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a b s t r a c t 

To meet the European Union’s 2050 climate neutrality target, future electricity generation is expected to largely 

rely on variable renewable energy (VRE). VRE supply, being dependant on weather, is susceptible to changing 

climate conditions. Based on spatiotemporally explicit climate data under a Paris-proof climate scenario and 

a comprehensive energy conversion model, this study assesses the projected changes of European VRE supply 

from the perspective of average production, production variability, spatiotemporal complementarity, and risk of 

concurrent renewable energy droughts. 

For the period 2045–2055, we find a minor reduction in average wind and solar production for most of Europe 

compared to the period 1990–2010. At the country level, the impact of climate change on average VRE production 

is rather limited in magnitude (within ±3% for wind and ±2% for solar). The projected mid-term changes in other 

aspects of VRE supply are also relatively small. This suggests climate-related impacts on European VRE supply 

are less of a concern if the Paris-proof emission reduction pathway is strictly followed. 

Based on spectral analysis, we identify strong seasonal wind-solar complementarities (with an anticorrelation 

between -0.6 and -0.9) at the cross-regional level. This reduces the demand for seasonal storage but requires 

coordinated cross-border efforts to develop a pan-European transmission infrastructure. 

The risk of concurrent renewable energy droughts between a country and the rest of Europe remains non- 

negligible, even under the copperplate assumption. Central Western European countries and Poland are most 

vulnerable to such risk, suggesting the need for the planning of adequate flexibility resources. 
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. Introduction 

To be in line with the Paris Agreement that aims to limit the global
ean temperature increase well below 2 °C, the European Union has
ledged to achieve economy-wide climate neutrality by 2050 [35] . The
nergy transition has become a key cornerstone underlying the EU’s cli-
ate strategy, the European Green Deal [34] . This requires developing a
ower system largely based on variable renewable electricity (VRE) gen-
ration technologies that are fuelled by weather resources (e.g., wind
nd solar). According to recent scenario studies [ 33 , 55 ], the EU should
ncrease the share of VRE in total electricity generation to at least 68% to
ulfil its climate ambition. However, the large-scale integration of VRE
nto the power system inevitably increases its susceptibility to weather
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nd climate conditions. Additional flexibility resources, such as balanc-
ng reserves, energy storage, Power-to-X technologies and interconnec-
ors are needed to address the stochastic nature of VRE generation in
rid operation [63] . The challenge is further compounded by changing
eather patterns due to climate change (e.g., wind profile, solar irra-
iance, cloud coverage). Not only can changing climate conditions in-
uence the average production and variability of VRE supply, but they
ay alter the spatiotemporal dependency between VRE assets across lo-

ation and technology [ 60 , 63 ]. Since the development and operational
ifetimes of VRE assets and complementary energy infrastructure span
ypically from several years to multiple decades, adapting planning and
peration of the power system to future climate change becomes crucial
or a sustainable and reliable energy supply [88] . 
ril 2023 

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.adapen.2023.100134
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adapen
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adapen.2023.100134&domain=pdf
mailto:J.Hu@uu.nl
https://doi.org/10.1016/j.adapen.2023.100134
http://creativecommons.org/licenses/by/4.0/


J. Hu, V. Koning, T. Bosshard et al. Advances in Applied Energy 10 (2023) 100134 

 

c  

V  

p  

t  

d  

3  

t  

c  

a  

T  

b  

[  

N  

V  

p  

a  

p  

p  

d  

c  

s  

c  

i  

w  

n  

r  

d  

d  

o  

e  

i  

a
 

d  

c  

w  

c  

t  

m  

c  

o  

o  

p  

c  

r  

(  

t  

R  

t  

t  

t

i

s

g

a

t

f

e

g

a

[

[  

E  

s  

r  

l  

[  

(  

T  

t  

o  

(  

p  

a
 

i  

m  

t  

i  

o  

C  

d  

h  

p  

e  

a  

t  

d  

p  

t  

d  

n  

t  

o  

s  

c  

s  

t  

t  

c  

g  

V  

r  

l
 

2  

d  

u  

t  

P  

a  

2  
Based on standard variables simulated from climate models, climate
hange impacts have been assessed in numerous studies by comparing
RE supply between different future periods and a reference historic
eriod. These impacts, often referred to as “climate signals ”, are
ypically measured using statistical measures such as mean, standard
eviation and correlation of long time series of VRE output data (10 to
0 years). For instance, the change in mean outputs of one or more VRE
echnologies has been analysed often at different geographic scales in-
luding the world [40] , China [39] , Japan [82] , the Taiwan Strait [17] ,
nd several regions within Europe [ 4 , 15 , 21 , 24 , 52 , 53 , 60 , 61 , 71 , 98 , 110 ].
he coefficient of variation or standard deviation (sd) has been applied
y Gao et al. [39] , Jerez et al. [60] , Jerez et al. [61] and Tobin et al.
99] to analyse changes in variability of VRE outputs or output ramps.
ext to the univariate statistics of mean and sd characterising individual
RE assets, the climate signals of bivariate metrics measuring the de-
endence behaviour between VRE assets have also been studied, but to
 much lesser extent. For instance, Hou et al. [53] examined climate im-
acts on the complementarity of daily generation profiles between solar
hotovoltaics (PV) assets across Europe. Based on an innovative spectral
ecomposition, Jerez et al. [60] evaluated local wind-solar technologi-
al complementarities within various EU regions at multiple timescales
panning from daily to interannual. Both studies employ the Pearson
orrelation, the most commonly used dependence metric. However,
nterregional technological dependence or complementarity between
ind and solar assets in relation to changing climate conditions have
ot yet been investigated. Moreover, correlation, which is a linear met-
ic that measures the overall association between two random variables,
oes not provide insight into the tail behaviour of the joint probability
istribution (hereafter referred to as tail dependence ) [1] . In the context
f VRE supply, correlation is unable to capture tail dependence in
xtreme low or high production events between VRE assets, highlight-
ng the need for alternative dependence metrics in climate impact
ssessment. 

The impact of climate change on VRE supply has been evaluated for
ifferent climate scenarios. Within the climate modelling community,
limate scenarios are described by representative concentration path-
ays (RCPs). 1 In the European context, most studies predominantly fo-

us on climate impacts on VRE supply under RCP 8.5 and RCP 4.5 in
he long-term future beyond 2070. Directions of projected changes in
ean wind and solar outputs as a result of climate change are incon-

lusive, in part because of varying geographic foci and different levels
f detail in energy conversion modelling employed. A detailed review
f state-of-the-art literature concerning climate impacts on VRE sup-
ly is summarized in Table A1 of the Appendix. Although RCP 8.5 is
onsidered the business-as-usual scenario in some studies [ 15 , 52 ], its
ealization requires the burning of an unprecedented quantity of coal
37,254 EJ between 2010 and 2100, see, e.g., Riahi et al. [90] ) larger
han some estimates of recoverable coal reserves [46] . 2 By contrast,
CP 4.5 represents an intermediate mitigation scenario, as it lies be-

ween emissions reduction efforts prescribed by the current policies and
he latest Nationally Determined Contributions 3 Hausfather & Ritchie
1 RCPs prescribes the evoluation of green house gases (GHGs) concentrations 

o reach targets that limit radiative forcing increase by 2100 relative to the pre- 

ndustrial level. The targets are set at 2.6, 4.5, 6.0 and 8.5 W/m 

2 to enable a wide 

pan of emission scenarios [74] . At a confidence level between 66% − 100%, the 

lobal mean temperure increases under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 

re respectively 0.3-1.7, 1.1-2.6, 1.4-3.1 and 2.6-4.6 °C [57] . 
2 Despite increasing implausibility over time, RCP 8.5 might be arguably jus- 

ified as the worst-case scenario to compensate for insufficient representation of 

at-tailed uncertainties associated with the climate sensitivity in climate mod- 

lling (Weitzman, 2011). 
3 Nationally Determined Contributions are non-binding national climate miti- 

ation plans contributing to the Paris target. They are required to be established 

nd updated on a five-year basis by all stipulated parties of the Paris Agreement 

102] . 
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113] . As the only scenario consistent with the Paris target and the
U’s climate-neutrality ambition, RCP2.6 is highly relevant to under-
tand the implications of strict global climate mitigation for future Eu-
opean VRE supply. Yet it has received little attention so far in the
iterature except for two studies (with different findings). Yang et al.
110] analysed the change in mean VRE outputs between the near-term
2010–2039) and medium-term (2040–2069) for seven European cities.
hey found a reduction in solar outputs ( − 0.01% to − 2.29%), but uncer-
ain directions of change ( − 12.1% to 13.2%) for wind in winter. Based
n the ensemble mean of coarse-resolution general circulation models
GCMs), Gernaat et al. [40] found increased and decreased mean out-
uts for solar and offshore wind respectively in Europe between 2000
nd 2050. 

To the authors’ best knowledge, no studies have evaluated the full
mplications of RCP2.6 for future European VRE supply beyond the
ean outputs before. To fill this knowledge gap, this study charac-

erises and quantifies the climate impact on the availability, variabil-
ty, and spatiotemporal dependency of VRE supply 4 in Europe based
n a set of high-resolution regional climate projections provided by the
ORDEX initiative and driven by CMIP5 global circulation models un-
er RCP 2.6 [ 68 , 70 ]. The novelty and scientific contribution can be
ighlighted for several aspects. First, following a copula-based tail de-
endence model, we employ the conditional probability of concurrent
xtremes as a metric to measure the interdependence of low VRE avail-
bility between countries. This not only makes it the first study to quan-
itatively analyse the intercountry risk of compound renewable energy
rought ( “Dunkelflaute ”) events, but it also offers new insights into the
lanning and operation of interconnected energy systems from perspec-
ives of system adequacy and security. Second, we extend the spectral
ecomposition method of Jerez et al. [60] to assess multi-timescale tech-
ological complementarity to cross-regional applications. This enables
he identification of cyclic patterns hidden in the original series of VRE
utputs and potential spatiotemporal complementarity between VRE as-
ets in different regions. Third, we introduce a comprehensive energy
onversion model integrating geospatial data, meteorological reanaly-
is data, and bias-adjusted climate data to more accurately represent
he effect of location-specific topographical features on power produc-
ion, particularly for wind turbines. Finally, taking into account spatial
onstraints and land cover classes, we assess the spatially explicit geo-
raphic potentials (in terms of maximum installable capacity in MW) for
RE technologies in Europe, excluding unsuitable areas to improve the
ealism of aggregating VRE generation profiles to country or regional
evels. 

The geographic scope of Europe in this study is defined as the current
7 Member States (MS) of the European Union 5 plus the United King-
om (GB), Norway (NO), and Switzerland (CH). Following a bottom-
p approach, four commercially mature technologies for VRE genera-
ion are explicitly considered, i.e., onshore wind, offshore wind, utility
V, and rooftop PV. We focus on the projected change for VRE gener-
tion profiles in the medium-term future period (2045–2055) around
050, corresponding to a mean temperature increase of about 1.2 °C
4 In line with other climate impact studies [ 15 , 21 , 24 , 39 , 52 , 53 , 110 ], VRE sup- 

ly under future climate conditions in this study is characterized on the basis of 

er unit of installed capacity. This means that we do not aim to determine the 

ptimal installed capacity in future energy system, which is a sizing problem, 

eing dependent on future electricity demand and use of storage. A detailed 

ower system model is needed to determine the size of VRE capacity alongside 

ther generation capacity. 
5 They include Austria (AT), Belgium (BE), Bulgaria (BG), Croatia (HR), 

yprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (ES), Finland (FI), 

rance (FR), Germany (DE), Greece (EL), Hungry (HR), Ireland (IR), Italy (IT), 

atvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MA), Netherlands (NL), 

oland (PL), Portugal (PO), Romania (RO), Slovakia (SK), Slovenia (SI), Spain 

ES), and Sweden (SE). 
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Fig. 1. An overview of the research method. 
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ver the European domain compared with 1990–2010. 6 2050 also rep-
esents the year in which the European power system must be fully
ecarbonized with a high share of VRE. The results of this study can
upport more informed decision-making and risk management regard-
ng energy policy, power system planning, investment, and financing
n renewable projects for policymakers, system planners and opera-
ors, utility companies and investors. Beyond the scope of Europe, the
ethod presented in this paper is also repeatable for other regions of the
orld. 

This paper is structured as follows. Section 2 describes the input
ata and method steps used for data processing and post-processing.
his includes an elaboration of the energy conversion model, the
eospatial analysis for determining geographic potentials, and the
tatistical measures employed to characterise VRE supply under his-
oric and projected climate conditions. The results are presented in
ection 3, followed by a discussion in section 4 regarding the lim-
tations of the study. Finally, concluding remarks are provided in
ection 5 . 

. Data and method 

An overview of the method applied to carry out this study is out-
ined in Fig. 1 . The method contains 4 steps that can be divided into a
ata processing procedure and a post-processing procedure. All steps
ere performed based on ArcGIS or R. Starting from the input data

Section 2.1), in the data processing procedure we performed a geospa-
ial analysis to characterise the geographic potentials for each VRE
sset at a spatially resolved geographic grid over the European do-
ain (Section 2.2). We refer to each VRE technology type located at
 specific grid cell as an individual asset. Meanwhile, energy time se-
ies (measured by rating factors, which are normalized outputs per
nit of installed capacity) for the reference historic and target fu-
ure periods per VRE asset were determined from bias-adjusted cli-
ate data via energy conversion modelling (Section 2.3). The post-
rocessing procedure first aggregated energy time series at grid cell
evel into country-level series for each considered VRE technology
Section 2.4). Afterwards, country-level climate signals of projected
6 Own calculation based on ensemble mean of climate projections used in this 

aper, see section 2.1 for details. 

[  

s  

0  

p

3 
hanges in VRE supply based on selected statistics were characterised
Section 2.5). 

.1. Input data 

The primary data inputs for this study are climate data, meteorolog-
cal reanalysis data, and geospatial data. This section focuses on climate
ata and meteorological reanalysis data, while we describe geospatial
ata and its usage in section 2.2. 

• Climate data 

We use downscaled high-resolution regional climate model (RCM)
ata from the CORDEX initiative ( www.cordex.org ) for the EUR-
ORDEX domain. The selected projections all come at 0.11 deg hori-
ontal resolution and follow RCP 2.6. Due to the computational load
f the energy conversion model, we were restricted to an ensemble of
hree projections. Those were selected in a way to cover the spread of
he climate signal within the given RCP2.6 as good as possible. We did
his by visual inspection of the monthly climate signals and found a
lear grouping pattern according to the driving global circulation model
GCM). This is in line with previous studies (e.g. Hawkins & Sutton
47] ). Therefore, we chose three projections that all use a different GCM
see Table 1 ). 

We used publicly available data at www.esgf.org which offers a stan-
ard set of climate variables (hereafter referred to as “standard climate
ariables ”) for the CORDEX projections. Of those standard variables,
hree are relevant to the energy conversion of VRE resources, namely
urface wind speed at 10 m, surface downward solar radiation and near-
urface temperature at 2 m. The variable time series are temporally re-
olved at 3 hourly. 

We followed a standard impact modelling approach in which the cli-
ate model data is bias-adjusted before using it as input data for the im-
act assessment. The regional climate projections were bias-adjusted by
he bias-adjustment tool MIdAS [3] . The bias-adjustment aims to adjust
he climate model data in a way that they resemble a chosen reference
ata as closely as possible during a chosen reference period. This pro-
edure thereby makes the usage of climate model data more consistent
o the reference data. As reference data, we used the HydroGFD data
2] for temperature, and ERA5 reanalysis data [29] for wind speed at
urface and incoming shortwave radiation. The reference data comes at
.25 deg resolution, and the climate model data at 0.11 deg was inter-
olated to the 0.25 deg grid of the reference data. 

http://www.cordex.org
http://www.esgf.org
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Table 1 

List of climate projections used. 

GCM RCP Realization RCM Institute Acronym 

MPI-M-MPI-ESM-LR RCP2.6 r1i1p1 SMHI-RCA4_v1a SMHI MPI 

ICHEC-EC-EARTH RCP2.6 r12i1p1 SMHI-RCA4_v1 SMHI ICHEC 

MOHC –HadGEM2-ES RCP2.6 r1i1p1 KNMI-RACMO22E_v2 KNMI MOHC 

Table 2 

A detailed list of used climate variables and their names in climate data, reanalysis data and this paper. 

Variable name in climate data Variable name in ERA5 reanalysis 

data 

Variable name in this paper Relevant to 

wind energy 

conversion 

Relevant to solar 

energy 

conversion 

Surface speed at 10 m (sfcWind) 10 m wind speed (wspd) Wind speed at 10 m (m/s) Y Y 

NA 100 m windspeed (wspd100m) Wind speed at 100 m (m/s) Y 

Surface downward solar radiation (rsds) Surface shortwave radiation 

downwards (ssrd) 

Global horizontal irradiance (W/ m 

2 ) Y 

NA Total sky direct solar radiation at 

surface (fdir) 

Direct component of global horizontal 

irradiance (W/ m 

2 ) 

Y 

NA Total sky diffuse solar radiation 

at surface (fdif) 

Diffuse component of global 

horizontal irradiance (W/ m 

2 ) 

Y 

Near-surface temperature at 2 m (tas) Temperature at 2 m height (t2m) Ambient temperature ( °C) Y 

NA Forecast albedo (fal) Surface albedo Y 
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7 Building footprint can be considered as an approximate for the horizontal 

projected area of the building’s roof surface. Detailed building footprint sampled 

from the Netherlands and the United Kingdom is extracted from Zappa and van 

den Broek [111] . 
The bias-adjusted data at 3-hourly resolution was further linearly
nterpolated to 1-hourly resolution in order to meet the energy model’s
equirements. 

• Reanalysis data 

Meteorological reanalysis combines the atmospheric circulation
odel with large numbers of historic observations to deliver a complete,

onsistent and close-to-reality hindcast of the past weather [29] . As
tate-of-the-art global meteorological reanalysis, ERA5 reanalysis pro-
ides hourly time series data available at 0.25° X 0.25° resolution for
he period 1959 to the present. Compared with the bias-adjusted cli-
ate data, reanalysis data contains a larger set of variables relevant to

he power production of VRE. Information derived from reanalysis data
an be directly fed into the energy conversion model. This avoids the
se of unnecessary or oversimplified assumptions. Table 2 presents a de-
ailed list of climate variables relevant to the energy conversion of VRE
esources and their abbreviations. The same variable can have different
ames in climate data and reanalysis data. For the sake of convenience,
e have unified their names and units in this paper. 

.2. Geospatial analysis 

Based on a geospatial analysis the geographic potentials for each
RE technology are determined per grid cell. Starting from a 0.25° X
.25° geographic grid over the territory and exclusive economic zone
f Europe, we explicitly exclude areas unavailable for VRE deployment
onsidering a wide range of spatial constraints. The centroid coordinates
f each grid cell serve to establish connections with the VRE generation
rofiles determined from the climate and reanalysis data (see section
.3). Updated from the authors’ previous work [54] , a detailed list of
patial constraints and corresponding geospatial data used for each VRE
echnology is presented in Table 3 . 

Next, based on the latest CORINE land cover (CLC) inventory [19] ,
he suitability factor (as fraction area per land cover class) determines
he areas (in km 

2 ) suitable for VRE deployment within the remaining
vailable area. Suitability factors have been used extensively to assess
he geographic potentials of VRE technologies, but they vary widely
etween studies, especially for onshore wind. For instance, they can
e as high as 0.9 in Bosch et al. [9] , while Zappa and van den Broek
111] ; Bruninx [13] assume a uniform low sustainability factor at 0.06
cross all land cover classes. In this study, we estimate suitability factors
or onshore wind based on Mckenna et al. [73] , Hoogwijk et al. [51] ,
4 
eld et al. [48] and Deng et al. [22] . The value is adopted if suitability
actors for a certain land cover from more than one source agree with
ach other. Otherwise, we use a moderate estimator falling within the
alue range. For offshore wind, a factor of 0.4 is applied to the available
cean area following Hu et al. [54] . The suitability factor for utility PV
s mainly based on Hoogwijk [50] , where a relatively optimistic value
f 0.05 is assigned to areas with sparse vegetation. As for rooftop PV,
e conservatively assumed that deployment is exclusively restricted to

he roof surface in the urban area, and industrial and commercial units
nd not on other artificial surfaces. The suitability factors are developed
y factoring in the average building footprint 7 per land cover class, the
atio of areas reserved for other usages (assumed at 0.5 according to
odis et al. [7] ), and the composition of roof types. We distinguish two
ain roof types: flat roof and pitched roof. Based on data sampled from

he Stuttgart Region of Germany, it is estimated that 95% and 50% of
oof surfaces are pitched for residential and commercial buildings, re-
pectively [92] . The pitch angle of the pitched roof is identically set at
5°, following Zappa and van den Broek [111] . In absence of detailed
nformation, a uniform distribution of the four facets is applied for the
rientations of the titled roof surface, but the north-facing roof is ex-
luded from PV installation due to economic considerations. 

The suitability factors associated with each land cover class are pre-
ented in Table 4 . 

Finally, the geographic potentials in terms of maximum installable
apacity per grid cell are determined based on the specific spacing area
in km 

2 /MW) for each VRE technology. Regional or country-level po-
entials for each VRE technology can be obtained by summing grid-level
otentials within the region or country’s border. 

Wind turbines are spaced in relation to the rotor diameter (D). Based
n 19,221 wind turbine sites clustered to 3800 wind farms in Germany,
he average distance between turbines within a single farm is approx-
mately 6D [69] . Therefore, we opted to use a specific spacing area of
D 

∗ 6D for both onshore wind and offshore wind in this study. The selec-
ion of commercial modules representative of wind installation follows
u et al. [54] . Three onshore turbine modules and one offshore turbine
odule from Vestas, the Danish manufacturer, are explicitly considered
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Table 3 

Spatial constraints for the exclusion of areas unavailable for the development of four VRE technologies. 

Spatial constraints for 

each VRE technology 

Data sources Resolution of data (NA in case 

of shapefile) 

Onshore wind Offshore wind Utility PV Rooftop PV 

Territory (km 

2 ) Nomenclature of Territorial Unis for 

Statistics (NUTS) Maps 2016 [36] ; 

Union of the ESRI Country shapefile and 

the Exclusive Economic Zones (version 

3) [38] 

NA Administrative terrestrial area Economical exclusive zone Administrative 

terrestrial area 

Administrative 

terrestrial area 

Distance to shore (km) NA NA NA 10–185 

A minimum distance to shore at 

∼10 km is set to restrict visibility 

and environmental impacts of 

offshore wind farms. The maximum 

distance to shore is limited to 

185 km for cost consideration [32] 

NA NA 

Depth (m) General bathymetric chart of the oceans 

(GEBCO)_2020 [11] 

0.004° (0.25 arcmin) NA ≤ 60 

Only offshore wind turbines with 

bottom fixed foundations (no 

floating) are considered. They 

usually suit at a water depth below 

60 m [84] 

NA NA 

Commercial vessel 

identity and location 

information 

Recent pace of change in human impact 

on the world’s ocean 9 [45] 

0.1°

(6 arcmin) 

NA ≤ 1500. If the grid cell includes 

more than 1500 vessel locations, it 

is considered as vessel-intensive 

areas to be excluded from the 

available area for offshore wind 

farms. 

NA NA 

Oil rigs Global Gas Flaring Estimates 2006 [78] ; 

Global DMSP-OLS Nighttime Lights 

Time Series 1992 - 2013 (Version 4) 

[79] 

0.008°

(0.5 arcmin) 

NA Full exclusion NA NA 

Submarine 

communications cable 

Greg’s Cable Map of undersea cable 

initiatives [72] 

NA NA 1 km 

2 buffering from both sides of 

the cable [9] 

NA NA 

Protected areas (km 

2 ) Protected Planet: The World Database 

on Protected Areas (WDPA) [101] 

NA Terrestrial protected areas Terrestrial & maritime protected 

areas 

Terrestrial 

protected areas 

Terrestrial 

protected areas 

Permafrost (%) Global Permafrost Zonation 

Index Map [44] 

0.008°

(0.5 arcmin) 

≤ 0.1 NA ≤ 0.01 ≤ 0.01 

Elevation (m) Digital Elevation - Global 30 Arc-Second 

Elevation (GTOPO30) [103] 

0.05°

(30 arcmin) 

< = 2500 

Following Eurek et al. [32] , 

elevation above 2500 m is 

considered as too high for onshore 

wind development due to a 

substantial reduction of wind power 

density associated with air density 

losses. 

NA NA NA 

Slope (degree) Calculated based on Elevation 0.05°

(30 arcmin) 

< 11.31 (or 20%) [32] NA < 4 (0r 6.99%) 

(Sun et al., 2013) 

NA 

Land cover GlobCover 2009 V2.3 Global Land 

Cover Map [8] ; Corine Land Cover 

Inventory (CLC) 2018 [19] 

0.003°

(1.67 arcmin) for GlobCover 

2009 V2.3; 100 m for CLC2018 

Depending on the suitability factor 

per land cover type 

NA Depending on the 

suitability factor 

per land cover 

type 

Depending on 

suitable rooftop 

areas in the 

built-up area 

Source: Updated based on Hu et al. [54] . 
9 Data under the name “raw_2013_shipping_mol.zip ” accessed via https://knb.ecoinformatics.org/view/resource_map_doi:10.5063/F1NZ85ZN. 
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Table 4 

Sustainability factors for different CLC land cover classes. 

Source: compiled based on Copernicus (2018); Bosch et al. [9] ; Zappa and van den Broek [111] ; Brunnix et al. [13] ; Mckenna et al. [73] ; Hoogwijk 

[50] ; Held et al. [48] ; Deng et al. [22] ; Bodis et al. [7] ; Sliz-Szkliniarz [92] . 

6 
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see Table 4 for detailed technical specifications including the rotor di-
meter). 

The Sanyo HIP-225HDE1 module is adopted for the installation of
oth utility PV and rooftop PV. It has a rated capacity of 0.225 kW p cor-
esponding to a panel surface area of 1.39 m 

2 [85] . The specific spacing
rea for PV depends on the mounting method. For rooftop PV installed
n a flat roof or utility PV mounted on close-to-flat ground (slope ≤ 4
), the PV panels are mounted at empirical PV angles to maximize en-
rgy yields. In this case, the panel azimuth angle ( 𝑍 𝑝 ) is set at 180 ◦, i.e.,
acing true south. Based on rule-of-thumb, the empirical panel tilt angle
 𝛽) in Northern hemisphere is a function of the local latitude ( L ) [18] : 

= 0 . 764 𝐿 + 2 . 14 ◦, 𝑓𝑜𝑟 𝐿 ≤ 65 ◦ (1)

= 0 . 224 𝐿 + 33 . 65 ◦, 𝑓𝑜𝑟 𝐿 > 65 ◦ (2)

The specific spacing area is a function of panel angles and solar an-
les under a reference condition to avoid self-shading [20] : 

 𝑃𝑉 = 𝐴 𝑃𝑉 

( 

cos 𝛽 + 

sin 𝛽
tan 𝛼𝑟𝑒𝑓 

cos 
(
𝑍 𝑠,𝑟𝑒𝑓 − 𝑍 𝑝 

)) 

(3)

here 𝐴 𝑃𝑉 : Specific PV panel area; 

𝛽 and 𝑍 𝑝 : panel tilt angle and azimuth angle; 
𝛼𝑟𝑒𝑓 and 𝑍 𝑠,𝑟𝑒𝑓 : solar altitude angle and azimuth angle under the

reference condition 

The third lowest hourly solar attitude angle on December 21st (win-
er solstice) is set as the reference condition for low latitude areas ( L
 60°) [20] , while for high latitude areas ( L ≥ 60°) November 1st is used

nstead to avoid negative altitude angle. The mounting of rooftop PV on
he pitched roof surface is constrained by the pitch angle and orientation
f the roof. We exclude the possibility of tilted mounting. This means
hat the PV system must be installed parallel to the roof surface. In this
ase, the specific spacing area equals the specific panel area. 

.3. Energy conversion model 

.3.1. Wind 

Wind energy conversion is mainly based on power curves of repre-
entative commercial wind turbines, but additional adjustments are in-
egrated in the model to consider effects of local elevation, propagation
f wind speed and wake losses. The same conversion model is applied
or both onshore and offshore wind in this study, except for that the
ower curve for offshore wind at sea level does not need to be adjusted
or elevation. This follows a five-step approach. 

First, we extrapolate the climate variables of wind speed at a refer-
nce height (10 m) to wind speed at turbine hub height. Following van
uijlen et al. [104] , we assume the hub height for onshore and offshore
ind are 150 m and 100 m respectively. The extrapolation is based on

he power law profile: 

 𝑧 = 𝑣 𝑟𝑒𝑓 

( 

𝑧 

𝑧 𝑟𝑒𝑓 

) 𝛼

(4)

here 𝑣 𝑧 and 𝑣 𝑟𝑒𝑓 are wind speeds corresponding to the turbine height
 𝑧 ) and reference height ( 𝑧 𝑟𝑒𝑓 ); 𝛼 is the shear exponent. 

The shear exponent is not readily available for either reanalysis data
r climate data. However, since the reanalysis data provides two vari-
bles of wind speed at 10 m and 100 m, regression is used to derive
rid cell-specific exponents. The same set of exponents is applied to the
limate data, which contains only one wind variable, i.e. surface wind
peed at 10 m. Compared with most studies simply assuming two uni-
orm exponents for land (0.143) and sea (0.11), this avoids unnecessary
ias in estimating wind speed at turbine height. 

Secondly, we characterise wind class per grid cell and assign suitable
urbine modules based on the IEC’s classification (see Table 5 ). In this
tudy, we select 3 onshore modules and 1 offshore module from the
7 
anish manufacturer Vestas. The power curves of the 4 turbine modules
re presented in Fig. 2 , which describe the relationship between wind
peed and the corresponding wind power rating factor at standard test
onditions. 

In the third step, we determine the elevation-adjusted power curve
er wind site. The kinetic power ( 𝑃 𝑤𝑖𝑛𝑑 ) extracted by the wind turbine
s theoretically proportional to air density ( 𝜌ℎ ): 

 𝑤𝑖𝑛𝑑 = 0 . 5 𝐶 𝑝 𝜌ℎ 𝐴𝑣 3 𝑧 (5)

here 𝐴 is the area swept by the turbine blades, 𝐶 𝑝 is the power coef-
cient and 𝑃 𝑟𝑎𝑡𝑒𝑑 is the rated power. 

Hence, the impact of elevation associated with wind sites above sea
evel on air density should be considered when using the power curve
o extract the rating factor. The relationship between elevation ( h ) and
ir density simply reads: 

ℎ = 𝜌0 − γℎ (6)

here 𝜌0 = 1 . 225 kg ∕m 

3 is the air density at zero elevation and 𝛾 = 1 . 194 ⋅
0 −4 kg ∕m 

2 is a proportionality constant. The proportional relationship
etween power and air density in formula (5) can be used to calculate
he rating factor corrected for air density along every wind speed of
he original power curve (e.g. Hu et al. [54] ), but it is only suitable for
tall-regulated wind turbines [97] . For modern pitch-regulated turbines
onsidered in this study, we follow the approach of Eurek et al. [32] to
econstruct the power curve adjusted to air density. It calculates the
quivalent wind speed for each rating factor along the original power
urve via formula (7) 

 ℎ = 𝑣 z 

(
𝜌ℎ ∕ 𝜌z 

)−1∕ 𝑚 
(7)

The exponent m is a function of wind speed, according to Sven-
ingsen [97] . It is constant at 3 until the wind speed reaches 7.5 m/s,
inearly decreases to 1.5 until 12.5 m/s and remains constant afterwards.

Next, we develop the multi-turbine power curve from the elevation-
djusted single turbine power curve for each grid cell. The multi-turbine
ower curve factors into the spatial propagation of wind speed within
 specific site under the same wind regime. Because generation across
ultiple turbines is not fully synchronous, the aggregated outputs are

moothed out to a certain extent. Assuming the instantaneous wind
peed follows a Gaussian distribution within a specific site, most ex-
sting studies (Norgaard and Holttinen [80] ; Gibescu et al. [42] ; Staffell
nd Pfenninger [95] ) apply a Gaussian filter to the single turbine power
urve to develop the multi-turbine curve. However, the method to de-
ermine sd of the Gaussian filter diverges between studies. The method
o determine the Gaussian filter sd is adapted from Gibescu et al. [42] in
his study, because it has several advantages over other methods. It does
ot require assumptions about turbulence intensity or high-frequency
ind speed data to calculate it. Furthermore, it takes site-specific di-
ensional characteristics into account, enabling the determination of
aussian filters for each grid cell. 

The sd of the Gaussian filter ( 𝜎𝑠 ) for a specific wind site at grid cell
evel can be calculated according to formulas (8) - (10) 

𝐺 = 𝜎𝑡 

√ 

0 . 5 
(
1 − 𝑒 − ̄𝑑 ∕ 𝐷 𝑑𝑒𝑐𝑎𝑦 

)
(8) 

 ̄= 

𝑑 𝑚𝑎𝑥 + 2 𝑑 𝑚𝑖𝑛 
3 

(9) 

 𝑚𝑎𝑥 = 2 
√ 

𝐴 𝑤𝑖𝑛𝑑 

𝜋
(10)

here, 

𝜎𝑡 : sd associated with site-specific wind speed time series; 
𝑑 : average distance between two random wind turbines within the

same site; 
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Table 5 

Key characteristics of four Vestas turbine modules corresponding to the IEC’s wind site classification. 

IEC’s wind turbine classification 

according to average wind speed 

at turbine height 

Usage Representative 

commercial 

turbine module 

Rated 

capacity 

(MW) 

Rotor 

diameter 

(m) 

Specific 

power 

(W/m) 

Cut-in speed 

(m/s) 

Rated speed 

(m/s) 

Cut-off

speed 

(m/s) 

Class I: 

> 8.5 m/s 

Onshore Vestas 105–3.3 3.3 105 381.8 3 13 25 

Class II: 

7.5–8.5 m/s 

Onshore Vestas 117–3.3 3.3 117 306.9 3 13 25 

Class III: 

6 - 7.5 m/s 

Onshore Vestas 126–3.3 3.3 126 264.7 3 12 22.5 

Class IV: 

< 6 m/s 

NA 

Class S: 

User-defined (Offshore) 

Offshore Vestas 164–8.0 8 164 378.7 4 13 25 

Sources: IEC [56] ; Wind turbine models.com [106–109] . 

Fig. 2. Power curves for four Vestas wind turbine modules. 
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i  
𝐷 𝑑𝑒𝑐𝑎𝑦 : characteristic distance or decay parameter characterising the
exponentially decaying relationship between correlation in wind
speeds and the distance, which is 723 km for Europe [43] ; 

𝑑 𝑚𝑎𝑥 : the maximum distance between two wind turbines within the
same site; 

𝑑 𝑚𝑖𝑛 : the minimum distance between two wind turbines within the
same site, which is array spacing distance (6D) between two ad-
jacent turbines; 

𝐴 𝑤𝑖𝑛𝑑 : available area for wind development within a grid cell-based
wind site. 

For illustrative purposes, Fig. 3 presents the original single turbine
ower curve at sea level for a Class III wind turbine, the air-density ad-
usted power curve at 1200 m as well as the multi-turbine power curve.

The last step considers efficiency losses after determining the hourly
ating factor time series per wind site using the multi-turbine power
urve. We distinguish efficiency losses between wake losses and other
osses. Wake losses describe the effect of wind speed reduction for down-
ind turbines located at the shaded area of upwind turbines, which is
 function of the array spacing of the wind farm. While most studies
ssume a fixed ratio of wake losses, we consider wake losses as a func-
ion of wind speed based on Knorr [69] . Fig. 4 plots the impact of mean
ake losses on turbine efficiency in relation to wind speed for the Knorr
ataset containing 3800 German wind farms. For comparison, the effi-
iency curve associated with the Dena dataset [69] , including 12 spe-
ific German wind farms, is also presented. It is deemed that the Knorr
ataset is more universally applicable as the sample size is much larger.
ompared with an 8% fixed rate of wake losses often assumed in Zappa
nd van den Broek [111] , the maximum wake losses based on the Knorr
ataset is less than 4%. For other losses (e.g., mechanical and electri-
8 
al conversion losses), a 5% fixed ratio is assumed to be consistent with
ther studies [111] . 

.3.2. Solar PV 

The energy conversion for both utility PV and rooftop PV follows the
ame four-step method. 

Firstly, we determine the solar angles per grid cell based on the local
eographic coordinates (longitude and/or latitude) and the Coordinated
niversal Time (UTC) timestamp. The timestamp is set at the mid-point
f each hour in the time series. The most important solar angles are the
olar altitude angle and azimuth angle. The readers are referred to Hu
t al. [54] and Kalogirou [64] for the detailed formulas used to perform
he calculation. 

Secondly, a decomposition model is used to determine the global
orizontal irradiance ( 𝐼 ℎ ) into the direct ( 𝐼 𝑑𝑖𝑟,ℎ ) and diffuse ( 𝐼 𝑑𝑖𝑓 ,ℎ ) com-
onents. The fraction ( df ) of the diffuse component in global horizontal
rradiance follows a function conditional on the clearness index ( k ) [30] :

 = 𝐼 ℎ ∕ 𝐼 𝑜 (11)

𝑓 = 

𝐼 𝑑𝑖𝑓 ,ℎ 

𝐼 𝑑𝑖𝑟,ℎ 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
1 − 0 . 09 𝑘 𝑓𝑜𝑟 𝑘 ≤ 0 . 22 

0 . 9511 − 0 . 1604 𝑘 + 4 . 388 𝑘 2 − 16 . 638 𝑘 3 + 12 . 336 𝑘 4 
𝑓𝑜𝑟 0 . 22 < 𝑘 ≤ 0 . 8 

0 . 165 𝑓𝑜𝑟 𝑘 > 0 . 8 

(12)

here k, 𝐼 ℎ , 𝐼 𝑜 are the clearness index, global horizontal irradiance and
xtraterrestrial horizontal irradiance. 

For reanalysis data, the direct and diffuse components of global hor-
zontal irradiance are readily available, while for climate data, only
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Fig. 3. Illustration of a multi-turbine power curve for onshore wind site. 

Fig. 4. Illustration of wake losses as a function of wind speed. 

Source: Based on Knorr [69] . 
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lobal horizontal irradiance is given. Therefore, we need to estimate
he extraterrestrial horizontal irradiance [28] : 

 0 = 
12 ⋅ 3 . 6 
𝜋

𝐼 𝑠𝑐 𝐸 0 

( 

( sin 𝐿 cos 𝛿) 
(
sin 𝐻 2 − sin 𝐻 1 

)
+ 
𝜋
(
𝐻 2 − 𝐻 1 

)
180 

( sin 𝐿 sin 𝛿) 

) 

(13) 

 0 = 1 + 0 . 0033 cos 𝑡 
(2 𝜋𝑛 
365 

)
(14)

Where 𝐼 𝑠𝑐 is solar constant (1367 W/m 

2 ); 𝐸 0 is eccentricity correc-
ion factor; 𝛿 is declination angle; L is local latitude; 𝐻 2 and 𝐻 1 are the
our angle at the start and end of the time interval of UTC. 

Thirdly, we use a transposition model to determine the plane of the
rray (POA) irradiance, which is total irradiance received by a PV panel
ased on solar angles and panel angles (see section 2.2). 
9 
The hourly POA irradiance ( 𝐼 𝑝 ) consists of direct ( 𝐼 𝑑𝑖𝑟,𝑝 ), diffuse
 𝐼 𝑑𝑖𝑓 ,𝑝 ) and reflection ( 𝐼 𝑟,𝑝 ) components: 

 𝑝 = 𝐼 𝑑𝑖𝑟,𝑝 + 𝐼 𝑑𝑖𝑓 ,𝑝 + 𝐼 𝑟,𝑝 (15)

Depending on the panel tilt angle ( 𝛽) and azimuth angle ( 𝑍 𝑝 ), the
hree irradiance components can be determined via (Gulin et al., 2013):

 𝑑𝑖𝑟,𝑝 = 

𝐼 𝑑𝑖𝑟,ℎ cos ( 𝜃) 
cos ( 90 − 𝛼) 

(16)

os ( 𝜃) = sin ( 𝛼) cos ( 𝛽) + cos ( 𝛼) sin ( 𝛽) cos 
(
𝑍 𝑝 − − 𝑍 𝑠 

)
(17)

 𝑑𝑖𝑓 ,𝑝 = 

1 + cos 𝛽
2 

𝐼 𝑑𝑖𝑓 ,ℎ (18)

 𝑟,𝑝 = 

1 − cos 𝛽 (
𝐼 𝑑𝑖𝑟,ℎ + 𝐼 𝑑𝑖𝑓 ,ℎ 

)
𝐴𝑙𝑏 (19)
2 
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Table 6 

Mount configurations and corresponding heat transfer coefficients. 

PV technology Mount type Mount a b Δ𝑇 𝑐𝑜𝑛𝑑 ( °C) 

Utility PV Glass-cell-glass Open rack − 3.47 − 0.0594 3 

Rooftop PV Glass-cell-glass Close roof − 2.98 − 0.0471 1 

Source: [25] . 
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here 𝛼 and 𝑍 𝑠 are solar altitude angle and azimuth angle; 𝜃 is incidence
ngle; Alb is surface albedo. 

Lastly, we determine hourly RF of PV, considering efficiency losses
ue to non-standard test conditions and the cell operating temperature
25] . 

𝐹 = 

( 

𝐼 𝑝 

𝐼 𝑆𝑇𝐶 

) [
1 − 𝜀 

(
𝑇 𝑁𝑂𝐶𝑇 − 𝑇 𝑐𝑒𝑙𝑙 

)]
𝑃 𝑅 (20)

 𝑐𝑒𝑙𝑙 = 𝑇 𝑏𝑎𝑐𝑘 + 

( 

𝐼 𝑝 

𝐼 𝑆𝑇𝐶 

) 

Δ𝑇 𝑐𝑜𝑛𝑑 (21)

 𝑏𝑎𝑐𝑘 = 𝐼 𝑝 ex p ( 𝑎 + 𝑏 ∗ 𝑣 2 𝑚 ) + 𝑇 (22)

here 𝐼 𝑆𝑇𝐶 (1000 W/m 

2 ) is solar irradiance at standard test conditions
STC); PR is the performance ratio to consider PV system losses, e.g.,
ue to inverter losses, shading and dust. The PR is assumed to be 0.9 in
his study, which is the upper bound of today’s typical PV modules in
ermany [87] ; 𝑇 𝑐𝑒𝑙𝑙 and 𝑇 𝑁𝑂𝐶𝑇 (44 °C) are respectively cell operating

emperature and nominal operating cell temperature; 𝜖 is the tempera-
ure coefficient of power indicating the dependence of PV power on cell
emperature, which is − 0.003 for the selected Sanyo HIP-225HDE1PV
odule; 𝑇 𝑏𝑎𝑐𝑘 is module back surface temperature, which is a function

f empirical coefficients for convective heat transfer ( b ), ambient wind
peed at 2 m ( 𝑣 2 𝑚 ) and ambient temperature ( T ); Δ𝑇 𝑐𝑜𝑛𝑑 is conduction-
nduced temperature change. Δ𝑇 𝑐𝑜𝑛𝑑 , a and b depend on the materials
nd mount configurations of the PV module. The assumed mount config-
rations for both utility PV and rooftop PV and corresponding empirical
eat transfer coefficients in this study are provided in Table 6 . 

.4. Geographic aggregation 

To avoid collinearity, utility PV and rooftop PV are aggregated into
 single “PV ” asset in each grid cell based on the geographic potentials
f both technologies. Similarly, grid cell based VRE asset profiles are
lso aggregated at the country or regional level for different analysis
urposes. We divide the 30 European countries into nine regions: Alpine
AT, CH, IT, MT, SI), Baltic (EE, LT, LV), East (CZ, HU, PL, SK), France,
beria (ES, PT), Isles (GB, IE), Nordic (DK, FI, NO, SE), Southeast (BG,
Y, EL, HR, RO) and West (BE, DE, LU, NL). Where it is applicable,
he country or regional level VRE assets are further aggregated across
echnology types. For instance, onshore and offshore wind assets per
ountry are aggregated into a wind asset, whilst wind and solar assets
an be aggregated into one asset as well to represent the underlying
ountry-wide technology mix. The aggregation is based on the share of
eographic potentials per technology in total potentials. 

.5. Statistical analysis 

.5.1. Statistics description 

The statistical analysis characterises the rating factor time series per
RE technology for the reference historic and target future periods and

o quantify the climate signals, i.e. the mean, sd, (Pearson) correla-
ion, and conditional probability of concurrent extreme low production
vents. Based on spectral analysis, we decompose the original rating
actor time series of VRE assets into time series components at multiple
imescales ranging from hourly to yearly (see section 2.5.2). The sd and
orrelation are also calculated for each component timescale. 
10 
Being univariate statistics, the mean and sd of the rating factor time
eries respectively measure the average output (which is also referred
o as the capacity factor) and output variability for each VRE asset. By
ontrast, correlation is a bivariate measure describing the overall lin-
ar dependence structure between random variables. In the context of
RE generation, correlation (or anticorrelation being the inverse of cor-
elation) has been widely used to gauge the temporal complementarity
etween pairwise VRE assets. This is because (mathematically), a high
egative correlation implies a large potential to reduce the total vari-
nce of the combined outputs of the underlying assets. However, corre-
ation cannot capture the tail dependence between pairwise VRE assets,
hich is the comovement of extreme VRE production events [1] . To il-

ustrate this, we plot the probability heat map of the quantile interval
f wind generation in Germany conditional on the quantile interval of
ind generation in France in Fig. 5 . 

Conditional on most quantile intervals of French wind generation,
here is a considerable spread of the probability distribution of German
ind generation. However, at the bottom and top 0.1 quantile inter-
als, the distribution of German wind generation is heavily skewed to-
ards the lower and upper tail. This suggests a strong degree of tail
ependence. In this study, the tail dependence between VRE assets is
easured by the conditional probability of concurrent extreme low pro-
uction events (see section 2.5.3). 

The four statistics are characterised for all climate simulations
amed after the three GCMs. The capacity factor (CF) is characterised
or assets at grid cell level as well as at aggregated country level. The
ther three statistics are characterised for assets at aggregated country
r regional level to avoid computational costs. 

We only present and analyse the intermodel ensemble mean of the
haracterised statistics in the Results section for dimension reduction
nd best visualization of figures. This is in line with other studies (e.g.
ernaat et al. [40] ; Miller and Keith [77] ). The ensemble mean enables

he quantification of the expected value or best estimate of the climate
ignal, but it does not convey information regarding the uncertainty
nd robustness of the climate signal. The latter can be captured by the
nalysis of the ensemble spread, which is beyond the scope of this study.

.5.2. Decomposition of VRE outputs at multiple time scales 

The decomposition of time series into components at different mul-
iple time scales/temporal frequencies usually requires spectral analysis
uch as Fourier or Wavelet, which is computationally non-trivial. Here
e use a simple method adapted from Jerez et al. [60] . One main dif-

erence between Jerez et al. [60] and this analysis lies in the tempo-
al resolution of the original time series, which is daily in Jerez et al.
60] but hourly in this study (measured by rating factors). If we denote
he original hourly rating factor series as 𝑅𝐹 𝑦,𝑚,𝑑,ℎ with subscripts y, m,

 and h indicating the specific year, month, day and hour of the time
tamp: 

𝐹 𝑦,𝑚,𝑑,ℎ = 𝑅𝐹 𝑦 + 𝛿𝑦,𝑚 + 𝛿𝑦,𝑚,𝑑 + 𝛿𝑦,𝑚,𝑑,ℎ (23)

𝑦,𝑚 = 𝑅𝐹 𝑦,𝑚 − 𝑅𝐹 𝑦 (24)

𝑦,𝑚,𝑑 = 𝑅𝐹 𝑦,𝑚,𝑑 − 𝑅𝐹 𝑦,𝑚 (25)

𝑦,𝑚,𝑑,ℎ = 𝑅𝐹 𝑦,𝑚,𝑑,ℎ − 𝑅𝐹 𝑦,𝑚,𝑑 (26)

here 𝑅𝐹 𝑦 , 𝑅𝐹 𝑦,𝑚 and 𝑅𝐹 𝑦,𝑚,𝑑 are yearly, monthly and daily mean of
he hourly rating factor series, 𝛿𝑦,𝑚 , 𝛿𝑦,𝑚,𝑑 and 𝛿𝑦,𝑚,𝑑,ℎ are intra-annual
onthly deviations concerning the annual mean rating factor, intra-
onth deviations concerning the monthly mean rating factor, and intra-
ay hourly deviations concerning the daily mean rating factor. 
𝛿𝑦,𝑚 , 𝛿𝑦,𝑚,𝑑 and 𝛿𝑦,𝑚,𝑑,ℎ can be further decomposed into 

𝑦,𝑚 = 𝛿𝑚 + 

(
𝛿𝑦,𝑚 − 𝛿𝑚 

)
(27)
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Fig. 5. Probability heat map of quantile interval of wind generation in Germany conditional on the quantile interval of wind generation in France. 
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i  
𝑦,𝑚,𝑑 = 𝛿𝑚.𝑑 + 

(
𝛿𝑦,𝑚,𝑑 − 𝛿𝑚.𝑑 

)
(28)

𝑦,𝑚,𝑑,ℎ = 𝛿𝑚.𝑑,ℎ + 

(
𝛿𝑦,𝑚,𝑑,ℎ − 𝛿𝑚.𝑑,ℎ 

)
(29)

here 𝛿𝑚 , 𝛿𝑚.𝑑 and 𝛿𝑚.𝑑,ℎ are the interannual monthly mean of 𝛿𝑦,𝑚 ,
nterannual daily mean of 𝛿𝑦,𝑚,𝑑 , and interannual hourly mean of 𝛿𝑦,𝑚,𝑑,ℎ .

We can rewrite formula (23) as: 

𝐹 𝑦,𝑚,𝑑,ℎ = 𝑅𝐹 𝑦 + 𝛿𝑚 + 

(
𝛿𝑦,𝑚 − 𝛿𝑚 

)
+ 𝛿𝑚.𝑑 + 

(
𝛿𝑦,𝑚,𝑑 − 𝛿𝑚.𝑑 

)
+ 𝛿𝑚.𝑑,ℎ 

+ 

(
𝛿𝑦,𝑚,𝑑,ℎ − 𝛿𝑚.𝑑,ℎ 

)
(30) 

Hence, formula (30) in essence decomposes the original whole
ourly series (WHS) into the sum of the year-to-year (Y2Y) noise term
enoted as 𝑅𝐹 𝑦 , the intra-annual monthly (MIA) cycle denoted as 𝛿𝑚 ,

he month-to-month noise term (M2M) denoted as ( 𝛿𝑦,𝑚 − 𝛿𝑚 ) , the intra-

onth daily (DIM) cycle denoted as 𝛿𝑚.𝑑 , the day-to-day noise term
D2D) denoted as ( 𝛿𝑦,𝑚,𝑑 − 𝛿𝑚.𝑑 ) , the intra-daily (HID) cycle denoted as

𝑚.𝑑,ℎ , and the hour-to-hour noise (H2H) denoted as ( 𝛿𝑦,𝑚,𝑑,ℎ − 𝛿𝑚.𝑑,ℎ ) : 

HS = Y2Y + MIA + M2M + DIM + D2D + HID + H2D (31)

t  

11 
For illustration purposes, the WHS series for wind and solar assets
ggregated at the EU level is decomposed into information components
t different time scales in Fig. 6 . Decomposition is helpful to identify
yclic patterns hidden in the original series and potential spatiotemporal
omplementarity between assets. 

Since the decomposed components are independent of each other,
he variance (VAR) of the WHS can also be decomposed into the sum of
AR associated with different components: 

 𝐴𝑅 𝑊 𝐻𝑆 = 𝑉 𝐴𝑅 𝑌 2 𝑌 + 𝑉 𝐴𝑅 𝑀 𝐼 𝐴 + 𝑉 𝐴𝑅 𝑀2 𝑀 

+ 𝑉 𝐴𝑅 𝐷𝐼𝑀 

+ 𝑉 𝐴𝑅 𝐷2 𝐷 

+ 𝑉 𝐴𝑅 𝐻 𝐼 𝐷 + 𝑉 𝐴𝑅 𝐻2 𝐻 (32) 

For each component, we calculate the normalized standard devia-
ion for country-level wind and solar assets to identify the timescales
hich dominate hourly output variability of the underlying assets. The
ormalization is based on the mean of the original RF series. Further-
ore, the cross-correlation between wind and solar assets aggregated at

he regional level is also quantified for each timescale. 

.5.3. Tail dependence 

Tail dependence describes the comovement of extreme value events
n the tail of the distributions of random variables. Generation profiles of
wo or more VRE assets can exhibit tail dependence in the lower and/or
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Fig. 6. Time series decomposition of wind and solar assets at the EU level. 
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8 A large portion of zeros in daily solar production series still exist for Norway 

and Finland, because the two countries include relatively large areas with solar 

potentials close to the Arctic Circle with polar nights. This violates the assump- 

tion to build up a copula model, which gives NA results. To solve this issue, for 

these two countries only we exclude winter months (from October to March) of 

the daily series to estimate the cross-border and EU-wide cases of conditional 

probability of concurrent extreme low solar production events. This might un- 

derestimate the conditional probability, because solar drought events in both 

countries are expected to be more frequently in winter months. While for other 

countries, the conditional probability is estimated for the daily series including 

both winter and summer. 
pper tail [23] . The lower-tail dependence is of particular relevance to
enewable energy droughts, which are concurrent extreme low produc-
ion events of VRE assets. Although Otero Felipe et al. [83] ; Raynaud
86] ; Ohlendorf and Schill [81] have characterised country-wide his-
oric extreme low production events of single or multiple VRE technolo-
ies on a univariate basis for selected European countries, they might be
f limited usage to understand renewable energy droughts in intercon-
ected power systems. This study represents the first attempt to assess
he intercountry risk of renewable energy droughts and the impact of
limate change on such risk. For simplicity and dimension reduction,
e focus on two bivariate cases of concurrent extreme low production

vents. The first case concerns the cross-border lower-tail dependence
etween each country and its directly interconnected neighbours, and
he second case the EU-wide low-tail dependence between each country
nd the rest of Europe. Both cases are investigated for solar alone, wind
lone, and the mix of wind and solar. 

We resort to the conditional probability of concurrent extreme low
roduction events ( P( 𝑋 ≤ 𝑥 |𝑌 ≤ 𝑦 ) ) to measure the lower-tail depen-
ence, where X and Y denote output variables associated with any two
aired VRE assets. For instance, in the cross-border case of concur-
ent extreme low production events for solar, X represents a country-
ggregated solar asset and Y represents the other solar asset aggregated
t the level of all neighbouring countries. 𝑥 and 𝑦 denote the fixed thresh-
ld levels defining extremely low production events. Here we define ex-
reme low production events as VRE outputs below the 0.1 quantile level
f the output distribution, similar to Otero Felipe et al. [83] . The cal-
ulation of the conditional probability of concurrent extreme low pro-
uction events is based on the empirical copula function. The copula
s a joint distribution function characterizing the dependence between
andom variables but independently from their corresponding marginal
istributions [83] . In the bivariate case, the joint cumulative distribu-
ion of random variables ( X and Y ) can be described by a copula function
() that links their marginal cumulative distribution functions ( 𝐹 𝑋 and
 𝑌 ) together: 

 𝑋𝑌 ( 𝑥, 𝑦 ) = 𝑃 ( 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 ) = 𝐶 
(
𝐹 𝑋 ( 𝑥 ) , 𝐹 𝑌 ( 𝑦 ) 

)
(33)

The marginal cumulative distribution functions transform the ran-
om variables X and Y into uniformly distributed margins on the [0,1]
nterval, which are denoted as U = 𝐹 ( 𝑋) and V = 𝐹 ( 𝑌 ) . 
𝑋 𝑌 

12 
We use historic daily wind generation in Germany and France (which
epresent X and Y ) to exemplify this transformation in Fig. 7 . 7a) shows
he scatter plot and histograms for the original random variables X and
 , and 7b) for the transformed cumulative margins U and V . 

According to Sklar’s theorem, the copula function is unique if both
 and V are continuous. 

This means that formula (33) can be rewritten into 

 𝑋𝑌 ( 𝑥, 𝑦 ) = 𝐶 ( 𝑈 ( 𝑥 ) , 𝑉 ( 𝑦 ) ) = 𝐶 ( 𝑢, 𝑣 ) = 𝐹 
(
𝐹 −1 
𝑋 

( 𝑢 ) , 𝐹 −1 
𝑌 

( 𝑣 ) 
)

(34)

Following Bayes’s theorem, the conditional probability of concurrent
xtreme low production events below fixed threshold margins can be
alculated based on the copula function: 

( 𝑈 ≤ 𝑢 |𝑉 ≤ 𝑣 ) = 

P ( 𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣 ) 
P ( 𝑉 ≤ 𝑣 ) 

= 

𝐶 ( 𝑢, 𝑣 ) 
P ( 𝑉 ≤ 𝑣 ) 

(35)

Recall that we defined extreme low production events using the 0.1
uantile level as threshold conditions. Consequently, u = v = P ( 𝑉 ≤
 ) = 0.1. Using the empirical copula function, it is possible to estimate
he empirical conditional probability of concurrent extreme value events
etween two VRE assets. To avoid non-continuousness in the marginal
istribution of hourly solar RF series due to a large portion of zeros, we
ggregate hourly VRE RF series into daily series. 8 

Based on the estimated conditional probability, we also calculate the
xpected annual number of critical hours ( NoC ) of concurrent extreme
ow production events in each country for the cross-border and EU-wide
ivariate cases: 

𝑜𝐶 = 0 . 1 ⋅ 8760 ⋅ P ( 𝑈 ≤ 0 . 1 |𝑉 ≤ 0 . 1 ) (36)
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Fig. 7. Transformation of random variables into uniformly distributed cumulative margins. 

Fig. 8. Spatial distribution of geographic potentials of VRE assets across Europe. 
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. Results 

.1. Geographic potentials 

The geographic potentials for grid cell based VRE assets across Eu-
ope are shown in Fig. 8 . Geographic potentials reflect the quantity as-
ect of VRE resources in terms of maximum installable capacity consid-
ring geospatial constraints and land use suitability. 

For onshore wind, France, Spain, Germany, Italy, Poland, the UK and
omania have the largest potentials in Europe. Together they account

or more than half of total onshore wind potential in Europe (2032 GW).
he total offshore wind potentials amount to 918 GW. They are mainly
oncentrated in the North Sea, the Baltic Sea, the Irish Sea, the English
hannel and the Adriatic Sea. Despite a large area, the Mediterranean
ea and the Black Sea are barely suitable for (non-floating) offshore
ind development due to the threshold depth of 60 m. The distribution
f solar potentials is highly correlated to the urban area for rooftop PV
nstallation. Due to abundant suitable areas for utility PV development,
rance, Germany, Italy, Spain and Poland lead in solar potentials. The
ombined share in total European solar potentials (3840 GW) is above
0%. 
13 
Owing to policy support and cost reduction driven by technolog-
cal learning and economies of scale, the deployment of VRE capac-
ty has increased significantly in Europe over the past two decades.
t an aggregated Europe level, as of 2021 the currently installed ca-
acities of onshore wind, offshore wind and solar are 192 GW, 28
W and 175 GW [58] , accounting for 9.5%, 3.1% and 4.5% of to-

al potentials of respective technology. For comparison, we present in-
talled capacity and untapped potentials per technology at the coun-
ry level in Fig. 9 . For most countries, there remain large potentials
or VRE development. The highest exploitation rates of onshore wind
re found in Sweden (25.2%), Netherlands (20.8%), and Luxemburg
20.8%); Netherlands (19%) and Malta (13.6%) of solar. As the front-
unner for investment in onshore wind and solar, Germany has only
xploited 33.7% and 11.3% of its potentials, respectively. The ex-
loitation rates of offshore wind at the country level are relatively
mall. They hardly exceed 3% except for Belgium (68.2%), Germany
11.3%), UK (8.3%). The UK leads offshore wind development in Eu-
ope, but more than 91% of its potential are yet untapped. By con-
rast, due to small total potentials (3.3 GW), the remaining poten-
ial for Belgium is only 1.1 GW for developing new offshore wind
apacity. 
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Fig. 9. Country-level installed capacity as of 2021 and untapped potentials per VRE technology 

Source: based on authors’ analysis and IRENA (2022). 

Fig. 10. Historic, future and relative climate signal of CF for VRE assets across Europe. 

14 



J. Hu, V. Koning, T. Bosshard et al. Advances in Applied Energy 10 (2023) 100134 

Fig. 11. Historic, future and climate signal of raw standard deviation for VRE assets across Europe. 
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.2. Capacity factor 

The historic (1990–2010), future (2045–2055) and relative climate
ignal (in terms of relative change expressed in decimal fraction) of CF
or wind and solar assets across Europe are presented in Fig. 10 . The
abels represent corresponding country-level aggregated data. For com-
arison purposes, the historic CF based on ERA data is also shown. The
istoric CF is in close agreement with the ERA-based historic CF at both
rid cell level and country level. Three noticeable results are identi-
ed. First, the maximum difference between the two is less than 2 p.p.
nd 1 p.p. respectively for wind and solar assets. This suggests that cli-
ate models can replicate CF well under historic climate conditions.

econd, The CF as average normalized outputs per unit of installed ca-
acity reflects the quality aspect of VRE resources. It is shown that the
est-quality wind resources in Europe are located in the North sea, the
altic sea, the Irish Sea, the English Channel and surrounding coastal
reas. This can be ascribed to the large pressure difference between
he semipermanent Azores High and Icelandic Low, which moves the
eather fronts eastward across the ocean [75] . The worst-quality wind

esources are located along the major mountains, because of the wind
hannelling effect in deep valleys [75] . At the country level, Denmark,
he Netherlands and the UK have the highest average capacity factor
 ≥ 0.45). By contrast, the average quality ( ≤ 0.18) of wind resources in
taly and Spain is relatively poor, despite large potentials. As for solar,
he CF depends on the local latitude which reflects the difference in so-
ar altitude angle. The highest and lowest CF are respectively found in
he South European countries and Nordic countries. Thirdly, the climate
ignal in terms of the relative difference in CF between historic and fu-
 c  

15 
ure periods seems overall small in magnitude, especially at aggregated
ountry level. The CF of wind decreases in the major part of Europe,
xcept for the Nordic region, the Balkan region and Central Italy. The
agnitude of the country-level CF climate signal is hardly above 0.03,

xcept for a large reduction at 0.08 in Switzerland. The country-level CF
limate signal for solar is smaller than that for wind. A slight decrease
 ≤ 0.02) in solar CF can be observed in Northern and Central Europe.
his suggests the impact of climate change under RCP 2.6 on average
olar outputs is rather limited. 

.3. Raw standard deviation 

Fig. 11 shows the spatial distribution of the historic, future and rel-
tive climate signal of hourly raw sd for wind and solar assets. The con-
istency between the climate model-based and the ERA-based raw sd for
he same historic period again suggests a fair performance of the climate
odels in capturing the volatility of VRE supply. The climate signal at

he country level is generally small in magnitude for both wind and so-
ar. It hardly exceeds 0.02, with Switzerland (0.05) being the exception.

The spatial distribution of the raw sd follows a comparable pattern
o that of the CF, indicating a positive level of correlation. This can be
llustrated by the scatter plot of raw sd versus CF for VRE assets at the
rid cell level (see Fig. 12 ). The raw sd and CF respectively measure the
volatility) risk and (expected) hourly return of VRE assets from the per-
pective of power system operation. Similar to that for financial assets,
 tradeoff exists between risk and return. The higher the capacity factor,
he higher volatility in the VRE generation profile and hence the greater
hallenges for grid balancing. Unlike onshore wind assets spreading the
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Fig. 12. Historic, future and climate signal of risk-return (sd-CF) tradeoff. 
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ntire range of the risk-return profile, the majority of offshore wind as-
ets can be characterised as high-risk and high-return. By contrast, solar
elongs to the low-risk and low-return asset group due to the diurnal
roduction pattern. Compared with ERA-based sd, the spread of climate
odel-based historic sd is relatively narrow across VRE assets at the

ame level of CF. The same risk-return tradeoff remains for the scatter
lot of relative signals with most assets positioned at the first and third
uadrants. Except for a limited number of outliers, the signals for both
F and sd are bounded by ± 0.1. 

.4. Normalized standard deviation at multiple timescales 

Fig. 13 demonstrates the country-level normalized sd of the origi-
al whole hourly time series (WHS) and its component time series at
ifferent timescales for wind. The normalized sd measures the relative
olatility with respect to the mean. Regardless of the timescale, it can be
nanimously found that the WHS variability of wind is mainly driven by
he variability of the noise terms at D2D and H2H timescales. This means
hat integration challenge for wind is mainly related to short-term flex-
bilities, ramping capabilities, and daily & sub-daily energy storage re-
uirements of the power system. Across all timescales, the discrepancy
n normalized sd seems to be small between ERA and climate models
or the historic period. The climate signal is also small, which is capped
y ± 0.1. Notably, the normalized sd decreases over the D2D and H2H
imescales close-to-uniformly across Europe, but increases over the DIM
nd HID timescales. Less seasonal variation in wind output can be ex-
ected for the Nordic countries exclusively. This is demonstrated by the
ecreased normalized sd over the MIA time scale. 

In the case of solar, the HID and MIA cycles dominate the WHS vari-
bility (see Fig. 14 ). These two timescales are of respective relevance
o the sub-daily system flexibility and seasonal energy storage require-
ents. Despite a small magnitude ( ≤ 0 . 1 ), solar variability decreases in
ost European countries at all timescales with DIM and MIA being the

xception. The increased seasonal solar variation at the MIA time scale
ccurs mainly in the Nordic countries, France, Germany, Spain and Ro-
ania. This suggests the increased need for seasonal storage in these

ountries. 

.5. Correlation at multiple timescales 

.5.1. Country-wide wind-solar correlation 

The country-wide wind and solar correlation at different timescales
re presented in Fig. 15 . Based on historic correlation (calculated
16 
rom ERA data alone), a negative correlation (anticorrelation) between
ountry-wide wind and solar outputs prevails over Europe. The strength
f the anticorrelation depends on the decomposed timescale and the
pecific country. Noticeably, a very strong anticorrelation ( ≤ −0 . 6 ) ex-
sts between the seasonal cycles of wind and solar at the MIA timescale,
uggesting a large potential for technological complementarity that can
e exploited to reduce seasonal variation of VRE outputs. This is particu-
arly useful for countries that lack seasonal energy storage options (e.g.,
eservoir storage hydropower plants). The strong MIA anticorrelation
an be explained by the windy winters of short daytime alternating with
he calm summers of longer daytime [75] . Consequently, in a relative
ense, it is less pronounced for those countries located in South Europe.
his seasonal complementarity is further reinforced by the anticorrela-
ion at the M2M timescale. At other timescales, we also found an over-
ll negative but weaker wind-solar correlation. This indicates daily and
ourly It is also consistent with earlier studies, e.g., Schindler et al. [91] ;
iglietta et al. [75] ; Jerez et al. [60] . Interestingly, at the HID timescale

oth moderate positive and negative correlations are observed. This im-
lies the presence of regional-specific diurnal wind patterns. The pos-
tive correlation mainly exists in countries with large mountain areas
nd extensive coastlines, due to e.g. foehn and sea breeze [75] . 

Except for the HID timescale, the climate models show overall good
greement with the ERA data in the determined historic country-wide
ind-solar correlation. The correlation is moderately or strongly pos-

tive in the climate model-based case at the HID timescale. This in-
icates the remaining bias of the climate model and its unstastifying
erformance in capturing the sub-daily comovement between climate
ariables. Recalling that the original temporal resolution of the climate
odel is 3 hourly. The pre-processing that linearly interpolates the data

o hourly might also contribute to the bias. 
The climate signal of country-wide wind-solar correlation is rela-

ively small in magnitude ( ≤ 0 . 2 ) across all timescales except for Y2Y,
nd the sign of correlation hardly changes. This suggests a rather limited
id-term impact of RCP 2.6 on the country-wide wind-solar correlation.
t the Y2Y timescale, the largest climate signal ( ∼0.4) is found in the
K with the sign of correlation inverting from negative to positive. This

mplies a non-negligible challenge for the long-term system planning to
anage the interannual variability in VRE supply. 

.5.2. Cross-regional wind-solar correlation 

The cross-regional correlation matrix enables the investigation of
ind-solar technological complementarity beyond the country border.
ig. 16 presents the cross-regional correlation at the WHS timescale as



J. Hu, V. Koning, T. Bosshard et al. Advances in Applied Energy 10 (2023) 100134 

Fig. 13. Climate signal of normalized standard deviation for wind across Europe at multiple timescales. 

Fig. 14. Historic, future and climate signal of normalized standard deviation for solar across Europe at multiple timescales. 

17 
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Fig. 15. Historic, future and climate signal of country-wide wind-solar correlation. 
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ell as timescales corresponding to the cycle components of VRE gen-
ration profiles. The x-axis and y-axis respectively represent wind and
olar at an aggregated regional level. Similar to the country-wide corre-
ation, the cross-regional correlation between the cycle components of
ind and solar outputs is overall negative based on ERA data. The most
ronounced anticorrelation is found at the MIA timescale. In particu-
ar, wind in the Baltic, Isles, Nordic, and West regions strongly comple-
ents solar in all regions (with an anticorrelation above 0.9). The large
otential of seasonal technological complementarity can save demand
or seasonal storage. This brings about co-benefits for the EU’s ongo-
ng efforts in establishing a European internal electricity market [31] ,
hich requires large-scale investments in the pan-European transmis-

ion network. We also observe moderate wind-solar anticorrelation is
lso observed at the HID timescale between certain regions, notably be-
ween wind in France and solar in other European regions, and between
ind in Iberia and solar in the East, Baltic and Balkan. This suggests di-
rnal technological complementarity. Except for the HID timescale, the
limate model-based correlation for the other cycle components tends
o be consistent with that based on ERA data. In addition, the climate
ignal of cross-regional correlation tends to be small, and it hardly ex-
eeds ±0 . 1 . This suggests limited impacts of climate change under RCP
.6. 

For the noise components, the cross-regional wind-solar correlation
s presented in Fig. 17 . Although at the Y2Y and M2M timescales, mod-
rate correlations can be observed between certain regions, for the other
imescales the wind-solar correlation of the noise components is much
eaker. Unlike the cycle components that tend to have a negative cross-

egional correlation, at the Y2Y and M2M timescales the sign of correla-
ion for the noise terms is less distinct depending on the paired regions.
or instance, a moderate anticorrelation exists between wind in Iberia
nd solar in France and Alpine at the M2M timescale. This can rein-
18 
orce the wind-solar seasonal complementarity at the MIA timescale,
y contrast, the moderate positive correlation between wind in Nordic
nd solar in Iberia at the M2M weakens the seasonal complementarity.
rom a system planning perspective, wind in France seems to be an ideal
nvestment option, as its generation profile tends to be negatively cor-
elated with solar in other European regions at almost all timescales.
nce again, consistency is observed between the cross-regional corre-

ation based on the climate model and that is based on ERA data. The
limate signal of the cross-regional correlation seems negligible for the
oise components at the M2M, D2D and H2H timescales. As for the
2Y timescale, some moderate climate signals can be observed for a

ew paired regions, e.g., between wind and solar in France and Iberia. 

.6. Conditional probability of concurrent extreme low production events 

.6.1. Cross-border concurrent renewable energy drought events 

Fig. 18 presents the historic, future and climate signal of the condi-
ional probability of cross-border concurrent renewable energy drought
vents across Europe for wind, solar and the mix of wind and solar.
he cross-border conditional probability indicates the likelihood of re-
ewable energy droughts in each country given the occurrence of re-
ewable energy droughts in neighbouring countries. The labels indicate
he expected annual number of critical hours per country when concur-
ent renewable energy droughts occur. First, the climate model seems
o simulate very well the historic climate based on the ERA data. Sec-
ndly, the climate signal of renewable energy drought events under RCP
.6 seems also marginal, as the conditional probability change never
oes beyond ±0 . 05 . Thirdly, the susceptibility to cross-border renew-
ble energy drought events depends on the country and the VRE tech-
ologies. In the case of wind alone, Latvia, Estonia, Bulgaria, Germany,
nd the Netherlands are most susceptible to renewable energy droughts
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Fig. 16. Historic, future and climate signal of cross-regional wind-solar correlation (cycle components). 
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ith a conditional probability above 0.5. The left tail of wind pro-
les between these countries is apparently highly dependant on those
f their interconnected neighbours. The cross-border renewable energy
rought risk for solar alone is larger due to high synchronicity in so-
ar profiles between neighbouring countries. The mix of wind and so-
ar seems to moderately reduce the cross-border conditional probabil-
ty of renewable energy drought events compared to solar alone, sug-
esting a benefit of technological diversification. However, compared
o wind alone, the benefits of a mix are more observable in the coun-
ries in the north half of Europe where wind potentials dominate the
hare of the technology mix. For the mixed case, cross-border renew-
ble energy drought events occur most frequently in countries located
n the Baltic region and Southeast Europe. Hence, these countries may
eed more backup capacity to manage the tail risk associated with re-
ewable energy droughts if power exchange is only allowed with direct
eighbours. 

.6.2. EU-wide renewable energy drought events 

The analysis of the EU-wide renewable energy drought events (see
ig. 19 ) is based on the copperplate assumption that all European coun-
ries are perfectly interconnected. The EU-wide conditional probability
ndicates the likelihood of renewable energy droughts in each country
19 
iven the occurrence of renewable energy droughts in the rest of Eu-
ope. The labels indicate the expected annual number of critical hours
f concurrent EU-wide renewable energy droughts. Similar to the cross-
order case, the EU-wide conditional probability per country based on
he climate data is close to that based on the ERA data. The climate
ignal of the EU-wide conditional probability is negligible. Compared
ith the cross-border case, the EU-wide conditional probability of re-
ewable energy drought events for most countries is reduced for wind,
olar and the mix of wind and solar. This means that geographic diver-
ification is helpful to reduce tail risk of concurrent renewable energy
roughts. However, even under the copperplate assumption, the EU-
ide conditional probability remains pronounced and non-negligible.
s in the case of mixed wind and solar, it ranges from 0.20 to 0.56,
epending on individual countries. Therefore, the EU-wide conditional
robability of concurrent renewable energy droughts can be interpreted
s a non-diversifiable systemic risk. To address this systemic risk, suffi-
ient flexibility resources other than interconnectors are required. More-
ver, we also find that for a limited number of countries the EU-wide
onditional probability is slightly higher than the cross-border case. An
xample is solar energy droughts in France. This is because the left tail
istribution of solar in France is more synchronous to that at the aggre-
ated EU level. A similar situation is observed for Poland in the mixed
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Fig. 17. Historic, future and climate signal of cross-regional wind-solar correlation (noise components). 
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ase, despite a small difference between the cross-border and EU-wide
onditional probabilities. 

. Discussion 

.1. Limitations and caveats 

Due to data and scope, a few limitations can be identified in this
tudy. Here we discuss the most prominent limitations and potential
aveats for the interpretation of the results. 

.1.1. Data consistency 

This study relies on a large number of data from multiple sources.
hey can be grouped into two main streams: climate data and meteoro-

ogical reanalysis data to characterise generation profiles of VRE supply
nd associated statistical measures; geospatial data for determining geo-
raphic potentials for VRE installation. The use of data based on multiple
ources can give rise to data consistency issues. 

• Geospatial data 

Data consistency is less likely to be a concern for the used geospatial
ata, because they mainly include topographic and bathymetric infor-
20 
ation and land cover data that are unrelated to each other. The mis-
atch between geographic boundaries of polygon-based shapefiles (e.g.,
aps of terrestrial territory and exclusive economic zone) and grid-cell

ased raster data (e.g., elevation and land cover data) can introduce
otential error propagation in geospatial analysis, but the impact is ex-
ected to be marginal due to high-resolution of the data. 

• Climate data 

Another source of data inconsistency results from the inherent lim-
tations of climate data simulated from the combination of GCM and
CM. First, climate data consisting of standard variables is only bias-
djusted on the daily scale while uncorrected sub-daily anomalies are
uperimposed. The bias-adjustment procedure uses meteorological re-
nalysis data as the reference, which increases consistency between
he two datasets. Since we have identified an overall agreement be-
ween key statistical measures of VRE profiles based on climate data
nd reanalysis data for the same historic period, the remaining unad-
usted biases are relatively small. However, the limitations of the bias
djustment at a sub-daily time scale become apparent when analysing
he cross-regional wind-solar correlation characterised at a sub-daily
ourly timescale (see section 3.5). A moderate or positive strong cor-
elation is found in the climate data-based case, while a negative cor-
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Fig. 18. Historic, future and climate signal of conditional probability for cross-border energy drought events. 
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elation is predominantly observed based on the more accurate re-
nalysis data. This suggests an unsatisfied performance of the climate
odel in capturing the sub-daily comovement between climate vari-

bles. Secondly, to obtain hourly VRE time series, the climate data fed
nto the energy conversion model is linearly interpolated from the orig-
nal 3-hourly resolution to 1-hourly resolution. This might also induce
ias with regard to statistical measures that are evaluated at sub-daily
imescales. Finally, unlike reanalysis data, climate data only offers lim-
ted standard variables that can be directly used for energy conver-
ion. For instance, the only variable relevant to wind energy conver-
ion is surface wind speed at 10 m. Consequently, assumptions with
egard to surface roughness or shear exponent must be made to ex-
rapolate wind speed to turbine hub height. This can lead to a poten-
ially large error propagation due to the cubic relation between wind
peed and wind power. This study derives site-specific shear exponents
ased on a regression between two wind speeds at 10 m and 100 m
f (historic) reanalysis data. Despite being more accurate than other
implistic assumptions, the approach presumes the same static shear
 e  

21 
xponents to be persistent over the future. Overcoming these limita-
ions of climate data calls for the development of better bias-adjustment
ethods, increased temporal resolution of climate modelling, and the

xpansion of standard climate variables within the climate modelling
ommunity. 

.1.2. Limited ensemble size and intermodel uncertainty 

Ideally, a large set of climate models would be used to simulate cli-
ate projections to capture the intermodel uncertainty of climate sig-
als. Due to the computation costs of both RCMs (for downscaling) and
he energy conversion model, the ensemble size of climate projections
nd the selected length of time periods (10–20 years) were therefore
imited for the impact assessment. While the climate projections driven
y 3 different GCMs were selected to cover the spread of climate signals
ithin the given RCP 2.6 as good as possible, the limited ensemble size
ay contribute to uncertainties in the results. As the aim of this study is

o provide a best estimate of climate signals in terms of the intermodel
nsemble mean rather than quantifying the intermodel uncertainty, the
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Fig. 19. Historic, future and climate signal of conditional probability for EU-wide renewable energy drought events. 
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imited ensemble size can be reasonably justified. Another uncertainty
ource comes from the relatively shorter selected length of time periods,
hich may open up a potential influence of the internal variability of

he determined climate signals. 

.1.3. Conversion efficiency degradation and improvement 

One merit of the present study lies in the comprehensive energy con-
ersion model developed for impact assessment, which enables a more
ealistic determination of VRE generation profiles compared to other
tudies. For instance, the wind energy conversion factors into location-
pecific power law profiles of wind speed, elevation-adjusted single
urbine power curves, multi-turbine power curves representing spatial
ropagation of wind speed, and wind speed-dependant wake losses. As
or solar PV, both location-specific empirical panel angles and efficiency
osses due to non-standard operating conditions are considered. Despite
 large number of input parameters, the application of the detailed en-
rgy conversion model can be repeated for other regions of the world.
his is because all inputs are based on the standard variables of climate
22 
ata, open access meteorological reanalysis data and geospatial data,
nd reasonable assumptions consistent with the literature. However, the
odel does not capture every factor affecting energy conversion. A lim-

tation of the model is that we assume a constant performance of VRE
echnologies under standard test conditions over the entire lifetime. On
he one hand, the efficiencies of both wind turbines and solar PV dete-
iorate with age, with an average annual degradation rate of 1.6% per
ear [94] and 0.8% per year [62] respectively. Hence, VRE generation
etermined in this study may be overestimated. On the other hand, the
nergy conversion model is built upon representative commercial mod-
les of present-day VRE installations. Assuming potential efficiency in-
reases with technological improvement, we may underestimate future
RE generation. Exploring the joint impacts of ageing-related degrada-

ion and technological improvement on VRE generation is important to
nderstand the lifecycle economics of VRE technology, which can be
ecommended for future research. However, they are unlikely to affect
he main results of this research with regard to the impact of climate
hange on VRE generation. 
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.1.4. Lack of future land cover data 

Geographic potentials of VRE assets depend on suitable areas per
and cover class. This study does not consider land cover change and its
mpact on future geographic potentials. The same geographic potentials
ased on the historic land cover map are assumed to be constant over
ime. Both climate and socioeconomic changes can affect land use pat-
erns and land cover [26] . Integrated impact assessment models have
lready been used to project future land cover development, despite a
elatively low resolution and limited land cover classes. Further research
s recommended to explore the evoluation of geographic potentials in
elation to land cover change over time. 

.1.5. Methods for geographic aggregation 

Depending on different analysis purposes in this study, VRE profiles
re aggregated from grid cell level to country or regional level for a sin-
le VRE technology or a mix of VRE technologies. Geographic potentials
f VRE assets per grid cell are used as weights to characterise a repre-
entative “average ” generation profile within a geographic boundary.
his implies the deployment and allocation of VRE capacity are assumed
o be proportional to the maximum installable capacity per VRE asset
cross space and technology. This approach is justifiable in absence of
re-specified information regarding future installed capacity per VRE as-
et. However, as long as the total potentials are not fully tapped, other
apacity allocation options are plausible. For instance, investors can pri-
ritize VRE investments at sites with the highest net profits or capacity
actors. System operators may prefer the deployment of VRE capacity
lose to the demand centre. There also exist policy scenarios prescrib-
ng the optimal share of each VRE technology in the future capacity mix
er European country. Future studies can be carried out to investigate
he impact of alternative capacity allocation methods on the aggregated
eneration profile. 

.1.6. Size of VRE technologies, demand profile and storage 

One delineation of this study is that the size (installed capacity) of
RE technology in the mid-term future European power system is not
etermined, since we only characterize VRE supply on the basis of per
nit of installed capacity. Being not the core focus of climate impact
tudies concerning VRE supply, the size of installed VRE capacity is of-
en either disregarded [ 15 , 21 , 24 , 39 , 52 , 53 , 110 ], assumed at frozen his-
orical level [98 , 100] , or prescribed at a fixed level from other scenario
tudies [5 , 60] . Determining the cost-optimal size of VRE capacity is im-
ortant for planning and operation of the power system, but it also de-
ends on many other factors not considered in this study. 

As the power system must ensure grid balancing between supply
nd demand, both the volume and pattern of electricity demand may
trongly affect the technology mix of electricity supply [65] . In particu-
ar, due to limited load-following capability, the size and uptake of VRE
an be constrained by the demand pattern. Bossmann (2013) found that
lectricity demand with higher diurnal variations mainly increases the
eed for dispatchable generation capacity instead of VRE capacity to
eet peak demand. The reliable projection of long time series of fu-

ure demand profiles is of high relevance but a challenging research
rea, because multiple factors affect the evolution of both the magni-
ude and pattern of electricity demand over time. They include socio-
conomic development (e.g. population, urbanization, gross domestic
roduct), energy efficiency improvements, behavioural change for elec-
ricity saving, electrification trend of end-use sectors (e.g. transport with
lectric vehicles, space heating & cooling with heat pump and air condi-
ioning) and development of electrofuels [ 66 , 76 ]. Electrification further
ncreases the dependency of electricity demand on the variability and
hange of climate conditions, because both heating and cooling demand
s a function of ambient temperature and solar irradiance. The rising av-
rage temperature also leads to less heating in winter, but more cooling
n summer [89] . Meanwhile, given the increasing penetration of smart
etering and real-time pricing, electricity demand is also expected to

e more flexible and price-responding [ 27 , 54 ]. Numerous studies have
23 
rojected future electricity demand at various geographic scales, but
one have considered these factors in a comprehensive manner. Many
f them simply scale historic demand patterns to a projected or extrapo-
ated future demand level, disregarding changes in demand patterns [6] .
appa and van den Broek [111] , Bobmann and Staffell [ 6 ], Bossmann
t al. [10] , and Staffell & Pfenninger [96] have explored the structural
hange of demand patterns in relation to electrification and/or energy
fficiency measures, but they do not consider climate change. Castillo
t al. [16] , Isaac and van Vuuren [59] , Zhang et al. [112] , and Fan
t al. [37] have included the average impact of climate change to project
lectricity demand, despite a low spatiotemporal resolution which is in-
ufficient to generate chronological hourly demand profile. We suggest
cenario-based sector-specific bottom-up studies to further investigate
his area and associated uncertainties. For instance, the framework com-
ining shared socioeconomic pathways (SSPs) and representative con-
entration pathways (RCPs) used by the integrated assessment models
IAMs) community [105] seems promising to explore the scenario space
f plausible demand profile projections. 

The size and uptake of VRE capacity can also be increased by comple-
entary storage technologies, such as pumped storage hydropower, bat-

ery and hydrogen storage [41] . This is because energy storage smooths
ut the fluctuations of VRE outputs and improves the load-following ca-
ability of VRE at different timescales. However, determining the cost-
ptimal full technology mix (including VRE, storage technologies, and
ispatchable generation technologies) in a decarbonized future power
ystem and examining its reliability requires detailed modelling of the
ower system in terms of capacity expansion and economic despatch.
t is also dependant on many uncertain factors, such as future de-
and profile, fuel price, carbon price, and cost development of dif-

erent power generation and storage technologies. Studies exist using
he power system model to explore future technology mix, but they are
ften based on historical VRE generation profiles [ 14 , 65 , 111 ], use in-
onsistent VRE generation and demand profiles corresponding to dif-
erent weather years [104] , or ignore interannual variability [ 12 , 49 ].
his points out new directions for future research. Our analysis pro-
ides essential inputs for the power system modelling in terms of VRE
rofiles characterised under future climate conditions. The strong wind-
olar seasonal complementarity at the cross-regional level identified in
his study also provides a rationale to develop strategies optimizing the
ites of VRE assets, which serves as an alternative non-technological op-
ion to seasonal storage technologies (e.g., reservoir storage hydropower
lant, hydrogen storage) for managing the seasonal fluctuations of VRE
upply. The relative pros and cons in terms of costs and benefits can be
nvestigated through power system modelling in future studies. 

.2. Comparison with other studies 

Since most climate impact studies focus on the projected change of
verage VRE production, we only compare the results with other studies
n this regard. We find an overall reduction in average wind and solar
roduction for most of Europe between the 1990–2010 period and the
045–2055 period. The relative change of average VRE production is
ather limited in magnitude at the country level, which is within ± 3%
or wind (except for Switzerland) and ± 2% for solar. However, a di-
ect comparison with other studies remains difficult. This is because
nly a limited number of studies investigate the mid-term impact of cli-
ate change on European VRE supply under RCP 2.6 or comparable
arming conditions. amongst these studies, our findings corroborate
ith Kozarcanin et al. [71] and Tobin et al. [98] for both wind and

olar in terms of directions and strengths of changes, and Gao [39] for
olar. Nevertheless, our results also seem to disagree with others. For
nstance, Gernaat et al. [40] and Hou et al. [53] estimated an overall
ncrease in solar generation across Europe. Hosking et al. [52] found
ind outputs increase for the majority of Europe, with the greatest in-

rease in the UK (up to 10%) but a negligible decrease in the South.
he discrepancy between studies might also be explained by different



J. Hu, V. Koning, T. Bosshard et al. Advances in Applied Energy 10 (2023) 100134 

G  

t  

o  

k

5

 

E  

T  

G  

h  

P  

w  

t  

A  

S  

t  

c  

s  

a  

o  

G  

t  

u
 

c  

V  

t  

r
 

f  

p  

c  

c  

r  

l  

t  

I  

V  

s  

t
 

o  

a  

m  

s  

n  

r  

p  

d  

a  

s  

p  

o  

c  

a  

V  

t
 

e  

t  

w  

n  

t  

d  

t  

c  

c  

a  

c  

f  

fi  

a  

n  

.  

a  

d  

o  

r  

w  

t

D

 

i  

t

D

A

 

D  

s  

fi  

k  

o  

f  

W  

p  

a  

n  

m  

E  

f  

f  

c  

c

A

 

e  

m  

c  

o  

r  

u

CM-RCM combinations for climate simulation and levels of detail of
he energy conversion model used. This calls for better harmonization
f climate scenario development, energy conversion method and other
ey assumptions in future studies. 

. Conclusion 

This paper assessed the geographic potentials for VRE technologies in
urope, considering multiple spatial constraints and land cover classes.
he total potentials for onshore wind, offshore wind and solar are 2032
W, 918 GW and 3840 GW, respectively. Accounting for more than
alf of the total potentials in Europe, France, Spain, Germany, Italy,
oland, the UK and Romania have the largest potentials for onshore
ind development. Offshore wind potentials are mainly concentrated in

he North Sea, the Baltic Sea, the Irish Sea, the English Channel and the
driatic Sea. Despite a large area, the Mediterranean Sea and the Black
ea are barely suitable for (non-floating) offshore wind development due
o a sea depth above 60 m. The distribution of solar potentials is highly
orrelated to the urban area for rooftop PV installation. With abundant
uitable areas for utility PV development, France, Germany, Italy, Spain
nd Poland lead in solar potentials. The already installed capacities of
nshore wind, offshore wind and solar as of 2021 in Europe are 192
W, 28 GW and 175 GW, which account for 9.5%, 3.1% and 4.5% of

otal potentials of respective technology. Therefore, there remain large
ntapped potentials for VRE development. 

Based on a comprehensive energy conversion model, this study also
haracterised the historic, future, and projected changes of European
RE supply under RCP2.6 from aspects of average production, produc-

ion variability, spatiotemporal complementarity, and risk of concurrent
enewable energy droughts. 

We find an overall reduction in average wind and solar production
or most of Europe between the 1990–2010 period and the 2045–2055
eriod, except that wind increases in Nordic countries and solar in-
reases in Northwest Europe and the Balkans. At the country level, the
limate signal of average production is rather limited in magnitude. The
elative percentage change for wind is within ±3% (except for Switzer-
and) and ±2% for solar. Besides average production, the projected mid-
erm changes in other aspects of VRE supply are also relatively small.
n other words, the expected impact of climate change on European
RE supply is less of a concern if we strictly follow a Paris-proof emis-
ion reduction pathway. This adds another rationale for policymakers
o support early and stringent climate change mitigation efforts. 

Based on a spectral analysis, we demonstrate that the variability
f hourly wind generation series is mainly driven by the day-to-day
nd hour-to-hour variations, whilst intraday hourly and intra-annual
onthly cycles dominate the variability of hourly solar generation. The

ame analysis also enables the identification of multi-timescale tech-
ological complementarity between wind and solar assets at the cross-
egional level. The seasonal cycles of wind and solar exhibit strong com-
lementarity, which hold under both historic and future climate con-
itions. This is indicated by an anticorrelation ranging between − 0.6
nd − 0.9, depending on paired regions. Effectively harvesting wind-
olar complementarity can mitigate the source variability of VRE out-
uts at the intra-annual monthly timescale and provides an alternative
ption to seasonal storage. It requires efforts from policymakers to ac-
elerate the development of pan-European transmission infrastructure
nd harmonise the coordination of cross-border planning and siting of
RE deployment, which is also consistent with the EU’s policy objective

o establish the internal electricity market. 
Furthermore, the intercountry risk of concurrent daily renewable en-

rgy drought events was investigated, which hardly changes between
24 
he investigated historic and future periods. In the cross-border case
here energy exchange is exclusively between each country and its
eighbouring countries, the risk of solar droughts is large over the en-
ire Europe due to high synchronicity in solar profiles. Technological
iversification through mixing solar with wind can moderately reduce
he renewable energy drought risk. For the wind-solar mix, countries lo-
ated in the Baltic region and Southeast Europe are most susceptible to
ross-border renewable energy droughts with a conditional probability
bove 0.5. Compared with the cross-border case, the risk of EU-wide
oncurrent renewable energy droughts for most countries is reduced
or wind, solar and the wind-solar mix. This demonstrates the bene-
ts of geographic diversification. However, even under the copperplate
ssumption, the risk of concurrent renewable energy droughts remains
on-negligible (with a conditional probability between 0.20 and 0.56)
 In the case of wind-solar mix, Central Western European countries
nd Poland are most likely to experience concurrent renewable energy
roughts given the occurrence of renewable energy droughts in the rest
f Europe. The adequacy of flexibility resources in relation to concur-
ent renewable energy droughts must be considered by system operators
hen planning future weather-resilient energy systems for these coun-

ries. 
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ppendix 

Table A1 provides a detailed review of state-of-the-art literature cov-
ring climate impacts on VRE supply. Most relevant information is sum-
arized for each study, including climate scenario, the usage of regional

limate model for downscaling and associated resolution, ensemble size
f climate scenario, long-term period studied, technology considered,
egion, levels of detail of energy conversion model, statistical measures
sed to characterise VRE supply and main conclusion. 
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Table A1 

Summary of existing studies of climate change impacts on future VRE supply. 

Paper Climate 

scenario (in 

terms of RCP) 

Whether regional 

climate model is used 

(Y/N) for 

downscaling and 

associated resolution 

Ensemble size per 

climate scenario 

Long-term period 

studied 

Technology (if the 

wind is not specified 

as onshore or 

offshore, it is 

denoted as wind)or 

climate variable 

Region Levels of detail of energy 

conversion model (N.A./Very 

Simplistic/ Simplistic/Detailed) 

Statistical measures Main conclusion 

[67] RCP 4.5 & 8.5 Y 

(5 km; daily) 

N.A. 1980–2004; 

2020–2044 

Wind speed Greece Very simplistic: 

Power law with uniform shear 

exponent 1/7; 

theoretical power density 

method 

Mean wind speed; Weibull 

shape parameter; theoretical 

wind energy density; return 

period associated with 

extremely high wind (40 m/s); 

friction velocity 

Projected change in mean annual wind 

speed varies locally between − 5% and 

+ 20%; whereas between − 15% and + 60% 

for wind energy density; increases in 

extremely high wind speed 

[93] RCP 4.5 & 8.5 Y 

(12 km or 9 km 

depending on RCM 

used but nested 

27 km; daily) 

14 1971–2000; 

2071–2100 

Offshore wind Western Iberian Very simplistic: log law with 

uniform roughness length for 

sea (1.52 ×10 − 4 m); 

three-step power density 

method for wind 

Mean wind speed and outputs Projected reduction in wind speed and 

wind power for all seasons across a 

majority of ensemble members, with an 

exception for summer; signals for RCP 4.5 

is less strong than RCP8.5. 

[110] RCP 2.6, RCP 

4.5 & RCP 8.5 

Y 

(12.5 km 2 ; 

hourly) 

3 for RCP2.6 and 5 

each for RCP 4.5 & 

RCP 8.5 

2010–2039; 

2040–2069; 

2070–2099 

Wind and PV Seven European 

cities reflecting five 

climate zones 

Very simplistic: power law with 

uniform exponents for wind; 

theoretical power density 

method; PV conversion does not 

consider the inclination 

Mean wind and PV outputs; 

correlation between outputs and 

temperature 

Long-term mean wind and PV generation 

do not change considerably (below 3%) by 

climate change; GCM modelling 

uncertainty across scenarios have a higher 

impact on seasonal VRE variability than 

climate signals 

[21] RCP 4.5 & RCP 

8.5 

Y (12 km; hourly but 

aggregated to daily) 

5 1979–2004; 

2021–2050; 

2061–2090 

Offshore wind European domain, 

with a focus on the 

black sea region 

Simplistic: 

single turbine power curve for 

the focused area, but a 

time-varying roughness length 

is used 

Mean wind outputs Robust signal of decreasing wind over 

much of the European domain both 

towards 2050 and 2010, but no discernible 

negative impact of climate change on wind 

resources in the Black Sea 

[60] RCP 8.5 Y(12 km; 3 h but 

aggregated to daily) 

6 1971–2000; 

2070–2099 

Wind and PV Europe disaggregated 

into nine regions 

Very simplistic: power law with 

uniform exponents for wind; 

three-step power density 

method for wind; PV conversion 

does not consider the inclination 

Mean wind and PV outputs; 

wind and solar coefficient of 

variation and local wind-solar 

correlation at a time scale from 

daily, monthly to yearly 

The projected changes in local wind-solar 

temporal correlation are overall negligible 

(well below ±5% ) 

[40] RCP 2.6 & RCP 

6.0 

N (55 km; 

daily) 

4 1970–2100; 

2031–2071; 

2070–2100 

Onshore wind, 

offshore wind, utility 

PV, rooftop PV 

Globe Very simplistic: 

Wind and PV conversion are 

based on yearly mean, without 

consideration of temporal 

profiles 

Mean wind and PV outputs Uncertain impacts on the wind with 

increase and decrease in different regions, 

and impacts on PV are small 

[71] RCP2.6, RCP 

4.5 & RCP 8.5 

Y (12 km; 3 h) 6 1986–2006; 

2080–2100 

Wind and PV 33 European 

countries 

Detailed: 

The multi-turbine power curve 

is adopted but not 

location-specific; air density 

correction is not performed 

wake losses as a function of 

wind speed are not considered 

Mean wind and PV outputs; the 

standard deviation of joint wind 

and PV output ramps 

Both wind and solar outputs slightly 

decrease and their variability increased 

with the increased strength of climate 

change 

[98] RCP 4.5 & 

RCP8.5 

Y (12 km; 3 h) 4 for RCP 8.5 & 1 for 

RCP4.5 

1971–2000; 

2004–2043 under 1.5 

°C; 2016–2059 under 

2 °C; 2037–2084 

under 3 °C 

Wind and PV 28 European 

countries 

Very simplistic: power law with 

uniform exponents for wind; 

three-step power density 

method for wind; PV conversion 

does not consider the inclination 

Mean wind and PV outputs Overall reductions in wind and PV outputs 

for most countries, with less than 5% 

changes under 1.5 °C and 2 °C conditions; 

stronger change magnitude for wind under 

3 °C conditions, but less than 5% changes 

remain for most countries. 

( continued on next page ) 

2
5
 



J.
 H

u
,
 V

.
 K

o
n
in

g,
 T

.
 B

o
ssh

a
rd
 et
 a

l.
 

A
d
va

n
ces

 in
 A

p
p
lied

 E
n
ergy

 1
0
 (2

0
2
3
)
 1

0
0
1
3
4
 

Table A1 ( continued ) 

Paper Climate 

scenario (in 

terms of RCP) 

Whether regional 

climate model is used 

(Y/N) for 

downscaling and 

associated resolution 

Ensemble size per 

climate scenario 

Long-term period 

studied 

Technology (if the 

wind is not specified 

as onshore or 

offshore, it is 

denoted as wind)or 

climate variable 

Region Levels of detail of energy 

conversion model (N.A./Very 

Simplistic/ Simplistic/Detailed) 

Statistical measures Main conclusion 

[52] 1.5 °C 

conditions 

(comparable to 

RCP1.9 by the 

end of the 

century) 

N (55 km; daily) 40 2006–2015; a 

10-year future period 

under 1.5 °C 

Wind European domain, 

with a focus on the 

UK 

Simplistic: power law with 

uniform exponents for wind; a 

single turbine power curve is 

used for wind conversion, using 

daily mean wind speed with a 

Rayleigh distribution to factor 

into sub-daily variation 

Mean wind outputs Increase in wind outputs over much of 

Europe, with the largest increase over the 

UK of ∼4 pp., but a negligible decrease in 

wind outputs for Southern Europe; 

increased variability over much of central 

and northern Europe where seasonal 

change is highest in summer 

[61] RCP 4.5 & RCP 

8.5 

Y (12 km; 3 h) 5 1970–1999; 

2070–2099 

PV Europe disaggregated 

into nine regions 

Simplistic: PV conversion does 

not consider the inclination 

Mean PV outputs; coefficient of 

variation for solar at timescales 

from daily, monthly to yearly 

PV outputs decrease pronounced in 

northern countries (up to 12%); but in 

southern areas, PV outputs and their daily 

variability slightly increase 

[15] RCP 4.5 & RCP 

8.5 

N (277.5 km; 

monthly) 

21 2016–2035; 

2046–2065; 

2081–2100 

Wind European domain Very simplistic: 

theoretical power density 

method based on surface wind 

speed 

Mean wind outputs Wind outputs increase in the 

Northern-Central Europe region but 

decrease in the Mediterranean region; 

intra-annual variability increases in the 

Baltic Sea areas but decreases in the 

Mediterranean areas and no significant 

inter-annual variability over Europe 

[5] RCP 4.5 & RCP 

8.5 

Y (12 km, 3 h) 6 1980–2000; 

2045–2065 

Onshore wind and PV Aggregated Europe 

and four 

representative 

countries (SE, RO, 

DE, IT) 

Simplistic: 

Only a single turbine power 

curve is adopted 

Mean wind and PV outputs The ensemble mean suggests a ∼ 1% 

reduction in both wind and solar outputs 

at aggregated Europe level, but individual 

ensemble members show inconsistent signs 

and magnitude of changes. The 

cross-model uncertainty is exacerbated by 

seasonal and geographic differences. 

[24] RCP 4.5 N (139 km – 311 km, 

12 h) 

36 1979–2005; 

2020–2049 

Wind European domain Simplistic: 

Only a single turbine power 

curve is adopted and it does not 

consider the temporal profiles of 

wind outputs even if the 

empirical probability density 

distribution of wind speeds is 

used 

Mean wind speed and outputs Annual mean wind speed increases up to 

3.5% in northwest Europe and decreases 

down to − 3.5% in south Europe across 

ensemble members; 

Mean output change is in line with wind 

speed change, but more pronounced. The 

magnitude of changes varies spatially 

between 12% and 8%. 

[39] RCP 4.5 & RCP 

8.5 

Y (50 km, 3 h) 3 for RCP 4.5 & 4 for 

RCP 8.5 

1990–1999; 

2040–2049 

Onshore wind China Simplistic: 

Both the power law and the 

logarithmic law are used for 

wind conversion, but a uniform 

shear exponent is used for the 

power law; 

only a single turbine power 

curve is adopted 

Mean wind outputs; coefficient 

of variation of wind outputs 

Around a 4% reduction in wind outputs for 

most areas of China, with a 15% increase 

in south-west China under RCP4.5; wind 

outputs change under RCP8.5 is similar to 

RCP4.5, but its increase in Sichuan Basin 

further shifted to the southeast. 

( continued on next page ) 
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Table A1 ( continued ) 

Paper Climate 

scenario (in 

terms of RCP) 

Whether regional 

climate model is used 

(Y/N) for 

downscaling and 

associated resolution 

Ensemble size per 

climate scenario 

Long-term period 

studied 

Technology (if the 

wind is not specified 

as onshore or 

offshore, it is 

denoted as wind)or 

climate variable 

Region Levels of detail of energy 

conversion model (N.A./Very 

Simplistic/ Simplistic/Detailed) 

Statistical measures Main conclusion 

[53] SSP1-RCP2.6 & 

SSP5-RCP 8.5 

N (remapped to 

277.5 km, daily) 

28 1995–2014; 

2081–2100 

PV European domain 

disaggregated into 

156 grid cells 

Detailed: 

However, wind speed’s impact 

on PV efficiency is not 

considered 

Mean PV outputs; 

cross-correlation of 

deseasonalized daily PV outputs 

(standardized by the 

interannual mean and standard 

deviation of the same day) 

Overall higher PV outputs under RCP 2.6 

independent of season or region, except for 

Scandinavia, Ireland, central-eastern 

Europe and the Iberian Peninsula; changed 

seasonal patterns of PV outputs, as outputs 

increase strongly in winter than in summer 

under RCP 2.6 or increase in summer and 

decrease in winter under RCP 8.5; 

cross-correlation of daily PV outputs in 

Europe increases the end of the century. 

[82] RCP 2.6, RCP 

4.5 & RCP 8.5 

N (100 km but 

downscaled to 1 km 

using inverse 

distance-weighting 

method, monthly but 

used as scalar for 

hourly historic 

observation) 

7 2010; 

2021–2040; 

2041–2060; 

2061–2080 

Rooftop PV Fukushima, Japan Detailed: 

Consideration of inclination and 

the impact of temperature and 

wind speed on efficiency 

Mean PV outputs PV outputs increase in most cases, which is 

0.3% − 3.6%, 0.5% − 7.0%, 1.5% − 9.6% in 

2030, 2050 and 2070 approximately 

[17] SRES A1B 

scenario 

(comparable 

between RCP 

4.5 and RCP 

6.0) 

N (200 km but 

statistically 

downscaled to 5 km, 

monthly) 

3 1980–2010 (only 

simulated by a 

weather Research 

and Forecasting 

model); 2011–2040; 

2041–2070; 

2071–2100 

Offshore wind Taiwan strait Simplistic: 

Theoretical power density 

method based on surface wind 

speed; using monthly mean 

wind speed with a Weibull 

distribution to factor sub-daily 

variation based on parameters 

estimated from a Weather 

Research and Forecasting model 

Mean wind outputs Wind outputs in eastern 

Taiwan Strait are higher, but reduce 

slightly by 3% compared with the historic 

period 

[99] RCP 4.5 & RCP 

8.5 

Y (12 km, 3 h) 9 1971–2000; 

2071–2100 

Wind Europe disaggregated 

into nine regions 

Very simplistic: power law with 

uniform exponents for wind; 

three-step power density 

method for wind energy 

conversion 

Mean wind outputs; standard 

deviation of wind outputs from 

daily, monthly to yearly 

Mean wind outputs at aggregated Europe 

level slightly change in magnitude ( ± 5%); 

at the regional level the magnitude of 

change is up to 15% with the Iberian 

Peninsula being most affected and changes 

are overall enhanced under RCP 8.5 

compared with under RCP 4.5; the 

standard deviation of wind outputs are 

small or statistically insignificant across all 

time scales. 

[89] RCP 4.5 & RCP 

8.5 

Y (24.4 km, daily) 22 1961–2000; 

2021–2061; 

2061–2100 

Wind European domain Simplistic: power law with 

uniform exponents for wind; 

three-step power density 

method for wind energy 

conversion; using a probability 

density function to factor into 

sub-daily variation 

Mean wind outputs Mean wind outputs increase more likely 

than not for Northern and Central Europe 

and likely reduce likely over Southern 

Europe; a strong increase in seasonal 

variability for most of Europe; inter-annual 

variability changes vary between models 

2
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