each δs there is a
deontic model Ds and a world ws in it such that Ds, ws |=MDL δs. Then we define
τ(s) = (Ds, ws).

Since our probabilistic deontic model is of the form M = (S, τ,P) this leaves
the task of defining the probability assignment P. We chose Si,s = S and always
assume that every subset of S is measurable. The rest of the proof is essentially the
same as the corresponding proof for defining probability assignment for probabilistic
epistemic logic from [6]. P has to be defined in such a way that when we consider
the model M , then for every s ∈ S and every formula ψ ∈ Sub+(θ) we have M, s |= ψ
iff ψ ∈ s. To do this we will make use of additivity using the following equivalence:

⊢ ψ ↔
∨

{s∈S|ψ∈s}
ξs.

Then using the axiom system, for every i ∈ Ag we can derive in a similar way as in
proof of Theorem 1 the following equation:

⊢ wi(ψ) =
∑

{s∈S|ψ∈s}
wi(ξs).
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By I1-I7, this can be extended to show that any i−probability formula θ′ ∈ Sub+(θ)
can be equivalently rewritten as a formula of the form ∑

s2∈S cs2µi,s(s2) ≥ α.
Similarly as in the proof of Theorem 1 we encode the problem to a set of linear

equations and inequalities over variables of the form xiss2 , where xiss2 represents
µi,s({s2}). For each i−probability formula ψ ∈ Sub+(θ) we have a corresponding
inequality. Using the conclusion et the end of the previous paragraph, When ψ ∈ s
then the corresponding inequality is: ∑

s2∈Si,s
cs2xiss2 ≥ α. When ¬ψ ∈ s, then

we have ∑
s2∈Si,s

cs2xiss2 < α. We also add the non-negativity constraints, and
the condition that ∑

s2∈Si,s
xiss2 = 1, as in the proof of Theorem 1. Furthermore,

following that proof and [7], one can show that this system of inequalities has a
solution x∗

iss2 for all s2 ∈ Si,s; since each ξs is consistent. The solution of this large
system determines probability values of each agent in each state.

What is left to show is that for every formula ψ ∈ Sub+(θ) and every state in S,
we have M, s |= ψ iff ψ ∈ s. The proof proceeds by induction on ψ. If ψ is a deontic
formula the result is immediate from the definition of τ . The cases where ψ is a
negation or conjunction are straightforward. The case where ψ is an i-probability
formula follows from the construction above. Therefore if the formula θ is consistent
then it is satisfiable in a model.

6.4 Decidability
Finally, we show that the logic PMDL2 is decidable.

Theorem 5. Satisfiability problem for PMDL2 is decidable.

Proof. Similarly, as in the proof of Theorem 2, we combine the method of filtration
and reduction to finite systems of inequalities. Because of the similarity, we omit
some details. In the proof, we will use some notation already introduced in the paper.
Let us assume that the formula θ has a model M = ⟨S, τ,P⟩, where P(i, s) =
(Si,s,Xi,s, µi,s). We will use filtration to construct the model of θ with finitely many
states. By ∼ we denote the equivalence relation over S × S, where s ∼ s2 iff for
every θ′ ∈ Sub(θ), s |= θ′ iff s2 |= θ′. Then the quotient set S/∼ is of the size
|S/∼| ≤ 2|Sub(θ)|. As before, for every class Cj we choose an element and denote it
sj . We consider the model M∗ = ⟨S∗, τ∗,P∗⟩, in which:

• S∗ = {sj | Cj ∈ S/∼},

• P∗(i, sj) = (S∗
i,sj
,X ∗

i,sj
, µ∗

i,sj
) such that:

– S∗(i, sj) = {sk ∈ S∗ | (∃s2 ∈ Csk
)s2 ∈ S(sj)},

– X ∗
i,sj

is the power set of S∗(i, sj),
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– µ∗
i,sj

({sk}) = µi,sj (Cwk
) (and µ∗

i,sj
extends to X ∗

i,sj
by additivity),

• τ∗(sj) = τ(sj).

It can be shown that M∗ is a measurable model. Moreover, using straightforward
induction on the complexity of the formula, one can show that for any θ′ ∈ Sub(θ),
M, s |= θ′ iff M∗, si |= θ′ where si represents Cs in M∗. Additionally in the same
way, as in the proof of Theorem 2, we can show that the number of worlds in a
deontic model of each state is finite and at most exponential wrt. size of Sub(θ).
As the number of propositional letters and agents from θ is also finite, it turns out
that we have to check only finitely many options for the choice of S and τ .

Let us describe the procedure which checks the satisfiability of a formula θ.
First, we transform θ to a disjunction of the formulas of the form ∧|Sub(θ)|

k=1 ψk, where
ψk ∈ Sub+(θ) and each subformula of θ appears exactly once in each conjunction
(either negated or not). The conjunctions whose sub-conjunction consisting of de-
ontic formulas is unsatisfiable can be eliminated using the decidability of MDL, as
we have done in the proof of decidability of PMDL. In each state s ∈ S∗ exactly
one formula of the form ∧|Sub(θ)|

k=1 ψk holds. Denote that (characteristic) formula by
δs as before. Here we slightly abuse the notation, and we write ψ ∈ δs if ψ is a
conjunct in δs. For every ℓ ≤ 2Sub(θ) we will consider ℓ formulas of the above form
such that the following three conditions hold:

• Those formulas δs are not necessarily different, but each formula does not
contain both ψ and ¬ψ in the top conjunction.

• The conjunction of all deontic formulas from the top conjunction is consistent.

• At least one δs must contain θ in the top conjunction.

Then for every agent i, every state sj , j < ℓ, we consider the following set of
equations and inequalities, with the set of variables xiss2 , where xiss2 represents
µi,s({s2}) (as in the proof of completeness).

∑

s2

xiss2 = 1,

xiss2 ≥ 0,

a1
∑

sk:θ1∈δsk

xisjsk
+ · · · + an

∑

sk:θn∈δsk

xisjsk
≥ α,
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whenever (a1wi(θ1) + · · · + anwi(θn) ≥ α) ∈ δsj ,

a1
∑

sk:θ1∈δsk

xisjsk
+ · · · + an

∑

sk:θn∈δsk

xisjsk
< α,

whenever ¬(a1wi(θ1) + · · · + anwi(θn) ≥ α) ∈ δsj ,
Thus we have translated the problem of satisfiability of θ to a decidable problem

of solving systems of linear inequalities, as before. Since we have finitely many
possibilities for the choice of ℓ, and for each ℓ finitely many possibilities to choose ℓ
characteristic formulas, our logic PMDL2 is decidable.

7 Conclusion

In this article, we introduced two probabilistic deontic logics. Each of them extends
both monadic deontic logic and probability logic from [7]. The language of the first
logic, PMDL is designed for reasoning about the probability of deontic statements.
We axiomatized that language and proved soundness and completeness with respect
to corresponding semantics. We also proved that our logic is decidable in PSPACE.
The second proposed language allows nested probability operators, and it allows to
express the uncertainty of one agent about the uncertainty that another agent places
on deontic statements.

To the best of our knowledge, we are the first to propose logical frameworks of
probabilistic deontic logics for reasoning with uncertainty about norms. It is worth
mentioning that there is a recent knowledge representation framework about proba-
bilistic uncertainty in deontic reasoning obtained by merging deontic argumentation
and probabilistic argumentation frameworks [15].

Our logic PMDL used MDL as the underlying framework, we used this logic
simply because it is one of the most studied deontic logics. On the other hand, MDL
is also criticized because of some issues [9], like the representation of contrary-to-
duty obligations. It is important to point out that the axiomatization technique
developed in this work can also be applied if we replace MDL with, for example,
dyadic deontic logic, simply by changing the set of deontic axioms and the function τ
in the definition of the model, which would lead to a more expressive framework for
reasoning about uncertain norms. Another avenue for future research is to extend
the language by allowing conditional probabilities. In such a logic, it would be
possible to express that one uncertain norm becomes more certain if another norm
is accepted or learned.
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