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Survey is a research method of gathering information (e.g., customer feedback) from a 

sample of individuals in a population. It typically involves asking a set of questions on a 

specific topic to the selected participants. Pioneered by sociologist Paul Lazarsfeld in the 

1930s-40s, surveys were initially administered to study the phycological and cultural 

effects of radio. Today, they are commonly used to gain a fair representation of the 

socioeconomic status and well-being of individuals. Therefore, surveys become a vital 

tool for informed theory testing and decision making in social science.  

Collecting quality survey data requires careful planning and investment of time and 

money. Over many decades, the method of data collection has evolved as the pressure to 

obtain quality data has grown. The survey practice faces several challenges, including 

difficulty answering research questions, difficulty recalling answers from long-term 

memory, increasing cost, declining participation possibly due to the lack of understanding 

of context (Krosnick, 1991; Groves et al., 2011). These challenges can limit the quality of 

survey data and make it harder to obtain the information needed to decisions making. 

Motivated by these factors, the data collection methods have evolved over time. From 

traditional and simple approaches (paper-and-pencil interviewing) to more sophisticated 

approaches (computed-assisted interviewing), survey practitioners have adapted their 

methods to overcome these challenges and maintain the quality. However, each method 

has its advantages and disadvantages. For example, web and multiple-device methods are 

low-cost and have become increasingly popular in recent years, whereas the use of 

multiple devices, such as tablets and smartphones, has rapidly taken over the web-only 

method (de Leeuw & Toepoel, 2018; Link et al., 2014; Mavletova, 2013; Zijlstra et al., 

2018). This is because people without internet access are not represented in web survey 

samples. Additionally, breakoff—people start but incomplete the survey—is common in 

web surveys, and results in considerably low response rates (Manfreda et al., 2008; Musch 

& Reips, 2000; Peytchev, 2011). In this regard, a mixed survey method, which combines 

the strengths of diverse methods, can offer the greatest potential in terms of cost-quality 

balance for researchers and policy makers.  

Finding a single mixed method that is ideal for all sampled units is unrealistic, as each 

method has a variety of features, and people have different preferences for in what 

condition, when, and how they like to be contacted and to participate. Adapting survey 
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features, such as the number of contact attempts, the data collection mode, and the type of 

incentives offered, to people’s characteristics by intervening or tailoring in data collection 

can make the survey more attractive and accessible to different subgroups, improve 

response rates and representativeness, and the data quality.  

Adaptive survey designs (ASD, Wagner, 2008; Schouten et al., 2017) have emerged as a 

data-driven recruitment method that optimize metrics of data collection progress, cost and 

quality (Schouten et al., 2009; Wagner, 2010). ASD provides a framework for such 

tailoring/ intervening. During the ongoing data collection process, metrics are monitored 

in an effort to inform fieldwork decisions (Kreuter, 2013). This dissertation focuses on 

developing a methodology to enhance the robustness of ASDs. The outline of this 

introduction is arranged as follows: Chapter 1.1 provides a brief context for ASD, Chapter 

1.2 discusses the main objective of ASD, Chapter 1.3 describes the methodology behind 

effective ASD, and Chapter 1.4 explains the topic and contribution of this dissertation.  

1.1 Adaptive Survey Design (ASD) 

1.1.1 Precedents 

ASDs tailor different strategies, before or during data collection, for different sample units 

based on their characteristics. This concept can trace its history back to dynamic treatment 

regimes in the field of clinical trials (Murphy, 2003). A dynamic treatment regime consists 

of a sequence of decision rules, one for each stage of intervention. Instead of a “one-size-

fits-all” intervention, the type, dosage amount and timing of the subsequent intervention 

are individualized to a patient, based on history and preceding treatments, with a particular 

focus on optimizing response. This approach has been used to develop adaptive treatments 

for, e.g., alcohol-dependent patients (Murphy et al., 2007). In this context, measures of 

alcohol abuse are tracked. A patient, who is observed with a second heavy drinking day 

within two months, is provided cognitive behavioral intervention to augment medication. 

Otherwise, low-cost medical management is provided at the end of the period. In the 

clinical trials research literature, adaptive designs, in general, allow for changing or 

modifying the characteristics of a trial as knowledge accrues, and therefore, play a role in 

the planning, design, and implementation stages (Coffey et al., 2012). 
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The mechanism behind adaptation in trials is the stimulus for adaptation in sample 

surveys, as identified by Wagner, 2008; Mercer et al., 2017. Some adaptations in trials, 

such as stopping rules, sequential multi-assignment randomized trials, preplanned 

protocols, and a data monitoring committee, can be adjusted to the survey context; see 

Rosenblum et al., (2019). Translating these processes into applications in surveys 

necessitates comprehension of what uncertainty in data collection gives rise to the use of 

ASDs.  

1.1.2 Motivation 

ASDs are a response to an increasingly difficult survey climate characterized by falling 

response rates, growing reluctance to participate, rising costs of collecting survey data, 

and etc. (De Leeuw & de Heer, 2002; Groves & Couper, 2012). The consequences are that 

information collected from individuals is less representative, and the objectives of a 

survey may backfire. This problem is severe when sticking to the “one path fits all sample 

members” approach to data collection (Axinn et al., 2011). This standard protocol is 

unable to fulfill the growing need for surveys for quality data collection. Statistics 

computed from data have many uses. They can reflect the attributes of a population, 

forecast changes over time, estimate population totals, help with decision making, and so 

on. However, the precision and accuracy of survey statistics are affected by several 

sources of survey error (Groves et al., 2011). 

In each stage of a survey life cycle, errors can arise, resulting in final statistics of inferior 

quality, as well as misleading conclusions. The stages required to obtain a survey statistic 

are: (1) planning of a survey and outlining the steps to take when conducting it, (2) 

collecting and processing data, and (3) data analysis. Groves et al., (2011) differentiate the 

sources of errors from two dimensions: those related to who survey practitioners talk to 

(representation), and those related to what practitioners learn from those conversations 

(measurement). See a framework of sources of error in surveys in Figure 1.1, and a brief 

interpretation in Table 1.1. For example, a survey might be interested in the relationship 

between individuals and the labor market. Two kinds of inference are made on demand for 

such an understanding. On the basis of respondents’ answers collected from sampled 

cases, a survey manager must first infer these estimates about the relationship, which is 
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the process of measurement. Next, in the process of representation, the manager infers the 

relationship in the population as a whole from those estimates.  

 

Figure 1.1 Survey life cycle from a quality perspective. Source: Groves et al., (2011); 

Raymer et al., (2015). 

Each source of error affects the uncertainty of the survey estimates from two angles, 

namely, systematically and randomly. Systematic error and random variation lead to the 

statistical concepts of bias and variance, respectively. Bias, which causes a different 

survey estimate, refers to whether the estimate, on average, underestimates or 

overestimates the true value in the population of interest. A simple example of systematic 

measurement errors is the disparity in the number of sexual partners reported by men and 

women in face-to-face interviews (Tourangeau et al., 1997). Due to social desirability, 

women tend to underreport, while men tend to overreport. Another substantial concern, in 

addition to bias, is variability of the estimate. Random variation can generally reduce its 

precision, unlike systematic error that affects the point estimate. Precision describes the 
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extent to which survey estimates can be expected to vary, or “bounce around”, if the 

survey was to be repeated many times. For instance, an estimate may be assumed to have 

a precision of 10% at the 95% confidence interval. If the same survey was fielded 100 

times, one is convinced that the results generated would fall within 10% of the true 

population value in 95 of the instances.  

Taken together, those above-mentioned causes spur the development of ASDs. This 

technique aims to improve the sample representativeness and allocate cost-effective 

resources simultaneously.  

Table 1.1 A brief description of  survey error. 

Error Description 

Coverage error Arise from failure to encompass all components of the population 

being studied. Incomplete sampling frame often leads to these errors. 

Sampling error Occur when a selected sample does not represent the entire population. 

Measurement error Refer to the discrepancy between a measured quantity and its actual 

value. 

Nonresponse error Occur when the individuals that complete the interview differ 

systematically from those that were unable to be contacted and those 

that chose not to participate. 

Processing error Produced during data processing when the variable provided by the 

respondents differs from that in the estimation.  

Adjustment error Refer to the difference between a population parameter and its 

adjusted statistic. 

 

1.1.3 Building blocks 

Survey practitioners have noted that response behaviors vary depending on survey design 

features, such as the amount of incentives. Some sample units are more reluctant to 
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respond when higher incentives are assigned (Singer et al., 1999). This practical 

consideration forms the basis of tailoring.  

The practices of tailoring are grounded in leverage-salience theory (Groves et al., 2000). 

The main idea behind this theory is sample heterogeneity in the attributes of a survey 

request relevant to the response decision. Those attributes include survey design features, 

such as the survey topic, survey mode, and incentive. Each survey design feature is 

commonly provided with leverage, salience, and valence, which can sway an indicvidual’s 

participation decision.  

Leverage refers to the intrinsic importance of a survey design feature to the decision. 

People assess a feature in a cognitive manner that places weight on how important that 

feature is. For any particular survey, individuals who value a feature (e.g., the topic), may 

volunteer to share their opinions. Others consider the topic to have negative leverage, yet 

may be lured into participating by incentives.  

Salience is the emphasis placed on the feature by survey practitioners during the survey 

request. In the above example, those to whom the topic is most important are swayed to 

participate, when the survey request brings up the topic more saliently, in comparison to 

other survey design features. Correspondingly, the survey request should underline 

incentives more prominently for those motivated by incentives.  

Valence pertains to being a part of leverage, and is positively or negatively related to the 

participation decision. Any feature with a positive valence weight can encourage 

individuals to consent to participate in an interview. Conversely, any negative valence 

feature encourages refusal.  

This theory stresses that survey practitioners play an important role in making survey 

design features salient to people. Additionally, the theory places great emphasis on 

converting refusals, that is, optimizing perceived survey costs, in an effort to reduce 

nonresponse (e.g., Groves & McGonagle, 2001). The perceived cost is the cost that 

undertaking any particular survey incurs, and relates closely to the risk of survey errors 

(Groves, 2005). An attempt to convert refusals in fact affects the people’s perception of 

the benefits and costs of the decision-making process. In a particular survey, the 
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likelihood that a sampled person who will become a respondent is called the response 

propensity (Lavrakas, 2008). Due to the heterogeneity discussed above, sampled persons 

differ in the likelihood of becoming a respondent. By implication, the propensity to 

respond is a function of the characteristics of an individual and the design features to 

assign.   

Therefore, heterogeneity is the crux of ASDs. Applying a homogenous survey design 

protocols to all individuals is evidently obsolete. As inspired by leverage-salience theory, 

protocols should instead be tailored and adapted to each respondent. Survey practitioners 

can use collected data to identify the most effective protocol⎯an explicit set of the 

sequence, dosage, and timing⎯that works best for different individuals at the onset of or 

during the course of data collection. The data used come from information available on the 

sampling frame and/or register, commercial auxiliary data, the growing ubiquity of data 

generated in the data collection process, and real-time data collection systems (Couper, 

1998). 

1.1.4 Variations 

ASD vs. Responsive Survey Design (RSD). A recent research topic considered is tailored 

survey designs to counteract survey errors, i.e., reduce nonresponse, which is the greatest 

focus in survey methodology literature. There are two terms that are rather similar in 

concept but different in application. Groves & Heeringa (2006) first introduced the term 

“responsive”, which was used afterward by, e.g., Couper & Wagner (2011); Wagner et al., 

(2020). This was followed by the term “adaptive”, employed by Wagner, (2008); 

Schouten et al., (2013). The main idea behind both ASDs and RSDs is to tailor design 

features to optimize the quality of the survey estimates and survey cost. Occasionally, 

RSDs are regarded as a special case of ASDs; see Bethlehem et al., (2011). However, the 

difference should be noted. RSDs reply on data collected during the course of fieldwork, 

called paradata, and response data. Measures are identified in the first phase, and based on 

these measures, changes are made to tailor design features to specific sample units. In 

contrast, ASDs are based on prior information available and specify potentially influential 

design features before the start of data collection.   



Introduction 

 9 

Dynamic vs. Static ASD. ASDs can be classified as static or dynamic designs (Schouten et 

al., 2013). Both allocate strategies (a set of design features) based on prior information on 

the interaction between sample units and the available treatments. Designs that employ 

auxiliary data available before the onset of fieldwork are termed static, while those that 

additionally consider paradata are termed dynamic. For static designs, the allocation of 

strategies is set before the start of fieldwork. For dynamic designs, the strategy set is 

known beforehand, but the allocation itself can be made only when paradata is available.  

ASD vs. post-survey adjustment. The well-established technique of post-survey adjustment 

is applied to adjust survey results to bring them into line with known population 

characteristics (Kalton & Flores-Cervantes, 2003). These adjustments attempt to reduce 

sampling variation, and to compensate for the effect of missing data due to an incomplete 

sampling frame or nonresponse. Weight is allocated to survey respondents who are the 

selected representatives of missed groups of individuals. The objectives of these 

adjustments overlap with those of ASDs. This implies that utilizing the given frame and 

administrative data in these adjustments is as effective as ASDs. ASDs have additional 

benefits of improving the quality of survey estimates (bias and variance) beyond post-

survey adjustment methods. See Särndal & Lundquist, (2014); Schouten et al., (2016); 

Zhang & Wagner, (2022) for theoretical and empirical evidence. ASD is a less expensive 

approach and is worth the effort. Nevertheless, if the objective is to obtain smaller biases 

and variances, ASD would be combined with post-survey adjustment, e.g., Särndal & 

Lundquist, (2019). 

1.2 The Main Objective: Improve Balanced or Representative  

Wagner, (2008) pioneered the use of adaptive designs in survey methodology as newly 

developed data collection methods to address the nonresponse problem. Tailoring 

strategies that vary in individuals can promote the propensity to respond. These 

approaches (ASDs) can be used simultaneously to increase the response rates, improve 

sample representativeness, and control data collection costs.  

As described in Table 1.1, the nonresponse suffered by most surveys results from sampled 

individuals not providing the required information. This lack of response has serious 

impacts on the quality of survey statistics, and contributes to bias in estimates. In 
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particular, nonresponse bias is a major concern in surveys with low response rates. Due to 

the potential high nonresponse rate, sources of bias in estimates must be identified in a 

nonresponse analysis. For this reason, the survey methodology literature mostly restricts 

quality-cost trade-off assessments to this issue. Some studies have additionally extended 

the objectives of ASD to measurement error (Calinescu et al., 2012; Calinescu & 

Schouten, 2016). 

As Chapter 1.1.2 noted, bias is the systematic difference between an estimate and the true 

value. Nonresponse bias of a response mean is defined as the product of the amount of 

nonresponse and of the difference between respondents and nonrespondents. This can be 

represented analogously as the ratio of the covariance between the survey variable and the 

response propensity, and the mean response propensity (Bethlehem, 1988). 

Nonresponse bias is unspecified for survey variables, as the true value of the population is 

unknown. In recent years, survey methodologists have proposed surrogates of 

nonresponse bias as an indirect way to analyze bias. These surrogates, called indicators, 

can ensure the quality of the data available to survey users and data collection managers. 

Moreover, such indicators serve as quality criteria to help make decisions and optimize the 

allocation of limited resources in ASD.  

The most broadly used quality indicator is the response rate (Biemer & Lyberg, 2003). 

This indicator acts at best as the upper limit of nonresponse bias. For a high response rate, 

it is not necessarily appropriate to jump to the conclusion that the estimates are accurate 

enough. Nonresponse bias can thereby be worsened in a setting in which one increases the 

response rate, while the difference between nonrespondents and respondents increases 

concurrently. This built-in risk would occur in the situation that a survey pursues a higher 

response rate. Focusing only on this indicator, which rarely addresses the nonresponse 

bias, is misleading. On its own, the response rate may be a poor indicator of nonresponse 

bias, as exemplified in the survey methodology literature (e.g., Groves & Peytcheva, 

2008; Schouten, 2004). 

To manage the nonresponse bias risk well, alternatives to the response rates are in demand 

(Wagner, 2012). Nonresponse indicators for data collection are split into those that 

provide overall insight into the consequence of the risk, and those that provide greater 



Introduction 

 11 

detail. One often-studied group of overall indicators are representative indicators: R-

indicators and the coefficient of variation of response propensities (CV for short). 

Schouten et al., (2009) defined that a response mechanism is called strongly 

representative with the respect to the sample in case the response probabilities are 

constant. A response mechanism is weakly representative with the respect to the sample 

for auxiliary variables if the corresponding response propensities are identical. Each is 

defined as a function of response propensity. The R-indicator measures the distance of 

response propensities to the response rate, estimated by a statistical model based on 

observed auxiliary variables. The statistical concept behind this transforms the standard 

deviation of subgroup response propensities to a 0-1 interval. This form serves as a 

measure of variation in subgroup response rates. Schouten et al., (2016) empirically show 

that low variability indicates a low risk of nonresponse bias and representativeness. One 

may call into question the performance of the R-indicator when monitoring and 

controlling the survey process. One potential limitation is that at low response rates, 

representativeness is probably overestimated in early data collection. Thus, the decision of 

when to modify methods or to end data collection becomes problematic. In contrast, CV in 

such scenarios is more attractive than R-indicator (Moore et al., 2018 & 2021). CV is the 

variation in subgroup response rates standardized by dividing by the mean response 

propensity; a low CV indicates representativeness. The magnitude of CV specifies the 

maximum standardized nonresponse bias of the survey variables (Schouten et al., 2011). 

CV and its counterpart, R-indicator, are informative regarding actual bias. These overall 

indicators, however, cannot identify subgroups to improve the quality. To be optimally 

informative, partial indicators, which are partial decompositions from overall indicators, 

measure propensity variation associated with auxiliary variables (De Heij et al., 2015; 

Schouten & Shlomo, 2017). They enable a fine-grained examination of which variables 

and/or which categories within each cause an absence of representativeness, by how 

much, whether the bias will persist after adjustment on variables, and what subgroups are 

targeted when modifying methods; for example, Nishimura et al., (2016); Sakshaug & 

Antoni, (2019). Additionally, partial indicators can be classified as unconditional or 

conditional forms. Unconditional indicators describe the between variance and measure 

deviation from representativeness for each auxiliary variable, while conditional indicators 
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correspond to the within variance and represent deviation from conditional 

representativeness. See Shlomo & Schouten, (2013) for the theoretical details.  

Overall indicators, together with partial decompositions, summarize bias and underpin the 

planning of, monitoring, and management of the data collection progress. Besides, they 

have proven useful for comparisons of the representativeness of waves in a survey, or of 

different surveys equipped with the same variables, see Schouten et al., (2012); Shlomo et 

al., (2012); Luiten & Schouten, (2013). The RISQ project (Representative Indicators for 

Survey Quality) has a well-developed functionality of translating auxiliary information to, 

computing and developing these quality indicators, exploring their characteristics, and 

exhibiting their use in fieldwork practice; see http://www.risq-project.eu/ for details.  

1.3 Effective ASDs 

ASDs include four key ingredients, each interacting with the others: auxiliary variables 

(create strata), design features or interventions (tailored or adapted to strata), quality or 

cost indicators (brace decisions), and optimization strategy (quality-cost trade-offs). Refer 

to Schouten et al., (2013) for an elaboration of each component. 

The effectiveness of ASDs is subject to bias and variance in the quality indicators, and 

clearly, they are in turn subject to inaccuracy in survey design parameters, such as 

response propensities. Survey practitioners typically pursue expected response 

propensities by means of generalized linear models. Such models are built on the 

accumulating data from the current data collection wave, or on the historic data from 

previous data collection waves. They are explained further below, and can be further 

developed into more advanced methods later. 

The current approach. The model coefficients are estimated based on data accumulated in 

the current wave; accordingly, predictions on response propensities are generated by 

applying the estimated coefficients to the remainder of this wave. In this wave, the 

fieldwork is still ongoing, resulting in a dataset that is not yest as comprehensive as those 

collected in previous phases. The incomplete data, in other words, are possibly under-

representative of incoming data that are collected later in the wave. For example, a 

subgroup that participates willingly early may be unwilling to share their opinions later, 

http://www.risq-project.eu/
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possibly because of losing interest in the survey topic. The research of Wagner & 

Hubbard, (2014) is evidence of the incomplete accumulated data, particularly at early time 

points, resulting in biased and volatile predictions of response propensities. Alternatively, 

such data reduces the prediction performance of categorical responses. Moreover, biased 

predictions or reduced performance can lead to inefficient decisions made via optimization 

strategies, such as allocation to nonresponse follow-up (Calinescu et al., 2013; Thompson 

& Kaputa, 2017). 

The historic approach. Historic data obtained from prior fieldwork can also be employed. 

Using historic data in propensity models has the potential to improve predictions. The 

rationale for this approach is that historic data may be more representative of a complete 

wave, as opposed to the current approach of using accumulating data. Historic data are 

used to estimate expectations about model coefficients and predictions in a similar way to 

the current approach (See Schouten et al., 2013 & 2017). This approach is premised on the 

assumption that data from prior implementations and those from the current 

implementation comply with a similar data-generating process. This assumption is clearly 

contrary to survey circumstances in which the implementations are rather dissimilar over 

time. This difference may be caused by changes in design features or a time lag between 

the current and the last implementation.  

Using either historic or current data alone for model-based predictions has limitations 

regarding accuracy and reliability, as either approach generates point estimates. 

Furthermore, as time passes, relying solely on historic data can lead to decreased 

relevance to predictions, as evidenced by the decline in response rates over the years. 

Researchers have been investigating new approaches to compensate for each approach’s 

deficiencies.  

The Bayesian approach. Historic and current data are adopted both in the prediction 

process. Prior beliefs concerning response propensities, rather than points estimates, are 

generated from historic data. These priors are updated to posteriors using current data. The 

resulting posteriors serve as priors for the next wave. As current data accumulate, the 

updating process is repeated; see Schouten et al., (2018) for a systematic study of the use 

of Bayesian methods for the prediction of response and cost parameters. The simulation 

results support the findings that combining historic and current data can improve 
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predictions. Emerging empirical evidence supports this discovery, when using other 

sources of historic data, such as published estimates (West et al., 2021). The Bayesian 

approach fully exploits the characteristics of historic data being representative and current 

data being informative. The resulting predictions are provided with a range of values in an 

effort to specify a particular probability of true but unknown values falling within this 

range.  

The inherent replication, together with the Bayesian method, paves the way for 

consolidating the performance of ASD over time. Bayesian methods provide accurate and 

reliable predictions, formulating the basis of reliable decisions in time. The risk of 

nonresponse bias, i.e., representative indictors and their decompositions, can be 

monitored. Subgroups or individuals who have a low propensity to respond, are identified 

in the early phase of data collection. An intervention such as providing incentives or using 

a costly interview mode is thus required in response to recruit nonresponse. For those who 

do not need design changes, a different intervention may be called for, such as stopping 

data collection from the perspective of cost efficiency. Such decisions can be made based 

on quality metrics of nonresponse indicators, such as the root mean square error of the 

predictions versus that of the observations.  

1.4 Contribution and outline of this dissertation  

Predictions may be improved by incorporating additional sources of historic information. 

However, the effects of considering the different sources of historic information such as 

data collection expert, and the timeliness of historic data on predictions, are unknown. 

This raises the main research question considered in this dissertation: 

How much improvement in ASD performance can be achieved through embedding expert 

knowledge and historic survey data? 

Central in this dissertation is to reduce nonresponse error and improve the effectiveness of 

ASDs by making precise and timely predictions of response propensities. Adaptation is 

strongly sensitive to inaccurate response propensity. To take uncertainty into account, a 

novel methodology introduces a predictive model for response propensity parameters. 

This applies to infrequent or redesign surveys (see Chapter 2), and long-running surveys 
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(see Chapters 3 and 4), by leveraging historic data in a nuanced way. To anticipate the 

“state-of-the-art” interventions for the upcoming data collection round, the limited cost-

prohibitive resources are optimally allocated across strata (see Chapter 4). An exploration 

is executed into the sensitivity of ASD performance to: (1) the pooling methods of experts 

and the choices of relevance (see Chapter 2), (2) the length of data collection (see 

Chapters 3 and 4), and (3) some specific budget levels (see Chapter 4). 

Evaluations are made based primarily on data from the Energy Survey (Hernieuwbare 

energie in Dutch) and European Union Statistics on Income and Living Conditions Survey 

(SILC) in Chapter 2, and the Dutch Health Survey (GEZO in Dutch) in Chapters 3 and 4, 

from Statistics Netherlands.  

A succinct summary of these three chapters, along with the associated research questions 

derived from the main research question, is provided below. 

Chapter 2 addresses the need for a new method for accurate response propensity 

predictions for specific types of cross-sectional surveys, be they conducted infrequently or 

new due to redesigns. This chapter was inspired by the adoption of a Bayesian analysis 

when making predictions, as discussed by Wagner & Hubbard, (2014); Schouten et al., 

(2018), such that the bias of predictions made by relying on only historic data, can be 

mitigated. The following research question is addressed: 

• How can we structure prior elicitation from historic data and expert knowledge? 

We elicit expert knowledge from data collection staff, through a self-response 

questionnaire designed to gather predictions on the similarity between relevant past 

surveys and a new survey regarding expected response propensities, and on sample sizes 

of historic survey data sets. Historic data sets and expert respondent data translate into 

informative priors of response propensities for the new survey. Priors are updated to 

posteriors that serves as priors for the next round, based on data accumulated. We assess 

the performance of expert elicitation, against the worst-case scenario that has no access to 

historic surveys; thus, non-informative priors are set. This chapter considers quality 

metrics for nonresponse, providing ongoing feedback.  

Chapter 3 studies time change in response propensities of Computer-Assisted-Web-

Interview mode (CAWI) in the Dutch Health Survey (GEZO). In Chapter 2, we develop 
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an estimation strategy for response propensities in a short-term data collection climate, 

where those parameters are stable. This chapter proceeds to a long-term data collection 

climate to analyze the time-dependent variation in predictions. This approach starts from 

the fact that while survey response rates have been on the decline many years, research on 

the cause-and-effect relations between factors and responses is limited to date. Those 

changes call into question the tenuous future of adapting survey design. In this way, the 

following four research questions are addressed: 

• What time-series components contribute most to variation in response 

propensities? 

• What level of response propensity prediction accuracy can be achieved for the next 

upcoming time period? 

• How does prediction accuracy vary over population strata? 

• How does prediction accuracy depend on the length of the historic survey time 

series? 

We disentangle the overall variation in response rates, and break it down into the essential 

constituents through multilevel models. The models are proposed in a Bayesian manner. 

In this way, we manage to make precise and timely predictions by learning from historic 

time series and updating outdated inferences, and consequently, to further reduce the risk 

of nonresponse error.  

Chapter 4 focuses on ASD performance when optimizing cost-effective decisions in 

sequential mixed-mode surveys. In Chapter 3, we consider time change in response 

propensities regarding predictions for single-mode data collection. This chapter takes a 

further step by simultaneously addressing the timeliness of solid decisions, and the 

accuracy of each phase of prediction, to fill this gap in previous study by addressing the 

following three research questions: 

• How can time-series models be constructed to improve response propensity 

prediction accuracy in a sequential mixed-mode design? 

• How sensitive is ASD performance to the specific budget level? 

• How does ASD performance depend on the length of historic data? 

We adjust the models in Chapter 3 to suit data collected from mixed-mode survey designs. 

The developed models additionally allow for time-dependent variation in conditional 
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response propensities, and for between-mode correlations in propensities. By means of 

these predictions as input, we propose an allocation model for effective ASD. Then, a 

simple optimization setting is analyzed, where the availability of the interview mode, to be 

allocated to population strata, is constrained by a threshold on cost overrun. The objective 

is to minimize the expected nonresponse bias by recruiting a fraction of non-responders. 

The resulting problem is nonconvex and nonlinear. We show that the assignment task for 

ASD can be cast as a mathematical programming problem to explicitly account for time-

dependent variation. Consequently, the solution is obtained by a nonlinear programming 

solver. We subsequently explore the sensitivity of the optimized performance to the 

budget level and the length of historic data sets. 

Chapter 5 summarizes the outcomes from the analysis conducted in Chapters 2-4, and 

discusses the strengths and weaknesses of each methodology considered in this study. 

Furthermore, suggestions and recommendations are provided for future research, and 

implications for actual survey practice are discussed. I present my personal thoughts on 

the future of adaptive survey designs at the end of this chapter.  

This dissertation advances on the methodology behind effective ASD, providing the new 

propensity models to use historic data sets in a nuanced manner for precise and timely 

predictions, and presenting a heuristic approach to the timeliness and effectiveness of 

interventions during data collection. I believe that the methodology proposed here lays the 

groundwork for the future challenges despite the empirical studies being focused on Dutch 

surveys.  
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Abstract 

Data collection staff involved in sampling designs, monitoring and analysis of surveys 

often have a good sense of the response rate that can be expected in a survey, even when 

this survey is new or done at a relatively low frequency. They make expectations of 

response rates, and, subsequently, costs on an almost continuous basis. Rarely, however, 

are these expectations formally structured. Furthermore, the expectations usually are point 

estimates without any assessment of precision or uncertainty. 

 In recent years, the interest in adaptive survey designs has increased. These designs lean 

heavily on accurate estimates of response rates and costs. In order to account for 

inaccurate estimates, a Bayesian analysis of survey design parameters is very sensible. 

The combination of strong intrinsic knowledge of data collection staff and a Bayesian 

analysis is a natural next step. In this chapter, prior elicitation is developed for design 

parameters with the help of data collection staff. The elicitation is applied to two case 

studies in which surveys underwent a major redesign and direct historic survey data was 

unavailable. 

Keywords: Nonresponse bias; Bayesian; response propensity; expert elicitation 

2.1 Introduction 

We propose a strategy to elicit prior distributions from survey data collection staff for key 

survey design parameters. We focus on expert prior elicitation for new surveys, with 

relatively little historic data, but our approach is also applicable to repeated surveys. We 

do so with an adaptation of survey design to relevant population subgroups in mind.  

In monitoring survey design (e.g., Kreuter, 2013), and adapting survey design (e.g., 

Schouten et al., 2017), design parameters, such as contact propensities, participation 

propensities and costs, are crucial input to decision making for data collection staff. Such 

parameters need to be estimated or predicted at a subgroup/stratum level and, therefore, 

have a certain bias and imprecision. When evaluating survey design performance, it is 

important that uncertainty of these parameter estimates can be accounted for (see Burger 
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et al., 2017) in order to avoid false conclusions. This importance is even greater when 

starting to adapt survey design. 

In repeated surveys, the natural strategy is to estimate standard errors of parameters using 

recent historic survey data, but it is unclear how to deal with uncertainty in the setting of 

new or low frequency surveys. In such surveys there is no direct historic survey data. A 

natural strategy then is to adopt a Bayesian analysis with expert prior elicitation, see 

Gelman et al., (2013). The elicitation is included to build informative prior distributions of 

design parameters, incorporating the knowledge from similar historic surveys and/or 

literature related to the new survey, and to update these during and after data collection. 

Schouten et al., (2018) discuss and evaluate the construction of a general Bayesian 

analysis for response and cost. They show that misspecified priors may lead to weaker 

performance than non-informative priors, which include no prior knowledge. Prior 

elicitation is, therefore, an influential step. For repeated surveys that are conducted at a 

relatively high frequency, say every year, quarter or month, prior elicitation is 

straightforward, unless (major) design changes are introduced, such as a change of survey 

modes. For redesigned surveys or for new surveys, prior elicitation can be complex, 

because available historic survey data differs on one or more survey characteristics. Data 

collection staff frequently deal with this complexity and have found tactics to extract 

information from the historic survey data. We attempt to structure these tactics. 

Quantification of the uncertainty by means of elicitation by experts who have access to 

historic datasets, is not novel. It has been the subject of research in biometrics and medical 

statistics, see O’Hagan et al., (2006). However, to date, application is scarce in the field of 

survey monitoring and analysis. Two recent examples are Coffey et al., (2020) and West 

et al., (2021). Coffey et al. (2020) invited data collection managers as experts and West et 

al., (2021) reported studies in the literature. 

Expert prior elicitation depends heavily on the statistical skills of the experts. In 

biometrics and medical studies, experts are often viewed as relatively less trained in 

statistics (Gosling et al., 2007; Oakley & O’Hagan, 2007). The elicitation then focuses 

strongly on transforming properties of prior distributions, such as medians, means, 

quantiles and variances, to questions that can be answered by experts. Oakley & O’Hagan, 
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(2007) introduce an additional step in prior elicitation in which a prior is set on the prior 

itself by means of Gaussian processes and updated by the summaries provided by the 

experts. In settings where experts have no training at all in statistics, prior elicitation may 

even resort to game-like approaches that faciliate experts to express their beliefs (O’Hagan 

et al., 2006; Veen et al., 2017). These approaches also tend to rate the experts themselves 

on their amount of expertise and assign and estimate weights to each expert. 

Survey data collection staff involved in response and cost predictions are usually trained 

statisticians with a good sense of probability distributions. This means that expert 

elicitation can, and must, be more advanced. In fact, in our experience, experts, as a 

standard practice, search for relevant historic survey data sets and estimate survey design 

parameters directly from these data. This means elicitation translates to collecting 

information on sample sizes of historic survey data sets and on similarity between these 

past surveys and the new survey. We must stress, however, that also data collection 

experts may over or underestimate importance of certain survey design features, as argued 

for example in Brownstein et al., (2019). Here, we do not distinguish between the various 

skills that data collection experts need to possess, which is a topic for further research. 

To include such expert knowledge, power priors are an obvious option. Power priors were 

introduced by Ibrahim & Chen, (2000) and further discussed in Ibrahim et al., (2015). 

Historic datasets 𝐷𝑘, labelled 𝑘 = 1,2,… , 𝐾, from previous studies are assigned a scalar 

quantity 𝛾𝑘 representing their similarity. In the derivation of the posterior, the scalar 

quantities are included as powers to the data likelihoods. Obviously, the prior elicitation 

then amounts to a selection of data sets and the choice of the associated powers. 

Rietbergen et al., (2011) discuss how to elicit 𝛾𝑘. In their approach, the experts rank the 

historic studies based on their relevance and provide a prescribed fixed weight per study 

based on heterogeneity between study characteristics. In the survey context, study 

characteristics may reflect survey design features such as the target population, the survey 

topics, and the survey modes. Data collection staff have a good sense of the most 

influential features and already select historic surveys based on these features. However, 

there usually is not a structured approach and two experts may end up with different 

predictions. 
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To structure prior elicitation, we perform five steps. The first is to select design features 

for rating similarity of surveys. The second is to assign importance weights to these 

features. The third is that for each historic survey the design features are scored on their 

similarity to the new survey on each of the features. The fourth is to weight the scores of 

each historic survey to the 𝛾𝑘 in the power prior. The last step is to apply the informative 

priors to the new survey and update them during data collection. 

Adaptive survey designs tend to focus on nonresponse bias reduction and ignore other 

errors, such as measurement error. Also, we will restrict ourselves to nonresponse bias. 

Nonresponse bias cannot be measured directly but proxy indicators have been developed 

that signal an increased risk of bias. The most studied are representativeness indicators 

(see Schouten et al., 2009), such as R-indicators and coefficients of variation of response 

propensities (CV). These are all functions of response propensities.  

In this chapter, we evaluate the performance of the resulting priors against non-

informative priors. To do so, we focus on relevant quality metrics for nonresponse that are 

also used in making adaptive survey design decisions. We focus on R-indicators and CV 

that measure variation in response propensities across relevant strata. To validate if 

making early decisions is profitable, we employ the root mean squared error (RMSE) that 

measures the accuracy of estimated indicators. Doing so, we do not directly look at gains 

in survey budgets, but it can be argued that improved accuracy early on in data collection 

may lead to smaller samples and/or shorter fieldwork periods. 

To evaluate performance, we conduct an empirical evaluation study. Based on two case 

studies, the 2016 Dutch EU-SILC and the 2018 Dutch Energy follow-up survey, we 

empirically assess the strength of the expert knowledge. The priors for the two studies 

have been elicited by expert staff from the data collection department of Statistics 

Netherlands.  

The remainder of this chapter is organized as follows. In Chapter 2.2, we describe the 

information that we elicit from experts and formulate the power priors that include expert 

judgments. In Chapter 2.3, we motivate our strategy to validate performance of the power 

priors for the quality indicators against noninformative priors. In Chapter 2.4, we 

empirically evaluate the performance for the two case studies. We close with a brief 
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discussion in Chapter 2.5. R code is available for the expert elicitation and posterior 

derivation steps at GitHub. 

2.2 Methodology 

In this chapter, the methodology to perform a Bayesian analysis is explained and prior 

elicitation is prepared. The Bayesian analysis is focused on response propensities in 

population strata. Two overall and one partial quality indicators: the R-indicator, the 

coefficient of variation of response propensities, and the partial coefficient of variation, 

are the main targets of the analysis. 

2.2.1 Notation 

For the design of a survey, response probabilities are primary input parameters for making 

design decisions about what sample units to assign to what treatments. Response rates, 

nonresponse bias and costs are all a function of response probabilities, so that they play a 

dominant role in accuracy-cost trade-offs. In this chapter, a response probability is defined 

as the variation in the 0-1 response outcome across replications of a survey that results 

from circumstances that cannot be controlled (e.g., weather, mood of the respondent) or 

that a survey institute is not attempting to control (e.g., mood of the interviewer, exact 

timing of call or visit). Obviously, individual response probabilities are unknown and need 

to be replaced by estimated probabilities given a model with a selection of available 

covariates for the whole sample. These are termed response propensities, and they depend 

on the model and covariates in the model. 

In this chapter, in order to simplify both derivations and prior elicitation, the population 

and its sample are divided into disjoint groups, termed a stratification, and denoted by 𝑮 =

{1,2,… ,𝐺}. 𝜌𝑔 denotes the response propensity for the stratum 𝑔, where 𝑔 ∈ 𝑮 and 𝜌𝑔 ∈

(0,1). Since our ultimate goal is adaptation and adaptive survey design is essentially 

adjustment by design, the choice of strata can be made in a similar fashion to 

poststratification nonresponse adjustment (Bethlehem et al., 2011).  

Data collection staff select 𝐾 ≥ 1 historic data sets with respect to a new survey. 𝑫𝑔
0 =

{𝐷1,𝑔
0 , 𝐷2,𝑔

0 , … , 𝐷𝑘,𝑔
0 , … , 𝐷𝐾,𝑔

0 } represents the sufficient statistics in the historic data sets for 

https://github.com/ShiyaWu/ElicitExpertPrior


Data Collection Expert Prior Elicitation 

 25 

stratum 𝑔. The superscript ‘0’ in 𝑫𝑔
0 denotes that it refers to baseline information. The 

element 𝐷𝑘,𝑔
0  consists of two statistics, the number of observed respondents 𝑟𝑘,𝑔

0  and the 

number of sample units 𝑛𝑘,𝑔
0  for stratum 𝑔 in the 𝑘th historic survey. Hence, 𝐷𝑘,𝑔

0 =

(𝑛𝑘,𝑔
0 , 𝑟𝑘,𝑔

0 ). We assume throughout that the stratum classification of sample units itself is 

not subject to error and is the same across historic surveys.  

During the new survey data collection, additional observations come in, which again 

consist of numbers of sample units and numbers of respondents in each stratum. Let the 

observed data at wave 𝑡 be 𝐷𝑔
𝑡 = (𝑛𝑔

𝑡 , 𝑟𝑔
𝑡), where 𝑡 ∈ 𝑻 = [1,2,…𝑇]. In this chapter, a 

wave is a new sample that receives the same data collection strategy, i.e., we consider 

final response propensities and do not look at intermediate response propensities during 

data collection.  

In the Bayesian context, the response propensities 𝜌𝑔 are viewed as random variables. At 

the start of survey data collection, a prior distribution is derived from the 𝐾 historic data 

sets. This prior distribution is then updated with the accumulating wave-level data from 

the new survey.  

Each historic survey data set will be assigned a scalar parameter between 0 and 1 

indicating its similarity to the survey of interest. Let the similarity parameters be denoted 

as 𝜸 = (𝛾1 , … , 𝛾𝐾), where 𝛾𝑘 is the parameter corresponding to historic survey 𝑘. When 

𝛾𝑘 = 0, then the historic survey is deemed completely different and of no value to the new 

survey. When 𝛾𝑘 = 1, then the historic survey is deemed completely similar and of 

optimal value to the new survey.  

2.2.2 Prior and posterior distributions 

Let us assume for now that similarity parameters 𝛾𝑘 are available. In Chapter 2.3, we 

explain how to construct them. This chapter shows how prior distributions are derived and 

how they are updated to posterior distributions. 

We start by looking at the likelihood of the response propensities, given the data (sample 

size and responses). When a sample of size 𝑛𝑔 is drawn from stratum 𝑔 and 𝑟𝑔 sample 
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units respond, then 𝑟𝑔 follows a Binomial distribution, 𝑟𝑔~𝐵𝑖𝑛(𝑛𝑔, 𝜌𝑔). For historic data 

set 𝑘, one obtains the likelihood 

 
𝐿(𝜌𝑔|𝐷𝑘,𝑔

0 ) ∝ 𝜌𝑔
𝑟𝑘,𝑔
0

(1 − 𝜌𝑔)
𝑛𝑘,𝑔
0 −𝑟𝑘,𝑔

0

,  (2.1) 

and for the K combined data sets, the likelihood is 

 
𝐿(𝜌𝑔|𝑫𝑔

0) = ∏ 𝐿(𝜌𝑔|𝐷𝑘,𝑔
0 )𝐾

𝑘=1 ∝ ∏ 𝜌𝑔
𝑟𝑘,𝑔
0

(1 − 𝜌𝑔)
𝑛𝑘,𝑔
0 −𝑟𝑘,𝑔

0
𝐾
𝑘=1 .  (2.2) 

Next, we choose a prior distribution. A practical choice is the Beta distribution, because it 

is the conjugate prior for 𝜌𝑔 under the binomial distribution, i.e., when the prior for 𝜌𝑔 is 

Beta, so is the posterior.  

In the complete absence of historic information, the prior distribution might be non-

informative. A non-informative prior for a response propensity 𝜌𝑔 is the uniform 

distribution on the interval [0,1], i.e., all values of the propensity are considered equally 

likely. The uniform distribution is a special case of the beta distribution when the shape 

parameters are equal to 1, i.e., a 𝐵𝑒𝑡𝑎(1,1) distribution. 

With the availability of the historic survey data, (2.2) can be used to formulate the 

informative 𝐵𝑒𝑡𝑎(𝑎0, 𝑏0) prior. It has the following shape parameters  

 𝑎0 = (∑ 𝑟𝑘,𝑔
0𝐾

𝑘=1 ) + 1,  (2.3) 

 𝑏0 = (∑ 𝑛𝑘,𝑔
0 − 𝑟𝑘,𝑔

0𝐾
𝑘=1 ) + 1.  (2.4) 

To come to (2.3) and (2.4), we assume that all historic surveys are perfectly similar to the 

new survey. This is not true in general and the impact of the data set likelihoods must be 

altered using the similarity parameter 𝛾𝑘 as the power. This conforms to the approach 

taken by Ibrahim & Chen, (2000). The power prior of the new survey raises the Binomial 

likelihood of historic data k in (2.1) to the powers represented by these similarity 

parameters, 

 
𝜋(𝜌𝑔|𝐷𝑘,𝑔

0 , 𝛾𝑘) ∝ 𝜌𝑔
𝛾𝑘𝑟𝑘,𝑔

0

(1 − 𝜌𝑔)
𝛾𝑘(𝑛𝑘,𝑔

0 −𝑟𝑘,𝑔
0 )
.  (2.5) 

Here, we let the powers be equal for all strata and, therefore, do not add a subscript 𝑔. 

However, our method could be extended to stratum-dependent powers when historic 
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surveys apply different strategies to different strata. The power 𝛾𝑘  reduces the strength of 

the 𝑘th historic data. When the power equals zero, then the power prior for the particular 

survey is non-informative. When the power is one, then the historic surveys are seen as 

copies of the current survey. 

For the K combined historic survey data sets one obtains 

 
𝜋(𝜌𝑔|𝑫𝑔

0 , 𝛾𝑘) ∝ 𝜌𝑔
∑ 𝛾𝑘𝑟𝑘,𝑔

0
𝑘

(1 − 𝜌𝑔)
∑ 𝛾𝑘(𝑛𝑘,𝑔

0 −𝑟𝑘,𝑔
0 )𝑘
.  (2.6) 

The Beta posterior distribution parameters change along with (2.6) to 

 𝑎0 = (∑ 𝛾𝑘𝑟𝑘,𝑔
0𝐾

𝑘=1 )  + 1,  (2.7) 

 𝑏0 = ∑ 𝛾𝑘(𝑛𝑘,𝑔
0 − 𝑟𝑘,,𝑔

0 )𝐾
𝑘=1 + 1.  (2.8) 

When conducting the new survey, the Beta distribution shape parameters need to be 

updated with incoming data. After the first wave of the new survey, at time 𝑡 = 1, the 

prior 𝐵𝑒𝑡𝑎(𝑎0, 𝑏0) is updated using the observed data 𝐷𝑔
1 in this time period to 

 
𝜋(𝜌𝑔|𝐷𝑔

1 , 𝑫𝑔
0 , 𝜸) ∝ 𝜌𝑔

∑ 𝛾𝑘𝑟𝑘,𝑔
0

𝑘 +𝑟𝑔
1

(1 − 𝜌𝑔)
∑ 𝛾𝑘(𝑛𝑘,𝑔

0 −𝑟𝑘,𝑔
0 )𝑘 +(𝑛𝑔

1−𝑟𝑔
1)
.  

 

(2.9) 

Eq. (2.9) is repeated on a rolling basis, i.e., the posterior from the previous wave is used as 

the prior in the next wave to update the inference on 𝜌𝑔. In general, after 𝑡 waves, the 

posterior becomes 

 
𝜋(𝜌𝑔|𝐷𝑔

1 , … , 𝐷𝑔
𝑡 , 𝑫𝑔

0 , 𝜸) ∝ 𝜌𝑔
∑ 𝛾𝑘𝑟𝑘,𝑔

0
𝑘 +∑ 𝑟𝑔

𝑠𝑡
𝑠=1

(1 − 𝜌𝑔)
∑ 𝛾𝑘(𝑛𝑘,𝑔

0 −𝑟𝑘,𝑔
0 )𝑘 +∑ (𝑛𝑔

𝑠−𝑟𝑔
𝑠)𝑡

𝑠=1 . (2.10) 

From (2.10), it can be deduced that in wave 𝑡, the posterior is a 𝐵𝑒𝑡𝑎(𝑎𝑡 , 𝑏𝑡) distribution, 

with 

 𝑎𝑡 = ∑ 𝛾𝑘𝑟𝑘,𝑔
0

𝑘 +∑ 𝑟𝑔
𝑤𝑡

𝑤=1 + 1,  (2.11) 

 𝑏𝑡 = ∑ 𝛾𝑘(𝑛𝑘,𝑔
0 − 𝑟𝑘,𝑔

0 )𝑘 +∑ (𝑛𝑔
𝑤 − 𝑟𝑔

𝑤)𝑡
𝑤=1 + 1.  (2.12) 

Thus far, a stratification of the population was assumed, i.e., a saturated model for 

estimating response probabilities. As a result, the updating procedure involves simple 
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computations, which makes the procedure computationally very attractive. However, the 

number of relevant covariates may be large and a non-saturated model with no or only part 

of the interactions may be preferred (see Schouten et al., 2018 for a Bayesian analysis with 

such models). In such a setting, the power prior approach may still be used to weight the 

impact of a historic data set, but the Beta distribution no longer is a conjugate prior-

posterior. As a consequence, updating the prior becomes more complex and can only be 

done using numerical methods such as MCMC. 

2.2.3 Nonresponse quality metrics 

In order to validate that prior information from historic surveys and expert judgments add 

value, posterior distributions of quality indicators are monitored in the Bayesian analysis.  

In monitoring and adapting survey design the interest is in response propensity variation, 

where the major objective is to reduce nonresponse bias. For that reason, underrepresented 

sample strata may be allocated more effort, while overrepresented strata may be allocated 

less effort. As nonresponse bias cannot be measured directly, the natural approach is to 

approximate the bias via some proxy indicators. Schouten et al., (2009) proposed to use 

the R-indicator (R) to measure the similarity between the response and a survey sample 

for a fixed set of auxiliary variables. A related measure is the coefficient of variation (CV) 

that also includes the response rate and has a direct relation to the bias of response means. 

We consider both metrics and also look at decompositions of the metrics through so-called 

partial R-indicator and partial CV. These indicators are used in nonresponse monitoring 

and adaptive survey designs (Schouten & Shlomo, 2017; Moore et al., 2018; Schouten et 

al., 2018). R code for the computation of (partial) CVs is available at www.risq-project.eu. 

Let 𝑞𝑔 be the stratum population distribution for a certain stratum 𝑔, 𝑔 = 1,2,… , 𝐺. For 

the sake of simplicity, we assume they are constant over all data collection waves of the 

new survey and ∑ 𝑞𝑔𝑔 = 1. We repeat that a wave in this chapter is a new sample that 

receives the same data collection strategy. The indicator of representativeness, or R-

indicator, is then defined as  

                         
𝑅(�̂�) = 1 − 2√∑ 𝑞𝑔(�̂�𝑔 − �̂̅�)

2𝐺
𝑔=1 ,  (2.13) 

http://www.risq-project.eu/
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where �̂�𝑔 is the response propensity in stratum 𝑔, and �̂̅� is overall response rate explicit 

about the level of the population response propensity. Response is fully representative 

when (2.13) takes the value 1 and completely non-representative at the value 0. Lower 

standard deviation of response propensities means more representative response.  

The overall coefficient of variation of response propensities, CV, is  

 

𝐶𝑉(�̂�) =
√∑ 𝑞𝑔(�̂�𝑔−�̂̅�)

2
  𝐺

𝑔=1

�̂̅�
.  (2.14) 

The overall CV is the response propensity standard deviation divided by �̂̅� defined in 

(2.13). It is an approximation to the nonresponse bias of response means. The larger the 

value of (2.14), the larger the risk of nonresponse bias. 

The third indicator is the category-level partial CVu which tightens the connection to the 

ultimate goal of adaptive survey design. For the sake of brevity, we do not look at partial 

R-indicators here. It measures the impact of single categories, in our case the population 

strata, on the overall CV. It is defined as 

 
𝐶𝑉𝑢(�̂�𝑔) =

√𝑞𝑔(�̂�𝑔−�̂̅�)

�̂̅�
.  (2.15) 

(2.15) can be negative and positive, implying the specific stratum is underrepresented or 

overrepresented, respectively. The more negative (2.15) is, the stronger the negative 

impact on representativeness of the stratum and the more effort the stratum needs. Since 

there are as many values for (2.15) as there are strata, we focus on the strata that need 

effort the most, i.e., that have the largest negative values. Let 𝑏(𝑤) be the stratum in wave 

𝑤 that has the largest negative value of (2.15), i.e., 𝐶𝑉𝑢(�̂�𝑏(𝑤)) ≤ 𝐶𝑉𝑢(�̂�𝑔), ∀𝑔. Learning 

early on in data collection what strata need extra effort is crucial for implementation of 

adaptive survey designs. 

Under the Beta distribution priors for the response propensities, the priors (and posteriors) 

of the quality indicators have no closed forms; they are complex functions of response 

propensities. The priors (posteriors) can, however, be approximated by drawing a large 

number of samples from the priors (posteriors) of stratum response propensities. Given the 
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advantage of our method, the conjugate distributions allow us to efficiently and rapidly 

obtain numerical iterations in Chapter 2.4.4. 

2.3 Expert elicitation 

In this chapter, the derivation of the survey similarity scores is presented. First, a general 

discussion is given on data collection staff as experts. Next, survey features are proposed 

that facilitate scoring of the similarity of two surveys. Finally, the weighting of the survey 

features is discussed. 

2.3.1 Data collection staff as experts 

The approach taken in this chapter closely resembles Rietbergen et al., (2011). Survey 

data collection staff assist prior elicitation in four ways: 

1. The selection of the set of historic surveys included in the analysis 

2. The construction of the list of design features on which surveys are compared to the 

new survey 

3. The choice of weights for the features to construct an overall score 

4. The actual scoring of the features for the selected historic surveys 

Contributions 1 and 4 are conducted for each survey, while contributions 2 and 3 are 

performed only once and are used for all surveys. Contributions 2 and 3 may also be used 

by other institutions. 

In daily practice, data collection experts select historic survey data sets in order to predict 

response rates and costs. This selection is to some extent subjective and usually not based 

on a fixed set of criteria. It must be assumed, however, that all of the selected historic 

surveys will show at least some similarity to the new survey. In theory, one could start 

from scratch, select all (recent) historic surveys undertaken by the survey organization and 

score all these surveys. In practice, this would imply a very heavy workload on data 

collection experts. For this reason, in the proposed methodology it is assumed that there is 

a pre-selection of historic surveys. 
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The other three contributions concern design features. A survey design has a number of 

features such as modes and topics. The more similar design features of two surveys are, 

the more likely it is that response rates will be similar. In Chapter 2.3.2, we describe the 

features that were chosen in close collaboration with data collection staff. For each 

historic survey, the similarity on each feature must be scored. The procedure to do this is 

explained in Chapter 2.3.3. In Chapter 2.3.4, the importance of the features is weighed, 

again after consulting data collection staff. 

Our approach to elicit prior distributions follows how data collection staff work in 

practice, but it does not exactly mimic how they work. Due to time and workload 

constraints, staff often perform predictions individually. Also, their predictions usually 

concern point estimates only and not uncertainty of these estimates. We follow daily 

practice by involving multiple data collection experts and identifying a number of fixed 

steps that they can perform. These steps take less time than daily practice and are greatly 

appreciated by data collection staff at Statistics Netherlands. 

2.3.2 Features for deriving similarity between surveys 

In collaboration with data collection staff at Statistics Netherlands, the following eight 

features are selected as essential when comparing survey designs: 

1. Topics/themes of the survey: The more similar the topics of the survey to the new 

survey, the more similar participation rates should be; 

2. Target population: Response rates depend on characteristics of persons and 

households. If target populations differ, then response rates will be different due 

to the different composition of characteristics. If the target population of the new 

survey is a subset of the historic survey, then in some cases the subset can be 

selected and target populations can be made the same. If the historic survey 

target population is itself a subset, then such harmonization is not possible; 

3. Time elapsed since last fieldwork: Response rates change in time and the older 

the historic data, the more change should be expected; 

4. Unit of observation: Two observation units are distinguished, persons and 

households. When the unit is different, then response rates will differ; 
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5. Mode strategy (including contact and reminder): Survey modes and the order in 

which they are presented to respondents is an influential design feature in both 

contact and participation rates. The more similar the set of modes and the order 

in which they are offered, the more similar response rates will be; 

6. Incentive strategy: The type and amount of incentive are influential for 

participation rates. The more similar the amount, the more similar participation 

rates are expected to be; 

7. Respondent effort: Respondent burden affects participation rates, especially 

when the burden is salient to sample units. However, when it is not salient at the 

start, break-off rates are higher for longer surveys; 

8. Bureau effect relative to Statistics Netherlands: All else being equal, response 

rates do vary between survey institutions. This so-called bureau effect is, 

therefore, included as a design feature. 

One important remark is in place: Response propensities are needed at the level of a pre-

specified set of population strata. In order to form the strata, the sample needs to be 

enriched with auxiliary variables that define the strata. Within the same survey institution, 

sometimes the same auxiliary variables can be linked or the same population tables can be 

derived. However, if some or all auxiliary variables or tables are missing, then stratum 

response propensities cannot be estimated. If variables are missing, then a potential 

solution is to choose constant response propensities for the categories of these variables in 

the prior distribution. In this chapter, it is assumed that historic survey data sets have no 

missing auxiliary variables. 

The list of design features may be altered, if deemed necessary. One may, for example, add 

the timing and number of calls or visits to sampled persons/households. We omitted some 

of the obvious features here, because they are fixed in survey designs at Statistics 

Netherlands. 

2.3.3 Scoring the survey features 

Operationalization of the similarity between two surveys in terms of a [0,1] score is not 

straightforward for most of the eight features. The easiest to score may be feature three, 

Time elapsed, as this is quantitative. However, rather than making the operationalization 
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of scores as objective as possible, which is deemed very hard, it was decided to ask three 

experts independently and request them to reach a consensus. We constructed similarity 

parameters 𝛾𝑘 ∈ [0,1] for each historic survey as follows: 

a. Ask three experts to independently derive similarity scores for each of the eight 

features.  

b. Ask the three experts to meet and reach a consensus on each of the eight features. 

Let 𝛾𝑘,𝑙 be the consensus score for survey 𝑘 for feature 𝑙. 

c. Construct the overall score by weighting the eight features using weights 𝑤𝑙 , 

with ∑ 𝑤𝑙
8
𝑙=1 = 1. The survey score becomes 𝛾𝑘 = ∑ 𝑤𝑙𝛾𝑘,𝑙

8
𝑙=1 . 

We stress that it is the scoring of the similarity between historic surveys and a new survey 

that balances the information contained in historic data against the information contained 

in new data. The higher the scores, the stronger the impact of the historic data. 

2.3.4 Weighting the similarity scores on the survey features 

The design feature similarity scores can be weighted according to their impact on contact 

and/or participation rates. In this chapter, two sets of weights are evaluated. With the first 

set of weights all features are treated as equally important, i.e., 𝑤𝑙 =
1

8
. The second set of 

weights was constructed by asking data collection staff.  

Three experts were asked to score the importance of the features on a scale of 1 to 5: not 

important, mildly important, moderately important, important and very important. Table 

2.1 presents the feature-level scores of each expert, the average scores over three experts 

and the resulting weights. The importance weight is the ratio of the feature-level average 

score to the overall average score.  
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Table 2.1 Feature importance weights. 

 Expert 1 Expert 2 Expert 3 Average Weights 

Topic 2 3 1 2.0 0.08 

Population 3 4 4 3.7 0.15 

Time 4 4 2 3.3 0.13 

Observation 3 4 4 3.7 0.15 

Mode 5 5 5 5.0 0.20 

Incentive 4 4 4 4.0 0.16 

Response Effort 2 1 1 1.3 0.05 

Bureau Effect 2 1 3 2.0 0.08 

The experts agreed that mode strategy is the most important feature, followed by incentive 

strategy, target population, and observation units. 

2.4 Two cases studies to investigate the incorporation of historic 

surveys and expert elicitation 

The effect of the power prior is compared to a non-informative prior in a Bayesian 

framework using two case studies, the Dutch Energy and the Dutch EU-SILC. In both 

cases, the survey design was new and no direct historic information was available. The 

interest is in the added benefit from the inclusion of historic data and expert elicitation.  

First, an RMSE evaluation criterion is introduced to evaluate the gains from a power prior 

in Chapter 2.4.1. Second, the Energy and SILC data are described briefly in Chapter 2.4.2. 

Next, in Chapter 2.4.3, the scores over similarity criteria are presented and powers for the 

historic data are derived. Finally, the posterior credible regions of quality indicators, R-

indicator and CV, are illustrated as a function of the data collection wave in Chapter 2.4.4. 

2.4.1 The evaluation criterion 

In this chapter, we explain how we assess and compare the performance of non-

informative and informative priors. Our strategy consists of evaluating the prediction of 

the three metrics, R-indicator, CV and CVu, defined in (2.13) to (2.15). To evaluate 

prediction accuracy, we consider the root mean square error (RMSE) of the predicted 
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indicators against their realizations per data collection wave. The criterion RMSE is 

defined for the overall metrics as 

 
𝑅𝑀𝑆𝐸(𝜃; 𝜋0,𝑇) =

1

𝑇
∑ √(�̂�𝑡 − 𝐸𝜋0,𝑡−1(𝜃))

2 + 𝑣𝑎𝑟𝜋0,𝑡−1(𝜃)
𝑇
𝑡=1 ,  (2.16) 

where 𝜃 is the parameter of interest, i.e., R-indicator or CV, �̂�𝑡 is the realized value of this 

parameter in wave 𝑡, 𝜋0,0 is the prior based on historic survey data, and 𝜋0,𝑡−1 is the 

posterior based on historic data and new data up to wave 𝑡 − 1. As noted, 𝑇 is the present 

wave where the latest sample is released and (2.16) is a rolling average of the RMSE until 

that wave. Smaller RMSE implies that the accuracy has improved and decisions about 

allocation of effort and budget can be made at an earlier stage in data collection. 

For the evaluation of the strata that have the smallest CVu, we have to make an 

intermediate step. Let 𝐵 be the number of bootstrap samples and 𝐴𝑔,𝐵
𝑡  be the number of 

these samples from the posterior distribution based on data up to wave 𝑡 where stratum 𝑔 

has the smallest CVu. Let 𝑝𝑔,𝐵
𝑡 =

𝐴𝑔,𝐵
𝑡

𝐵
. Finally, let 1𝑏(𝑔) be the binary indicator that equals 

one when 𝑔 = 𝑏. We use the following RMSE criterion to assess the predictions of the 

strata that need extra effort, 

 
𝑅𝑀𝑆𝐸(𝑝𝑔,𝐵) =

1

𝑇
∑ √1

𝐺
∑ (𝑝𝑔,𝐵

𝑡−1 − 1𝑏(𝑡)(𝑔))
2

𝐺
𝑔=1 +

1

𝐺
∑ 𝑝𝑔,𝐵

𝑡−1(1 − 𝑝𝑔,𝐵
𝑡−1)𝐺

𝑔=1  𝑇
𝑡=1 .  (2.17) 

For observed data in wave 𝑡 we can derive 𝑏(𝑡) is the stratum that is most 

underrepresented. The RMSE is small when expected values based on all data up to the 

previous wave are close to the realized values and the posterior based on these data has a 

small variance. 

The posterior terms in (2.16) and (2.17), expectation and variance, are estimated by 

empirically drawing 10,000 samples from the beta posterior of stratum response 

propensities using (2.11) and (2.12), and then computing the quality indicators for each 

iteration through the formula of quality indicators under formulas (2.13) to (2.15).  
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2.4.2 The two case studies 

For illustration, we apply our proposed method to two surveys, the 2018 Energy Survey 

(EN18) and 2016 EU-SILC Survey (SILC16). 

Energy Survey: The Energy Survey is conducted every six years and contains detailed 

questions on households’ use of electricity, gas, and water facilities and energy savings 

measures that they have implemented in their houses. In the 2018 edition, the survey 

sampled from respondents to the Dutch Housing Survey 2018 (HS18). The HS18 is a 

more general survey on housing conditions that is fielded bi-annually. EN18 is an 

extension to HS18, but respondents to HS18 are not pre-notified of the EN18 and EN18 

sample units get a separate invitation letter. The EN18 sampling design was a stratified 

simple random sample where strata were formed based on dwelling type, dwelling age and 

household income. These same strata are also used in the response propensity estimation, 

leading to 30 strata. The sample size of EN18 was 75,918 and the sample size of HS18 

was 90,121. 

In 2018, Statistics Netherlands conducted the Energy Survey for the first time. In the two 

previous rounds in 2006 (EN06) and 2012 (EN12), the survey was conducted by another 

institution. Statistics Netherlands decided to use the same survey modes as in HS18: web, 

telephone and face-to-face. HS18 had a mixed-mode survey design, where web was 

offered first and web non-respondents were assigned to telephone, when a phone number 

was available, and otherwise to face-to-face. The HS18 mode of response was used in 

EN18 for web and telephone. When a sampled HS18 respondent had used web, then EN18 

sent a web invitation. When a sampled HS18 respondent was interviewed over the phone, 

then EN18 made phone calls too. The exception was face-to-face. Since this is an 

expensive mode, sampled HS18 respondents that were interviewed face-to-face, were first 

sent a web invitation letter. Only if they did not respond, a face-to-face interviewer was 

sent. The EN18 design had never been implemented before at Statistics Netherlands and 

was chosen because of cost reasons. 

Given that EN18 was new to Statistics Netherlands and was implemented as a follow-up 

survey to HS18 in an unprecedented design, the EN18 response propensities were deemed 

very unpredictable. This is the reason, the EN18 is selected as a case study. 
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As historic survey data, EN06, EN12, and HS18 were available. EN06 and EN12 had a 

similar size and stratification. In addition, given the follow-up nature of EN18, also 

another survey was selected, the 2016 Dutch Survey on Care (SC16). This survey sampled 

from respondents to the Dutch Health Survey. The SC16 had a sample size of 10,414. 

SILC: The EU Statistics on Income and Living Conditions survey (EU-SILC) is a rotating 

panel survey with one new panel group each year. The total duration of the survey is four 

years with one survey per year. EU-SILC is a survey that is mandatory within the 

European Statistical System (ESS) and conducted in 31 ESS countries. Topics are various 

forms of income and assets, housing conditions and health conditions. Derived statistics 

concern poverty rates and the ability of the household to make ends meet. The survey 

went through a major redesign around 2005 in which the panel design was introduced. 

The Dutch EU-SILC has been running in a more or less similar design since its 

introduction up to 2016. Respondents to the fifth wave of the Dutch Labor Force Survey 

(LFS) were invited to participate in EU-SILC. The motivations for this design were cost 

savings, overlap between LFS and EU-SILC statistics and the availability of rich 

administrative data on income. EU-SILC used only the telephone mode up to 2015. In 

2015, it was decided that EU-SILC is to be based on new, separate samples and to be 

disconnected from the LFS. A sequential mixed-mode design with web followed by 

telephone was introduced. As response rates were uncertain, the sample was randomized 

into two parts. One part received no incentive, and one part received a conditional 

incentive of 10 Euro. In this case study, both samples are considered and scored 

separately. 

The strata of interest for EU-SILC are 20 groups based on a mix of household size and 

income deciles. The income deciles are derived from administrative data in the previous 

year. 

Two historic surveys were selected by data collection staff: the 2016 Dutch Labor Force 

Survey (LFS16) and the 2015 Dutch Household Budget Survey (HBS15). Both are 

conducted by Statistics Netherlands. LFS16 employed the same mixed-mode design, but 

added face-to-face to web non-respondents without a known phone number. HBS15 used 

the same design as SILC16 but is a diary survey. LFS16 was selected because the topics, 

survey modes, and unit of observation (the household) are very similar. The HBS15 was 
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selected because the topics and modes were similar and because it was the only survey 

that used incentives in a household setting. The overall sample sizes were 7,954 (7,955) 

for SILC16 without (with) incentive, 24,882 for LFS16, and 8,182 for HBS15. 

The SILC16 survey was selected as a case study in this chapter as it was a relatively 

predictable design. The survey had been conducted by Statistics Netherlands for many 

years and the survey design resembled that of other surveys. 

The number of waves varies over the two studies. Waves are chosen such that they 

correspond to time points where data collection may be adapted. For the EN18 case study 

15 waves are chosen corresponding to different sample portions fielded throughout the 

period February 2018 to September 2018. For the SILC16 case study three waves are 

chosen, corresponding to the three data collection months: April, May, and June 2016.  

For all historic datasets, Statistics Netherlands data collection department provided sample 

and response sizes at stratum level. For each case study, three data collection staff 

members scored the surveys on the eight criteria. 

2.4.3 Similarity scores for the two case studies 

This chapter presents the scores that the data collection staff members assigned to the 

historic surveys. For each historic survey and survey design feature, only the consensus 

score of the similarity over three data collection staff members is shown. 

Table 2.2 gives the feature-level similarity scores on the EN18 case study for the EN06, 

EN12, SC16 and HS18, and the combined scores by two types of weights. The EN06 and 

EN12 have perfect scores for the criteria related to topic, target population, observation 

unit and respondent burden, but have low scores on the other criteria, especially time 

elapsed. The other two surveys score relatively well on these other criteria. The feature 

scores are combined in two ways: one is by weighting all features equally and one is by 

using the weights from expert staff in Table 2.1. For each historic survey, the expert-based 

weight yields lower score than the equal weight. 
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Table 2.2 Similarity scores per survey feature for the four surveys in the EN18 case study. 

 EN06 EN12 SC16 HS18 

Topic 1.0 1.0 0.0 0.7 

Population 1.0 1.0 0.4 0.9 

Time 0.1 0.2 0.4 0.7 

Observation 1.0 1.0 1.0 1.0 

Mode 0.1 0.1 0.5 0.0 

Incentive 0.0 0.0 0.3 0.3 

Response Effort 1.0 1.0 0.1 0.1 

Bureau Effect 0.0 0.0 0.4 0.5 

Equal weights 0.525 0.538 0.388 0.525 

Expert weights 0.463 0.476 0.447 0.525 

Table 2.3 Similarity scores per feature for the two surveys in the SILC16 case study. The 

incentive strategy criterion is scored for the SILC16 without incentive and with incentive. 

 LFS16 HBS15 

Topic 0.3 0.3 

Population 0.7 0.6 

Time 1.0 0.6 

Observation 0.0 0.0 

Mode 0.6 0.1 

Incentive 0.2 (without) 0.5 (without) 

0.0 (with) 1.0 (with) 

Response Effort 0.3 0.0 

Bureau Effect 0.7 0.2 

Equal weights 0.475 (without) 

0.450 (with) 

0.288 (without) 

0.350 (with) 

Expert weights 0.482 (without) 

0.450 (with) 

0.308 (without) 

0.388 (with) 

Table 2.3 shows the similarity scores in the SILC16 case study for the two historic surveys 

LFS16 and HBS15. Recall from the Chapter 2.4.2, the sample was randomized into two 

parts. For the incentive strategy criterion two scores are given, one for SILC16 without 

incentive and one for SILC16 with incentive. The only perfect score is for LFS16 as it was 

conducted very close in time to SILC16. When topic is considered, observation unit and 
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respondent effort criteria both historic surveys score weakly. The expert weighting has a 

strong impact on the similarity scores. 

2.4.4 Posterior distributions for the aggregate quality indicators 

In this chapter, our primary objective is to evaluate whether our method outperforms the 

non-informative prior in predicting quality indicators, and to look into whether the 

performance of our method would depend on the approach to pool the historic-specific 

criteria. They are illustrated by the RMSE evaluation criterion, applied to both case 

studies (EN18 and SILC16), with credible regions for overall indicators. Overall R-

indicator and CV in (2.13) and (2.14) are a function of wave for either informative or non-

informative priors. The survey, SILC16, is investigated under two scenarios, with 

incentive and without incentive. Recall from Chapter 2.4.2 that the sample was 

randomized into two parts.  

For the EN18, Figure 2.1 displays the overall indicators predicted by our method using 

expert elicitation and relevant historic surveys in contrast with the noninformative method 

as well as the realized indicators (target predictions). The horizontal line is the indicator 

realization of the population. For ease of explanation, our proposed priors are called expert 

priors and the non-informative prior is called the standard prior.  

For each wave, 95% credible regions summarize the posterior expectations and their 

uncertainty for either expert priors or the standard. In early data collection waves, either 

expert prior has a small uncertainty on predictions versus the standard prior. For example, 

in wave 1, expert priors predict R-indicator with 1% uncertainty while for the standard 

prior it is 3%, and uncertainty levels are 1.3% and 6% for expert priors and standard prior 

in predicting overall CV. The standard method can predict R-indicator with increasing 

precision when more data collection waves are released as the width of the credible 

intervals decreases (by at most 2%), however, there is no significant reduction in the 

precision of posterior predictions for either expert prior, only a 0.3% decline. Moreover, 

none of the priors can completely adapt to the upcoming data, while the standard method 

pushes its prediction toward the target R-indicators slightly better than expert priors in 

early waves. The difference of posterior expected R-indicators between priors is 5% at 
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most in wave 1 and declines fast to 1% in wave 4. Later on in predicting R-indicators, the 

standard prediction can catch up fast with expert prior predictions.  

We propose overall CV as an alternative indicator to evaluate our method, a better 

indicator providing a link to actual non-response bias (Schouten et al., 2009). Either prior 

pushes CV predictions to target CVs and attempt to predict with less uncertainty against 

the standard method in early waves, 1 through 5. As data are accumulated, the prediction 

uncertainty shows a noticeable decline for the standard prior but expert priors remain 

unchanged. In the late data collection from wave 8 onwards, the interquartile ranges 

increasingly overlap between expert and standard priors, signifying that the standard 

method can compete with expert priors when predicting overall CV.  

 

Figure 2.1 The 95% credible regions of the posterior distribution of R-indicator and 

overall CV in the EN18 case study. In each wave, the posterior distributions are 

constructed by updating three different priors: the power priors (Expert1 with equal 

weights and Expert2 with expert weights), and the non-informative prior (Standard). The 

observed values are presented as well at wave (True) or overall (horizontal line) level. 

Important to note that the credible regions of either R-indicator or CV from experts’ priors 

are not wide enough to the observed values ("True”). This means the observed values are 

extremely unlikely, according to experts, and they have a low probability of occurrence.  
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As we see in Table 2.4, the power priors (Expert 1 and Expert 2) predict a lower risk of 

nonresponse bias than the non-informative prior (Standard), where the expectation of R-

indicator is closer to 1 and overall CV is closer to 0. Additionally, the power priors have 

little uncertainty about the expectation since the credible interval is much narrower than the 

non-informative prior. This is obvious because historic surveys provide information on the 

likelihood of response propensities.  

Table 2.4 The expectations and 95% credible regions (in brackets) of R-indicator and 

overall CV in Wave 0 from three different prior distributions in EN18 case study. 

 R-indicator Overall CV 

Expert 1 with equal weights 0.978 ([0.972,0.984]) 0.092 ([0.098,0.104]) 

Expert 2 with expert weights 0.978 ([0.972,0.984]) 0.090 ([0.096,0.101]) 

Standard 0.426 ([0.298,0.557]) 0.341 ([0.562,0.860]) 

Understanding to what extent expert priors add value to predict target indicators is 

revealed by RMSE in Table 2.5.  

In early waves, RMSE of predicted overall R-indicator and CV by expert priors are closer 

to 0, and additionally they are smaller than the standard prior. This is not surprising 

because the non-informative prior is entirely vague from the onset in the sense that it 

provides little information on the shape of unknown response propensities, and thus it 

causes large variance of predictions. Either expert prior continues to be superior to the 

standard prior relative to measure RMSE of overall R-indicator and CV, but overall CVs 

(Columns Expert and Standard) become competitive in Wave 12 to Wave 15. With more 

samples released over waves, the difference in RMSE is increasingly small, implying that 

the standard method better predicts overall R-indicator and CV, and more importantly the 

effect of expert priors diminishes. This is fairly straightforward that when more data come 

in, the posteriors for non-informative and informative prior will converge to each other at 

some point, because the likelihood dominates the posteriors instead. The results for the 

overall CV show weak evidence to support our argument whether our method is superior 

to the standard prior to a new survey. In contrast, R-indicator reveals expert priors making 

prediction better than the standard prior. The result is mixed because CV is aggregated 

over all strata. The effect within stratum has a different impact on response behavior and 

even propensity variation, where some are underrepresented, and others are 
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overrepresented. This can be measured by the unconditional partial CV in (2.15). A 

consistent improvement in RMSE of partial CV at wave level proves that our expert priors 

outperform the standard prior. There has a minor difference between expert prior with 

equal weights and expert prior with varying weights, indicating our method is insensitive 

to the pooled method to combine historic-level criteria.   
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Figure 2.2 shows the comparison of expert priors with two weights to the standard prior in 

the SILC16 under two scenarios (with incentive and without incentive). The results of R-

indicators show that predictions from either expert prior is superior to the standard prior in 

wave 1 as the standard variance is 5 times larger than the expert prior variance, although 

the standard posterior mean reaches slightly the observation than either expert prior. This 

advantage of either expert prior continues in wave 2 but the standard competes with them 

as wave 3 showed. Either expert prior has obvious benefit versus the standard prior on the 

measure of overall CV. However, this advantage gradually declines and the standard 

method catches up as accumulating data. 

 

Figure 2.2 The 95% credible regions of the posterior distribution of R-indicator and CV 

in the SILC16 case study. In each wave, the posterior distributions are constructed by 

updating three different priors: the power priors (Expert 1 with equal weights and Expert2 

with expert weights), and the non-informative prior (Standard). The observed values are 

presented as well at wave (True) or overall (horizontal line) level. The top/bottom panel 

corresponds to without/with incentive. 

In Wave 0 (Table 2.6), the power priors behave much better than the non-informative 

prior in predicting the overall variation in response propensities and in the uncertainty 

measurement, regardless of whether there has incentive in the SILC16. R-indicators of 

either power prior take the values closer to one, and overall CVs take smaller values than 

the non-informative prior.  
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As Tables 2.7 and 2.8 show, the RMSE of the predicted R-indicator from expert priors is 

smaller in first two waves, and in wave 3, the standard is competitive to or slightly weaker 

than expert priors. When predicting overall CV, only in wave 1 either expert prior shows 

its superior performance, because the advantage of expert priors is overwhelmed by the 

size of upcoming data in one wave. However, the benefit to use our method is strongly 

supported by the RMSE of R-indicator and partial CV under either scenario. RMSE from 

either expert prior is consistently closer to 0 and better than the standard prior.  

Table 2.6 The expectations and 95% credible regions (in brackets) of R-indicator and 

overall CV in Wave 0 from three different prior distributions in the SILC16 case study. 

 R-indicator Overall CV 

No incentive With incentive No incentive With incentive 

Expert 1 with equal 

weights 

0.964 

([0.950,0.975]) 

0.963 

([0.950,0.0.975) 

0.318 

([0.293,0.344]) 

0.326 

([0.300,0.352]) 

Expert 2 with expert 

weights 

0.964 

([0.951,0.975]) 

0.964 

([0.951,0.976]) 

0.320 

([0.294,0.344]) 

0.329 

([0.304,0.355]) 

Standard 
0.427 

([0.310,0.555]) 

0.426 

([0.309,0.555]) 

0.601 

([0.422,0.909]) 

0.603 

([0.424,0.922]) 

Table 2.7 RMSE of the informative prior (Expert) with two weights and the non-

informative prior (Standard) for three indicators in the SILC16 without incentive. 

Wav

e 

R-indicator Overall CV Partial CV 

Expert 
Standar

d 

Expert 
Standar

d 

Expert 
Standar

d Equa

l 

Varyin

g 

Equa

l 

Varyin

g 

Equa

l 

Varyin

g 

1 0.161 0.161 0.382 0.043 0.042 0.359 0.091 0.086 0.214 

2 0.166 0.165 0.252 0.033 0.032 0.194 0.067 0.064 0.145 

3 0.163 0.163 0.212 0.030 0.030 0.137 0.056 0.053 0.120 

The results for the EN18 and SILC16 show that data collection staff provide accurate 

estimates on the variations of response. The empirical studies also advocate that prior 

elicitation from the staff experts working on surveys is of significant value to predict 

response propensities when a new survey has never been conducted before or when a 

survey is redesigned. The additional value of expert priors can be proved when predicting 
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quality indicators and monitoring data collection: overall R-indicator and unconditional 

partial CV.  

Table 2.8 RMSE of the informative prior (Expert) with two weights and the non-

informative prior (Standard) for three indicators in the SILC16 with incentive. 

Wav

e 

R-indicator Overall CV Partial CV 

Expert 
Standar

d 

Expert 
Standar

d 

Expert 
Standar

d Equa

l 

Varyin

g 

Equa

l 

Varyin

g 

Equa

l 

Varyin

g 

1 0.187 0.186 0.356 0.074 0.075 0.378 0.113 0.114 0.214 

2 0.179 0.179 0.239 0.064 0.065 0.209 0.126 0.128 0.177 

3 0.166 0.185 0.216 0.047 0.048 0.146 0.133 0.134 0.166 

We also apply our method to predict the level of response propensities, results shown in 

Appendix B. The experts are uncertain about the level of response propensities. In this 

chapter, our primary concern is with the variation of response propensities more than with 

the level as adaptation is based on underrepresentation of certain strata.  

2.5 Discussion 

Our two most important goals were to set up a structured expert prior elicitation procedure 

in the context of surveys and the evaluation of the utility of this procedure relative to non-

informative priors. In other words, can data collection staff knowledge be transformed and 

be utilized, so that survey design, and in particular adaptive survey design, can profit? 

With this procedure, we explicitly focus on data collection staff, both as informers and as 

users. 

To include expert knowledge, we set up a procedure that takes a power prior as a key 

ingredient. The powers are derived by scoring a number of historic surveys on their 

similarity to the new survey. Scores are based on the identification of a number of relevant 

survey design features, which are weighted based again on expert opinions. In our case 

studies, we invited three data collection experts and averaged their scores. The power prior 

is updated using incoming survey data during data collection. The performance is 

evaluated based on three quality indicators: overall R-indicator and overall (partial) 

coefficient of variation of response propensities. The prior and posterior of the variation in 
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response propensities and coefficient of variation of the response propensities have no 

closed form. However, since Beta distributions are conjugate for the response 

propensities, it is relatively straightforward to construct the posteriors empirically. 

Consequently, the first three objectives of the chapter are achieved to monitor and adapt 

the survey data collection for the new survey to the subsequent phases. Our prior 

elicitation procedure has been set up in collaboration with data collection staff. We paid a 

lot of attention to making the procedure transparent, but also manageable. We view 

bridging the gap between data collection and methodology as the most important 

achievement of this study. 

Our other objective was to assess the benefit of incorporation of the historic prior 

information into the new survey against the settings without prior knowledge. In the 

evaluation, a fully non-informative prior implies that no historic surveys and no expert 

knowledge can be used to specify a prior for a new survey. To achieve this goal, the root 

mean square error (RMSE) of the posterior of quality indicators is evaluated. The 

evaluation was made based on two case studies, the EN18 and SILC16, using the observed 

indicators and the posterior prediction with a series of samples released in time. Both case 

studies show that the approach to weight the survey features have no influence on the 

comparison of a Bayesian analysis against a non-Bayesian analysis, because the RMSE is 

only slightly distinct between equal weights and expert weights. The evaluation study 

shows either power prior can be vastly superior to a non-informative prior on predicting 

the variation in response propensities as well as the coefficient of variation of them 

throughout the course of new survey data collection. The advantage holds to predict CV 

but in late waves the non-informative prior can compete with expert priors. So far, we 

conclude that the power prior clearly has added value, but its prediction performance is 

closely related with the choice of historic surveys, the selected criteria, and the prescribed 

feature-level weights elicited from the staffs. Therefore, we propose to carefully use a 

power prior for predicting response propensities and related indicators when a survey is 

brand new, which ought necessarily to be compared with non-informative predictions.  

Our study has a number of simplifications which are the subject of future research. First, 

besides the response propensities, it is crucial to model cost as another important design 

parameter playing a decisive role in a survey design. It is a challenge to realize the cost 
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model for each stratum, because the stratum costs depend on the response propensity and 

the mode strategy. Furthermore, it is hard to isolate the actual realized cost of an 

individual survey and a single stratum in that survey. Nonetheless, with some 

simplifications it is possible to model stratum costs as a function of stratum numbers of 

calls and visits, stratum interview durations, and stratum contact, refusal and participation 

propensities. See Schouten et al., (2018). Expert elicitations then amount to prediction of 

number of visits and calls and interview durations, since propensities are already part of 

the current approach. This may require additional or different survey design features than 

those selected in this chapter. It is an important topic for further refinement and extension. 

Second, although we assume that the Bayesian analysis is independent of time, time 

change may play a crucial role. The necessary extension is to incorporate the effect of 

time on stratum response propensities. The model proposed in this chapter must be 

expanded such that response propensities may change gradually over time.  Third, 

measurement error is ignored, while in mixed-mode surveys, such as the case studies in 

this chapter, it can, and most likely does, play an influential role. Fourth, we suppose a 

fully saturated model, i.e., a full stratification in disjoint groups, when modelling 

nonresponse. While this may ultimately be easier in adaptive survey design, our 

methodology should be extended to parsimonious models that omit some or all 

interactions. 

The simplifications will form the basis for extensions of the proposed procedure. Data 

collection staff usually have a good view on costs and time change in response 

propensities. However, measurement error, typically, is not analyzed by data collection 

staff. For this purpose, we need to find other experts. 

Another follow-up research question is the impact of the choice of experts. In this study, 

we could not assess the impact of the choice of experts as part of the expert elicitation was 

performed through joint meetings in which they reached consensus. It should, however, be 

evaluated in future studies. Plus, the evaluation of experts’ elicitation on estimating costs 

is an important topic for the future.  

In the proposed method, we regard the timeliness of historic data sets as a similarity 

criterion. Assessment of the criterion obviously depends on the time-length of the historic 

data, e.g., the last quarter or the last year.  The longer the time length the harder it is to 
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provide a single value as the data contain both very recent and relatively old data. Extra 

uncertainty is introduced by assuming a constant timeliness. Therefore, the issue involving 

how far a researcher should go back for picking up historic data sets should be addressed 

as a future topic.  
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Abstract 

Precise and unbiased estimates of response propensities (RPs) play a decisive role in the 

monitoring, analysis, and adaptation of data collection. In a fixed survey climate, those 

parameters are stable and their estimates ultimately converge when sufficient historic data 

is collected. In survey practice, however, response rates gradually vary in time. 

Understanding time-dependent variation in predicting response rates is key when adapting 

survey design. This chapter illuminates time-dependent variation in response rates through 

multi-level time-series models. Reliable predictions can be generated by learning from 

historic time series and updating with new data in a Bayesian framework. As an 

illustrative case study, we focus on Web response rates in the Dutch Health Survey from 

2014 to 2019. 

Keywords: Time series analysis; multilevel model; Bayesian analysis; response 

propensity predictions 

3.1 Introduction 

Over the last two decades, responsive and adaptive design (Chun et al., 2018) have 

attracted considerable interest in assembling survey design features ahead of or during 

data collection, with an ultimate goal of survey cost-quality optimization by a search for 

efficient resource allocation. The emergence of Web surveys, the availability of process 

data, and the increase in survey costs have driven research regarding the monitoring 

(Kreuter, 2013) and adaptation (Schouten et al., 2017) of data collection. However, a 

thorough understanding of how design features and time change affect important 

parameters in response and cost models is imperative to apply adaptation. For example, a 

critical factor is the likelihood of a participant to engage in a survey, i.e., their response 

propensity, which can be sensitive to factors both dependent on and independent from the 

nature of the survey itself. Additionally, the cost of the survey is a complex calculation 

that covers everything from planning the survey, to performing it and the data workup 

afterwards, and it can directly impact the type of survey performed, which can in turn 

influence response propensities (RPs). For this reason, the development of such parameter 

measurements is necessary before the data collection operation begins.  
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The last decade has seen a renewed importance in the predictability of RP for responsive 

and adaptive design. In survey methodology, using propensity scores (Rosenbaum & 

Rubin, 1983) is the common way to tailor differential features to sampled cases for 

desired cost- or quality-related goals. In a changing data collection climate, the 

performance and structure of a survey design hinge heavily on propensity models that may 

lead to inefficient decisions. For instance, by relying only on process or response data in 

the early stages of a responsive survey, the estimates of RP may produce biased estimates 

of the final RP by the end of the data collection (Wagner & Hubbard, 2014). Also, the 

uncertainty of RP estimates should be incorporated into propensity models in order to 

avoid suboptimal designs (Burger et al., 2017).  

Accurate estimates of RP are thus the crux of survey operations. For this reason, survey 

researchers apply historic data to estimate the coefficients of a propensity model, and then 

use those estimated coefficients for the upcoming rounds of a survey. Bayesian analysis 

(Gelman et al., 2013) is a natural approach to utilize both historic and new data for 

improving predictions. Prior beliefs generated from historic data are evolved into 

posteriors, which serve as the priors for the subsequent analysis as the upcoming data 

accumulates. Schouten et al., (2018) were the first to apply a general Bayesian method to 

analyze RP and cost in the Dutch Health Survey. They discuss that misspecification of the 

priors may weaken prediction performance. As a result, prior elicitation becomes an 

influential step. The incorporation of expert beliefs is a prerequisite for such prior 

elicitation. This has a long history in biometric and medical literature, but the application 

is in its infancy in the context of surveys. Recent examples have been West et al., (2021), 

who reviewed empirical evidence for survey propensity prediction, Coffey et al., (2020), 

who consulted data collection managers about the estimated coefficients, and Wu et al., 

(2022), who used data collection staff as experts for relevant historic leverage under 

criteria for a new or redesigned survey. 

So far, the approaches assume RPs are stable in a relatively short period. In a fixed survey 

climate, these parameters remain stable and their estimates ultimately converge with the 

accumulation of historic data. In survey practice however, those parameters change 

gradually over time, which means that predictions may not converge. For example, 

seasonal variation and downward trends in response rates can be observed. Thus, the 



Modelling Time Change in Survey Response Rates 

 55 

benefit of prior elicitation could potentially be undone when ignoring time change. Recent 

articles by Mushkudiani & Schouten, (2019) and Fang et al., (2021) describe what time-

dependent factors significantly affect the parameter estimation accuracy, but the impact on 

prediction accuracy is still unknown, which is the topic of this chapter.  

This chapter provides new insights into flexible time series models in a structural fashion 

for RPs in adaptive survey designs. We attempt to interpret time change in survey RPs that 

correlate significantly with nonresponse biases when nonresponse is subject to time 

change. Our approach applies to repeated cross-sectional surveys with multiple data 

collection phases. 

Our main objective is to make reliable predictions for RP across relevant population strata. 

Note that population strata in which response propensities can differ herein can be 

subpopulations of interest either. They are called strata throughout, even though they do 

not necessarily coincide with sampling strata. Our main objective is additionally to 

examine the prediction performance so that we can measure how time alters the RP. This 

general question can be reduced to four concrete aspects: 

1) What time-series components contribute most to variation in RPs? 

2) What level of RP prediction accuracy can be achieved for the next upcoming time 

period? 

3) How does prediction accuracy vary over population strata? 

4) How does prediction accuracy depend on the length of the historic survey time 

series? 

The abundant knowledge of historic survey time series allows us to learn the effects of 

time-related factors on RP. We consider two levels, time and strata, which make up 

multiple components involved in a time-series model. The components describe variation 

over time or strata or over both, and they can be analyzed individually as well as 

collectively. Several survey methodology studies employ such a multilevel time-series 

model approach in official statistics; e.g., Boonstra & van den Brakel, (2019 & 2022) 

estimate monthly and quarterly regional unemployment rates using a Bayesian 

hierarchical model to borrow strength over time, space, and from auxiliary series. Such 

usage originates from the small area estimation literature (Rao & Molina, 2015) 
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In this chapter, we use the Dutch Health Survey (GEZO) to evaluate our approach 

regarding the four research questions above. This survey has had a stable design since 

2011 and we focus on the time series from 2014 to 2019. 

To optimize predictions, we compare a collection of model compositions by different 

information criteria to obtain a balance between goodness of fit and model complexity. To 

evaluate the “optimal” model, we will assess its predictive performance and accuracy by 

its ability to correctly capture the magnitude and variation of RPs. Important to note, we 

focus on the achievement of reliable inference over time, rather than on minimizing 

nonresponse error, which is one of the objectives adaptive survey designs pursue.  

This chapter first introduces several time-related factors of great relevance to variation 

with a hypothetical illustrative example in Chapter 3.2, then goes on to the differential 

model compositions in the general form of the Bayesian multilevel time-series model in 

Chapter 3.3. Chapter 3.4 optimizes the model performance based on an empirical analysis 

of GEZO. We discuss our findings and end up with the brief overview of future work in 

Chapter 3.5.  

3.2 Time Series Components of Survey Response Rates 

It is well-known that response propensity (RP) changes gradually in time. Failing to 

incorporate this temporal dependence in design decisions can lead to ineffective survey 

designs. In this chapter, we use an illustrative example for introducing some time-related 

factors linked with considerable variation in RP.  

We focus on population subgroups, or strata, as indexed by 𝑔 ∈ {1,… , 𝐺}, since we aim 

ultimately to let the proposed models inform adaptive design decisions. The strata are 

formed with the help of auxiliary variables that are linked to the sample and are, thus, 

available for all sample units. A time-series RP 𝜌𝑔,𝑡 in stratum 𝑔 and time 𝑡 is a sequence 

of random variables. Assuming the availability of historic survey data up to time 𝑡, we are 

interested in measuring variation caused by time-related factors for the most up-to-date RP 

predictions. To achieve this goal, we first propose potential time-dependent factors. As an 

illustrative example of a time series divided into the following components: trend, 
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seasonality, and so on, Figure 3.1 compares the overall response rate to the following 

time-dependent variation: 

• Trend. The trend describes the long-term movement of the observed time series 

without the seasonal variation. It shows the general tendency of the population-

level response rates over years, which can be linear or nonlinear. Hence, the 

growth or the fall of the long-term forecasts can be studied by this trend. As seen 

in Figure 3.1, the long-term direction does not behave like a cyclic fluctuation. Of 

greater importance for model development is to separate the total trend into a 

global trend shared by all strata, and local, i.e., stratum-specific trends. 

• Seasonality. Seasonal variation in the overall responses describe periodic 

movements that recur regularly and do not influence annual averages. The periodic 

fluctuations possess a systematic and calendar-related nature that can be predicted 

and attributed to a fixed season per year. For instance, the response rate would be 

higher in the early period of the year while relatively lower in the middle year or in 

December.   

• Residual fluctuation. The residual variation is the part of the signal obtained after 

excluding all of the above components. This part is usually modeled as white 

noise, i.e., as independent normally distributed fluctuations.  

In addition, there may also be some additional time-dependent components not revealed in 

Figure 3.1 that nevertheless have a strong impact on the reliability of stratum RP 

predictions.  For this reason, we also consider extra stratum-related time-dependent 

components: 

• Stratum. Different subgroups have different response behaviors, such as, young 

subgroups are more likely to respond to the web survey than old subgroups due to 

the latter having potentially less access to or unfamiliarity with the internet. This 

variation in subgroups leads to a differential stratum-level trend and could 

potentially also contribute to differential seasonal movement. 

• Sampling variation. Sampling variation complicates the estimation of RPs, 

especially for strata with small sample sizes. The sampling variation is taken into 

account by adopting a binomial likelihood. 
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• Unexpected events. Unexpected events, such as web servers being down 

temporarily, will appear as outliers and may violate the existing pattern. They 

correspond to irregular movements during short periods. The resulting variation 

does not follow a particular model, is unpredictable, and can become influential in 

predicting future RPs. 

• Intervention. Design change, such as introducing incentive, is used widely to 

conduct intervention on purpose, in order to stimulate responses for an 

improvement in data collection quality, and even to efficiently allocate limited 

resources for a reduction in survey cost. Intervention has a permanent impact on 

response propensities. The influence can be predictable, but only can be studied at 

the expense of wasting the potential value of rich historic data and of a long time 

period of data collection since then the implement of intervention. The resulting 

variation is less likely to affect seasonal patterns, while it can bring similar impacts 

on responses for some strata. 

 

Figure 3.1 The observed series of simulated overall response rates over years versus its 

decomposition. 
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All components together, except for the sampling variation, form the signal, i.e., the latent 

true but unknown RPs. The mathematical formulations corresponding to each component 

are introduced in the following chapter that proposes the structural time series model; See 

Durbin & Koopman, (2012) and Harvey, (1990) for general background information on 

those time series components and models. 

3.3 Methods 

In this chapter, we translate the time series components discussed in Chapter 3.2 to 

multilevel time series models and devise the estimation strategy. We adopt a Bayesian 

approach in order to account for the uncertainty within the historic survey data and to 

update response propensity (RP) predictions in time. The use of multilevel models is 

widespread in small area estimation, in which interest focusses on reliable estimation for 

domains such as geographic areas, time periods, demographic subgroups, or a 

combination thereof, whose sample sizes are often too small to provide reliable direct 

estimates, see Rao & Molina, (2015) for an overview. Early references to the literature of 

small area studies using time series multilevel models include Pfeffermann & Burck, 

(1990); Rao & Yu, (1994); Datta et al., (1999); You et al., (2003). In most such studies, 

including Boonstra & van den Brakel, (2019), a Gaussian sampling distribution is 

assumed, possibly after a suitable transformation of the data. A notable difference of our 

current application to RPs is that we use a binomial sampling distribution, which is a 

natural distribution to describe the response process given the number of sampled 

individuals in each demographic subgroup and time period. Such binomial time series 

models have been considered by Franco & Bell, (2015). Their approach bears a 

resemblance to our strategy, whereas ours involves more different types of time series 

components in the model specification, such as seasonality. 

We begin the discussion of our method by first introducing the notation used throughout 

the chapter. Next, we describe our model and the strategy used for estimating the RP, and 

we conclude with outlining the criteria used to evaluate the performance and applicability 

of prediction models for RPs in the Bayesian framework. 
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3.3.1 The multi-level time series model specification 

The objective is to predict stratum-level RPs at a certain point in time. The population or a 

sample is partitioned into strata based on several auxiliary variables, i.e., stratified, 

equivalent to a cross-classification of selected variables. Here, we assume the stratification 

is specified prior to fitting the models. The categories of each variable may be merged to 

ensure sufficient sample sizes.  

Let sample size in stratum 𝑔 at wave 𝑡 be 𝑛𝑔,𝑡 and the number of respondents be 𝑟𝑔,𝑡, 

where 𝑔 ∈ {1,… , 𝐺} and 𝑡 ∈ {1,… , 𝑇}. The number of strata 𝐺 is typically in the order of 

10 to 20, and 𝑇 refers to survey waves, each of which is a new replication of the survey 

starting from a fresh sample. We assume that all sampled units are independent in their 

response behavior within and between strata. For stratum 𝑔 and time 𝑡, response 𝑟𝑔,𝑡 

follows a binomial distribution conditionally on RP 𝜌𝑔,𝑡 and sample size 𝑛𝑔,𝑡, i.e.,  

𝑟𝑔,𝑡|𝑛𝑔,𝑡 , 𝜌𝑔,𝑡 ~ Binom(𝑛𝑔,𝑡 , 𝜌𝑔,𝑡). Because RP is constrained to fall between 0 and 1, we 

transform the 0-1 scale to the real line ℝ by utilizing a logit link function, where other link 

functions are usable as well. The function provides a nonlinear transformation and 

produces a latent variable 𝜃𝑔,𝑡, which follows the log-odds function,  

𝜃𝑔,𝑡 = logit(𝜌𝑔,𝑡) = ln (
𝜌𝑔,𝑡

1−𝜌𝑔,𝑡
).   

We can reverse the transformation to compute 𝜌𝑔,𝑡,  

𝜌𝑔,𝑡 =
exp(𝜃𝑔,𝑡)

1+exp (𝜃𝑔,𝑡)
. 

For any stratum 𝑔 and any time 𝑡, the linear predictor 𝜃𝑔,𝑡 can take the most general form 

that can be linear, additive, multilevel and comprised of several time series components. 

As outlined in Chapter 3.2, there are demographic variables defining the strata, an overall 

trend, seasonal variation, stratum-specific trends, and a residual variation. Therefore, the 

multilevel model becomes: 

𝜃𝑔,𝑡 = 𝜷
′𝒙𝑔 + 𝛾𝑡 + 𝜹

′𝒔𝑡 + 𝑣𝑔 + 𝑢𝑡 + 𝑧𝑔,𝑡 +𝑤𝑔,𝑡, (3.1) 

where the 𝑝-vector of regression effects 𝜷 is associated with time-independent covariates 

𝒙𝑔. In the application we focus on later in this chapter, all covariates are binary as we only 
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consider categorical variables. However, in more general usage, the entries could be 

ordinal or numerical variables, such as contact attempts, and even they could vary over 

time. 

Scalar 𝛾 is the slope parameter for the overall linear time trend. Vector 𝜹 contains seasonal 

effects with vector 𝒔𝑡 selecting the season corresponding to month 𝑡. The seasonal effects 

are either common to all strata, or they can be stratum-specific. In this chapter, we define 

seasons as a division of months in a calendar year, i.e., sets {1,2}, {3,4,5}, {6,7,8}, 

{9,10,11} and {12} as Winter, Spring, Summer, Fall and Christmas.  

The first three terms are modelled as fixed effects while the last four terms are modelled 

as random effects in (3.1). The first of these random terms is the random intercepts for 

strata assumed to be normally distributed with mean 0 and variance 𝜎𝑣
2 as 

𝑣𝑔 ~ 𝑁(0, 𝜎𝑣
2) (3.2) 

identically and independently for 𝑔 = 1,… , 𝐺. Secondly, a global time trend is defined by 

a random effect vector 𝒖 = (𝑢1,… , 𝑢𝑇) distributed as  

𝒖 ~ 𝑁(0, 𝜎𝑢
2𝑽𝑢). (3.3) 

Covariance matrix 𝑽𝑢 describes the covariance structures between any 𝑢𝑖 and 𝑢𝑗. One can 

assume either a first-order random walk (RW1, known as a local level trend) or a second-

order random walk (RW2, the so-called smooth trend). The time-dependence structures 

are more conveniently expressed by the precision matrix, 𝑸𝑢 = 𝑽𝑢
−1. The precision matrix 

is preferred over the covariance matrix, since it is sparse and allows for efficient 

computation for hierarchical posterior inference in a Bayesian analysis, see e.g., Rue & 

Held, (2005). The matrix 𝑸𝑢 for RW1 and RW2 is a tridiagonal matrix and a 

pentadiagonal matrix respectively. Assumed a band matrix is 𝑄 = (𝑞𝑖,𝑗), 1 has one non-

zero bands along the main diagonal such that 𝑞𝑖,𝑗 = 0 if |𝑖 − 𝑗| > 1, while 2 has two non-

zero bands such that 𝑞𝑖,𝑗 = 0 if |𝑖 − 𝑗| > 2. See Appendix E for their definitions. Note that 

the precision matrices 𝑸𝑢 are singular, leading to an improper prior. This is not a problem, 

as constraints can be imposed on these random effects to ensure that all model coefficients 

remain identifiable. Under RW1 and RW2 𝒖, the constraint is ∑ 𝑢𝑡𝑡 = 0. Under RW2 𝒖, 
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the constraint ∑ 𝑡𝑢𝑡𝑡 = 0 is additionally imposed, so that the corresponding overall level 

and linear slope are captured by the model’s intercept and fixed effect 𝛾. 

We also consider distributions other than the normal distribution in (3.3). In particular, we 

consider Laplace, Student-t and horseshoe priors as alternatives. Such priors can be 

framed as scale-mixtures of the normal distribution, see West, (1987); Carvalho et al., 

(2010); Polson & Scott, (2010).  

The third random effect term 𝒛𝑔 = (𝑧𝑔,1, … , 𝑧𝑔,𝑇) denotes stratum-specific trends 

distributed as 

𝒛𝑔 ~ 𝑁(0, 𝜎𝑧
2𝑽𝑧), (3.4) 

for 𝑔 = 1, . . , 𝐺. Covariance matrix 𝑽𝑧 describes a RW1 over the months. The 

corresponding precision matrix is the same as described above, and a sum-to-zero 

constraint is imposed on each trend vector 𝒛𝑔, as the stratum-specific levels are already 

captured by the random intercepts 𝑣𝑔. Important to note is that the trends 𝒛𝑔 share a 

common covariance parameter 𝜎𝑧
2. One could consider a separate variance parameter per 

stratum but we found it resulted in overfitting.  

The last term 𝑤𝑔,𝑡 in (3.1) represents white noise and allows for remaining unstructured 

variation in RPs over time and strata, i.e., at the most detailed level. For any stratum 𝑔 and 

time 𝑡, these components are independently and identically distributed as 

𝑤𝑔,𝑡 ~ 𝑁(0, 𝜎𝑤
2), (3.5) 

using a single variance parameter 𝜎𝑤
2 .  

(3.1) describes the most general model considered combining all underlying components.  

Chapter 3.4 investigates this encompassing model as well as models built from various 

subsets of the components described in (3.2) - (3.5). 

3.3.2 The estimation strategy 

In this chapter, we adopt a hierarchical Bayesian approach to estimate model coefficients 

and predict RPs. Since the posterior distributions are unavailable in closed form a Gibbs 
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sampler is used as implemented in the mcmcsae R package (Boonstra, 2021). We begin 

this chapter by specifying the priors assigned to the model parameters. 

For the fixed effects 𝜷 we assume a weakly informative prior 

𝜷 ~ 𝑁(0,100𝑰𝛽), 

with identity matrix 𝑰𝛽. Standard errors for 𝜷 are taken as 10, which is sufficiently large 

concerning the scale of RPs relative to the covariate scales. Similarly, the linear time trend 

𝛾, and seasonal effects 𝛿, are assigned weakly informative priors also, with the same 

standard error.  

For the random-effect components, the variance parameters in (3.2) - (3.5) are assigned 

inverse 𝜒2 priors, conditionally on auxiliary parameters 𝜉, with 1 degree of freedom and a 

scale parameter 𝜉2. For example, 𝜎𝑣
2|𝜉𝑣  ~ Inv–𝜒

2(1, 𝜉𝑣
2). The hyperparameters 𝜉 are 

assigned 𝑁(0,1) priors. Combining the normal 𝜉 with the conditional inverse chi-squared 

variances results in marginal half-Cauchy priors for each standard deviation parameter 𝜎𝑣, 

𝜎𝑢, 𝜎𝑧 and 𝜎𝑤. As Gelman, (2006) and Polson & Scott, (2010) suggest, the half-Cauchy 

priors for standard deviations, or the more general half-t family of priors, generally 

perform better than the commonly used inverse gamma priors for variance parameters, 

which can be too informative.  

The (hyper)parameter vector, denoted by 𝜓, 

𝜓 = (𝛽, 𝛾, 𝛿, 𝑣, 𝑢, 𝑧,𝑤, 𝜎𝑣
2, 𝜎𝑢

2, 𝜎𝑧
2, 𝜎𝑤

2 , 𝜉𝑣, 𝜉𝑢, 𝜉𝑧 , 𝜉𝑤) 

includes all parameters in (3.1), the variance parameters associated with random effect 

terms as well as the introduced auxiliary parameters. The likelihood function can be 

written as  

𝑝(𝑟|𝑛, 𝜓) ∝ ∏ 𝜌𝑔,𝑡
𝑟𝑔,𝑡
(1 − 𝜌𝑔,𝑡)

𝑛𝑔,𝑡− 𝑟𝑔,𝑡
𝑔,𝑡 , (3.6) 

where 𝜌 = 𝑙𝑜𝑔𝑖𝑡−1(𝜃(𝜓)) and 𝜃 is the linear predictor function of vector 𝜓 as expressed 

in (3.1). Based on Bayes’ theorem, the posterior of vector 𝜓 is proportional to the product 

of the prior and the likelihood, i.e., 𝑝(𝜓|𝑛, 𝑟) ∝ 𝑝(𝜓)𝑝(𝑟|𝑛, 𝜓). The Gibbs sampler then 

generates samples from the joint posterior, and the posterior estimates of RP 𝜌𝑔,𝑡 comes as 

a by-product of these samples — per sample, RPs can be computed using reversed logit 



Chapter 3 

 64 

transformation. Repeated samples are drawn from the full conditional posterior of each 

(hyper)parameter. See Appendix F for more information on the full conditional posterior 

distributions. 

Three Markov Chains are produced by the Gibbs Sampler using the mcmcsae package 

(Boonstra, 2021) programmed in R (R Core Team, 2000). Each chain consists of 1500 

draws that are sequentially generated; however only the last 1,000 draws are kept for the 

estimation algorithm. Convergence of the MCMC sample is assessed using trace and 

autocorrelation plots. The Gelman-Rubin potential scale reduction factor (Gelman & 

Rubin, 1992) is evaluated to diagnose the mixing of the chains. In particular, the 

autocorrelation of sequential draws is reduced, as the blocked Gibbs sampler updates all 

fixed and random coefficients simultaneously. In addition, the approach includes a novel 

data augmentation approach for sampling from binomial logistic models (Polson et al., 

2013) which is known to lead to an efficient and relatively fast converging sampler. 

3.3.3 Performance criteria 

To guide the model building using the model components and priors described in Chapters 

3.3.1 and 3.3.2, and to assess the models’ adequacy, we employ three criteria for model 

assessment and one for model predictive performance. 

The common and popular selection criteria in Bayesian hierarchical settings are the 

Widely Applicable Information Criterion (WAIC) (Watanabe, 2010 & 2013) and the 

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). They are chosen in the 

pursuit of a reasonable balance between model fit, model complexity and efficient 

computation (See Appendix E for their definitions). Models with lower DIC/WAIC are 

preferred. Next, we use posterior predictive p-values to check model adequacy, i.e., 

simulating draws from the posterior predictive distribution and comparing them to the 

observed data, see e.g., Gelman et al., (1996). This evaluates whether the multilevel model 

can reproduce data similar to the observations. The p-values are defined as  

𝑝 = Pr (𝑆(𝑟𝑟𝑒𝑝) ≥ 𝑆(𝑟)|𝑟)), (3.7) 

where 𝑆 is a test statistic and 𝑟𝑟𝑒𝑝 denotes a replicated dataset generated from the posterior 

predictive distribution based on the fitted model, 𝑝(𝑟𝑟𝑒𝑝|𝑟) = ∫𝑝(𝑟𝑟𝑒𝑝|𝜌, 𝑛)𝑝(𝜌|𝑟, 𝑛)𝑑𝜌. 
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The p-values are estimated from the MCMC output, and values close to 0 or 1 are 

indicative of a poor fit regarding statistic 𝑆. Here we consider two test statistics: 

1. 𝑆(𝑟) = �̅�, the unweighted mean of the replicate data-vector. 

2. 𝑆(𝑟) =
1

𝐺𝑇−1
∑ (𝑟𝑔,𝑡 − �̅�)

2 
𝑔,𝑡 , the unweighted variance of the replicate data-vector 

and �̅� is the mean of 𝑟𝑔,𝑡. 

To assess the models’ prediction performance, we define a predictive measure: the root 

mean squared error (RMSE) in stratum 𝑔 at month 𝑡 as the square root of the sum of two 

terms: 1) the quadratic differences between the posterior means of 𝜌𝑔,𝑡 and the observed 

response rate (RR), and 2) the posterior variances of 𝜌𝑔,𝑡. The general form of the 

expression in stratum 𝑔 at month 𝑡 is   

RMSE(𝑔, 𝑡) = √(𝐸𝜋𝑡(𝜌𝑔,𝑡) − �̂�𝑔,𝑡)
2
+ var𝜋𝑡(𝜌𝑔,𝑡), 

(3.8) 

where �̂�𝑔,𝑡 is the realized value of RP and estimated by the observed RR, and 𝜋𝑡 is the 

posterior predictive distribution of the RPs, when employing historic data up to and 

including 𝑡 − 1 and new data in 𝑡 for RP prediction. For ease of notation, the two terms 

under the square root in (3.8) are referred to as the bias term 𝐵(𝑔, 𝑡) and the standard 

deviation SD(𝑔, 𝑡). The bias term in (3.8) will, in general, be larger than zero due to 

random variation in the sampling of strata and in the response of sample units. For this 

reason, we benchmark the RMSE against an empirical lower bound denoted by RMSEmin. 

The lower bound estimate is called the Monte Carlo approximation to the posterior mean 

of the binomial standard deviations, which is a function of the 𝑘th iteration from the 

posterior draws of 𝜌𝑔,𝑡,  

RMSEmin(𝑔, 𝑡) =  
1

𝐾
∑ √

𝜌𝑔,𝑡
(𝑘)
(1−𝜌𝑔,𝑡

(𝑘)
)

𝑛𝑔,𝑡

𝐾
𝑘=1 ,   (3.9) 

where 𝑘 runs over MCMC draws and 𝑛𝑔,𝑡 is the size of stratum 𝑔 sample in month 𝑡. (3.8) 

and (3.9) give one-month assessments per stratum 𝑔. They need to be aggregated across 

strata and in time to get meaningful overall assessments. 
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In any particular month, a stratum with a larger sample size should impose more weight 

on the reliable predictions. The weights 𝑑𝑔,𝑡 are defined as the sample proportion, i.e.,  

𝑑𝑔,𝑡 =
𝑛𝑔,𝑡

∑ 𝑛𝑔,𝑡𝑔
   subject to  ∑ 𝑑𝑔,𝑡𝑔 = 1. 

Thus, the sub-terms 

𝐵(𝑡) = √∑ 𝑑𝑔,𝑡(𝐸𝜋𝑡(𝜌𝑔,𝑡) − �̂�𝑔,𝑡)
2

𝑔   

and 

SD(𝑡) = √∑ 𝑑𝑔,𝑡var𝜋𝑡(𝜌𝑔,𝑡)𝑔   

in month 𝑡 should be the square root of the sum of the weighted individual measures 

𝐵(𝑔, 𝑡) and SD(𝑔, 𝑡) by 𝑑𝑔,𝑡  over strata, while the lower bound over strata in time 

𝑡 becomes 

RMSEmin(𝑡) =  
1

𝐾
∑ √∑ 𝑑𝑔,𝑡

𝜌𝑔,𝑡
(𝑘)
(1−𝜌𝑔,𝑡

(𝑘)
)

𝑛𝑔,𝑡
𝑔

𝐾
𝑘=1 .  

Also, the stratum-specific sub-terms 

𝐵(𝑔, 𝑇) =
1

𝑇
∑ √(𝐸𝜋𝑡(𝜌𝑔,𝑡) − �̂�𝑔,𝑡)

2
𝑡   

and 

SD(𝑔, 𝑇) =
1

𝑇
∑ √𝑣𝑎𝑟𝜋𝑡(𝜌𝑔,𝑡)𝑡   

in a time period 𝑇 = {𝑡|𝑡1, … , 𝑡𝑇} are the average of the individual measures 𝐵(𝑔, 𝑡) and 

SD(𝑔, 𝑡) over months where 𝑡 indicates a month, while stratum-specific lower bound over 

time period 𝑇 becomes the average of the individual measures RMSEmin(𝑔, 𝑡), i.e.,  

RMSEmin(𝑔, 𝑇) =
1

𝑇
∑

1

𝐾
∑ √

𝜌𝑔,𝑡
(𝑘)
(1−𝜌𝑔,𝑡

(𝑘)
)

𝑛𝑔,𝑡

𝐾
𝑘=1𝑡  .  

Furthermore, the overall sub-terms or term in a time period 𝑇 becomes the average of the 

weighted sub-terms 𝐵(𝑡), SD(𝑡) and RMSEmin(𝑡) over months, i.e.,  
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𝐵(𝑇) =
1

𝑇
∑ √∑ 𝑑𝑔,𝑡(𝐸𝜋𝑡(𝜌𝑔,𝑡) − �̂�𝑔,𝑡)

2
 𝑔𝑡 ,  

SD(𝑇) =
1

𝑇
√∑ 𝑑𝑔,𝑡var𝜋𝑡(𝜌𝑔,𝑡)𝑔   

and 

RMSEmin(𝑇) =
1

𝑇
∑

1

𝐾
∑ √∑ 𝑑𝑔,𝑡

𝜌𝑔,𝑡
(𝑘)
(1−𝜌𝑔,𝑡

(𝑘)
)

𝑛𝑔,𝑡
𝑔

𝐾
𝑘=1𝑡 .  

3.4 Analysis of Results 

In this chapter, we introduce the Dutch Health Survey (GEZO) as a case study to 

demonstrate how the multi-level time series models can be built and how we update RPs 

in time. We address the four research questions in corresponding chapters. 

3.4.1 The Dutch Health Survey 

The GEZO has been conducted annually since 1981 by Statistics Netherlands as a 

repeated cross-sectional survey in which a sample of households was interviewed with the 

aim of providing an overview of developments in the health, medical consumption, 

lifestyle and preventive behavior of the Dutch population. The sampling frame is formed 

by first drawing a sample from municipalities and then from all people who live in the 

selected municipalities. As of 2010, the survey changed to a mixed-mode survey involving 

an initial web and the follow-up telephone (or face-to-face) interview. Non-respondents to 

web were contacted via telephone if their telephone numbers were known at the register, 

and otherwise a face-to-face interview was arranged. Over these years, the sample size 

was increased to 15,000 and the overall response rate was increased by 25%. From 2014 

onwards, the mix of the follow-ups was changed to a face-to-face interview. In 2018, 

however, a part of the web non-responses was approached via a face-to-face interview in a 

more effective way. The propensity to respond to personal interviews in a time series 

strongly depends on web response outcomes, so in a sense modeling follow-up propensity 

is conditional on web RP model. This issue needs consideration more than interpreting 

time change in web RP and is beyond the main aim of this chapter. For the sake of 

simplicity, our concern is to model web response propensity in this chapter as a 
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fundamental start, hence modeling follow-up RP in a time series is more suited to future 

research. As an important note here, only the web GEZO data from 2014-01 up to and 

including 2019-10 are analyzed in this study. We employ three auxiliary variables that 

stem from administrative frame or registers. The prescribed auxiliary variables are age, 

gender and ethnicity, which divides the population or its sample into 20 disjoint strata (see 

Appendix C for more information).  

The GEZO conducted over many years is a relatively consistent survey design. This 

feature makes exploring time-dependence in RPs valid because of the abundant time 

series. Our interest focuses on monthly response data, i.e., sample size and the number of 

respondents of each stratum. Predictions are made monthly but also can be aggregated 

quarterly or annually.  

3.4.2 What time series components contribute most to variation in RPs? 

We address this question in two steps: First, we go through model combinations and then 

we compare their performance. The comparison of multiple models is made from two 

views: (1) “what combination fits best to response data?” and (2) “what combination 

makes the most reliable predictions?” We use information criteria and posterior predictive 

p-values to measure the performance of each model, and thus search for an “optimal” 

model. The model is preferred when it has lower information criteria and predictive p-

values closer to 0.5.  

Since trying all combinations of components in (3.1) places a heavy burden on 

computation, it is important to apply an efficient search for the “optimal” model. To do so, 

we fit the models to response data using the following strategy:  

1. Start with the baseline model (auxiliary variables only). 

2. Add fixed effects sequentially, linear time trend and seasonal trends, to the 

baseline. 

3. Investigate whether the model in 2 continues to improve with global time effects 

or global seasonality. 

4. Investigate whether stratum-specific time trends or seasonal effects further 

improve the model. 
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5. Determine whether a white noise term for unexplained variation is needed. 

6. Explore robustness for outliers through different prior specifications or time-

dependent structure of global random intercepts over time. 

7. Evaluate the model using a number of diagnostics. 

Table 3.1 shows the selection results. The fixed-effect models (M1 to M3) behave worse 

than the mixed effect models relative to the trade-off between fitness and complexity, as 

the latter ones yield lower ICs (DIC and WAIC). Comparing M2/M3 to M1 implies that 

time slope 𝜆 or seasonality 𝛿 causes a decrease in ICs. However, the model further 

improves by introducing global trend 𝑢𝑡, as a significant decrease in ICs in M4 relative to 

M3 is observed. As M5 and M6 show, the improvement continues with the addition of 

random intercepts for strata 𝑣𝑔 and stratum-specific time trends 𝑧𝑔,𝑡. Although white noise 

𝑤𝑔,𝑡 seems to add only very little in M7 overall, the posterior predictive p-values for 

variances imply that it is worth to include white noise. Further, we found that using a local 

level trend (RW1) or smooth trend (RW2) as the global trend 𝑢𝑡 makes hardly any 

difference concerning ICs for models M6 to M11.  

Finally, the 4th column of Table 3.1 shows the prior distribution used for the global trend 

coefficients 𝑢𝑡. The non-normal priors that have been attempted do not further improve 

ICs, but because of heavier tails they help to combat an outlier in the data, an exceptional 

issue in February 2017.  

T-distributed and horseshoe priors are likely to accommodate and be robust against the 

outlier better than normal and Laplace priors, as shown by comparing their posterior 

means of global trend 𝑢𝑡 in Appendix D. Besides, the local level trend of M8 seems to 

outweigh slightly the smooth trends of M11. P-values of the mean of M8 bring the value 

closer to 0.5 than M9 and M11. 
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To determine which model is flexible to the outlier and which one generates reliable 

estimation throughout the series, we look further into the discrepancy between 

observations and model-based estimates, specially M8, M9 and M11. The comparison 

demonstrates that the three models have limited ability to combat the outlier. The lower 

quantiles attempt to reach to the outlier but cannot cover it. In addition, the Laplace prior 

has slightly smaller uncertainty about the posterior estimates than the T-distributed prior, 

but it has similar size in uncertainty to the smooth trend model (See Appendix D). 

3.4.3 What level of response propensity prediction accuracy can be achieved 

for the next upcoming new time period? 

To answer the second research question, we estimate the level of and variation in overall 

response predictions for the forthcoming data collection wave. The estimated level is the 

deviation of the expected posterior propensity prediction from the realized response rate, 

while the estimated variation refers to the prediction accuracy in the overall RP. Also, we 

measure the balance between the level and variation and compare it with the benchmark in 

(3.9). The assessment allows us to validate if gains can be achieved from our method. 

Actions can be taken to adapt/maintain data collection in the following wave once the gain 

is known upon historic series.  

We stress that the analysis is made based on the “optimal” model, M8. For all strata in a 

new sample per month, the months since January 2014 up to but not including the present 

month are viewed as the historic time series, which are used for training M8. Then we use 

the fresh sample from the present month for the estimated predictive criteria. The historic 

time series is accumulated and predictive criteria are updated with the new wave. The 

rolling assessment ends with 2019/09 as one month must be left for the prediction exercise 

because 2019/10 is the last month of data available. To lend robustness to the impact of 

historic size on predictive performance, we let historic time series start with 60 months 

(from 2014/01 to 2018/12) as the default initial trial.  

Table 3.2 shows that the posterior uncertainty in the overall RP predictions decrease 

steadily but slowly and converge to around 0.027. Because of the sampling variation that 

is inherent to the bias term, the pattern for bias is erratic and shows at best a modest 

decrease. Relative to the realized response rates, the greatest deviation of posterior means 
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is around 0.07 in January and June, and the smallest deviation around 0.04 in March, May, 

August and October. The RMSE results vary along with the bias term across months, as 

the estimated SDs are much smaller than the estimated biases. The RMSE has a maximum 

value of 0.084 in January, and is likely caused by the outlier months in early 2017. 

Although the model reacts to this disruption, it has a negative impact on the performance 

of the resulting predictions in this month. Aside from January, in some months the 

estimated RMSE is close to the benchmark RMSEmin. It can be concluded that the 

estimated accuracy lies relatively close to the maximal possible accuracy. 

Table 3.2 One month ahead prediction of three measures of RPs over strata: bias, standard 

deviation (SD), and the root mean square error (RMSE) compared to the benchmark 

(RMSEmin).  

 2019 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct 

bias 0.078 0.064 0.045 0.062 0.046 0.077 0.063 0.049 0.058 0.048 

SD 0.030 0.031 0.031 0.029 0.028 0.029 0.028 0.027 0.028 0.027 

RMSE 0.084 0.071 0.055 0.069 0.054 0.082 0.068 0.056 0.065 0.055 

RMSEmin 0.055 0.056 0.055 0.055 0.055 0.055 0.048 0.048 0.049 0.049 

Notes: The column indicates the present month for evaluating prediction performance. 

3.4.4 How does prediction accuracy vary over population strata? 

This research question concerns the different strata and how well the model performs in 

predicting RP per stratum. For this purpose, we consider the stratum-level RMSE as well 

as its two components, i.e., bias and standard deviation. The evaluation measures are taken 

as the average over the ten months ahead predictions. Month 2019/10 is the last month 

available. Looking ahead by almost a year allows data collection staff to plan adaptive 

designs well ahead of time. 

Similar to Chapter 3.4.3, we limit the analysis to the assumptions. The preferred model is 

selected from Chapter 3.4.2, and the historic time series is fixed to be 60 months (2014/01 

to 2018/12). For each stratum, the model is fully trained by the fixed historic data and 

makes inference on predictions in the remaining months in 2019.  
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Table 3.3 shows prediction criteria for each stratum together with the benchmark. The 

estimated bias terms vary widely between strata. The greatest departure of posterior 

expectation from the realized response rates occurs in stratum 8, 10, 12, and 18, all with 

biases larger than 0.1. Compared to biases, there is a relatively smooth change in the 

estimated SDs around 0.03, where stratum 4 has smallest uncertainty about the posterior 

estimates with 0.018.  

Table 3.3 The average of ten months ahead prediction of three measures in each stratum: 

bias, standard deviation (SD), and the root mean square error (RMSE) that is compared to 

the benchmark (RMSEmin). 

 bias SD RMSE RMSEmin 

1 0.045 0.030 0.060 0.046 

2 0.066 0.030 0.077 0.094 

3 0.028 0.025 0.039 0.039 

4 0.049 0.018 0.053 0.061 

5 0.035 0.026 0.045 0.035 

6 0.047 0.021 0.053 0.064 

7 0.062 0.032 0.073 0.054 

8 0.105 0.030 0.111 0.154 

9 0.047 0.031 0.060 0.045 

10 0.165 0.035 0.173 0.160 

11 0.044 0.031 0.057 0.048 

12 0.134 0.030 0.138 0.092 

13 0.030 0.027 0.044 0.042 

14 0.081 0.022 0.086 0.074 

15 0.044 0.028 0.056 0.038 

16 0.067 0.022 0.072 0.072 

17 0.030 0.031 0.048 0.053 

18 0.114 0.029 0.120 0.146 

19 0.031 0.029 0.046 0.041 

20 0.095 0.030 0.105  0.172 

Some strata with greater biases may have less accuracy in posterior estimates of RPs than 

strata with less biased propensity. Similarly, the more biased the prediction is, the greater 

the RMSE is estimated to be. This is because the estimated biases are much greater than 
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the estimated SDs. It is not surprising that stratum 10 has the greatest value in RMSE, 

where the prediction is the most biased and has the least precision. The RMSE results can 

catch up with, and even can be comparable/superior to the benchmark. For example, when 

the model generates prediction for stratum 20, more significant gains can be achieved than 

other strata.  

The predictive performance shows a significant difference between strata when there is 

only one different characteristic. For example, stratum 20 RMSE is 0.06 lower than 

stratum 10 RMSE. This seems to imply that female groups may have smaller bias or 

variance than male groups when non-western people above the age of 64 are considered. 

Given the age and ethnicity of groups and compared with non-western groups (even 

rows), RMSE results are much lower in western groups (odd rows). To validate this 

supposition, some strata are combined into subgroups with less detailed characteristics. As 

Figure 3.2 shows, the model yields better predictions for western group than non-western 

groups, as expected posterior estimates reach mostly the observed response per month. 

The comparative performance for age/gender groups are presented in Appendix D. 

 

Figure 3.2 Monthly posterior means of RP aggregated over Ethnic groups versus 

observed response rates (RR) of Ethnic groups. Month 2014/01 to 2018/12 for the 

estimated model and Month 2019/01 to 2019/10 for RP predictions. 



Modelling Time Change in Survey Response Rates 

 75 

3.4.5 How does prediction accuracy depend on the length of the historic 

survey time series? 

The primary concern of this question is to find out how robust the prediction performance 

is to the amount of historic time series that is used for model training and predicting. For 

this purpose, we continue with the average of three-month ahead predictions of RMSE and 

its two terms, bias and SD, at the overall level at any given time point. We call this length-

based average the quarterly average. To explore the impact of historic data size, we 

perform 3-split time series cross validation on dataset, i.e., successively add three months 

of new data to the training dataset used for model-based predictions. This analysis is 

iterated on a rolling basis and the step-by-step strategy is laid down as follows, 

1. Select the model components based on the whole time series. 

2. Select the baseline set of historic time periods of length 𝑡. Partition the window 

into the training set 𝐷𝑜 of the first 𝑡 − 3 time periods and the test set 𝐷𝑡 of the last 

three periods.  

3. Data 𝐷𝑜 trains the selected model, by simulating from the posterior distribution of 

all model parameters, given 𝐷𝑜. 

4. Based on the simulated model in 3, posterior predictive means and variances are 

computed for the RPs for each stratum and each time point in the test set 𝐷𝑡. 

5. Based on individual RPs predictions in 4, compute overall Bias, and SD, by using 

the sample proportion 𝑑𝑔,𝑡 in stratum 𝑔 at time 𝑡 as weights, then (3.8) computes 

the quarterly average of RMSE. 

6. Expand the window to 𝑡 + 1, moving one time period forward. Repeat 3-5 for 

updating the predictions of RMSE and its two terms.  

7. Repeat 6 until length 𝑡 is the last available time period.  

We stress that it is necessary to use at least two years as the initial training length when 

seasonal components are included. In our case, time periods are months and the time 

series runs until 2019/07. 
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In Fig 3.3 RMSE, Bias and SD estimates are length-dependent and computed over strata 

for three months ahead. The baseline window of training data for fitting the optimal model 

are 2014/01 to 2015/12. Along the time series window, bias results are approximately 

greater than two times the SDs. Consequently, RMSE results are dominated by biases and 

show the same volatility. At the end, their estimates are approximately 0.06, whereas SD 

estimates undergo a slight increase. The latter is somewhat surprising, as one would 

normally expect that using a longer time series to estimate the model would decrease the 

posterior standard errors of prediction. It turns out, however, that two events had a large 

impact on the prediction performance. First, early in 2017, data collection experienced an 

interruption caused by technical issues with the web server. This incident had a large 

immediate impact on RPs and consequently also on model prediction performances. 

Second, in 2018, conditional incentives were introduced and the survey questionnaire was 

made smartphone proof. This design intervention had a more gradual and longer lasting 

impact. 

 

Figure 3.3 One-step forward moving average of quarterly Bias (upper panel), quarterly 

SD (middle panel) and quarterly RMSE (bottom panel). RMSE (solid) against benchmark 

RMSE (dashed) when the length of training data set moves on x axis. 

The Bias and RMSE results undergo a big increase from 2016/10 to 2017/02. When the 

training window arrives at time point 2016/10, the test window starts to include 

2017/01data where RPs dropped. Their climbing curves continues and reach maxima 

around 0.1, when the training window moves to 2016/12 and the test window first moves 
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to the “stable” month 2017/03 where the Bias and RMSE curves drop back around 0.05. 

During these months a slight, gradual increase in SD can be observed as well. 

The inclusion of these outlier months affects prediction accuracy during 2017. Between 

month 2017/03 and 2017/12 the Bias and RMSE curves are more volatile, and decline 

only after 2018/01. The SDs have a rising tendency from 2017/03 to 2017/12 and hardly 

decrease. 

In 2018, the impact of the design intervention on RPs was much more modest than in 

2017, but since it is structural it does affect prediction accuracy in 2018 and 2019. The 

two events, one technical incident and one design change, are realistic in survey practice 

and when ignored can have a devastating impact. We set an example of how one might 

deal with them. The extra efforts are: 

• Discard method. For the original data, clear the response numbers 𝑟𝑔,𝑡 in 

2017/01 and 2017/02 and treat them as missing data. Impute these missing 𝑟𝑔,𝑡 

by the posterior means of simulated responses from the posterior predictive 

distribution. Note that in Chapter 3.4.2 we argued that using specific non-

normal priors for time series components can also limit the effect of outliers. If 

an outlier is quite extreme and known to occur at a specific time, it may 

however be better to discard it.   

• Intervention method. Include an intervention term in the model or capturing 

the possible structural change. Add intervention binary variables to the original 

data series and let them be 0-1, where in our case they would take the value 1 

and become active from 2018/01. The potential intervention-related effects 

could be either a single fixed effect, stratum-specific random effect or both.  

Results from applying these two methods separately are shown in Fig 3.4. The two 

methods have a clear effect on predictions. In the period of 2016/12 to 2017/05 where the 

training time series window stops, the posterior means of the discard method show a 

declining trend, relative to the original model’s posterior means (“Whole” in Fig 3.4). 

However, from 2017/10 to 2018/03 the difference in the mode-based means and 

observations becomes small for the discard method. Also, the discard method decreases 

uncertainty about posterior means as the credible band becomes narrower since from 



Chapter 3 

 78 

2016/12. The intervention-related impact on overall RP cannot be estimated well using 

just a few new months of data.  

While, it was not our intention to provide a detailed account of modelling options for 

incidental and structural changes, the time series model we propose can be modified in a 

relatively straightforward and flexible way. Replication with long survey time series is 

warranted to get a sense of what options are superior. 

 

Figure 3.4 One-step forward moving average of quarterly posterior estimates of overall 

RP under three scenarios: (1) the original time series (top panel); (2) the new time series 

by discarding early 2017 data (middle panel), and (3) the new time series by adding 

intervention-related effects (bottom panel). Compared to the moving average of observed 

response rates quarterly (dashed), the model-based estimates are summarized as the 

posterior means (solid) with 95% credible region (band in grey). X axis labels the length 

of training data from 2014 to that time point. 

3.5 Discussion 

Accurate and reliable prediction of response propensities (RPs) is the key to improving 

and optimizing adaptive survey designs. Such inference can be complicated due to 

seasonal variation and time-related trends that may be specific to population strata. In this 

chapter, we introduce a Bayesian multilevel time series model for stratum-level RP 

predictions. The model is flexible enough to include seasonal variation, various forms of 
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trends, design changes and stratum-dependency, so that it can facilitate preparation for 

adaptive survey design in a changing survey climate. They are elicited from historic 

survey data and updated with new survey data.  

In this chapter, we apply the method to a general population repeated survey, the Dutch 

Health Survey at Statistics Netherlands, to provide empirical support in a realistic case. 

The major focus is on improving stratum-level RP predictions that are subject to time-

related factors. Based on various model combinations made of these factors, one of our 

concrete objectives is to search for the highest-performance model that makes a trade-off 

between model fitness and computational ease. The optimal model is selected based on 

criteria that assess both performance (high IC, p-value ≈ 0.5) and predictive ability (low 

RMSERP). These measures provide valuable insight into the relative gain achieved by 

adding new factors. This flexible approach allows other survey researchers to consider 

different time-related factors and ultimately choose the preferred model in their settings.  

The remaining objectives of this chapter center on evaluating the prediction performance 

of stratum-level/overall RPs based on the preferred model. We use predictive metrics, 

specifically the root-mean-square error (RMSE), to assess uncertainty in predictions. This 

allows us to directly compare: (1) overall predicted response in first forthcoming data, (2) 

annual-averages of predicted response for each stratum, and (3) quarter-averages of 

overall predicted response. We evaluate the role of length of the historic survey time series 

in both the ultimately preferred model and a model that is re-optimized when data come 

in. Doing so we can find out when is a suitable time to start implementing an adaptive 

survey design. Note that when the survey design is made adaptive, it becomes less evident 

how to learn about the time change in model parameters. Also, the time series model itself 

may need to be updated depending on the type of survey adaptation. 

While our attempt is a first step to adaptive survey designs, there are, however, various 

methodological and practical considerations that should be addressed. First, our approach 

is applied to a frequently-repeated cross-sectional survey. Historic data in such surveys 

has rich resources for relatively robust estimates of model coefficients and for making 

reliable predictions. When a survey is novel or conducted infrequently at a statistics 

bureau, our approach may be less powerful. Second, we assume that stratification is done 

through a fully-saturated model, i.e., strata are pre-specified by some auxiliary variables 
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that are strong predictors for web responses. How does the prediction performance change 

when adding less influential auxiliary variables? It is important to assess the sensitivity of 

reliable predictions to the choice of auxiliary variables. Also, we assume that strata are 

fixed throughout the time series. In survey practice, the selected auxiliary data may 

gradually change over time, and thus also the relevance of certain strata. Hence, it is 

essential to consider auxiliary-related change in stratification when predicting responses. 

Third, we assume the design of a survey should be the same over time, i.e., the model 

assumptions must be valid over the whole time series. If an intervention or another self-

reported mode (e.g., smartphone) is introduced, variation in responses caused by this must 

be included explicitly. The advanced method is needed because there is no prior historic 

knowledge for a design change before it happens. A large jump can be caused by the 

inclusion of such a change in the model and, before the model can be informative about 

the effects of the change on RPs, a sufficiently long historic sampling must first be 

acquired. 

We see also some limitations to the proposed methodology. In one particular year of the 

Dutch Health Survey data, we find a sudden increase in the standard deviations of 

predicted response propensities and overall quality indicators. The increase was the result 

of the intervention (smartphones were introduced as devices as well as conditional 

incentives). The results show that the model can be sensitive to design change. Hence, 

accounting for design changes is necessary and will temporarily reduce prediction 

performance.  

Future research needs to address conditional response predictions in mixed-mode survey 

designs. In this chapter, we focus only on single mode response predictions. Such 

considerations are worthwhile for optimizing decisions of adaptive survey designs, for 

example, whether to switch to a cheap or expensive mode given the budget. Our method 

paves the way for the development of such conditional models.  

Currently, the proposed model is designed for repeated cross-sectional surveys, but one 

may extend to other survey and sampling designs such as rotating panels. Such an 

extension would imply that panel response/attrition propensities are added to the model 

vector, and that the correlation structure among the propensities needs to be revisited. 
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Chapter 4  

Robust adaptive survey design for time changes in 

mixed-mode response propensities 
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Abstract 

Adaptive survey designs (ASDs) tailor recruitment protocols to population subgroups that 

are relevant to a survey. In recent years, effective ASD optimization has been the topic of 

research and several applications. However, the performance over time is sensitive to time 

changes in response propensities. How adaptation strategies can adjust to such variation 

over time is not yet fully understood. In this chapter, we propose a robust optimization 

approach in the context of sequential mixed-mode surveys employing Bayesian analysis. 

The approach is formulated as a mathematical programming problem that explicitly 

accounts for uncertainty due to time change. ASD decisions can then be made by 

considering time-dependent variation in conditional mode response propensities and 

between-mode correlations in response propensities. The approach is demonstrated in a 

case study: the 2014-2017 Dutch Health Survey. In the comparisons, we evaluate the 

sensitivity of ASD performance to 1) the budget level and 2) the length of historic time-

series data. 

Keywords: Response propensity model; time series analysis; allocation optimization; 

adaptive survey design 

4.1 introduction 

Adaptive survey designs (ASDs, Wagner, 2008; Schouten et al., 2017) have rapidly 

become an interesting alternative to conventional surveys; a single survey protocol is no 

longer offered to all individuals or subgroups but rather can be tailored to efficiently attain 

their responses based on population characteristics. This shift was accelerated by 

persistent declines in response rates, limited budgets, the variety of data sources, the 

emerging new means to collect data (e.g., smartphones), the multiple survey modes and so 

on. Combined, these factors put survey quality at risk, where most designs focus on 

nonresponse, and lead to an increase in survey costs.  

A key element in ASD is the optimization strategy, i.e., the set of decision rules. Such 

strategies rely on input on response propensities and other survey design parameters. The 

main approaches to optimization include case prioritization (Peytchev et al., 2010; 

Wagner, 2013; Wagner & Hubbard, 2013), trial and error, and mathematical and statistical 
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optimization (Calinescu & Schouten, 2016; Schouten et al., 2013). See Schouten et al., 

(2017) for the advantages and disadvantages of each approach. These researchers mostly 

ignored inaccuracy in response propensities estimated from historic data. In mathematical 

programming, objectives can be parameterized as functions of response propensities 

acting as one of the main inputs to optimization. Error would be introduced in making 

decisions when response propensities change over time. As a result, inaccuracy treats any 

ASD as suboptimal, or even worse makes, it ineffective. Placing ASD optimization in a 

Bayesian context is natural to address this issue, yet the relevant survey methodology 

research is still in its infancy. Recently, Ma et al., (2021) developed a methodology to 

efficiently optimize a stratification by holding out for accurate estimates of response 

propensities in a Bayesian manner, given the most recent historic data. 

Time changes in response propensities and inaccurate estimates from historic data 

endanger the robustness of ASD optimization. See Schouten et al., (2017) and Chun et al., 

(2018) for more discussion. Recently, ASD researchers started to focus on developing 

response propensity models and improving prediction accuracy; Schouten et al., (2018) 

pioneered Bayesian updating methods to combat this bias by statistically leveraging 

accumulated survey data and historic data generated from past implementations of the 

same survey. Being the most informative, prior beliefs gathered from past survey data can 

enhance current data for prediction purposes. Clearly, translating external data sources to 

prior beliefs is a requisite for the development of response propensity models. To do so, 

using a literature review (West et al., 2021) and eliciting expert knowledge (Coffey et al., 

2020 and Wu et al., 2022) are recent approaches to source prior information. Survey 

researchers treat the matter of historic data timeliness incompletely and regard response 

propensities at different survey phases overall, whereas some facts, such as consistently 

reduced response rates over years, indicate that accurate estimates of response propensities 

are dependent on time, and response propensities in sequential designs are likely to 

correlate. The most closely related work by (Wu et al., 2023) explored deconstructing time 

changes in response propensities at multiple levels to study the length of historic survey 

data, ensuring stabilized prediction accuracy. While modeling time-related effects 

involved only the Computer-assisted web interview (CAWI) data collection phase in the 

Dutch Health Survey (GEZO) that follows up CAWI nonrespondents by Computer-

assisted personal interviewing (CAPI), the present study additionally evaluates conditional 
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prediction accuracy based on accurate CAWI predictions and potential correlation in 

between. 

Taken together, this chapter aims to make two contributions in sequential mixed-mode 

(MM) designs: predicting each survey mode response propensity as accurately as possible 

and making adaptive decisions in the Bayesian context as optimally as possible. To fulfil 

this ambition by leveraging historic time-series data in the evaluation, we raise three 

research questions: 

• How can time-series models be constructed to improve response propensity 

prediction accuracy in a sequential mixed-mode design? 

• How sensitive is ASD performance to the specified budget level? 

• How does ASD performance depend on the length of historic data? 

In response to the first question, we extend the multilevel time-series models for a single 

mode proposed by Wu et al., (2023) to each mode with the application of a case study, the 

GEZO survey. Such an extension considers the in-between correlation of response 

propensities of CAWI and CAPI. Considering the alternative of model components, the 

models fit to 2014-2017 survey data are compared with each other via information criteria 

(Spiegelhalter et al., 2002; Watanabe, 2010 & 2013) for selecting the “best” 

representative. Concerning the second and third questions, a strategy that accommodates 

uncertainty about input to optimization when optimizing probabilistic allocations is in 

great demand. The survey design performance is monitored through an indirect indicator 

of the risk of nonresponse bias, i.e., the coefficient of variation of response propensities 

(CV). We benchmark the ASD performance against the performance of CAWI-only and 

nonadaptive designs to ensure that the determined allocations can improve the ASD 

performance. To determine the sensitivity of ASD performance, we conduct two 

experiments. The first experiment, in which a quarter is fixed as the optimization target 

and the budget level is gradually decreased, enables comparison of posterior CV estimates 

to probe the sensitivity of the ASD performance to the specific level. In the second 

experiment, the budget level is set, and the time series window of historic data moves 

forward to the next new data collection quarter. This training data set is used in updating 

the model’s estimates and reoptimizing the allocations for the following quarter. The 
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dependence of ASD performance on the length of historic data can be observed by 

comparison of posterior CVs. 

The outline of this chapter is as follows: We begin by developing the time-series approach 

to modeling the sequential response propensities between survey modes and to measuring 

the mode-correlated impact on propensity predictions in Chapter 4.2. Chapter 4.3 

constructs an optimization problem subject to reasonable budget overrun, enabling us to 

reduce nonresponse bias through CV to the greatest extent. Then, the chapter that follows 

describes a sequential web-face-to-face mixed-mode survey, i.e., the Dutch Health Survey 

(GEZO), and we apply the proposed model to it to evaluate the model performance and 

determine a certain adaptation. The last chapter discusses the advantages and 

disadvantages of our method and concludes with some thoughts on future research. 

4.2 Methods 

In this chapter, a multivariate time series model is developed for response propensities in 

sequential mixed-mode designs. Notably, we extend the approach of Wu et al., (2023). 

The updated approach provides the necessary background for setting up an optimization in 

the Bayesian context in Chapter 4.3. 

4.2.1 Modeling response propensities in sequential mixed-mode designs 

The models of Wu et al., (2023) generate precise estimates of response propensities for 

survey designs with a sole mode or for the first mode of mixed-mode surveys during 

fieldwork. Here, the objective evolves into making reliable predictions for each mode of 

mixed-mode surveys to broaden the model’s appeal. Notably, discrete-valued time series 

data, including the size of a sample and the number of respondents to each mode, are 

considered from a multinomial distribution, while Wu et al., (2023) considered a binomial 

distribution for data. 

Response propensity is the theoretical propensity of a sampled subject with a set of known 

characteristics being a responder in a specific mode interview. This subject can be either 

an individual or a well-defined stratum. Of interest, a stratification is made by cross-

classifying several auxiliary variables that are regarded as strong predictors of survey 
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variables. Within a stratum, units have homogeneous demographic attributes, such as age. 

Such a stratification can vary with time or design change (See Schouten et al., 2017 for 

more discussion on a stratification), but we assume that it is specified before fitting the 

model and that it stabilizes during data collection. 

To model mode-level RP with ease, in this chapter, we first blur the subscripts indicating a 

specific stratum in the propensity parameter and indicating a specific time point, but the 

next chapter must specify this subscript to decompose a time series to some fixed or 

random effects at the stratum, time, and/or mode level. 

Assume that a mixed-mode survey is provided with M modes for data collection. The first 

M-1 modes correspond to survey modes implemented in practice, while the Mth mode 

corresponds to nonresponse, implying no response to the first M-1 modes. Let a random 

sample of size 𝑛 be known before data collection starts, and let 𝑟𝑗 denote the observed 

number of respondents in the 𝑗th mode, where 𝑗 ∈ {1,… ,𝑀}. Consider a multinomial 

distribution in 𝑀 modes with response propensity 𝜌𝑗 for the 𝑗th mode, where 𝜌𝑗 ∈ [0,1]. 

Clearly, 𝜌𝑀 is the nonresponse propensity when 𝑗 = 𝑀; however, it is no longer explicitly 

modeled later. 

Vector 𝒓 = (𝑟1, … , 𝑟𝑀) follows a multinomial distribution with sample size 𝑛 and response 

propensity 𝝆 = (𝜌1, . . , 𝜌𝑀), i.e., the joint distribution of 𝒓 having the likelihood as a 

multivariate generalization of a binomial distribution, 

𝑚𝑢𝑙𝑡(𝒓|𝑛, 𝝆) =
𝑛!

∏ 𝑟𝑗!
𝑀
𝑗=1

∏ 𝜌𝑗
𝑟𝑗𝑀

𝑗=1 . (4.1) 

Linderman et al., (2015) used a stick-breaking transformation to reformulate the 

multinomial distribution as a product of binomial distributions, where the constructed 

parameters are dependent. This offered a chance to rewrite the 𝑚-dimensional (4.1) 

recursively in terms of 𝑀 − 1 binomials. In the stick-breaking representation, the 

propensity vector 𝝆 serves as a stick that is recursively split into two pieces to create 

binomial variable �̃� = (�̃�1, … , �̃�𝑀−1). To provide a derivation, let the 𝑗th mode response 

variable 𝑟𝑗 follow a binomial density with parameters 𝑛𝑗 and �̃�𝑗, i.e., 𝑏𝑖𝑛(𝑟𝑗|𝑛𝑗 , �̃�𝑗), where 
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𝑛𝑗 and �̃�𝑗 represent the remaining size of the sample and the fraction of the remaining 

probability approached by the 𝑗th mode, 

𝑛𝑗 = 𝑛 − ∑ 𝑟𝑘𝑘<𝑗 , (4.2) 

�̃�𝑗 =
𝜌𝑗

1−∑ 𝜌𝑘𝑘<𝑗
, (4.3) 

where 𝑗 ∈ {2,… ,𝑀}. When 𝑗 = 1, parameter 𝑛 = 𝑛1 = ∑ 𝑟𝑗𝑗∈{1,..,𝑀}  and parameter �̃�𝑗 =

𝜌1. 

The exponential term in (4.1) can be rewritten using 𝜌𝑗 rather than �̃�𝑗 to represent the 

exponential term in the binomial density explicitly by substituting (4.3), 

�̃�𝑗
𝑟𝑗(1 − �̃�𝑗)

𝑛𝑗−𝑟𝑗
= 𝜌𝑗

𝑟𝑗 1

(1−∑ 𝜌𝑘𝑘<𝑗 )
𝑛𝑗
(1 − ∑ 𝜌𝑘𝑘≤𝑗 )

𝑛𝑗−𝑟𝑗
. (4.4) 

Note that 𝑟𝑗 sums to 𝑛 over 𝑗 and 𝑛𝑗 = 𝑛𝑗−1 − 𝑟𝑗−1 for any 𝑗 ∈ {2,… ,𝑀}. This 

simplification means that pairs of terms (1 − ∑ 𝜌𝑘𝑘<𝑗 )
𝑛𝑗

 will cancel out and immediately 

offer the product of (4.4), leading to the same format as the multinomial exponential term 

in the following, 

∏ �̃�
𝑗

𝑟𝑗(1 − �̃�𝑗)
𝑛𝑗−𝑟𝑗𝑀−1

𝑗=1 = ∏ 𝜌
𝑗

𝑟𝑗𝑀
𝑗=1 . (4.5) 

The normalization constants follow the same logic and work out correctly as well, 

combined with exponential terms in (4.5), so (4.1) can be rewritten as 

𝑚𝑢𝑙𝑡(𝒓|𝑛, 𝝆) = ∏ 𝑏𝑖𝑛(𝑟𝑗|𝑛𝑗 , �̃�𝑗)
𝑀−1
𝑗=1 . (4.6) 

We use the stick-breaking representation of the multinomial model for practical reasons: 

for this representation, there is a simple and efficient Gibbs sampler for the multinomial 

(multilevel) model. As explained in Linderman et al., (2015), it uses the same Pólya-

Gamma data augmentation method (Polson et al., 2013) that was used for the binomial 

models in Wu et al., (2023), and the stick-breaking representation allows sampling the 

model coefficients for all M-1 modeled categories in a block, thereby improving the 

convergence of the Gibbs sampler. This representation also has a drawback: the definition 
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of �̃�𝑗 makes interpretation of the underlying model coefficients more difficult, particularly 

the interpretation of correlation coefficients in the models detailed in Chapter 4.2.2. 

In the following, we employ a structural time-series model to decompose an observed time 

series into some underlying time-related components. 

4.2.2 Multinomial multilevel time series model 

To measure the dependence of response propensities among the modes, we develop the 

models of Wu et al., (2023) by introducing a new hierarchical parameter indicative of 

correlation coefficients. Such dependence spread over time-series components of interest 

is similar to those adopted in Chapter 3; revisit that chapter for more details on each 

component’s definition and for technical details. 

To describe each model component at the most detailed level, let the dependent propensity 

parameter vector of the sequential modes be associated with a specific stratum and time 

point, i.e., �̃�𝑔,𝑡 = {�̃�𝑔,𝑡,𝑗|𝑗 ∈ {1, . . , 𝑀 − 1}}, where the 𝑗𝑡ℎ entry denotes the propensity 

parameter of the 𝑗th mode in stratum 𝑔 at time 𝑡, as defined in (4.3). The numbers of 

strata, time points and survey modes are 𝐺, 𝑇, and 𝑀 − 1, respectively. 

We let a latent variable 𝜃𝑔,𝑡,𝑗 = 𝑙𝑜𝑔𝑖𝑡(�̃�𝑔,𝑡,𝑗). A logit link function is defined to take a 

linear combination of some model components and convert the constrained scale of a 

probability between 0 and 1 to the real line ℝ. Therefore, the multinomial likelihood 

function (4.1) can be rewritten by substituting the inverse transformation for �̃�𝑔,𝑡,𝑗, 

𝑚𝑢𝑙𝑡(𝒓|𝑛, 𝝆) ∝ ∏ (
𝑒
𝜃𝑔,𝑡,𝑗

1+𝑒
𝜃𝑔,𝑡,𝑗

)
𝑟𝑗

𝑀−1
𝑗=1 . (4.7) 

The multilevel models considered for modeling the linear predictor 𝜃𝑔,𝑡,𝑗 take the general 

form of additive decomposition, which refers to a function of the sum of time-series 

components. Thus, the signal  𝜃𝑔,𝑡,𝑗 has the form 

𝜃𝑔,𝑡,𝑗 = 𝛽𝑗 + 𝛽𝑥𝑗
′ 𝑥𝑔 + 𝛿𝑠

′𝑠𝑡 + 𝑢𝑡,𝑗 + 𝑣𝑔,𝑗 + 𝑧𝑔,𝑡,𝑗 + 𝑒𝑔,𝑡,𝑗. (4.8) 

The first three and the last four terms are modeled as fixed effects and random effects, 

respectively. 
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The first regression fixed effects 𝛽𝑗  are mode-specific intercepts, measuring the main 

effect on 𝜃𝑔,𝑡,𝑗. The second fixed effect 𝛽𝑥𝑗 measures the mode-specific regression 

coefficients associated with 𝑝-vector covariate 𝑥𝑔, while the third fixed effect 𝛿𝑠 measures 

the season-specific regression coefficients associated with 𝑞-vector 𝑠𝑡. Their estimators 

can interpret the between-mode differential in the effect of stratum 𝑔 possessing some 

specific demographic characteristics that make up 𝑥𝑔 and of time 𝑡 belonging to the 

specific season. Currently, all strata share common seasonal and mode effects. In a 

broader sense, these fixed effects can be stratum-specific. In the present application 

throughout this chapter, the entries 𝑥𝑔 and 𝑠𝑡 are binary in the usage of categorical 

variables, but they can extend to ordinal or numerical and even time-variant variables if 

needed. 

Each random effect term in (4.8) implicitly allows correlation between survey modes. 

Refer to Wu et al., (2023) for a description of the random effect components. As stressed, 

these terms are now crossed with the mode, i.e., separate variance parameters for each 

mode and correlation parameters among the modes are introduced. The global time trend 

𝒖, random intercept for strata 𝒗𝑔, and stratum-specific trend 𝒛𝑔 conform to this rule. 

White noise random effects 𝑒𝑔,𝑡,𝑗 are also crossed with mode, but we use a single common 

variance parameter, and no correlation is allowed. 

We adopt a Bayesian approach to the estimated model in (4.8) to obtain reliable 

predictions of the response propensities at the mode, stratum and time levels. As noted, 

the priors are the same for coefficients corresponding to different modes. For notational 

convenience, we suppress subscripts 𝑔, 𝑡 and 𝑗 in each model component term. Fixed 

effects 𝛽 and 𝛿 are provided with weakly informative priors normally distributed with 

zero mean and diagonal variance matrix, where the standard error takes a very large value 

of 10. Each random effects vector is assumed to be distributed as a Gaussian prior with 

mean 0 and covariance denoted as the Kronecker product of covariance matrices 𝐴 and 𝑉. 

The fully parameterized covariance matrix 𝑽, conditional on the introduced auxiliary 

parameter vector 𝝃, is distributed as a scaled-inverse Wishart prior (Gelman & Hill, 2007; 

O’Malley & Zaslavsky, 2012). More technical details about the prior specification, the 

estimation strategy and the full conditionals of each hyperparameter can be found in Wu et 

al., (2022) and Boonstra et al., (2019). 
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A more parsimonious model can be obtained by omitting the mode-oriented interaction 

and replacing the fully parameterized covariance matrix 𝑉 with uncorrelated forms, such 

as a diagonal matrix, if there is little interest in the between-mode effects on propensity 

predictions. This model is called the no-correlation model relative to (4.8), which provides 

a reference to evaluate the model performance when incorporating mode correlations. 

4.3 Optimizing mode allocation under the Bayesian multilevel 

time series model 

This chapter explores and exploits an allocation problem accounting for such uncertainty 

to grasp the timeliness and implementation of adaptive survey designs. Chapter 4.3.1 

outlines the main ingredients for the construction and operation of this problem in a 

Bayesian framework. A strategy is proposed in Chapter 4.3.2 to assess the gain of 

adaptive allocations against nonadaptive allocations concerning nonresponse bias risk 

reduction by monitoring a measure of bias risk. 

4.3.1 Main ingredients 

Generally, mathematical optimization involves the selection of the “best available” values 

of some objective function relative to a number of constraints by choosing input values 

from an allowed set. Establishing optimization models entails three major elements: 

decision variables to optimize the goal, objectives to be minimized or maximized, and 

constraints on the decision variables. Because of optimization on the Bayesian setting, we 

emphasize that all mentioned statistical parameters are considered to be random variables 

with values that change over time. Consequently, objective functions and constraint 

functions are also random variables. In the following, the main ingredients are first 

introduced for a non-Bayesian setting and are then developed for the Bayesian setting. 

Decision variables are symbolic representations of an intervention decided by the decision 

maker. They represent unknown parts of an objective function that can be manipulated 

and may take on any possible value within an allowed set if specified. In this chapter, an 

intervention is supposed to allocate interview modes to strata when preceding modes fail 

to obtain their data. Therefore, decision variables refer to allocation probabilities that 

indicate how likely nonrespondents are to be approached via a follow-up mode. Allocation 
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probability 𝑠𝑔,𝑡 ∈ [0,1] makes a decision on the size of follow-up candidates in stratum 𝑔 

at time point 𝑡, where 𝑠𝑔,𝑡 = 0 implies that the collection of stratum 𝑔 data should be 

halted up to the present mode, and 𝑠𝑔,𝑡 = 1 means that all stratum 𝑔 nonrespondents in the 

preceding modes should be allocated to the next mode in an effort to recruit the toughest 

cases to attain their representativeness. 

The objective function defines the evaluation criterion for the solution of decision 

variables. The objective is formulated as a mathematical function of decision variables and 

a global optimum to be found. The search for the global optimum may be hampered by the 

existence of multiple local optima. A unique global optimum can be guaranteed to be 

found under certain properties of the objective function, such as linearity and convexity. In 

the setting of this chapter, the objective functions do not have these properties. Therefore, 

numerical methods are necessary. Our optimization goal is to minimize the expected risk 

of nonresponse error via optimal allocation. Since nonresponse cannot be observed 

directly, this chapter considers a proxy indicator of nonresponse error that is a function of 

response propensities. Herein, the indicator is the coefficient of variation of response 

propensities, or CV for short (See Schouten et al., 2009). The true population CV bounds 

the absolute standardized bias of respondent means. The estimated CVs can be close to 

this upper bound when auxiliary variables are strongly related to nonresponse. See Moore 

et al., (2018) and Nishimura et al., (2016) for other proxy indicators. The overall indicator 

is the standard deviation divided by the weighted response rate, 

𝐶𝑉(𝑠, 𝑡) =
√∑ 𝑑𝑔,𝑡(𝜌𝑔,𝑡−�̅�𝑡)

2
𝑔

�̅�𝑡
. (4.9) 

Weight 𝑑𝑔,𝑡 is the sample proportion of the stratum 𝑔 size at time 𝑡 against the overall size 

at time 𝑡, that is, 𝑑𝑔,𝑡 =
𝑛𝑔,𝑡

∑ 𝑛𝑔,𝑡𝑔
. This notation implicitly assumes that the sampling design 

leads to equal inclusion weights, but if not, the design weights should also be 

incorporated. This addition is straightforward but makes the notation intractable. Mixed 

response propensity 𝜌𝑔,𝑡 denotes the overall propensity over modes, which is the sum of 

the marginal response propensity of the starting mode and the joint response propensities 

of mode 𝑗 ≥ 2 supposing that stratum 𝑔 did not respond to the last 𝑗 − 1 modes (Here, we 

implicitly assume that all nonrespondents in a mode are eligible for follow-up. In practice, 
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some types of non-response, such as due to physical or mental illness, may not be 

eligible), 

𝜌𝑔,𝑡 = 𝜌𝑔,𝑡,1 + ∑ 𝜌𝑔,𝑡,𝑗∏ (1 − 𝜌𝑔,𝑡,𝑘)𝑖≤𝑗−1𝑗∈{2,..,𝑚−1} . (4.10) 

The individual (conditional) propensities 𝜌𝑔,𝑡,𝑗 for any mode 𝑗 are estimated by 

multinomial models assumes that all nonrespondents to the preceding modes will be 

recruited by mode 𝑗 for a nonadaptive survey; however, this can be modified to an 

adaptive case by reducing joint propensity to decision variable 𝑠𝑔,𝑡,𝑗 ∈ [0,1], so the 

updated equation becomes 

𝜌𝑔,𝑡 = 𝜌𝑔,𝑡,1 + ∑ 𝑠𝑔,𝑡,𝑗𝜌𝑔,𝑡,𝑗∏ (1 − 𝜌𝑔,𝑡,𝑘)𝑖≤𝑗−1𝑗∈{2,..,𝑚−1} . (4.11) 

Clearly, (4.10) is equivalent to (4.11) when all 𝑠𝑔,𝑡,𝑗 = 1. 

The denominators of (4.9), called the weighted response rates over strata, indicate the 

estimated level of unknown propensities, which are defined as the weighted sum of mixed 

propensities of (4.10) and (4.11). We call CV nonadaptive when all 𝑠𝑔,𝑡,𝑗 = 1 and adaptive 

when at least one 𝑠𝑔,𝑡,𝑗 ≠ 1.  

Constraints are functional inequalities or equations that represent logical restrictions on 

what values of decision variables are allowed. For example, constraints might ensure a 

thorough search of feasible solutions from a finite solution space. In the survey design 

context, a constraint can be a limit placed either on the survey quality, such as solutions 

making the overall response rate greater than 0.5, or on the survey cost, such as the overall 

cost of interviewers reaching nonrespondents being lower than a specified amount. In this 

chapter, we focus on cost constraints regarding the workload of approaching nonresponse 

candidates by means of a follow-up mode. To constrain the workload, let the budget level 

be ℎ; the adaptive workload should not exceed the nonadaptive workload under the budget 

level ℎ, 

𝑝(∑ 𝑠𝑔,𝑡(𝑛𝑔,𝑡 − 𝑟𝑔,𝑡) ≥ ∑ ℎ(𝑛𝑔,𝑡 − 𝑟𝑔,𝑡)𝑔𝑔 ) ≤ 𝛼, (4.12) 

Here, acceptable budget overrun 𝛼 is used in opting for the best sound values of 𝒔, and 𝑝 

is the probability of the adaptive workload exceeding the budget-constrained nonadaptive 
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workload. When the values of 𝑠𝑔,𝑡 satisfy constraint (4.12), the corresponding solution of 

the decision variable is called acceptable; otherwise, the solution will contradict the rule. It 

is natural to specify lower and upper bounds on decision variable 𝒔 = {𝑠𝑔,𝑡|∀𝑔, 𝑡}, which 

are referred to as box constraints, 

0 ≤ 𝒔 ≤ 1. (4.13) 

Therefore, the optimization problem in a sample allocation application for the non-

Bayesian setting is formulated to detect a vector 𝒔 that minimizes objective (4.9) subject 

to constraints (4.12) and (4.13) given parameters (𝑛, 𝑟). As stated above, (4.9) and the 

workload in (4.12) are random variables in the Bayesian case, so we take expectations of 

the posterior distributions. Given that no explicit expression exists for the posterior 

distributions, they are approximated. We then obtain 

�̂�(𝐶𝑉(𝑠, 𝑡)) =
1

𝐾
∑

√∑ 𝑑𝑔,𝑡(𝜌𝑔,𝑡
(𝑘)
−�̅�𝑡

(𝑘)
)
2

𝑔

�̅�𝑡
(𝑘)𝑘 , (4.14) 

where �̂�(𝐶𝑉(𝑠, 𝑡)) refers to the estimated posterior expectation at time 𝑡, 𝜌𝑔,𝑡
(𝑘)

 is the kth 

iterated estimate from the posterior predictive function of 𝜌𝑔,𝑡, and subscript k runs over 

MCMC draws. The excess probability 𝑝 in (4.12) is estimated empirically by the ratio of 

the number of times the excess workload exceeds K, 

∑ 𝟏
∑ 𝑠𝑔,𝑡(𝑛𝑔,𝑡−𝑟𝑔,𝑡

(𝑘)
)≥∑ ℎ(𝑛𝑔,𝑡−𝑟𝑔,𝑡

(𝑘)
)𝑔𝑔

𝑘

𝐾
≤ 𝛼. (4.15) 

𝟏
∑ 𝑠𝑔,𝑡(𝑛𝑔,𝑡−𝑟𝑔,𝑡

(𝑘)
)≥∑ ℎ(𝑛𝑔,𝑡−𝑟𝑔,𝑡

(𝑘)
)𝑔𝑔
 is an indicator function that takes a value of one when 

inequality as a subscript is met for the kth iteration and is zero otherwise. Therefore, 

Bayesian optimization aims to minimize objective (4.14) subject to constraints (4.13) and 

(4.15). 

Benchmark: In the Bayesian optimization problem, we set a benchmark to evaluate ASD 

performance from two viewpoints: improving quality and saving money. Specifically, 

promoting sample representativeness by recruitment can improve data collection quality, 

while distributing cost-prohibitive resources to where they are most needed can save 

money. This goal can be achieved, for example, by switching from a single mode to mixed 

but optimally reallocated modes or switching from full mixed modes to partial mixed 
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modes. By letting decision variables 𝒔 = 0 or 𝒔 = 1, the optimization problem proposed 

above can settle those reallocations. To do so, the performance of the single-mode design 

and the full mixed-mode design are standards of and compared with the ASD 

performance. 

4.3.2 Static ASD optimization 

In allocating survey resources, ASDs based solely on information available in registry and 

frame data before the start of data collection are termed static, while ASDs based on 

paradata (data collected during data collection) are termed dynamic. These dynamic ASDs 

reflect the dynamic nature of the optimization since optimization is performed at each data 

collection phase, i.e., after each mode is completed. 

For dynamic ASDs in the current context, decisions on assigning interviewers to strata are 

made dependent on intermediate survey results from the preceding modes. The 

correlations between response propensities to different modes are employed to update the 

prior distributions for the interviewer response propensities. Theoretically, the evaluation 

can identify the priorities of refusers in strata to be interviewed and inform the interviewer 

workload. In reality, there may be insufficient time to compute reallocated interviewers’ 

workload in time because of geographical clustering. Additionally, reallocation requires 

complex logistics in case management; we leave this point to the discussion chapter. 

Therefore, in this chapter, we focus on the static ASD. Chapter 4.3.3 constructs the 

strategy to account for uncertainty in making decisions and to specify the optimization 

routine to determine the optimal allocations for the Bayesian optimization problem in 

Chapter 4.3.1. 

4.3.3 The optimization strategy 

To solve the formulated optimization problem in Chapter 4.3.1, we propose a two-step 

strategy at time 𝑡, 

1. Construct the posterior distribution of the response numbers 𝑟𝑔,𝑡. Let historic 

time series data sets up to time 𝑡 − 1 be data used for model training, and let 

data sets at time 𝑡 be test data for prediction. All model coefficients and 
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hyperparameters in (4.8) can be estimated by the size of a sample 𝒏1:𝑡−1 =

{𝒏𝑔,1:𝑡−1|∀𝑔} and the response numbers in all modes 𝒓1:𝑡−1 =

{𝒓𝑔,1:𝑡−1,𝑗|∀𝑔, 𝑗}. Under the estimated model, predictions can be obtained on 

dependent propensities �̃�𝑡 = {�̃�𝑔,𝑡,𝑗|∀𝑔, 𝑗} and 𝒓𝑡 = {𝒓𝑔,𝑡𝑗|∀𝑔, 𝑗}, given data 

𝒏𝑡 = {𝑛𝑔,𝑡|∀𝑔}. Since the posterior distributions for �̃�𝑡, as well as the posterior 

predictive distributions for 𝒓𝒕, have no closed form, we resort to Markov Chain 

Monte Carlo (MCMC) simulation techniques, in particular, the Gibbs sampler. 

See Wu et al., (2022) and Boonstra & van den Brakel, (2022) for more details 

on the Gibbs sampler used, including the full conditionals and Markov chains. 

2. Determine optimal allocations. Specify budget level ℎ and overrun level 𝛼. Set 

multiple starting vectors of stratum allocations 𝒔, each vector viewed as an 

initial state and each having a finite number of well-defined successive states. 

For any stratum 𝑔, assume 𝐾 iterations of estimates of 𝒓𝑔,𝑡 = {𝑟𝑔,𝑡,𝑚|∀𝑗} and 

�̃�𝑔,𝑡 = {�̃�𝑔,𝑡,𝑗|∀𝑗} generated from the posteriors in 1. These posterior estimates 

and given parameters ℎ and 𝛼 are separately substituted into (4.14) and (4.15) 

to compute the posterior expectation �̂�(𝐶𝑉(𝑠, 𝑡)) and the posterior probability 

of workload excess. To detect the optima, starting from each initial state, such 

a computation proceeds through its successive states, produces output, and 

eventually terminates at the final state. Discard constraint-violated states and 

their output, and preserve constraint-met states and their output. Within these 

results, sum the minimum of �̂�(𝐶𝑉(𝑠, 𝑡)) and its corresponding allocations 

optima. 

Solving this mathematical program is a computationally intensive task. Therefore, the 

methods in step 1 are implemented in R using the mcmcsae package (Boonstra, 2021), 

while the methods in step 2 are implemented in R using the auglag (Augmented 

Lagrangian Minimization Algorithm) function of the Alabama package (Varadhan, 2015). 

4.3.4 Performance evaluation 

This chapter introduces an evaluation criterion to assess the prediction accuracy. The 

criterion can shed light on the gain in nonresponse risk reduction from different models or 
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from different survey designs. This gain is quantified by the root mean square error 

(RMSE) of the posterior distribution of a parameter 𝜏, e.g., response propensity or CV, 

relative to the “true”, with the latter estimated via observations. 

We consider performance over rolling windows of three months. This choice is motivated 

by the three-month fieldwork duration of the application in this chapter but can be 

changed to any length. In time window 𝑞 = {𝑡, 𝑡 + 1, 𝑡 + 2|∀𝑡}, the RMSE of the 𝑔th 

stratum is then defined as 

𝑅𝑀𝑆𝐸(𝜏, 𝑞) = √𝐵2(𝜏, 𝑞) + 𝑆𝐷2(𝜏𝑞), (4.16) 

where the first term is called the bias term, represented as the quadratic difference between 

the posterior mean of estimated CV and the observed CV, 

𝐵2(𝑞) = ∑ 𝑑𝑔,𝑞𝑔 (𝐸𝜋𝑞𝐶𝑉(𝑠𝑞, 𝑞) − 𝐶�̂�(𝑠𝑞, 𝑞))
2
. (4.17) 

and the second term is the posterior variance of CV, which is a quadratic form of the 

standard deviation (SD), 

𝑆𝐷2(𝑞) = ∑ 𝑑𝑔,𝑞𝑔 𝑉𝑎𝑟𝜋𝑞𝐶𝑉(𝑠𝑞, 𝑞). (4.18) 

Weight 𝑑𝑔,𝑞 =
𝑛𝑔,𝑞

∑ 𝑛𝑔,𝑞𝑔
 is the ratio of the stratum 𝑔 size to the sample size in window 𝑞. The 

posterior distributions 𝜋𝑞  of CV and allocation 𝒔𝑞 are derived from the computing strategy 

in Chapter 4.3.3. 

These criteria depend strongly on sample size sampling variation, especially for surveys 

with small sample sizes. Empirical data subject to sampling variation are used to evaluate 

the performance. While surveys with large sample sizes provide rich information and thus 

their performance can be evaluated precisely, for small surveys, a contradiction to time 

change becomes acute, i.e., they take longer to make a precise evaluation. Noisy criteria 

performance makes it more difficult to draw a sound conclusion about putting the 

adaptation into practice. 
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4.4 The Dutch Health Survey Case Study 

This chapter explores and exploits the application of multinomial time-series models in 

Chapter 4.2 and the optimization approach in a Bayesian framework in Chapter 4.3 to the 

Dutch Health Survey (GEZO for short). Chapter 4.4.1 briefly introduces the background 

of GEZO. We illustrate how time changes in sequential propensities can be modeled, how 

the performance of optimal allocations depends on the budget level, and how optimal 

decisions depend on the length of the historic data separately in the following. 

4.4.1 The Dutch Health Survey 

The GEZO survey is conducted annually by Statistics Netherlands, providing a thorough 

overview of developments in medical contacts, lifestyle, health, and preventative behavior 

of the Dutch population, including all individuals living in private households. A two-

stage sampling frame forms the sample, which first draws a sample from municipalities 

and next from people who live in the selected municipalities, selected with equal 

probabilities. The survey changed to a mixed-mode design after 2014. The observation 

method involves online and face-to-face interviews. First, computer-assisted web 

interviewing (CAWI) is used to request the participation of sample units from the 

population. Next, nonrespondents are recruited to participate in a computer-assisted 

personal interview (CAPI). As of 2018, however, adaptation is adopted to stabilize the 

interviewers’ workload. Only a portion of CAWI nonrespondents is reapproached for a 

CAPI to reduce survey costs and improve the representativeness. Higher response rates in 

CAWI sample units lead to a smaller chance they are reapproached. 

In this chapter, we focus on a time series of data collected from 2014 to 2017, involving 

48 months. Note that data collected early in 2017 were “abnormal” because of technical 

issues with the web server, resulting in an interruption in data collection. This comes with 

practical reasons: Statistics Netherlands has implemented static ASDs since 2018, and the 

adaptation may waste the potential value of historic data used to improve prediction 

accuracy (Wu et al., 2023). 

Additionally, sample units are stratified into 13 disjoint strata by two auxiliary variables 

from the administrative frame or registers: age and ethnicity. See the stratification in 
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Appendix G. Note that this stratification is fixed throughout this chapter, and our time-

series strata are different from the ASD strata (See van Berkel et al., 2020). 

4.4.2 How can a time-series model be constructed under a sequential mixed-

mode design? 

This chapter elaborates the approach to estimate sequential propensities accurately by 

building multilevel time-series models using model component candidates. In this chapter, 

three levels are the most relevant: strata, time and mode. They formulate different model 

components; consequently, the time-series model in (4.8) can differ in a combination of 

components. Additionally, the model specifications can be classified into four scenarios: 

with/without season and with/without correlations of propensities between modes. The 

model with seasonal inclusiveness considers seasonality of great significance as a strong 

predictor contributing to reliable propensity predictions; otherwise, seasonality is 

incidental to reliable predictions for no-season models. When the correlation between 

CAWI and CAPI in propensity predictions is considered, each component in the model 

describes the between-mode correlation effect on variation in predictions; by contrast, 

CAPI propensities are independent of CAWI propensities when the model ignores the 

between-mode correlation effects. 

Therefore, this research question is a matter of comparing models under each scenario to 

select the “favorite” combination of model components, and of comparing the preferred 

models among scenarios. In the first comparison, the “favorite” model of each scenario 

can best fit the sequential response data and make the most reliable predictions. The 

second comparison focuses on the performance of the model considering seasonality and 

correlations relative to that of the models without either seasonality or correlations. Thus, 

information criteria (ICs) are applied to measure those models’ performance. The higher 

the ICs of the model are, the more competent the model is. Additionally, since it is 

meaningless to try all combinations of components, we apply the same strategy proposed 

in Wu et al., (2023) for an efficient comparison. The advanced strategy herein fits the 

models to 2014-2017 mixed-mode response data such that simultaneous evaluations can 

be undertaken for different scenarios: 
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1. Set up two baseline models and start with each of them. The common model 

components are fixed mode effects and fixed effects of mode-specific auxiliary 

variables 𝛽. The difference between the two models is whether seasonality 𝛿 is 

included. 

2. Add a single random effect, i.e., {global time trend 𝑢𝑡}, {random intercepts for 

strata 𝑣𝑔}, or {white noise 𝑒𝑔𝑡}, to models in 1. Each random effect is correlated 

with modes or independent of modes. Examine whether the no-season or season-

inclusive model in 1 is enhanced by each of the three random effects. 

3. Add a combination of two random effects, i.e., {global time trend 𝑢𝑡, random 

intercepts for strata 𝑣𝑔} or {random intercepts for strata 𝑣𝑔, stratum-specific time 

trend 𝑧𝑔𝑡}, to the models in 1. Each random effect is correlated with modes or 

independent of modes. Examine whether the updated models outperform the 

models in 2. 

4. Add a combination of three random effects, i.e., {𝑢𝑡, 𝑣𝑔, 𝑒𝑔𝑡}, or {𝑢𝑡, 𝑣𝑔, 𝑧𝑔𝑡}, to 

the models in 1. Each random effect is correlated with modes or independent of 

modes. Examine whether the updated models outperform the models in 3. 

5. Add all random effects to models in 1. Each random effect is correlated with 

modes or independent of modes. Examine whether the complete combination 

makes the model performance best. 

As seen in each row of Table 4.1, the models with and without seasonality are evenly 

matched at fitting and predicting. The IC results of the two baseline models (Model 1) 

show that the with-season model performs slightly better than the no-season model. This 

advantage continues with the addition of some random effects (see Models 1, 3 and 6), as 

the inclusion of seasonality 𝛿 yields lower ICs. The opposite of the with-season models 

having slightly worse performance can be seen in Models 2, 4, 7, 8, and 9. Notably, the 

results of Model 5 show mixed traits. The DIC results favor modeling seasonal effects in 

accurate propensity predictions, but WAIC cannot conform to this. 

Concerning the balance between model complexity and model fitness, the mode-

independent models perform barely as well as the mode-correlated models, even though 

they slightly outperform (the no-season model of Row M5 and Row M6). 
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With random effects considered, the mixed models become better because they cause a 

decrease in ICs, in contrast to the models including fixed effects only (Model 1). 

Comparing Model 2-4 to Model 1 entails either the no-season or with-season model is 

improved by introducing a single random effect, where global time trend 𝑢𝑡 induces the 

greatest decrease in ICs, followed by white noise 𝑒𝑔𝑡 and a random intercept for strata. 

Such improvement persists in ICs when applying the combinations of two random effects, 

as indicated by the comparisons of Model 5 to Models 2 and 3 and Model 6 to Model 3. 

Apparently, Model 5 has the most significant decrease in ICs thus far. Models 7 and 8 

show that the models can be enhanced further with the addition of white noise 𝑒𝑔𝑡 and 

stratum-specific time trend 𝑧𝑔𝑡 to Model 5, and Model 8 makes ICs decrease more than 

does Model 7. Including white noise 𝑒𝑔𝑡 is of value to improved performance, as it adds 

little in lowering the WAIC of Model 9 despite the scarce contribution made to DIC. 

As Model 9 shows, the mode-correlated and mode-independent models (Columns COR 

and IND), when seasonality is overlooked, perform similarly in terms of ICs, yet for the 

with-season models, modeling correlations (Column COR) come first in IC scores relative 

to the IND column. However, it is difficult to conclude that the with-season model has an 

absolute advantage over the no-season model in terms of model fitness and complexity. 

To identify whether seasonal effects play a vital role in adaptive allocations, we consider 

both the no-season and with-season models (Row M9 correlated with modes) in Chapter 

4.4.4. 

4.4.3 How sensitive is ASD performance to the specified budget level? 

This research question is concerned with how, given a budget level, we adapt allocations 

for CAWI nonresponses across strata to lower the risk of nonresponse the most. It also 

raises the question of whether such a reduction can be sustained across different budget 

levels. 

We answer this question by first minimizing (4.14) subject to (4.13) and (4.15) for the 

next data collection quarter when the budget level is specific, then by comparing the 

optimum (4.13) to the realized CV under the same budget level, and finally by comparing 

the optimum (4.13) under different budget levels. We focus on the next quarter because in 

the static case, the number of CAWI respondents is unknown until data are collected and 
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because the sufficient sample of a quarter can ensure the prediction precision. Referring to 

the optimization strategy in Chapter 4.3.3, the evaluation procedure in quarter 𝑞 is 

1. Let budget level ℎ begin at 100% and then successively decrease in steps of 10%, 

i.e., ℎ ∈ {1,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1}. 

2. Identify the forthcoming quarter 𝑞 and set data in 𝑞 as the test data set. 

3. Set time-series data up to quarter 𝑞 − 1 as the training data set for estimating the 

selected models. The models are made of the components in Model 9 that are 

viewed as the “best” representation. 

4. Use the sample size in 𝑞 to simulate CAWI responses. For each stratum and each 

month within 𝑞, 3,000 draws are generated from posterior predictive distributions. 

5. Based on the simulated model in 3, individual posterior predictions of CAWI and 

conditional CAPI are generated separately 3,000 times for each stratum and each 

month in 𝑞. 

6. Substitute the specified budget level ℎ and the CAWI responses simulated in 4 into 

cost constraint (4.15). 

7. Compute mixed propensities by substituting level ℎ and individual predictions in 5 

into (4.11). 

8. Initialize three starting solutions of allocations probabilities, 𝑠 ∈ {0,0.5,1}, each of 

which applies to 13 strata simultaneously. 

9. Start from each initial point in 8 to find the optimal solutions for each stratum by 

solver auglag based on 6 and 7. 

10. Link the identified solutions to the actual sample for computing posterior CV 

predictions and CV realizations. 

11. Conduct comparison by repeating 2-10 for each budget level in 1. 

Note that 𝑠 = 0 indicates no CAPI follow-up, 0.5 means half of CAWI nonresponses are 

assigned to CAPI, and 1 represents full CAPI follow-up. To distinguish different mode 

strategies and ease notation, the CAWI-only, nonadaptive, and adaptive designs are 

denoted w, w-Ap, and w-Np throughout. 
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In Figure 4.1, the posterior CV predictions of 2017 Q1 are summarized for each budget 

level. See Table G.2 in Appendix G for the bias-adjusted CV results. We benchmark the 

w-Ap performance as a function of budget level ℎ against the performance of w and w-

Np. For brevity, CVs for the CAWI-only, nonadaptive, and adaptive are simplified to 

CV(w), CV(w-Np) and CV(w-Ap). 

 

Figure 4.1 Comparison of CVs of model-based RP predictions to bias-adjusted CV 

observations in 2017 Q1. The CV estimates are made separately for CAWI-only (“w”), 

nonadaptive (“w-Np”) and adaptive (“w-Ap”). The posterior CV predictions are 

summarized by the 95% credible region, while the observations are marked by scatter 

points (“x”). 

Comparison of CV(w-Np) to CV(w) indicates that recruiting CAWI-nonresponses via 

CAPI can decrease nonresponse, as the 95% credible region (CI) of posterior CV(w-Np) is 

much narrower than that of CV(w), and the 97.5% quantile of posterior CV(w-Np) is far 

below the 2.5% quantile of CV(w). When ℎ = 100%, a further decrease in the overall 

variation can be achieved by the optimized allocations of the adaptive survey. Posterior 

predictions and observations of CV(w-Ap) deviate from 0.1 and move toward 0 relative to 
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the 2.5% quantile of CV(w-Np), yet the broader CI for the adaptive approach indicates 

that prediction accuracy is compromised moderately. Because CIs scarcely alter when the 

budget is cut from 90% to 50%, the uncertainty reduction associated with CV(w-Ap) is 

unlikely to increase more than 100%. This implies that in the interval of levels 100% to 

50%, the low budget performs as well on the estimated nonresponse risk as does the high 

budget. The upper limits of CIs appear to approach and even run beyond the observed 

CVs; for instance, at the 50% level, the observation overlaps with the posterior mean. 

The nonresponse risk rises with continued shrinkage of the budget since the estimates of 

CV(w-Ap) increase and point to an increased risk of nonresponse bias. For budget levels 

smaller than 50%, the allocation scheme identified puts more uncertainty on the posterior 

estimates of overall variation. In addition, the lower limits move toward and even far 

beyond 0.1 when the level is 20% or 10%, for which the solver ends up with false local 

“optimum” due to the violated convergence criteria. For the 10% level, the allocation 

scheme is especially of less interest and loses its edge, as seen by the exact same CV(w-

Ap) as CV(w). To determine which budget level is preferred most, we adopt a criterion, 

i.e., the relative cost defined as the overall cost of the adaptive size for CAPI relative to 

the nonadaptive size constrained by the budget level. See Table G.4 for the results of the 

relative cost under different levels in Appendix G. 

Optimized reallocations make adaptation performance consistent across relatively large 

budget levels (100%-50%). Additionally, adaptation, although it loses precision slightly, 

wins nevertheless at the smaller estimated nonresponse risk compared to the w and w-Np 

designs (red and green error bars). Up to a 40% budget level, performance reverses and 

moves in the opposite way, implying that the nonresponse risk grows sharply. 

4.4.4 How does the performance of adaptive designs depend on the length of 

historic data? 

This question is a matter of examining how the accumulating historic time series 

influences the adaptive design performance, that is, the nonresponse risk measured by CV 

and the bias-variance balance measured by RMSE. To answer this question, we explore 

the performance of w, w-Np, and w-Ap designs at the calendar quarter level. Additionally, 

we benchmark the adaptive performance against the performance of w and w-Np. 
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We compare and evaluate the models with/without the inclusion of seasonality and budget 

levels of 50% and 30%. Chapter 4.4.2 hints that seasonality is an ignorable factor since the 

models with and without this score have similar fitness and complexity. Chapter 4.4.3 

implies that in a specific time window, budget level 50% promotes ASD performance 

most cost-effectively, and the ASD loses its absolute advantage for smaller values. The 

performance’s sensitivity to the time-series length is less clear if the models consider 

seasonality and/or the budget level is less than 50%, so it is premature to skip them in the 

analysis. By crossing the two conditions, comparisons can be made simultaneously in the 

four scenarios of the models: (1) with the inclusion of seasonality and level 50%, (2) with 

the inclusion of seasonality and level 30%, (3) without the inclusion of seasonality and 

level 50%, and (4) without the inclusion of seasonality and level 30%. 

To explore the sensitivity to the historic time-series length, the analysis is performed on a 

rolling basis by adding one month at a time. Recall that the initial historic time-series 

length should be at least one year for the models without the inclusion of seasonality 

(scenarios 3 and 4) but at least two years for the models with the inclusion of seasonality 

(scenarios 1 and 2). For each, the training process ends in 2017 Q3 because one quarter 

should be left for prediction. 

In Figure 4.2, the uncertainty about the estimated CVs that is assessed by the 95% credible 

region, and the posterior means together, are compared to the CV observations over 

quarters and between different designs. In the w and w-Np designs, the observed CVs fall 

within the intervals or are very close to the intervals’ limits in most quarters, with the 

exception of CV(w) at 2017 Q3. The ASD results in panels A1, A2, and B2 support this 

finding. Additionally, observations far outside of the CIs appear in 2015 Q2 of Panel B2 

and 2017 Q1 of Panels A2 and B2. The exception implies that in corresponding quarters, 

it is less convinced of the evaluated adaptive performance duplicating the performance in 

practice. 
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Figure 4.2 Under a given budget level, the posterior CVs for the adaptive, nonadaptive, 

and CAWI-only against the observations over quarters. 95% credible regions with 

posterior expectations are summarized for CAWI-only (w), nonadaptive (w-p), and 

adaptive (w-Ap). Observations are denoted by the black cross “x” points. Panels “A” are 

plotted for with-season models, and panels “B” are plotted for no-season models. Panels 

“A1” and “B1” correspond to budget level 50%, while panels “A2” and “B2” correspond 

to budget level 30%. The quarter on the x-axis denotes the present quarter for prediction 

purposes. 

As mentioned before in Chapter 4.4.3, the performance for adaptive designs under level 

50% is consistently superior to the performance under level 30% across quarters, as shown 
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by comparing A1 to A2 or B1 to B2. At 50%, the estimated CV(w-Ap) is more precise 

because of the narrower credible regions, which can be seen implicitly. Moreover, we can 

observe the absolute advantage of adaptive designs in outperforming nonadaptive designs 

since the upper limits of CV(w-Ap) deviate substantially from the lower limits of CV(w-

Np), but at 30%, they are competitive, for example, 2017 Q1 and Q2 (Panels A2 and B2). 

As historic data accumulate, it is conjectured that the models can be optimized further, the 

CV prediction accuracy can show a consistent increase, and the resulting performance can 

be improved. Clearly, this is the case in panel B1 until 2016Q4, but from that point 

onwards, there appears to be no room for improvement in performance, and the posterior 

estimates of CV(w-Ap) shift to approximately 0.1. The results, similar to those in panels 

A1 and B1, since 2016 Q1 signify that modeling seasonality contributes little to prediction 

accuracy. 

Jumping to conclusions on the ASD performance’s robustness is dogmatic for two 

reasons. First, some strata may benefit more than others. Their individual CV estimates 

may be less biased and vary toward the seasonality-inclusive option despite little 

difference in the overall variation. Second, the sample sizes in some strata are quite small. 

In early data collection phases, they may have volatile behavior in the error-variation 

balance. The historic time-series length determined based on those results is not a 

guarantee of robustness. 

Therefore, we evaluate individual strata performance measured according to the criteria in 

Chapter 4.3.4. As above, we apply the sliding time window approach moving forward on a 

time series to the evaluation. To illustrate, this is used in nonadaptive designs. With an 

application to ASDs, allocations must be reoptimized for the upcoming time window 

using the strategy in Chapter 4.3.3. 

Provided that the number of historic time periods within a time window is called the 

window width, the time window frames time-series data with width 𝑡, split into a training 

data set with width 𝑡 − 3 and a test data set with width 3. The latter corresponds to a 

window 𝑞. The window slides as the width are increased to include the next upcoming 

new time period such that the window moves one step forward. In quarter 𝑞, we can 

evaluate the prediction performance for each stratum by substituting individual posterior 



Robust adaptive survey design for time changes 

 109 

response propensity estimates and individual realizations into (4.16) - (4.18), that is, 

𝑅𝑀𝑆𝐸(𝑔, 𝑞), 𝐵(𝑔, 𝑞) and 𝑆𝐷(𝑔, 𝑞). Since this analysis is iterated on a rolling basis, a 

sufficiently long time series allows for thorough comprehension of how each stratum 

prediction performance changes with time. 

Figure 4.3 shows that when comparing red and black curves, the introduction of 

seasonality is unlikely to be a trigger for an effective reduction in bias and variance. This 

is solidly true for almost all quarters, with the exception of the quarter involving months 

2017-01 to 2017-03 in some strata (such as stratum 8) for the bias and RMSE estimates. 

As observed in panels a and b, the estimated variation in response propensity decreases 

smoothly overall, in sharp contrast to the estimated level of response propensity having 

volatile behavior. The volatility differs by strata. The estimated bias results of some strata 

(strata 1-8) fluctuate approximately 0.05 across quarters until the quarter starting in 2017-

01. After that point, they experience a transient increase caused by the technical issue at 

that time (See Chapter 3 for more discussion and a possible remedy). When the training 

data are extended to include “normal” data, the biases can quickly decrease to 0.05. Note 

that stratum 8 acts in the opposite manner. In contrast, strata 9-13, which have relatively 

small sample sizes, obtain relatively more biased response propensity expectation 

estimates in most quarters. 

Ultimately, the analysis results suggest that when modeling a short time series, the 

seasonal effects, when they are assumed to be the same for different modes, can be less 

important to the improvement of ASD performance. With more data available for training, 

the ASD performance can be consistently improved until a time point, implying that a 

stopping rule of data collection may be implemented and an effort-based strategy for strata 

of small sample sizes may be adopted. 
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Figure 4.3 One-step forward moving averages of estimated bias (panel a), SD (panel b), 

and RMSE (panel c) of response propensity at the stratum level. The “black” curve 

represents to the no-season model, while the “red” curve refers to the with-season model. 

Both models include the correlations between CAWI and CAPI regarding propensity 

predictions. The X-axis labels the first time point in the artificial quarter used for 

prediction. 
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4.5 Discussion 

Given the survey budget, adaptive survey design (ASD) seeks the optimal match between 

respondent behavior and design features, i.e., a set of decision rules, which can be 

determined through optimization approaches (See Schouten et al., 2017 for each approach 

of pro and cons). Serving as the main input for ASD optimization, accurate estimates of 

survey design parameters, such as response propensities, are required for reliable 

strategies. Strictly speaking, inaccuracy jeopardizes ASD performance and design due to 

the suboptimal and ineffective decisions made in the optimization approach. Adverse 

impacts are apparent when response propensities change gradually over time. 

In this chapter, we discuss a methodology to evaluate the impact of temporal factors (e.g., 

seasonality) on the accuracy of sequential response propensity predictions in a mixed-

mode survey with replication, and to investigate the manner and timeliness of applying the 

optimal allocation scheme to population strata. We introduced a Bayesian multinomial 

time-series model for sequential response propensities and an optimization model for 

ASDs. The propensity model has a general form that describes multiple time-related and 

strata-related factors, and accounts for the dependence of the current mode’s response 

propensities on the preceding modes’ response behaviors. The optimization model, on the 

other hand, enables the inclusion of uncertainty in the follow-up workload, and describes 

the way to allocate reviewers to each stratum for the greatest decrease in nonresponse risk. 

Most cross-sectional mixed-mode or unique-mode surveys conducted over many years can 

fit into this framework. Furthermore, we constructed an analysis for the GEZO survey to 

examine the highest performance of the propensity model. Owing to diverse model 

compositions, information criteria measuring the fitness and complexity of the propensity 

model are adopted to compare the performance of different models. We are thus able to 

meet the first objective of this chapter to select and construct the “favorite” time-series 

model (Model 9 having lowest information criteria scores) that contributes most to 

prediction accuracy for a sequential mixed-mode survey. 

The second and third objectives are to examine the sensitivity of ASD performance to the 

specified budget level and the length of historic data separately. In the evaluation, ASD 

performance must be reoptimized when the budget level and/or the length of historic data 
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is updated. Then, we benchmarked ASD performance against CAWI-only and 

nonadaptive design performance. This analysis is essentially a comparison of the 

reduction in the nonresponse risk if a fraction of CAWI nonresponses (with no follow-up 

at all and full follow-up as special cases) is assigned to interviewers. To make this 

comparable for a range of scenarios, we utilize the posterior summary of the nonresponse 

of variation, that is, the credible region and expectation. The evaluation examines, in a 

specific time window, the improvement in performance under different budget levels. 

Additionally, the evaluation examines, for a specific budget level, the improvement over 

rolling time windows. The evaluation shows that ASD performance is quite solid for 

budget levels greater than 50%, but is susceptible to budget levels less than 50%. 

Additionally, the evaluation shows that without taking seasonality into account, ASD 

performance is obviously enhanced in the early stage of accumulating data. After that, this 

trend slows and even stops despite increasing, performing almost the same as the with-

season model, and consequently hints at seasonality being of little use to further 

improvement in prediction accuracy and ASD performance. 

Our models have two conceptual simplifications and one limitation that ask for further 

research and replication in other mixed-mode surveys. 

Ignoring mode-specific seasonal effects is our first simplification. This consideration can 

ease the complexity of the model specification but leads to seemingly offset seasonal 

effects on propensity predictions. However, we believe that one can conveniently 

accommodate seasonal effects specific to each model to the adjusted model if seasonality 

is supposed to be a strong predictor for propensity predictions. To ensure prediction 

accuracy and reliability, we consider only two candidate data collection strategies (CAWI 

and CAPI) as the second simplification. 

Clearly, the number of CAPI visits to sample units may be further tailored, and the 

optimization may include the actual number of visits. Response propensities after each 

visit can be modeled and estimated simultaneously, and the predictions of a follow-up 

mode are correlated only with its nearest predecessor. Such an application is easy, but it 

entails careful checking of the predictions’ reliability. 
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Finally, as seen in the GEZO case study, our propensity model is sensitive to structural 

design changes (See Wu et al., 2023 for more discussion) that result in a temporary 

misspecification in the prior distributions of response propensities. The passive impact is 

fairly obvious for the first several data collection waves since 2018, and may become 

weak but at the cost of a long data collection process. Fortunately, our model possesses 

some robustness when faced with unexpected/outlier occurrences, such as temporary 

downtime of a web server. Without careful consideration of misspecification when 

modeling, abundant historic data would lose its value in providing informative knowledge 

about time changes in response propensities. In an effort to characterize abrupt change, it 

is of first importance to pinpoint the affected strata that have changed the most in terms of 

what features describe the change and with what magnitude the change occurs. The types, 

such as time duration, persist with changes, and the effects of structural changes across 

strata can be detected by noncontaminated models (i.e., present “optimal” models without 

any modification). Alteration can be moderated by extra hierarchical model parameters to 

represent the moving averages of changes in bias and/or variation estimates. Design 

changes, therefore, can update outdated models for timely and accurate predictions. We 

leave this extension to further research. 

This chapter briefly touches on the construct of adapting optimal allocations to population 

strata under a Bayesian analysis. This application is meant for a static survey in which the 

population is stratified based on only auxiliary data before the start of data collection. In a 

dynamic environment, however, both the stratification and assignment of interviewers to 

strata hinge additionally on intermediate survey data in the present mode’s predecessor. 

The correlations between response propensities are then also employed to update the prior 

distributions for the upcoming mode response propensities. This would allow, for 

example, for the inclusion of paradata-type auxiliary information in choosing strata. In a 

face-to-face interviewer setting, such a dynamic approach is not operationally 

straightforward, as interviewer workloads become known only at a point in time close to 

fieldwork. To a lesser extent, this is true for telephone follow-up, but there is no 

geographical clustering needed to limit travel times and costs. A possible approach would 

be to randomly subsample nonrespondents to fixed workloads. In the GEZO survey, the 

monthly sample sizes are too small to make robust decisions after each month, which is 

why months were pooled to quarters. The pooling further complicates dynamic allocation. 
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Nonetheless, abstracting to general mixed-mode designs and, even more generally, to 

general (sequential) data collection phases, it would be worthwhile to extend our approach 

to dynamic designs. 
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Chapter 5  

Discussion 
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Structured research on effective ASD optimization has emerged in recent years. 

Optimization strategies are the final step of ASD. They essentially translate the objective 

of quality-cost trade-offs into intervention and adaptation, more specifically, the optimal 

allocation of resources to strata. Accurate design parameters, such as response 

propensities, play a decisive role in the performance of adaptation strategies. Efforts have 

been made to improve response propensity predictions by using Bayesian analysis and 

incorporating historic information into the prediction process. The advance in this 

direction disregards the fact that response propensities can change over time, called time 

changes, or roughly involve its effects as a fixed amount. Research is lacking on 

understanding these ill-defined temporal effects and their knock-on effects on optimum 

allocation.  

This chapter is structured as follows. In Chapter 5.1, we summarize the main findings on 

the reduction of the risk of nonresponse bias, designed to address the research questions. 

Next, we provide recommendations for future research in Chapter 5.2, based on the 

deficiencies identified in the current study. 

5.1 Dissertation Findings 

The gist of this dissertation is to, within a Bayesian framework, improve predictions of 

response propensities, thereby gaining effective ASDs, in an increasingly difficult survey 

climate. To make predictions with precision, we leverage historic survey data in a delicate 

way. Specifically, efforts are made to introduce expert knowledge and to consider the 

timeliness of historic data, when developing propensity models. The study examines how 

the model prediction performance is associated with each attempt, and how the estimated 

nonresponse indicators, as a function of the propensities, are used to intervene in and 

monitor the data collection process. We also examine how time alter the decision-making 

process. These explorations are conducted based on three Dutch general population 

surveys, each administered by the Statistics Netherlands. The following summarizes the 

main points of findings from Chapters 2, 3 and 4 separately. 

Chapter 2 investigates how ASDs can profit from data collection staff (as experts) 

knowledge. Intrinsic expert knowledge is worth improving response propensities among 
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previous studies that cannot yet be fully elicited. Thus, we set up a structured elicitation 

procedure that translates such expert knowledge to the informative (expert) prior of the 

response propensities, and evaluate the benefit of this procedure. We find that compared to 

the settings in which there are no historic data and no expert knowledge (the non-

informative prior used), the expert prior has superior performance that predicts a lower 

risk of nonresponse bias. This outperformance is especially noticeable in early data 

collection phases, but in late phases, it becomes implicit. We also find that the way 

knowledge, which is elicited at various criteria levels, is pooled matters slightly for the 

comparison result. Providing criteria with equal or unequal importance weights improve 

the competitiveness of the expert priors against the non-informative prior. Either expert 

prior can lead to a lower predicted variation in response propensities. The choice of 

historic surveys and experts, the selected criteria, and the criterion-level weights all 

influence the prediction performance of expert priors. Therefore, we advise researchers to 

put effort into each element. 

Chapter 3 investigates time-dependent variation in predicting response propensities. This 

temporal dependence emerges from joint efforts of diverse factors: seasonal effects, 

various forms of trends, interventions and stratum dependency. Previous studies fail to 

determine how and to what extent each factor exerts influence on predictions. In this 

study, we look at all factors to gain insight into the prediction process. Our results show 

that the optimal model combination made of these factors performs best in both fitting to 

response data and in contributing to reliable predictions. In addition, clear evidence shows 

that using a longer time series in the estimated model can lead to a modest decrease in 

both the bias and the root mean square error (RMSE) in overall predictions, although this 

process is full of twists and turns. Rather, the estimated variance shows an increasing 

trend from the moment at which the design intervention is carried out. Last, the gains in 

terms of the timeliness of precise predictions vary among subgroups. It is significant to 

persons who either have Western ethnicities or are in the 18-64 age range. To conclude, 

this study demonstrates that explaining time-dependent variation is a promising tool for 

determining a well-chosen time to start implementing effective interventions to particular 

strata. On the other hand, little is known about such variation especially when the survey 

design is made adaptive. To this end, there still has much work to do on growing our 
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models and on being informative about the effects of design changes and their types on 

response propensities. 

Chapter 4 investigates how adaptation strategies can adjust to time-dependent variation in 

response propensities. In regard to optimizing resource allocation, most researchers rely 

on the assumption that survey design parameters remain static from start to finish, and 

their estimates eventually converge on the basis of abundant historic data acquired. 

Addressing uncertainty, due to time change, can be a valuable addition to effective ASD 

optimization research. We can thus obtain thorough insight not only into what strata 

require interventions, but also into how cost-efficiently the limited resources are allocated 

among them. This enriches ASD decisions by allowing time change to be understood. 

Therefore, we propose a method for the timeliness of decisions-making by considering 

time-dependent variation. We also examine, based on optimized allocations, the 

sensitivity of ASD performance to the specified budget level and the length of historic 

time-series data separately. Our results indicate that the performance is fairly robust when 

the budget level decreases to 50%. Adapting optimal allocations to strata promotes a 

further reduction in the nonresponse risk, compared to that of the case when adjusting the 

uni-mode design to the full follow-up design. Additionally, we show that the performance 

can be enhanced in the early stage of data collection, but can hardly be improved further in 

the middle and late stages.  

5.2 Prospects for Follow-up Research 

This section focuses on two important avenues for future research on ASD ⎯ practical 

implementation and methodology. We hope that these suggestions will pave the way for a 

more detailed exploration of effective ASD in the Bayesian framework.  

5.2.1 Future Research on Practical Implementation 

The present dissertation provides valuable insight into the improvement in response 

propensity predictions and into the timeliness of decisions-making. Despite this, two 

things are worth further exploration before the methodology can be used widely. 
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Require replication. The proposed models in Chapters 2, 3 and 4 are designed for 

improving response propensity predictions. As shown in those chapters, these models are 

empirically evaluated, and their outperformance in reducing nonresponse errors is rather 

attractive to survey practitioners. It is, however, less persuasive to generalize this study’s 

findings based only on a few case studies. To broaden the scope of the investigation, we 

strongly advise testing and examining more, i.e., extending to other survey and sampling 

designs. We also recommend investigating how to make the models work in practice, as 

they have been evaluated by using historic survey data. 

Maintain monitoring of all strata. In Chapters 3 and 4, we examine how sensitive 

prediction and ASD performance are to the length of historic time series data. The study 

of time change contributes to effective decisions-making early for situations, such as 

determining a suitable time to stop data collection for certain strata, and timely 

distributing resources profitably over strata. If doing, the controversial issue that has been 

raised year after year is on the table once again, how do we optimize ASD and keep an eye 

on learning simultaneously? There is no silver bullet that allows these two conflicting 

things to function together. Stopping data collection from some strata after a time point 

implies that their auxiliary information and response outcomes may no longer be recorded 

in register frames. There is no guarantee that the value-added for the design performance 

to which time-series models contribute is future-proof, due to those missing data. Survey 

partitioners cannot monitor the data collection quality of those skipped strata, just the 

same as before. They cannot also intervene in the first place when any change happens, 

such as a sudden outbreak of an epidemic. This becomes a matter of great concern. We 

thus advise to keep monitoring strata, even if clear evidence shows that making efforts for 

them is unnecessary. From a practical implementation perspective, this suggestion ensures 

at least a baseline level of observation. 

5.2.2 Future Research on ASD methodology 

For the time-series models presented thus far, it holds that understanding time change in 

responses is crucial to timely obtain accurate predictions and effective survey designs. The 

models, however, have simplifications and suffer drawbacks. Each of them merits further 

exploration. 
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Mode-specific seasonal effects. Seasonality is a significant predictor for responses. In 

Chapter 4, we mix seasonal variation over different survey modes, i.e., the seasonal effects 

on CAWI responses are the same as the effects on CAPI responses. This simplification 

eases the complexity of the model specification, whereas these effects on response 

predictions seem to be offset. This has been seen by comparing the prediction 

performance between the models including seasonal effects and those ignoring these 

effects. Therefore, understanding mode-specific seasonal effects, rather than using 

uniform effects for all modes, is essential, especially when seasonality is supposed to be a 

strong predictor for responses. Therefore, we advise that one can adjust the model 

specification for accommodating mode-specific seasonal effects.  

Adapt the number of calls and/or visits. In Chapter 4, we consider only two candidate 

data collection strategies, i.e., CAWI and CAPI, and allocate the CAPI strategy to CAWI 

nonrespondents. This simplification ensures prediction accuracy and reliability. Such 

adaptation is just a simplified example of resource allocation. Clearly, a data collection 

strategy has some attributes that we can adapt to sample units, for example, the number of 

CAPI visits. Some researchers study the tailoring of CAPI-short (1-3 times) and CAPI-

extended (≥3 times). However, we advise generalizing adaptation strategies to choosing 

the number of calls and/or visits, and even general interview modes such as smartphones. 

This further tailoring requires minor adjustments to the optimization. As an example of 

how to tailor the number of visits, the actual number should be included in the 

optimization, response propensities after each visit should be modeled and estimated 

simultaneously, and the predictions of a follow-up mode should be correlated only with its 

nearest predecessor. 

Understand structural design changes. As shown in Chapter 3, a main drawback of the 

time-series model is its sensitivity to structural design changes. The introduction of an 

intervention (e.g., incentive) and/or another self-reported mode (e.g., smartphone) results 

in a temporary misspecification in the prior distributions of the response propensities. This 

negative impact is likely to fade away only at the expense of long data collection. The 

misspecification also makes it worthless that abundant historic data promote informative 

knowledge about time change in responses. Thus, explicitly including variation in 

responses due to design changes is called for. There is no prior knowledge for design 
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changes before they happen. In response to model design changes, one possibility would 

be to pinpoint the strata affected most, the features causing the change, and the magnitude 

of the change. After that, one could adjust the time-series model to suit what is detected.  

Extend to multi-purpose optimization. In Chapter 4, the optimization has a single 

objective, i.e., minimizing the proxy indicator of nonresponse (the posterior expectation of 

the coefficient of variation of the response propensities). Research in survey literature 

mostly focuses on the decrease in nonresponse error when designing adaptive surveys. Of 

equal importance is, however, to decrease the measurement error. An appealing extension 

would be to allow the optimization to have multiple objectives, i.e., minizine the 

nonresponse and measurement errors simultaneously.  

Learn new design features. New digital technologies such as wearable and smartphone 

sensors, and new types of survey incentives such as personalized feedback, have become 

increasingly popular and are used as new data collection methods. These new design 

features affect response propensities in yet unknown ways. They may potentially, 

however, be powerful in attracting subpopulations that otherwise would not respond. 

Learning these new design features is about how they change response propensities, and 

about how this differential may be put to practice. For example, survey practitioners can 

make smartphone fitness more salient for some strata in letters, or assign new types of 

incentives to some strata that are more reluctant to respond. These attempts are intended as 

new options to vary in ASD.  
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Appendix A: Stratification & Questionnaire 

Table A.1 Definition of the SILC16 strata across age, household size, and income deciles. 

Strata Age Persons in household Decile of income 

1 17+ 1 1 

2 17+ 1 2 

3 17+ 1 3 

4 17+ 1 4 

5 17+ 1 5 

6 17+ 1 6 

7 17+ 1 7 

8 17+ 1 8 

9 17+ 1 9 

10 17+ 1 10 

11 17+ 2+ 1 

12 17+ 2+ 2 

13 17+ 2+ 3 

14 17+ 2+ 4 

15 17+ 2+ 5 

16 17+ 2+ 6 

17 17+ 2+ 7 

18 17+ 2+ 8 

19 17+ 2+ 9 

20 17+ 2+ 10 

 

 

 

 

 

 

 

 

 

 



 

 125 

Table A.2 Definition of the EN18 strata across categorical variables, ownership, type of 

dwelling, and year of construction. 

Strata Ownership Dwelling type Year of construction 

1 buy single family up to and including 1930 

2 buy multiple familiy up to and including 1930 

3 social rental single family up to and including 1930 

4 social rental multiple familiy up to and including 1930 

5 private rental single family up to and including 1930 

6 private rental multiple familiy up to and including 1930 

7 buy single family 1931-1959 

8 buy multiple familiy 1931-1959 

9 social rental single family 1931-1959 

10 social rental multiple familiy 1931-1959 

11 private rental single family 1931-1959 

12 private rental multiple familiy 1931-1959 

13 buy single family 1960-1980 

14 buy multiple familiy 1960-1980 

15 social rental single family 1960-1980 

16 social rental multiple familiy 1960-1980 

17 private rental single family 1960-1980 

18 private rental multiple familiy 1960-1980 

19 buy single family 1981-1995 

20 buy multiple familiy 1981-1995 

21 social rental single family 1981-1995 

22 social rental multiple familiy 1981-1995 

23 private rental single family 1981-1995 

24 private rental multiple familiy 1981-1995 

25 buy single family since 1996 

26 buy multiple familiy since 1996 

27 social rental single family since 1996 

28 social rental multiple familiy since 1996 

29 private rental single family since 1996 

30 private rental multiple familiy since 1996 
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Questionnaire for Judgements of Data Collection Expert. 

Goal 

Provide expert input for predicting response propensities for the Energy 2018 (EN18) and 

the SILC 2016 survey (SILC16). If an answer in the range of 0 to 1 is required, 0 basically 

means the historic data is not useful at all for this aspect and 1 means there is total 

agreement.  

Historic surveys 

The EN18 survey:  

1. Energy 2006. 

2. Energy 2012.  

3. Dutch Survey on Care 2016. 

4. Dutch Housing Survey 2018. 

The SILC16 survey: 

1. Dutch Labor Force Survey 2016. 

2. Dutch Household Budget Survey 2015. 

Elicited information of expert at criterion level to each historic survey 

Note that * indicates the EN18 survey or the SILC16 survey 

Topics 

To what degree do you think the topic of the historic survey is comparable in terms of 

expected response propensities to *, specifying it in the range of 0 to 1? 

Target population 

How well does the target population of the historic survey agree with the population of *, 

specifying it in the range of 0 to 1? 

Time 

How well does the time (month and year) of the historic survey agree with * in terms of 

expected response propensities, specifying it in the range of 0 to 1? 

Unit of observation 
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How well is the observation unit (person versus household) of the historic survey 

comparable to * in terms of expected response behavior, specifying it as 1 or 0? 

Design/Mode strategy 

How well is the design/mode strategy (including contact and reminder strategy) of the 

historic survey comparable to * with respect to expected response propensities, specifying 

it in the range of 0 to 1? 

Incentive strategy 

How well is the jump in the overall response rate caused by adding incentive to historical 

surveys transferred to * with respect to expected response propensities, specifying it in the 

range of 0 to 1? 

Respondent effort/burden to complete the survey 

To what extent is the required respondent effort of the historic survey similar to *, 

specifying it in the range of 0 to 1? 

Bureau effect of survey data collector relative to Statistics Netherlands (CBS) 

Is there a bureau effect between the historic survey data and the current practice of CBS, 

specifying it in the range of 0 to 1? 
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Appendix B: The Level of Response Propensities 

The weighted response rate over all the strata, RR, is then defined as  

                         𝑅𝑅 = �̂̅� = ∑ �̂�𝑔𝑞𝑔
𝐺
𝑔=1 ,    

where �̂�𝑔 is the response propensity in stratum 𝑔, and �̂̅� is overall response rate explicit 

about the level of the population response propensity.  

Table B.1 RMSE of the predicted RR from informative prior (Expert) with two weights 

and the non-informative prior (Standard) for the EN18. 

Wave 
Expert 

Standard 
Equal Varying 

1 0.231 0.237 0.160 

2 0.213 0.218 0.007 

3 0.198 0.202 0.005 

4 0.196 0.199 0.010 

5 0.186 0.189 0.010 

6 0.145 0.147 0.022 

7 0.132 0.134 0.023 

8 0.134 0.137 0.012 

9 0.125 0.126 0.012 

10 0.119 0.121 0.010 

11 0.096 0.097 0.028 

12 0.086 0.087 0.032 

13 0.093 0.094 0.020 

14 0.093 0.094 0.014 

15 0.089 0.090 0.014 
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Table B.2 RMSE of the predicted RR from informative prior (Expert) with two weights 

and the non-informative prior (Standard) for the SILC16 under two scenarios. 

Wave 

without with 

Expert 
Standard 

Expert 
Standard 

Equal Varying Equal Varying 

1 0.064 0.065 0.147 0.148 0.149 0.084 

2 0.063 0.064 0.012 0.122 0.123 0.009 

3 0.044 0.045 0.009 0.117 0.118 0.013 
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Appendix C: GEZO Survey Stratification 

Table C.1 Auxiliary variables form 20 strata and season is considered as an influential 

factor to predict response propensities. 

Auxiliary Variable Category 

Gender Male 

Female 

Age Youth (<= 17) 

Young (18-34) 

Middle-aged (35-54) 

Old (55-64) 

Retired (>= 65) 

Ethnicity Western (incl. native, first and second western generation) 

Non-western (incl. first and second non-western 

generation) 

Variable Category 

Season 

Winter (January-February) 

Spring (March-May) 

Summer (June-August) 

Autumn (September-November) 

Christmas (December) 
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Appendix D: Comparison between Models 

 

Figure D.1 The posterior means of global time trends ut under M7 to M10. 

 

Figure D.2 Compare the posterior predictions of RP over strata made by four models (M7 

to M10) to the observed RR and make a choice on the most compatible model with the 

observed outliers. The overall RP predictions are summarized as the posterior means (RP) 

and 95% credible region (CI). 
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Figure D.3 The posterior predictions of RP over strata against the observed RR under M8, 

M9 and M11. The overall RP predictions are summarized as the posterior means (RP) and 

95% credible region (CI). 

 

Figure D.4 Monthly posterior means of RP of Age groups versus observed response rates 

(RR) of Age groups. Month 2014-01 to 2018-12 for a model fit and Month 2019-01 to 

2019-10 for RP predictions. 
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Figure D.5 Monthly posterior means of RP of Gender groups versus observed response 

rates (RR) of Gender groups. Month 2014-01 to 2018-12 for a model fit and Month 2019-

01 to 2019-10 for RP predictions. 
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Appendix E: Precision Matrix and Information Criteria 

The precision matrix 𝑄𝑢  contains the neighbor structure of the trend innovations (e.g., Rue 

& Held, 2005). For first order random walk it is  

𝑸𝑢 =

(

 
 
 

1 −1
−1 2 −1

−1 2 −1
⋱ ⋱ ⋱

−1 2 −1
−1 1 )

 
 
 

, 

and for second order random walk is 

𝑸𝑢 =

(

 
 
 
 
 

1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
⋱ ⋱ ⋱ ⋱

1 −4 6 −4 1
1 −4 5 −2

1 −2 1 )

 
 
 
 
 

. 

The DIC is defined as 

𝐷𝐼𝐶 = −2(log𝑝(𝑟|𝑛, 𝐸𝑝𝑜𝑠𝑡𝜃) − 𝑝𝐷𝐼𝐶), 

𝑝𝐷𝐼𝐶 = 2(log 𝑝(𝑟|𝑛, 𝐸𝑝𝑜𝑠𝑡𝜃) − 𝐸𝑝𝑜𝑠𝑡 log 𝑝(𝑟|𝑛, 𝜃)), 

where 𝐸𝑝𝑜𝑠𝑡(𝜃)  is the posterior mean of the latent parameter, 𝑝(𝑟|𝑛, 𝐸𝑝𝑜𝑠𝑡(𝜃))  is the 

likelihood evaluated at the posterior mean of 𝜃 and 𝑝𝐷𝐼𝐶  is an estimate of the effective 

number of model parameters. Models with lower DIC values are preferred.  

The WAIC is defined as 

𝑊𝐴𝐼𝐶 = −2∑ 𝑙𝑜𝑔𝐸𝑝𝑜𝑠𝑡𝑝(𝑟𝑖|𝑛𝑖 , 𝜃)𝑖∈[1,𝐺𝑇] + 2𝑝𝑊𝐴𝐼𝐶, 

𝑝𝑊𝐴𝐼𝐶 = 2(∑ (log 𝐸𝑝𝑜𝑠𝑡𝑝(𝑟𝑖|𝑛𝑖 , 𝜃) − 𝐸𝑝𝑜𝑠𝑡 log 𝑝(𝑟𝑖|𝑛𝑖 , 𝜃))𝑖∈[1,𝐺𝑇] ). 

Here 𝑝(𝑟𝑖|𝑛𝑖 , 𝜃) is the pointwise-likelihood for stratum-by-time combination 𝑖. Similar to 

DIC, models with lower WAIC values are preferred.  
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Appendix F: Full Conditional Distributions 

The binomial multi-level time-series models are fit using a Gibbs sampler. For the 

derivation of the set of full conditional distributions we refer to the (appendix of the) 

technical report version of Boonstra & van den Brakel, (2022). There, the Gibbs sampler 

has been worked out for a general class of multilevel models, which encompasses the set 

of models discussed here, except for the fact that here we employ a binomial instead of 

Gaussian data distribution. Fortunately, the use of the scale-mixture data augmentation 

approach for binomial-logistic likelihoods (Polson et al., 2013) ensures that the same 

closed-form full conditional distributions as in the Gaussian case can be used with only 

minimal changes to their parameters, along with an additional full conditional distribution 

for the auxiliary latent scale factors. To start with the latter, the full conditional for scale 

factor 𝜔𝑖 is given by 

𝑝(𝜔𝑖|𝑟, . ) = 𝑃𝐺(𝜔𝑖|𝑛𝑖 , 𝜃𝑖) 

independently for all 𝑖. For notational simplicity we use index 𝑖 instead of the double 

index 𝑔, 𝑡 used in the main text, and r denotes the full observed response vector. Here 𝜃𝑖 is 

the linear predictor, and 𝑃𝐺(𝜔𝑖|𝑛𝑖 , 𝜃𝑖) denotes the Pólya-Gamma distribution with 

parameters 𝑛𝑖 and 𝜃𝑖, see Polson et al., (2013). The coefficients’ full conditionals change 

only in their parameters. For example, in the full conditional for a general random effects 

component, eq. (A.28) in the technical report, the precision matrix Σ−1 becomes Σ−1 =

𝑑𝑖𝑎𝑔(𝜔) and the response vector y gets replaced by ‘working response’ 
𝑟−𝑛 2⁄

𝜔
. The same 

holds true for the full conditionals of the fixed effects and auxiliary parameters 𝜉. All 

other full conditionals remain unchanged.  
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Appendix G: Bias-adjusted vs Unadjusted CV  

Table G.1 A stratification made by auxiliary variables (Age and Ethnicity) for sequential 

CAWI-CAPI GEZO survey.  

Strata Ethnicity Age 

1 

Western 

0-17 

2 18-24 

3 25-34 

4 35-54 

5 55-64 

6 65-74 

7 75+ 

8 

Non-western 

0-17 

9 18-24 

10 25-34 

11 35-54 

12 55-64 

13 65+ 
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Table G.2 The bias-adjusted (adj) and unadjusted (unadj) CV observations and the 

standard errors (se) under bias adjustment in 2017 Q1 under different budget levels. 

  w w-Np w-Ap 

  unadj adj se unadj adj se unadj adj se 

0%* 0.305 0.294 0.023 - - - - - - 

100% - - - 0.156 0.149 0.013 0.102 0.072 0.021 

90% - - - - - - 0.093 0.084 0.021 

80% - - - - - - 0.104 0.074 0.020 

70% - - - - - - 0.092 0.078 0.021 

60% - - - - - - 0.093 0.084 0.021 

50% - - - - - - 0.106 0.052 0.020 

40% - - - - - - 0.114 0.072 0.021 

30% - - - - - - 0.136 0.115 0.022 

20% - - - - - - 0.259 0.237 0.022 

10% - - - - - - 0.305 0.294 0.023 

*No budget indicates only the CAWI mode is used. “-“ means no results. 

Table G.3 The bias-adjusted (adj) and unadjusted (unadj) CV observations and the 

standard errors (se) of bias adjustment under the 100% budget level in each quarter. 

Year  Quarter 

  

w w-Np w-Ap 

unadj adj se unadj adj se unadj adj se 

2016 

Q1    - - - - - - 

Q2 - - -       

Q3 - - - - - - 0.093 0.084 0.021 

Q4 - - - - - - 0.104 0.074 0.020 

2017 

Q1 - - - - - - 0.092 0.078 0.021 

Q2 - - - - - - 0.093 0.084 0.021 

Q3 - - - - - - 0.106 0.052 0.020 

Q4 - - - - - - 0.114 0.072 0.021 
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Table G.4 The relative cost (c) of 2017 Q1 under different budget levels for adaptive 

surveys. The allocations in each case are determined by the optimization solver “auglag” 

starting with initial point 0 set to 13 strata. If the convergence (C) is TRUE, the local 

optimum can be found, and the corresponding allocations are returned; otherwise, the 

process results in a false local “optimum”. 

 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 

c 0.425 0.473 0.532 0.608 0.709 0.851 0.983 1.311 1.966 0.977 

C TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE 

 

 

Figure G.1 Optimal allocation of each stratum to CAPI given starting point 𝑠𝑔|𝑠0 over 

quarters under ℎ = 100%. Different 𝑠0 values result in convergent optima 𝑠𝑔|𝑠0. The 

dotted line indicates that 𝑠𝑔|𝑠0 = 0. 
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English summary 

Survey practitioners keep steadily searching for methods to improve effectiveness of 

adaptive survey design. Methods most often come in conflict with the rare historic data 

sets for running an infrequent or new survey. Also, methods most often ignore the 

timeliness of historic data of an ongoing survey. In this dissertation, we developed and 

applied Bayesian methods in adaptive survey design, both for precise and reliable 

predictions to make about survey design parameters and for ensuring timeliness of scarce 

survey resources to allocate. We discuss the Bayesian framework for its ability to include 

external data through prior distributions and to learn how responses vary in time in order 

to improve prediction precision. We also discuss effective adaptive survey designs that 

timely tailor the follow-up strategy to approach nonrespondents in order to enhance the 

obtained response. A useful tool is provided here to decide such optimal allocations given 

a survey quality objective.  

The models for adaptive survey designs are offered in Chapters 2 to 4. In Chapter 2 we 

first start our research in the context of response propensity estimation for running a 

survey that is conducted infrequently or newly at Statistics Netherlands. The Bayesian 

framework is developed for its ability to include data collection staff (expert) knowledge 

in prior distribution specification. This modelling flexibility is compared to the standard 

framework when relevant historic information is unavailable completely. We also explore 

two different ways to pool expert knowledge in the expert models. These expert models 

and the standard model are routinely applied to evaluate survey design quality based on 

two overall and one partial representative indicators (R-indicators, overall and partial 

coefficients of variation). We examine these approaches within two case studies where the 

accuracy of estimated indicators is measured through the root mean squared error. The 

accuracy is estimated to validate if making early decision was profitable. Results from 

various evaluations show that the pooling way led to similar performance, and also show 

that either of expert models is in early and middle data collection waves preferable over 

the standard model to estimate the accuracy. The expert models provide most accurate 

estimates on the variations of response. Results also reveal that the expert prior elicitation 

approach is recommended when a survey has never been conducted before or when a 

survey has gone through design changes. 
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Survey literature often assumes that in a relatively fixed survey climate, response 

propensities are quite stable and eventually converge when one obtains sufficient historic 

data. However, the reality that response rates vary in time is not in line with this common 

assumption. To fill this gap, we explore the use of Bayesian methods in the context of 

multilevel prediction models and apply them to a time series data in Chapter 3 where 

response rates are decomposed into multiple components at strata and time levels and each 

component is evaluated. The main motivation of this study is to grasp how time alters 

response propensities and thus to examine the prediction performance. Six-year time 

series data are studied and seven model components are specified (including three fixed 

effects and four random effects): time-independent covariates, overall linear time trend, 

seasonal effects, random intercepts for subgroups, a global time trend, stratum-specific 

trends, and effects for remaining unstructured variation in response propensities. These 

components form eleven models considered. Each model performance is assessed through 

information criteria in order to opt for the best-performance model contributing most to 

variation in response propensities. Given the “optimal” model specification, evaluation 

criteria that measure the level of and variation in overall and subgroup-level response 

propensity predictions are explored as well. Results show that with accumulating historic 

data, the overall variation decreases steadily while a modest but volatile decrease on the 

overall bias. At a time period, the predictions of some subgroups are more biased than 

others. Results also indicate that including data collected during outlier months and under 

design change to train a model can worse prediction accuracy. The latter negative impact 

(design change) is modest. As a heuristic, we show a simple suggestion about how to deal 

with them. Prediction accuracy can improve further, when the “abnormal” data during 

outlier months are replaced and imputed by the model, and when the impact since design 

change is introduced is estimated well using sufficient new data.  

How adaptation strategies can adjust to such variation over time is another aspect of 

concern in survey design. Practical evidence is rare as this is not yet fully figured out. In 

order to grasp the sensitivity of the adaptation performance to time change in response 

propensities, we further explored the use of Bayesian multilevel time series models in 

mixed-mode surveys. A new parameter is, called correlation in response propensities 
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between two consecutive interview modes, introduced in order to make reliable and 

precise predictions at each mode. In Chapter 4, we also construct the resource allocation 

model that employs Bayesian analysis, with the flexibility of accommodating uncertainty 

due to time change. In this approach, a constraint on the workload of interviewers is set 

conditional on a budget level. The quality indicator, i.e., the overall coefficient of 

variation, is minimized based on this constraint. Then, given the estimated response 

propensities at each mode, we can estimate the proportion of nonrespondents of each 

subgroup to assign to the costly mode, if the previous modes fail to obtain their responses. 

In addition to explore the sensitivity of adaptation performance over time, we also 

investigate how sensitive the performance is to different budget levels. For each budget 

level, its estimated overall variation of adaptive design is compared with those of CAWI-

only and non-adaptive designs. Results show there is a clear advantage of adaptive 

designs, in contrast to non-adaptive designs, at relatively high budget levels. However, no 

further improvement in estimated overall variation of adaptation can be seen for less than 

50% budget level. Modelling the seasonal effects seem to be of little value to contribute to 

reduction in overall variation. On the one hand, this is possibly because we do not 

distinguish the seasonal effects between CAWI and CAPI. On the other hand, the study on 

individual subgroup performance implies that a stopping rule of data collection may be 

implemented and an effort-based strategy for small sample size subgroups may be 

adopted. 

This dissertation presents the development of Bayesian methods behind effective adaptive 

survey design. We show that in addition to the Bayesian analysis with internal historic 

data, expert prior elicitation and a deeper understanding of time change are useful tool to 

improve survey design parameter prediction accuracy and to intervene timely and 

appropriately.  
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Nederlandse Samenvatting  

Enquêteurs blijven voortdurend zoeken naar methoden om de doeltreffendheid van 

adaptieve enquêteontwerpen te verbeteren. De methoden komen meestal in conflict met de 

zeldzame historische gegevensreeksen voor het houden van een onregelmatige of nieuwe 

enquête. Ook gaan methoden meestal voorbij aan de actualiteit van historische gegevens 

van een lopende enquête. In dit proefschrift hebben wij Bayesiaanse methoden ontwikkeld 

en toegepast bij adaptief enquêteontwerp, zowel om nauwkeurige en betrouwbare 

voorspellingen te kunnen doen over enquêteontwerp-parameters als om de tijdigheid van 

schaarse toe te wijzen enquêtemiddelen te waarborgen. Wij bespreken het Bayesiaanse 

kader voor zijn vermogen om externe gegevens op te nemen via prior verdelingen en om 

te leren hoe antwoorden in de tijd variëren om de nauwkeurigheid van de voorspellingen 

te verbeteren. Wij bespreken ook doeltreffende adaptieve enquêteontwerpen die de follow-

upstrategie tijdig aanpassen om niet-respondenten te benaderen teneinde de verkregen 

respons te verbeteren. Hier wordt een nuttig instrument aangereikt om dergelijke optimale 

toewijzingen te bepalen gegeven een doelstelling voor de kwaliteit van de enquête. 

De modellen voor adaptieve enquêteontwerpen worden aangeboden in de hoofdstukken 2 

tot en met 4. In hoofdstuk 2 beginnen we ons onderzoek eerst in de context van de 

schatting van de responsdichtheid voor een enquête die onregelmatig of nieuw bij het CBS 

wordt gehouden. Het Bayesiaanse raamwerk is ontwikkeld vanwege de mogelijkheid om 

(expert)kennis van dataverzamelaars mee te nemen in de specificatie van de prior 

distribution. Deze modelleringsflexibiliteit wordt vergeleken met het standaardkader 

wanneer relevante historische informatie volledig ontbreekt. We onderzoeken ook twee 

verschillende manieren om expertkennis in de expertmodellen te bundelen. Deze 

deskundigenmodellen en het standaardmodel worden routinematig toegepast om de 

kwaliteit van het enquêteontwerp te evalueren op basis van twee algemene en één partiële 

representatieve indicator (R-indicatoren, algemene en partiële variatiecoëfficiënt). Wij 

onderzoeken deze benaderingen in twee casestudies waarbij de nauwkeurigheid van de 

geschatte indicatoren wordt gemeten aan de hand van de gemiddelde kwadratische fout. 

De nauwkeurigheid wordt geschat om te valideren of het nemen van een vroegtijdige 

beslissing rendabel was. Uit de resultaten van verschillende evaluaties blijkt dat de 
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poolingmethode tot vergelijkbare prestaties leidt, en ook dat een van beide expertmodellen 

in vroege en middelste gegevensverzamelingsgolven de voorkeur verdient boven het 

standaardmodel om de nauwkeurigheid te schatten. De deskundigenmodellen leveren de 

nauwkeurigste schattingen op van de variaties in de respons. Uit de resultaten blijkt ook 

dat de aanpak van de voorafgaande elicitatie door deskundigen wordt aanbevolen wanneer 

een enquête nog nooit eerder is uitgevoerd of wanneer een enquête wijzigingen in de opzet 

heeft ondergaan. 

In de enquêteliteratuur wordt er vaak van uitgegaan dat bij een betrekkelijk vast 

enquêteklimaat de reactiebereidheid vrij stabiel is en uiteindelijk convergeert wanneer 

men over voldoende historische gegevens beschikt. De realiteit dat de respons in de tijd 

varieert, strookt echter niet met deze gangbare veronderstelling. Om deze leemte op te 

vullen, onderzoeken wij het gebruik van Bayesiaanse methoden in de context van 

multilevel voorspellingsmodellen en passen deze toe op een tijdreeks van gegevens in 

hoofdstuk 3, waarin de responspercentages worden ontleed in meerdere componenten op 

strata- en tijdsniveau en elke component wordt geëvalueerd. De belangrijkste motivatie 

van deze studie is te begrijpen hoe de tijd de responsgevoeligheid verandert en aldus de 

voorspellingsprestaties te onderzoeken. Er worden tijdreeksgegevens van zes jaar 

bestudeerd en er worden zeven modelcomponenten gespecificeerd (waaronder drie vaste 

effecten en vier willekeurige effecten): tijdsonafhankelijke covariaten, een algemene 

lineaire tijdstrend, seizoenseffecten, willekeurige intercepts voor subgroepen, een 

algemene tijdstrend, stratum-specifieke trends en effecten voor de resterende 

ongestructureerde variatie in responsneigingen. Deze componenten vormen elf in 

aanmerking genomen modellen. De prestaties van elk model worden beoordeeld aan de 

hand van informatiecriteria, teneinde het best presterende model te kiezen dat het meest 

bijdraagt tot de variatie in de responsneiging. Gegeven de "optimale" modelspecificatie 

worden ook evaluatiecriteria onderzocht die het niveau van en de variatie in de 

voorspellingen van de totale en subgroepresponsneiging meten. Uit de resultaten blijkt dat 

met de accumulatie van historische gegevens de algemene variatie gestaag afneemt, 

terwijl de algemene vertekening bescheiden maar volatiel afneemt. In een bepaalde 

periode zijn de voorspellingen van sommige subgroepen sterker vertekend dan die van 

andere. De resultaten wijzen er ook op dat het opnemen van gegevens die zijn verzameld 

tijdens uitbijtermaanden en onder ontwerpwijzigingen om een model te trainen, de 
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voorspellingsnauwkeurigheid kan verslechteren. Het laatste negatieve effect 

(ontwerpwijziging) is bescheiden. Als heuristiek geven wij een eenvoudige suggestie hoe 

daarmee om te gaan. De voorspellingsnauwkeurigheid kan verder verbeteren wanneer de 

"abnormale" gegevens tijdens de maanden met een uitschieter worden vervangen en door 

het model worden toegerekend, en wanneer het effect sinds de invoering van de 

ontwerpwijziging goed wordt geschat met behulp van voldoende nieuwe gegevens. 

Hoe aanpassingsstrategieën zich in de loop der tijd aan een dergelijke variatie kunnen 

aanpassen, is een ander aspect van de enquêteopzet. Praktische bewijzen zijn schaars 

omdat dit nog niet volledig is uitgezocht. Om inzicht te krijgen in de gevoeligheid van de 

aanpassingsprestaties voor veranderingen in de responsbereidheid in de tijd, hebben wij 

het gebruik van Bayesiaanse multilevel tijdreeksmodellen in gemengde enquêtes verder 

onderzocht. Er is een nieuwe parameter ingevoerd, namelijk de correlatie in 

responsneigingen tussen twee opeenvolgende interviewmodi, om betrouwbare en 

nauwkeurige voorspellingen voor elke modus te kunnen doen. In hoofdstuk 4 construeren 

wij ook het model voor de toewijzing van middelen dat gebruik maakt van Bayesiaanse 

analyse, met de flexibiliteit om onzekerheid als gevolg van tijdsverandering op te vangen. 

In deze aanpak wordt een beperking op de werklast van de interviewers vastgesteld op 

basis van een budgetniveau. De kwaliteitsindicator, d.w.z. de totale variatiecoëfficiënt, 

wordt op basis van deze beperking geminimaliseerd. Vervolgens kunnen wij, gezien de 

geschatte responsbereidheid in elke modus, het aandeel niet-respondenten van elke 

subgroep schatten dat aan de dure modus moet worden toegewezen indien de vorige modi 

geen respons opleveren. Behalve de gevoeligheid van de aanpassingsprestaties in de tijd 

onderzoeken wij ook hoe gevoelig de prestaties zijn voor verschillende begrotingsniveaus. 

Voor elk budgetniveau wordt de geschatte totale variatie van het adaptieve ontwerp 

vergeleken met die van CAWI-only en niet-adaptieve ontwerpen. Uit de resultaten blijkt 

dat er een duidelijk voordeel is van adaptieve ontwerpen, in tegenstelling tot niet-

adaptieve ontwerpen, bij relatief hoge begrotingsniveaus. Bij een budgetniveau van 

minder dan 50% is er echter geen verdere verbetering van de geschatte totale 

aanpassingsvariatie te zien. De modellering van de seizoensgebonden effecten lijkt weinig 

bij te dragen tot een vermindering van de totale variatie. Enerzijds komt dit mogelijk 

doordat wij geen onderscheid maken tussen de seizoenseffecten van CAWI en CAPI. 

Anderzijds impliceert het onderzoek naar de prestaties van individuele subgroepen dat er 
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een stopregel voor de gegevensverzameling kan worden toegepast en een op inspanning 

gebaseerde strategie voor subgroepen met een kleine steekproefomvang. 

Dit proefschrift presenteert de ontwikkeling van Bayesiaanse methoden voor een effectief 

adaptief enquêteontwerp. Wij tonen aan dat, naast de Bayesiaanse analyse met interne 

historische gegevens, het ontlokken van voorkeuren door deskundigen en een dieper 

begrip van tijdsverandering nuttige hulpmiddelen zijn om de nauwkeurigheid van de 

voorspelling van enquêteontwerpparameters te verbeteren en tijdig en passend in te 

grijpen. 
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