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ABSTRACT: Small-angle scattering of X-rays (SAXS) or neutrons (SANS) is
one of the few experimental methods that can in principle be used for the in
situ study at the mesoscopic scale of physicochemical phenomena occurring
inside nanoporous solids. However, the potential of the method is often limited
by the lack of suitable data analysis methods to convert scattering data into real-
space structural information. This is notably the case for most porous materials
of practical interest, which exhibit a hierarchical structure with micro, meso, and
macropores, with often a secondary material confined in the pores, such as in
supported catalysts, as well as fuel-cell and battery materials. In the present
paper, we propose a general analysis of X-ray scattering by this type of material.
Assuming that each structural level is statistically independent from the others and has a distinct characteristic length scale,
compact mathematical expressions are derived for the scattering of the entire hierarchical structure. The results are particularized
to the SAXS analysis of SBA-15-ordered mesoporous silica loaded with copper nitrate as well as of supported catalysts obtained
after heat treatment of that material. The SAXS data analysis shows that the nitrate fills both the micro- and mesopores of the
material, while the metallic copper obtained after heat treatment is found only in the mesopores. Moreover, the mesoscopic-scale
spatial distribution of the metal depends on the heat treatment, in line with earlier electron tomography studies. The main ideas
underlying the SAXS data analysis were presented in a recent communication (Gommes et al. Angew. Chem., Int. Ed. 2015, 54,
11804−11808). Here, we generalize the approach and provide a comprehensive discussion of how any level in a hierarchical
structure contributes to its overall scattering pattern. The results, as well as the general modeling methodology, will be of interest
to anyone interested in the quantitative analysis of small-angle scattering data of empty or loaded porous solids and more
generally of any type of hierarchical material.

■ INTRODUCTION

A host of technologies and natural processes depend on
physicochemical phenomena occurring inside nanometer-sized
pores. A far from exhaustive list includes heterogeneous
catalysis,1,2 adsorptive separation processes,3 energy storage
technologies4 including batteries, hydrogen storage,5 and
electrochemical processes,6 the weathering of rocks,7 and
transport through biological membranes.8 To improve the
fundamental understanding of these phenomena as well as to
drive further technological developments, experimental and
analytical methods are needed to characterize these systems at
the very scale at which the relevant phenomena take place.
Electron microscopy can provide a direct access to the

morphology of nanostructures, sometimes in three dimen-
sions.9,10 However, the scope of microscopy is often limited by
the electron dose that the samples can withstand. Moreover,
the required high vacuum and the limited time-resolution of
electron microscopy make it unsuitable to most in situ studies.
Small-angle scattering (SAS) of X-rays (SAXS) or neutrons
(SANS) is one of the few alternative experimental techniques
that can be used to study nanostructures with nanometer
resolution.11,12 SAS is very flexible experimentally because the
samples can be studied in a variety of chemical and physical

environments13−19 with a time resolution that can be as low as
a few microseconds.20 Moreover, compared to the femtogram
of material that is characterized in a typical electron
tomography study,21 SAS provides a 12-decade enhancement
of the sampling. The main difficulty with SAS, however, is the
conversion of the scattering data into real-space structural
information.
In a recent communication, we presented a SAXS analysis of

copper catalysts supported on SBA-15 micro- and mesoporous
silica.21 That work required the modeling both of the empty
porous material and of the mesopore-filling metal. The general
assumptions of our approach consisted in assuming that any
structural level in the material is statistically independent from
the others and that it has a distinct characteristic length. In the
present paper, we provide a comprehensive presentation of the
methodology. In particular, we discuss thoroughly how the
various structural levels in the hierarchical material contribute
to the integrated intensity. We generalize the earlier models in
order to allow some spatial correlation in the filling of the
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mesopores by the loading material. We also generalize the
analysis to consider the case where the loading material can be
present in both the meso- and the micropores.
The structure of the paper is as follows. In the first section,

we present the materials that we use throughout the paper to
illustrate the mathematical models, together with their
experimental SAXS patterns. In the following section we
present the general modeling methodology and underlying
assumptions. We derive a general expression for the correlation
function of a hierarchical micro/meso/macroporous material
with a loading material contained in its pores. In the third
section, we particularize the latter expression to the case of
SBA-15 mesoporous silica. In that section, we consider first the
case of empty SBA-15, and we develop a comprehensive model
to analyze its SAXS in terms of both the micro and
mesoporosity, as well as of its large-scale grain structure.
Finally, that model is enhanced to account for the presence of
loading material within the pores, and more specifically for its
heterogeneity at the mesoscopic scale.

■ EXPERIMENTAL SECTION

The materials used to illustrate the SAXS data analysis methods
developed in the present work are copper-loaded porous silicas.
These materials were synthesized by impregnation of SBA-15-
ordered mesoporous silica22 with an aqueous solution of copper
nitrate and subsequently dried, heat-treated, and reduced,
according to a procedure thoroughly described elsewhere.21 We
refer hereafter to the dried, i.e., nitrate-loaded material as Cu/S.
Starting from that material, two different metallic catalysts were
prepared by decomposition of the Cu nitrate precursor via two
different heat treatments. The material obtained with the heat
treatment under N2 flow is referred to as Cu/S(N2); the
material obtained under 2% NO/N2 flow is referred to as Cu/
S(NO). Both materials were afterward reduced in hydrogen to
produce supported Cu nanoparticles and thereby set the
materials to their catalytically active state.
In all three materials, the overall metal loading is 0.18 gCu/

gSiO2. Nitrogen adsorption performed on the empty SBA-15
support (i.e., before impregnation) leads to a BET specific
surface area of SBET = 722 m2/g and to a mesopore volume of
Vmes = 0.70 cm3/g. The pore size determined from adsorption
is about 10 nm in diameter.
The type of heat treatment is known to have an effect on the

spatial distribution of the metal in the final material.23 For the
purpose of illustration, Figure 1 shows dark-field transmission
electron microscopy of materials prepared identically as
described here for Cu/S, Cu/S(N2), and Cu/S(NO) through
additionally incorporating Zn as catalytic promoter of Cu.24 On
these images, the SBA-15 grains are visible with a typical width

of 300 nm and length of about 1 μm. The mesopores are
aligned with the long axis of the grains; they are not visible at
the resolution of the figure. The pore-filling material, however,
is sometimes visible as brighter zones inside the grains. In the
nitrate-loaded material (Figure 1a), the elongated bright
patches correspond to regions where the metal nitrate is
present. For the sample heat-treated in the presence of NO
some sharp features are also visible (Figure 1c), suggesting that
the metal is present in specific mesopores while others are left
empty. In the case of the sample heat-treated in pure N2, the
metal seems to be distributed uniformly throughout the grains,
at a scale too small to be detected.
The small-angle X-ray scattering (SAXS) patterns of samples

Cu/S, Cu/S(N2), and Cu/S(NO) are shown in Figure 2. The

samples were mounted in borosilicate glass capillaries, and the
scattering patterns were measured on a XEUSS SAXS/WAXS
setup from Xenocs, equipped with a molybdenum K-α source
and a 2D detector. The 2D SAXS data were rotationally
averaged using the ConeX software25 and expressed as the
scattered intensity as a function of the scattering wave vector q
= 4π/λ sin(θ/2), where θ is the scattering angle and λ = 0.71 Å
is the wavelength. The SAXS patterns were corrected by
subtracting the contribution of the empty capillary normalized
by the transmitted intensity. Finally, because absolute
intensities were not measured and to make the comparison
easier between the various samples, the so-corrected SAXS
patterns were normalized by the integrated intensity Q.11

The SAXS patterns in Figure 2 exhibit the scattering peaks
typical of SBA-15,26,27 the positions of which are characteristic
of a structure with hexagonal P6mm symmetry. The relative
intensity of the peaks and of the background scattering,

Figure 1. High-angle annular dark-field scanning-transmission electron microscopy (HAADF-STEM) images of Cu/Zn samples prepared similarly
to Cu/S, Cu/S(N2), and Cu/S(NO), i.e., the nitrate-loaded SBA-15 (a) as well as samples heat-treated in N2 (b) and in 2% NO (c). Micrograph in
panel a was registered under cryogenic conditions (77 K) to prevent redistribution of the Cu nitrate filler under imaging conditions.

Figure 2. Small-angle scattering patterns measured on the empty SBA-
15 (black), nitrate-loaded Cu/S (green), and heat-treated samples Cu/
S (N2) (blue) and Cu/S(NO) (red). The data are plotted on double
logarithmic scales in the insets, where the straight lines are power laws
of the type I ≃ q−4 (top) and I ≃ q−1 (bottom).
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however, is variable from one sample to another. In the case of
the nitrate-loaded Cu/S sample, the peaks are very faint, and a I
≃ q−4 diffuse scattering extends over the entire measured
angular range. In the case of the metal-loaded samples Cu/
S(NO) and Cu/S(N2), the peaks remain sharper and the
patterns differ mostly by the intensity of the I ≃ q−1

background seen at low values of q. The latter background is
more intense, by a factor as large as 2, in the case of the sample
heat-treated in the presence of NO.
It has to be stressed that the low intensity of the peaks in

Cu/S does not result from a damaging of the support during
the impregnation because the peaks appear sharply again in
Cu/S(N2) and Cu/S(NO), which are obtained after heat-
treatment and reduction of Cu/S. The faintness of the peaks
possibly results from a contrast-matching effect between the
silica and the nitrate, or from the presence of another type of
nanostructure that would scatter strongly enough to cover the
peaks. In the case of the metal-loaded samples, the difference in
the I ≃ q−1 background at low q is interesting. It hints at a more
heterogeneous metal dispersion in Cu/S(NO) compared to
Cu/S(N2). This qualitative observation is in line with previous
work21 as well as with Figure 1.

■ CORRELATION FUNCTION OF LOADED
MULTISCALE POROUS MATERIALS

When a nanostructured material is irradiated with X-rays, the
intensity of the scattered beam depends on the spatial variation
of the electron density ρ(x), defined as the number of electrons
per unit volume at point x in space.11,12,28,29 Mathematically,
the SAXS intensity I(q) is equal to the Fourier transform of the
electron-density correlation function, namely

∫ χ= ρ
− ·I Vq r( ) e ( ) di

r
q r

(1)

The correlation function χρ is defined as the correlation
between the electron density at any two points of the material
at a distance r from one another, namely

χ ρ ρ ρ= ⟨ + ⟩ − ⟨ ⟩ρ r x r x( ) ( ) ( ) 2
(2)

where the brackets stand for the average quantity, calculated
over all possible values of x. In the particular case of a loaded
porous material, ρ(x) takes the values 0, ρs, or ρl, according to
whether point x is inside a pore, in the solid phase of the
porous material, or in the loading. In eq 1, the bold-face
characters indicate that the distances in reciprocal and real
spaces are expressed with vectorial quantities q and r, which is
necessary for anisotropic structures such as SBA-15.
A direct consequence of eq 1 via Fourier’s inversion theorem

is that the integrated intensity Q, defined as the integral of I(q)
over the entire reciprocal space,11,12 is related to the electron
density correlation function via

π χ= ρQ (2 ) (0)3
(3)

which is a relation that we shall use repeatedly in the present
paper. The integrated intensity is also referred to as the
invariant because it can be expressed simply in terms of the
electron densities and volume fractions of the various phases
present in the material, independently of the actual structure of
the phases.11 For a material comprising two phases A and B
with electron densities ρA and ρB, and volume fractions ϕA and
ϕB = 1 − ϕA, the relation is11,12,29

π ρ ρ ϕ ϕ= −Q (2 ) ( )3
A B

2
A B (4)

and more general relations are available for more than two
phases.30 The case of neutron scattering is mathematically
equivalent to X-ray scattering; only the electron density ρ(x) is
replaced by a nucleus-dependent scattering length density
b(x).12

In order to use a structure model to analyze small-angle
scattering data, it is convenient to calculate first its correlation
function χρ(r). The type of nanostructure that we are interested
in is shown in Figure 3. It consists of a solid that comprises

micropores, mesopores, and macropores. We comply here with
the recommendations of the International Union of Pure and
Applied Chemistry.31 Pores with sizes between 2 and 50 nm are
referred to as mesopores. Smaller and larger pores are referred
to as micropores and macropores, respectively. In addition to
the structures shown in Figure 3, an additional level will be
introduced later, corresponding to the pore-filling material.
The main challenge when developing a structural model is to

keep it mathematically simple and yet realistic enough to
analyze experimental data. This balance between mathematical
simplicity and realism is best achieved through a probabilistic
approach.32,33 In a probabilistic context, defining a structural
model consists in describing a set of statistical rules that can be
used to generate a structure, rather than describing a specific
structure itself. When applied to SAS data analysis, probabilistic
models are suitable to describe not only the average features of
the nanostructure but also the variability of the nanostructure
over the entire volume of material that is sampled by the
scattering experiment.
In the context of probabilistic models it is convenient to

describe a given structure via its indicator function, which takes
the value 1 when the point x is the phase and 0
otherwise.32,34,35 For example, the first structural level that we

Figure 3. Various structural levels of the hierarchical model of porous
material comprising (a) the macropores, (b) the mesopores, and (c)
the micropores. The solid is shown in white and the pores in black.
Each level is assumed to be statistically independent from the other
two and to have a distinctive characteristic length. Combining
selectively these structural levels, mathematical models are obtained
for macro/meso (d), macro/micro (e), meso/micro (f), as well as for
macro/meso/microporous materials (g).
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are concerned with is that of the micropores, the indicator
function of which is defined as

μ =
⎧⎨⎩x

x
( )

1 if is in a micropore

0 otherwise (5)

The indicator function μ(x) is defined mathematically as if the
micropores were the only structure present in the material. This
is illustrated in Figure 3c where the region with μ(x) = 0 (i.e.,
the solid) is shown in white and the micropores are shown in
black. The micropores are notably characterized by their
volume fraction ϕμ defined as

ϕ μ= ⟨ ⟩μ x( ) (6)

and by their correlation function χμ(r) defined as

χ μ μ ϕ= ⟨ + ⟩ −μ μr x r x( ) ( ) ( ) 2
(7)

which is similar to eq 2. It is important to note that the
micropore structure μ(x) is defined as if it filled the entire
space. For example, in the case where other types of pores are
present (e.g., Figure 3e−g) the actual fraction of space that is
occupied by micropores is smaller than ϕμ.
The purpose of the present section is to calculate how the

statistical characteristics of each structural level, ϕ and χ,
combine to form the global correlation function χρ(r), and this
is independent of the specific probabilistic model used for each
level. The second structural level is that of the mesopores with
indicator function m(x) (Figure 3b). The third structural level
is that of the macropores, having indicator function M(x)
(Figure 3a). Using these notations, the indicator function of the
solid phase in the micro/meso/macroporous material can be
written as the product [1 − μ(x)][1 − m(x)][1 − M(x)], in
which each factor accounts for a specific type of pore. This is
illustrated in the third column of Figure 3. As mentioned
previously, this model has to be complemented by the loading
material, the indicator function of which we shall write l(x). As
far as X-ray scattering is concerned, the central property of each
phase is its electron density ρ. The space-dependent electron
density ρ(x) can be written as follows in terms of the indicator
functions

ρ ρ μ

ρ

= − − −

+ −

M m

M l

x x x x

x x

( ) [1 ( )][1 ( )][1 ( )]

[1 ( )] ( )
s

l (8)

where ρs and ρl are the electron densities of the solid and of the
loading, respectively. Anticipating on the rest of the paper, the
various contributions to ρ(x) are illustrated in Figure 6 with the
electron densities coded as colors. An implicit assumption in eq
8 is that the loading material is not present in the macropores
but only in the micro- and mesopores. In the particular case of
the samples of Figure 1, this is equivalent to assuming that
there is no loading in the space between the SBA-15 grains.
While this assumption is in all likelihood realistic for the
examined system, it could be easily relaxed if necessary.
Using eq 8, the correlation function χρ(r) can be expressed in

terms of the auto- and cross-correlation functions of μ(x),
m(x),M(x), and l(x). In the following, we shall use the notation
Pab(r) for the two-point probability function30,36 of any two
phases a and b, namely

= ⟨ + ⟩P a br x x r( ) ( ) ( )ab (9)

where a(x) and b(x) are the indicator functions of phases a and
b. The function Pab(r) can be interpreted as the probability that
two points at a distance r from one another belong one to
phase a and the other to phase b. The same definition applies to
the case a = b, in which case Paa(r) is the probability that the
two points both belong to a. For very small distances |r| the two
points necessarily belong to the same phase so that the
probability is equal to the volume fraction of the phase, ϕa. For
very large distances, one point belongs to a independently of
the other, which leads to Paa(r → ∞) = ϕa

2. The correlation
function χa(r) is related to Paa(r) via

χ ϕ= −Pr r( ) ( )a aa a
2

(10)

It takes the value χa(0) = ϕa(1 − ϕa) and decreases toward the
asymptotic value 0 over distances comparable to the character-
istic length of the structure a.
The first simplifying assumption that we shall make is the

statistical independence of the indicator functions M(x), m(x),
and μ(x). For example, in the case of M(x) and m(x) this
notably entails that the surface of a macropore can cut
anywhere through a mesopore (see, e.g., Figure 3d). As a
mathematical consequence, the averages of products can be
factorized as in the following example

⟨ + + ⟩ =M m M m P Px x x r x r r r( ) ( ) ( ) ( ) ( ) ( )MM mm (11)

which considerably simplifies the mathematics.
The second simplifying assumption is that each structural

level has a distinctive characteristic length, which is very
different from that of the others. The characteristic length can
be given a precise meaning in the present context as the
distance over which the corresponding correlation function
χ(r) decreases to 0. For example, considering μ(x) and m(x), a
direct consequence of the assumption is that products of
correlation functions can be approximated as follows

χ χ ϕ ϕ χ≃ −μ μr r r( ) ( ) (1 ) ( )m m m (12)

The reason for this is that χμ(r) decreases to 0 over distances
comparable with the characteristic length of μ(x), which is
much shorter than that of m(x). As a consequence, χm(r) can be
considered as constant and equal to its value χm(0) = ϕm(1 −
ϕm) in the product χμ(r)χm(r).
Using systematically the same type of simplification as in eqs

11 and 12, and assuming that the loading l(x) is statistically
independent of M(x), eq 8 leads to the following expression for
the electron-density autocorrelation function

χ ϕ ϕ ρ ρ ϕ χ

ρ ϕ χ ρ χ ρρ

χ ϕ ϕ ϕ

ρ χ

= − − +

+ − + − Γ

+ − + − −

ρ μ

μ μ

μ

r r

r r r

r

r

( ) [(1 )(1 ) ] ( )

{ (1 ) ( ) ( ) 2 ( )}

( ( ) (1 ) ) [(1 )(1 )]

( )

m s l l M

s m l l s l l m

M M m M

s

2

2 2 2

2

2
(13)

where we have used the notation

μ ϕ ϕ

ϕ ϕ μ ϕ ϕ ϕ

Γ = ⟨ + ⟩ − + ⟨ + ⟩

− − ⟨ + ⟩ +

μ μ

μ

l l m

l m

r x r x x r x

x r x x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

l m l

l m l m (14)

The first and last terms in eq 13 account for the contributions
of the macroporous and microporous structures to the overall
electron-density correlation function, respectively. The second
term is more complex as it involves the structures of the
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mesopores, of the loading and of the macropores. We shall
discuss the physical meaning of that term for specific types of
loadings l(x) in the following sections.
An important class of porous materials comes in the form of

a powder with no macropore other than the spacing between
the grains. This is notably the case for the catalysts of Figure 1.
Moreover, the grains are generally larger than the lower
resolution limit of the SAXS, so that the way in which the grains
are positioned with respect to one another is irrelevant to the
scattering data analysis. With no loss of generality, we may
therefore assume that the grains are far from each other, in
which case the correlation function of the large-scale structure
can be approximated by

χ θ≃ Ωr r( ) ( )M g g (15)

where θg is the average number of grains per unit volume of the
powder, and Ωg(r) is the autocorrelation function of the
individual grains.34 The volume fraction of the large-scale
structure is ϕM = 1 − θg Vg, where Vg is the average grain
volume. Using these expressions and taking the limit of infinite
dilution θg → 0, the electron correlation function takes the
form

χ

θ
ϕ ϕ ρ ρ ϕ

ρ ϕ χ ρ χ ρρ

ϕ ρ χ

= − − + Ω

+ − + − Γ

Ω + −

ρ
μ

μ μ

μV

r
r

r r r

r r

( )
[(1 )(1 ) ] ( )

{ (1 ) ( ) ( ) 2 ( )}

( ) (1 ) ( )

m s l l

s m l l s l l m

m s

g

2
g

2 2 2

g g
2

(16)

where the term proportional to (1 − ϕM)
2 in eq 13 no longer

appears because it is of the second order in θg. The used
approximations for ϕM and χM can be obtained rigorously as the
low-density limit of Boolean models34,37 (see also the
Appendix).
The small-angle scattering intensity is obtained as the Fourier

transform of eq 16 through eq 1. Each term in the expression of
χρ(r) has a clear structural significance. The first term in eq 16
accounts for the scattering by the grain as a whole, as if it had
no substructure. The second term accounts for the scattering by
the mesopores and the loading material. That contribution is
the main subject of the present paper, but it cannot be
discussed in general terms without specifying the model used to
define l(x). We therefore postpone its discussion to a following
section. The entire second line is multiplied by Ωg(r). This
multiplication converts to a convolution in reciprocal space,
which is eventually responsible for a size-broadening of the
scattering peaks.12,38 Finally, the last term, proportional to χμ
accounts for the scattering by the micropores.

■ THE CASE OF EMPTY SBA-15 SILICA
The results obtained so far, and eq 16 in particular, are quite
general and they apply to any type of porous material, provided
the hierarchy of pores have distinctly different sizes and each
structural level is statistically independent from the others. In
order to show how they can be used practically to analyze
SAXS data, we now particularize them to SBA-15 porous silica
and use them for analyzing the data in Figure 2. We focus in the
present section on the empty support, i.e., on the unloaded
SBA-15 material.
Although SBA-15 is generally referred to as an ordered

mesoporous material (OMM) with cylindrical pores,39 its
actual structure is much more complex. The mesopores are

significantly corrugated40 and the wall between them is
microporous.41 The typical value for the porosity of the wall
is close to 35% and the overall mesoporosity is around
50%.15,40,42 Numerous works have been concerned with the
development of realistic models that account for the structural
complexity of SBA-15, in the context of microscopy,43 small-
angle scattering,44 and adsorption45studies, as well as for in situ
scattering studies of adsorption phenomena.46−48 We propose
here a systematic approach that leads to analytical expressions
that can be conveniently used to analyze scattering data.
As a first step in the SAXS analysis of structure as complex as

SBA-15, it is useful to estimate the contribution of each
structural level to the integrated intensity Q via eq 3 and eq 16.
This leads to

π θ
ϕ ϕ ρ ϕ ρ

ϕ ϕ ϕ ρ ϕ ϕ

= − − + −

− + − −

μ μ

μ μ

Q
V(2 )

[(1 )(1 ) ] [(1 ) ]

(1 ) (1 ) (1 )

m s s

m m m s

3
g g

2 2

2
(17)

where the three terms are the contributions of the large-scale
structure, of the mesopores, and of the micropores, respectively.
It is interesting to analyze the various terms in eq 17 in analogy
with the general result for two phase systems eq 4. The first
term is the squared electron-density contrast between the
grains and the outside, calculated as if the grains were made up
of a homogeneous phase. The absence of a term similar to
ϕM(1 − ϕM) results from the normalization of the scattering
per grain, corresponding to the term θgVg in the denominator
of the left-hand side of eq 17. The second term is exactly
equivalent to eq 4 for the mesopore structure, with ρA = 0 in
the mesopores and average electron density ρB = (1 − ϕμ) ρs
outside the mesopores. Finally, the last term is a direct
application of eq 4 to the microporous structure; it is multiplied
here by (1 − ϕm) because this is the fraction of space actually
occupied by the microporous structure.
In order to compare the relative contribution of all structural

levels to the overall scattered intensity of SBA-15, one can set ρs
= 1 in eq 17 and focus on the effect of the volume fractions.
Using the typical values ϕm ≃ 0.5 and ϕμ ≃ 0.35, the values of
the three terms are 0.106, 0.106, and 0.114. This shows that the
grainlike large-scale structure, the mesoporous structure, and
the microporous structure all contribute more or less equally to
the SAXS of SBA-15. This is incidentally the reason for which
structural models accounting exclusively for the mesoporous
structure are unable to reproduce accurately the experimental
scattering patterns of SBA-15.49 In the coming three sections,
we propose specific models for the three structural levels.

Large-Scale Structure. The large-scale structure of SBA-15
is that of the micrometer-sized grains. The corresponding
scattering is calculated as the first term in eq 16. We shall write
Ig(q) as the Fourier transform of Ωg(r). Because the grains are
much larger than the lower resolution limit of small-angle
scattering, it is sufficient to know only the asymptotic behavior
of Ig(q) for large values of q. The latter is given by Porod’s
formula, which has the form11,50

π
≃I

A

q
q( )

2
g

g
4

(18)

where Ag is the outer surface area of the grain. When writing
the latter expression we have implicitly assumed that the grain
orientation is statistically isotropic, which is usually the case for
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powders, so that it is the modulus q = |q| of the scattering
wavevector that appears in the equation.
Micropores. The scattering from the micropores is

calculated from the last term in eq 16. We write Iμ(q) as the
Fourier transform of χμ(r). Because the microporous structure
of silica is disordered and isotropic, it is reasonable to model it
via the following Guinier−Porod empirical model51

π ϕ ϕ= −μ μ μ μ μI R f qRq( ) (2 ) (1 ) ( )3 3
GP (19)

where Rμ is a radius of gyration of the microporous silica,
corresponding here to a characteristic size of the micropores,
and f GP(x) is the following function

= ×
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which satisfies Guinier’s and Porod’s laws for small and large
values of q, respectively, and has a smooth transition between
the two regimes. The value of the constant is i0 ≃ 46.36, which
guarantees that ∫ 0

∞4πx2f(x)dx = 1. The value of the prefactor in
eq 19 was chosen in such a way that eq 4 is satisfied by Iμ(q).
For further purposes, it is useful to derive the relation

between the parameters of the Guinier−Porod model and the
specific surface area of the microporous structure. The latter is
obtained in the usual way from the asymptotic expression of eq
19 via Porod’s formula.11,29 The following expression is
obtained

π ϕ ϕ
=

−
μ

μ μ

μ

−
S

e
i R

36(2 ) (1 )2 2

0 (21)

The value Sμ is the specific surface area that would be observed
if the microporous silica filled the entire space as in Figure 3c.
The latter expression notably enables one to estimate the
average chord length of the micropores as ϕμ/Sμ,

52 which is a
better measure of micropore size than the radius of gyration Rμ.
Mesopores. The mesopores are the most salient features of

SBA-15. They are approximately centered on the nodes of a 2D
hexagonal lattice, which enables us to model their indicator
function as

∑= −
=

∞

m fx x x( ) ( )
n

n n
1 (22)

where the infinite sum is over all the nodes of the 2D lattice,
f n() is a function that characterizes the size and shape of the nth
mesopore, the position of which is xn. In order to account for
the polydispersity of the pore sizes and for the elements of
disorder in the lattice, we consider f n() and xn as random
functions, which we shall explicit shortly. Moreover, we shall
use the customary assumption that two distinct pores are
statistically independent of one another.27,38,43

With this particular form for m(x), the correlation function of
the mesopores χm(x) can be written as

∑ ∑χ ϕ= ⟨ − − + ⟩ −f fr x x x x r( ) ( ) ( )m
n m

n n m m m
2

(23)

Estimating the Fourier transform of eq 23 leads to the classical
expression27,38,53

θ= |⟨ ⟩| ′ − + ⟨| | ⟩I F Z Fq q q q( ) { ( ) ( ( ) 1) ( ) }m m
2 2

(24)

where θm is the average number of mesopores per unit area of
the plane orthogonal to them, F(q) is the Fourier transform of

f(x), and the brackets ⟨⟩ have to be understood as the average
over all the mesopores or equivalently as the ensemble average
over all possible realizations of any given mesopore. The lattice
factor Z′(q) is defined here as

∑ ∑ π θ δ′ = −
→∞ = =

− · −Z
N

q q( ) lim
1

e (2 ) ( )
N n

N

m

N
i

m
q x x

1 1

( ) 2n m

(25)

which describes the relative position of the mesopores with
respect to one another. The second term in eq 25 is usually
absent in the definition of the lattice factor. Its presence here is
a consequence of the subtraction of ϕm

2 in eq 23, which results
in the removal of the singularity that would otherwise be
present in the lattice factor for q → 0. Our convention in the
present paper is to write Z′(q) as the lattice factor with the
singularity removed as in eq 25 and Z(q) when the singularity
is present (see Figure 11 in the Appendix). Moreover, we refer
to the term proportional to Z′(q) in eq 24 as the coherent
contribution and to the remainder, i.e., ⟨|F (q) |2⟩ − |⟨F(q)⟩|2,
as the incoherent contribution. The latter contribution would
vanish in the case where all the mesopores would be identical.
Equation 24 was calculated as if the grain was infinite, i.e.,

neglecting the factor Ωg(r) in eq 16. As mentioned previously,
the result still has to be convoluted with the Fourier transform
of Ωg(r), i.e., with Ig(q). We have to consider separately the
effect of the convolution on the coherent and incoherent
contributions to Im(q). Because the grain is much larger than
the mesopores, the convolution does not deform the
incoherent scattering significantly; the only significant effect is
a multiplication by the volume of the grain Vg = Ωg(0).
Therefore, the incoherent scattering per grain is obtained by
replacing θm by the number of mesopores in a grain, namely N
= θmVg. The same multiplicative correction applies to the
coherent scattering as well. In addition, the convolution of the
otherwise infinitely thin scattering peaks in Z′(q) leads to a
size-broadening. Suitable approximations for the lattice factor of
2D hexagonal lattices, with size broadening effects, are given in
the Appendix. It has to be stressed that in the case where the
lattice factor Z(q) would be wrongly used in place of Z′(q), the
convolution of the singularity at the origin with the Fourier
transform of Ωg(r) would lead to a term that is redundant with
the scattering of by the large-scale structure Ig(q).
The other factor that enters the expression for the scattering

by the mesopores eq 24, besides the structure factor, is their
form factor F(q). Assuming cylindrical mesopores with radius R
and height H, the Fourier transform of f(x) is given by the
classical expression27,54

π=
| |

| |
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⊥
F R H

J R

R

H

H
q

q

q

q

q
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2 ( ) sin( /2)

/2
z

z

2 1

(26)

where J1() is the first-order Bessel function of the first kind, and
we have used the notations qz and q⊥ for the components of
the scattering vector parallel and perpendicular to the
mesopore.
Unlike eqs 18 and 19, the expression for the scattering by the

mesopores is anisotropic. Before eq 24 can be used to analyze
powder scattering patterns, it has therefore to be averaged over
all possible orientations of the grain. The classical procedure
would consist in using a sine-integral function in the form
factor of the mesopores.11 In the particular case of SBA-15,
however, we show in the Appendix that the averaging
procedure can be done in a much simpler way by setting qz
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= 0, replacing q⊥ by the modulus q = |q| and multiplying the
result by π/(qH).
SAXS Analysis of Empty SBA-15 Silica. If one gathers the

particular expressions for the scattering by the large-scale
structure, by the micropores and by the mesopores into eq 16,
the following expression is eventually obtained for the SAXS
intensity of the empty SBA-15

ϕ ϕ ρ
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π π
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This expression is comprehensive: it accounts for the large-scale
grain structure of the material, for the mesopore structure, as
well as for the microporosity of the pore walls. The complete
model is adjustable through many parameters, which can in
principle all be used to fit the SAXS data of empty SBA-15.
Allowing all the parameters to be adjusted, however, would
result in an unreliable fit due to the too many degrees of
freedom. Fortunately, the structure of SBA-15 is known well
enough from earlier works for many parameters to be either
fixed or at least for bounds to be set on their values. We now
consider successively all the parameters that describe the
structure, going from the larger to the smaller scales.
The largest structure is that of the grains. Their size and

shape is specified through their height H and diameter D.
Because both are much larger than the lower resolution of the
SAXS, we assumed the values D = 500 nm and H = 1000 nm,
based on the micrographs of Figure 1 and also on previous
studies.55 The volume and outer surface area of the grains are
calculated assuming they are cylinders, Vg = πD2 H/4 and Ag =
π D2/2 + πDH.
The parameters that describe the mesopore structure are of

two types. On one hand, the parameters describing the
mesopores individually are their average radius Rm and the
standard deviation σR, assuming a Gaussian size distribution.
On the other hand, the parameters describing the positioning of
the mesopores are the spacing a of the lattice, a Debye−Waller
parameter σa accounting for the statistical deviation of the
mesopores from the ideal lattice,56 as well as two parameters δ
and ν describing the width and shape of the peaks in the lattice
factor (see the Appendix). The spacing a is unambiguously
determined from the position of the peaks in the scattering
pattern. The radius Rm is left as an adjustable parameter, but we
know from nitrogen physisorption that it should be close to 50
Å. As far as scattering is concerned, the two parameters σR and
σa have similar effects: they both contribute to reduce the
intensity of the higher-order scattering peaks.26,40 Because it
would be impossible to discriminate the effects of σR and of σa
from a fit, we decided to fix σa = 0 and keep σR as an adjustable
parameter. Moreover, it is known from previous work that the
order of magnitude of σR is 5 Å.25,40,44 This value corresponds
approximately to half the thickness of the so-called corona,
which is an early model used to account for this type of
disorder.26,57 The number of mesopores N and the mesopore
volume fraction ϕm that appear in eq 27 do not require

additional degrees of freedom for the fit. They are calculated as
N = (π D2/4)/(√3a2/2) and ϕm = π(Rm

2 + σR
2)/(√3a2/2)

where the denominator in both expressions is the area of a cell
of the 2D hexagonal lattice.
Concerning the microporous structure, it is completely

characterized by the two parameters ϕμ and Rμ. The value of ϕμ

is known from a variety of characterization techniques
nitrogen adsorption,40 electron tomography,43 mechanical
properties42to be close to ϕμ = 0.35. We fixed this parameter
to that particular value. The single adjustable parameter is
therefore Rμ, which we know should be close to 20 Å because it
is related to the size of the micropores.31

The least-squares fit of the SAXS data of empty SBA-15 is
presented in Figure 4. The main parameters of the model take

the following values: a = 110 Å, Rm = 43 Å, σR = 5.0 Å, and Rμ =
23 Å. Interestingly, the width of the peaks δ is about two times
larger than what would be obtained from the Debye−Scherrer
relation from the diameter of the grain D. This points to a
significant distortion of the lattice, in addition to the size-
broadening.
In order to check the realism of the fitted parameters, it is

interesting to use them to calculate a few structural character-
istics of the material. The radius of gyration of the microporous
structure Rμ converts to an average micropore chord length ϕμ/
Sμ ≃ 0.9 nm. Concerning the mesopore volume, it is calculated
as43

π σ
π σ ϕ ρ

=
+

− + − ̃μ

V
R

a R
( )

[ 3 /2 ( )](1 )m
m R

m R

2 2

2 2 2
SiO2 (28)

where ρ̃SiO2 is the specitic mass of silica. Using the value ρ̃SiO2 =
2.2 g cm−3, the value derived from the SAXS is Vm = 0.7 cm3/g,
which is in perfect agreement with the value Vm = 0.7 cm3/g
obtained from nitrogen adsorption (see the Experimental
Section). As for the specific surface area, it is calculated as
follows:

π σ π ϕ

π σ ϕ ρ
=
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μ μ

μ
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a R S R

a R
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The first term in the numerator is the contribution of the
microporous structure, and the second term is the contribution

Figure 4. SAXS pattern of the empty SB-15 (dots) and best fit with eq
27 (red). The inset shows on logarithmic scales the contributions of
coherent scattering (black), incoherent scattering (red), microporous
structure (blue), and Porod scattering of the grain (green).
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of the mesopores. The value inferred from the SAXS is 588 m2/
g, which falls slightly short of the 720 m2/g obtained from
nitrogen adsorption. The difference stems from the inability of
eq 19 to describe the scattering at very large q (see the blue
curve in the inset of Figure 4). If necessary, this could be
improved by using a more complex function than eq 19 to
describe the microporous structure.
A realization of the model of SBA-15 with all parameters

determined from the fit of the SAXS data is shown in Figure 5.

The empirical Guinier−Porod function used to model Iμ(q)
does not correspond to any existing structure. For the purpose
of illustration, the microporous silica shown in Figure 5 was
obtained as a Boolean process34 having the same density and
surface area as in eq 19. In addition to being in quantitative
agreement with both SAXS data and nitrogen adsorption, the
visual similarity of the model with electron tomography
reconstructions of SBA-15 is striking.24,40,58

■ THE CASE OF COPPER-LOADED SBA-15
We proceed here to extend the model of empty SBA-15 in
order to analyze the SAXS of the loaded samples Cu/S, Cu/
S(NO), and Cu/S(N2) of Figure 2. The general expression that
we have derived for the correlation function of the electron
density eq 16 remains valid but we have to make it more
specific by defining explicitly the statistical rules for generating
the indicator function l(x) of the loading material. This will
enable us to have analytical forms for the correlation function
χl(r) and for the cross-correlation function Γlμm(r), which is
necessary to fit the SAXS data.
The material that fills the pores of the porous silica discussed

in Figure 1 is itself possibly structured at the nanometer scale.

This clearly applies to metallic copper which comes in the form
of nanoparticles, and this may also be the case for the nitrate,
which might be present in the form of crystallites, as layers
covering the pore walls, etc. However, the main purpose of the
present work is to describe the mesoscale heterogeneity of the
loading. For example, we are interested in determining whether
a given type of pore is loaded at all, while the actual structure of
the loading within the pore is irrelevant. In the following, we
shall therefore treat the loading material as if it were a
homogeneous phase with average electron density ρl.
The average electron density of the equivalent homogeneous

pore-filling phase ρl cannot take arbitrary values. On one hand,
it cannot exceed the electron density of the actual pore-filling
material, whose quantity we refer to as ρl

max. On the other hand,
ρl cannot be arbitrarily low either. The lowest possible value
corresponds to the case where the known macroscopic loading
of the material would be homogeneously spread over the entire
available pore volume. The average density ρl of the loading
phase and its volume fraction ϕl are related to each other via
the following inverse relation

ρ ρ
ϕ

ϕ
=l l

l

l

max
min

(30)

where ϕl
min is the volume fraction of the loading that would

correspond to ρl
max. If ρl and ϕl are modified in such a way that

eq 30 is satisfied, then the macroscopic loading of the material
is left unchanged.
The values of ρl

max and ϕl
min relevant to Cu/S, Cu/S(NO),

and Cu/S(N2) are gathered in Table 1. The estimates are based
on the macroscopic loading of 0.18gCu/gSiO2. The electron
densities of the various materials are calculated in the usual way
from the mass density ρ̃, the molar mass M, and the number of
electrons Ne− in one mole of material.59 The electron density
of the silica that forms the support is ρSiO2 = 1.1 F·cm−3

(Faraday per cubic centimeter). In the case of Cu/S, several
crystallographic forms are possible for the nitrate, with different
electron densities. We assumed the anhydrous form with
formula Cu (NO3)2. In the case of the reduced samples, only
metallic copper is considered, with a known electron density.

Loading Model 1: Mesopore Filling. The first model that
we shall consider to analyze the SAXS data of Figure 2 consists
in loading randomly each mesopore with a prescribed
probability, and leaving the micropores empty. This is
illustrated in Figure 6b,c. The corresponding indicator function
can be written formally as

∑= Λ −
=

∞

l fx x x( ) ( )
n

n n n
1 (31)

where f n(x) has the same meaning as in eq 22 and Λn is a
random variable that determines whether the nth mesopore is
loaded or not. For example, the particular model where any

Figure 5. Realization of our model of SBA-15, with all parameters
determined from the fit of the SAXS data of Figure 4.

Table 1. Characteristics of the Materials Relevant to the SAXS Data Analysisa

formula Ne− M (g mol−1) ρ̃ (g·cm−3) ρl
max (F·cm−3) ϕl

min (−)

silica SiO2 30 60.0 2.2 1.10 b
copper Cu 29 63.5 9.0 4.09 0.012
copper nitrate Cu(NO3)2 91 187.5 3.05 1.48 0.13

aThe last two columns are the values used to calculate the average electron density of the loading ρl through eq 30. Key: Ne−, number of electrons;
M, molar mass; ρ̃, specific mass; ρl

max electron density of the dense material; ϕl
min, volume fraction of the dense material assuming an overall loading

of 0.18 gCu/gSiO2.
bNonapplicable.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.5b09556
J. Phys. Chem. C 2016, 120, 1488−1506

1495

http://dx.doi.org/10.1021/acs.jpcc.5b09556


individual mesopore would be loaded or left empty according
to a head-or-tail rule corresponds to the case where the Λn’s are
independent random variables taking the values 0 and 1 with
probability 1/2.
In the frame of the present mesopore-filling model, the

volume fraction of the loading phase is calculated as

ϕ ϕ= ⟨Λ⟩l m (32)

where ϕm is the volume fraction of the mesopores. This results
from the observation that ⟨Λ⟩ is equal to the probability for any
pore to be loaded. SAXS is also sensitive to the correlation
between the loading of various mesopores, which is
characterized by the quantity ⟨ΛnΛm⟩. If the loading of any
two given pores were uncorrelated, the loading variables would
satisfy ⟨ΛnΛm⟩ = ⟨Λ⟩2 for n ≠ m and ⟨ΛnΛn⟩ = ⟨Λ2⟩. In order
to allow for the possibility of correlated loading, we write

⟨Λ Λ ⟩ = ⟨Λ⟩ − ⟨Λ⟩ + ⟨Λ⟩g(1 )n m mn
2

(33)

which can be considered as the definition of the correlation
function gmn. For the purpose of fitting the SAXS data, it is
reasonable to assume an exponential correlation of the type

= −g d lexp( / )mn mn C (34)

where dmn is the distance between pores m and n and lC is a
correlation length. The case of uncorrelated random loading is
obtained for vanishingly small correlation lengths, for which
one recovers gmn = δmn where δmn is Kronecker’s symbol. This is
the model assumed in our earlier work on Cu/SiO2 catalysts

21

as well as by Erko et al. in the context of in situ small-angle
neutron scattering study of capillary condensation.60 We
consider here a more general case: finite values of lC correspond
to a statistical segregation of loaded and unloaded mesopores

over distances comparable with lC. Correlation effects can also
be understood as the apparent clustering of loaded mesopores.
With a loading of the type of eq 31, the indicator function

l(x) is independent of the indicator function of the micropores
μ(x), which enables us to rewrite the cross-correlation function
eq 14 as

ϕ ϕ ϕΓ = − −μ μ Pr r( ) (1 )( ( ) )l m lm l m (35)

Introducing this relation in eq 13, and using the same type of
calculations as with the empty SBA-15 model, the following
expression is eventually obtained for the SAXS intensity

ϕ ϕ ρ ρ ϕ
π

ρ ρ ϕ

ϕ ρ

ρ

= − − +

+ ⟨Λ⟩ − − |⟨ ⟩|

′ − + ⟨| | ⟩ + −

+ ⟨Λ⟩ − ⟨Λ⟩ |⟨ ⟩| −

+ ⟨| | ⟩

μ

μ

μ

I
A

q

N F

Z F V I q

N F Z

F

q

q

q q

q q

q

( ) [(1 )(1 ) ]
2

[ (1 )] { ( )

[ ( ) 1] ( ) } (1 ) ( )

(1 ){ ( ) [ ( ) 1]

( ) }

m s l l

l s

m s

l

2 g
4

2 2

2
g

2

2 2
g

2
(36)

In this expression, Zg(q) is a structure factor limited to the
loaded mesopores. It is defined as
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which reduces to Zg(q) = 1 in the case of uncorrelated
mesopore-filling. In the more general case of an exponential
correlation with correlation length lC, the expression is given in
eq 53 of the Appendix. Following the same notation as in eq 25,
we refer to that expression as Zg(q,lC) or Zg′(q,lC) according to
whether the central scattering at the origin is present or not.
Note that in eq 36 the central scattering is present in the last
term but not in the second. In the case of correlated mesopore
filling the central scattering in Zg(q) accounts for the scattering
by clusters of loaded mesopores.
It is interesting to split the various contributions in eq 36 into

two groups. On one hand, the first three terms are already
present in the SAXS of the empty material (see eq 27). They
appear here with different prefactors because the apparent
electron-density contrasts relevant to the various structural
levels are modified by the sheer presence of a loading material
in the pores. On the other hand, the last term is new: it
accounts for the additional scattering by the loading material
itself. We refer to the modified prefactors as contrast matching
corrections. In order to understand the relative importance of
these effects on the overall scattered intensity it is useful to
estimate the integrated intensity Q, which can be done from eqs
3 and 16. The specificity of the mesopore-filling model comes
from eq 35, from which we obtain Γlμm(0) = (1 − ϕμ)(1 −
ϕm)ϕl. Gathering the terms in the same order as in eq 36, the
following expression is obtained
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This expression can be analyzed in the same way as eq 17 by
analogy with eq 4 that is valid for two-phase systems. The first

Figure 6. Starting from a given empty SBA-15 model (a), two loading
models are considered. In the mesopore-filling model (b, c), the
mesopores are chosen randomly and filled. In the loading-patch model
(d), the loading comes in the form of patches and it fills locally all the
pores (e), only the mesopores (f), or only the micropores (g). The
complete electron density is obtained by combining the loading and
the support; the different colors symbolize here different electron
densities.
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term is the squared average electron density of the grain: it
accounts for the scattering by the grain structure. The second
term is a product of two factors. The first is the squared average
electron density contrast between the inside of the partially
loaded mesopores, with ρA = ⟨Λ⟩ρl, and the surrounding
microporous silica, with ρB = (1 − ϕμ)ρs. The second factor is
the usual product ϕm(1 − ϕm). The third term is the scattering
by the loading itself. The volume fraction is replaced here by
the loading probability ⟨Λ⟩, and the term is multiplied by ϕm
which is the fraction of space that is relevant to loading. The
last term is unchanged compared to eq 17 because the loading
material is not allowed in the micropores in the context of the
present mesopore-filling model.
The simplest version of the present model consists in

assuming uncorrelated mesopores filling, corresponding to g(d)
= 0. The SAXS patterns of the metal-loaded samples Cu/S(N2)
and Cu/S(NO) can be satisfactorily fitted with that simple
model (Figure 7b1 and c1). The fit of the data was done by
setting Zg(q) = 1 in eq 36 and keeping all the parameters of the
support equal to the values obtained from the fit of the empty
SBA-15 data (see Figures 4 and 5). The only fitting parameter
was therefore the loading probability ⟨Λ⟩ or equivalently ϕl =
⟨Λ⟩ ϕm, with ϕm ≃ 0.48 for the SBA-15 material used here. For
any value of ϕl, the electron density ρl was calculated through
eq 30. The values of ϕl obtained from the fit are reported in
Table 2: the corresponding loading probabilities are ⟨Λ⟩ = 0.11
for Cu/S(NO) and ⟨Λ⟩ = 0.73 for Cu/S(N2). These values
mean that the copper uniformly spreads over about 73% of the
mesopores in the case of N2 heat treatment, while in the
presence of NO it concentrates into about 11% of them. This
significant difference in the metal dispersion is in qualitative
agreement with both Figure 1 and with the 3DTEM
characterization of these samples.21

Interestingly, the SAXS of the nitrate-loaded sample Cu/S
cannot be fitted satisfactorily with the uncorrelated pore model
(Figure 7a1). The model remains inaccurate even when finite
correlation effects are allowed through eq 34, i.e., when the
correlation length lC is used as an adjustable parameter in the fit

(Figure 7a2). The main difference between the data and the
model is the different overall power-law exponent of the
scattering, as visible from the inset of Figure 7a1 and a2. The
mesopore-loading model leads to a background scattering of
the type I ∼ q−1, while the experimental SAXS of the nitrate-
loads sample Cu/S is characterized by an overall Porod-like q−4

scattering (see inset of Figure 2a).
In the case of the metal-loaded materials Cu/S(N2) and Cu/

S(NO), using the correlation length lC as an adjustable
parameter in addition to ⟨Λ⟩ leads to a slight improvement
of the fits, in particular for Cu/S(NO). The values of the fitted
parameters are gathered in Table 2, together with the average
fitting error, estimated as the maximum relative deviation
between the fit and the data for q ≤ 0.06 Å−1. When analyzing

Figure 7. Fitting of the SAXS data of nitrate-loaded Cu/S (a1−a2) as well as of metal-loaded Cu/S(N2) (b1−b2) and Cu/S(NO) (c1−c2) with the
mesopore-filling model (model 1) corresponding to eq 36. The symbols are the data, and the solid red line is the least-squares fit with the
uncorrelated loading (lC = 0 top row) and correlated loading (finite lC, bottom row). The components of the best fit are shown in the insets on
double-logarithmic scales: scattering by the loaded mesopores (green) and by the porous support with contrast-matching corrections (blue). For
comparison, the SAXS of the empty support is shown in black. In the case of the metal-loaded samples, the blue and black curves are
indistinguishable at the scale of the figure, pointing at insignificant contrast-matching effects.

Table 2. Values of the Structural Parameters of the Various
Loading Models, Obtained from the Least-Square Fits of the
SAXS Data of Samples Cu/S, Cu/S(N2), and Cu/S(NO)

Cu/S Cu/S(N2) Cu/S(NO)

mesopore filling:
uncorrelated errora (%) 129 8 20
(lC = 0) ϕl 0.13 0.35 0.05
correlated errora (%) 175 9 9
(finite lC) ϕl 0.13 0.31 0.03

lC (nm) 6 4 5
loading patches:
all-pore loading errora (%) 32 21 36
(ϵ1 = 1, ϵ2 = 1) ϕl 0.13 0.1 0.014

lC (nm) 5 23 22
mesopore loading errora (%) 93 11 20
(ϵ1 = 1, ϵ2 = 0) ϕl 0.13 0.21 0.03

lC (nm) 5 22 11
micropore loading errora (%) 302 16 28
(ϵ1 = 0, ϵ2 = 1) ϕl 0.13 0.012 0.012

lC (nm) 5 27 6
aThe error is the largest relative difference between the fitted spectrum
and the data for q ≤ 0.06 Å−1.
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the fitting errors, it is useful to compare them with the fitting
error of the empty SBA-15 in Figure 4, which is about 11%.
Keeping that value in mind, it appears that an error of 9% for
the correlated loading model is unrealistically small for Cu/
S(NO). The apparent improvement in the quality of the fit is
therefore likely to result merely from the extra degree of
freedom available for the fit, rather than from a better structural
accuracy of the model.
The partial conclusion of the present section is therefore that

the uncorrelated mesopore-filling model describes successfully
the metallic copper dispersion in samples Cu/S(N2) and
Cu(NO) at the mesoscopic scale. When correlation is allowed
in the model the fitted values of the correlation length are close
to 5 nm (see Table 2). Using that value in eq 34 with d ≃ 11
nm, corresponding to the distance between neighboring
mesopores, the correlation between the filling of two
neighboring mesopores is found to be as small as 0.13. Quite
interestingly, the nitrate-loaded sample Cu/S can be fitted
satisfactorily neither by the uncorrelated nor by the correlated
mesopore-filling model, which hints at a qualitatively different
spatial distribution of the loading among the pores.
Loading Model 2: Loading Patches. The inability of the

mesopore-filling model to describe the SAXS of nitrate-loaded
Cu/S sample motivated the development of the models
presented in the current section. In theses models, we assume
that the loading material comes in the form of patches that fill
locally the pores (see Figure 6d). Qualitatively, the very
existence of loading patches smaller than the grain would lead
to a q−4 contribution to the scattering extending to large values
of q. This is a central feature of the SAXS of Cu/S that the
mesopore-filling model could not account for (see the insets of
Figure 2a and Figure 7a).
The central ingredient of the patch model is the indicator

function of the loading patches L(x), illustrated in Figure 6d.
We shall assume that L(x) is statistically independent from all
other structures, in particular from the meso- and micropores
m(x) and μ(x). In the case where the loading material would be
allowed only in the mesopores, its indicator function would be
written as l(x) = L(x) m(x). On the other hand, if the loading
was allowed only in the micropores, we would have l(x) = L(x)
[1 − m(x)]μ(x). The general expression that we shall consider
is therefore the following

μ= ϵ + ϵ −l L m mx x x x x( ) ( ){ ( ) [1 ( )] ( )}1 2 (39)

where ϵ1 and ϵ2 are parameters of the model, which can take
the values 0 or 1 according to whether the model allows the
loading in all pores (ϵ1 = 1 and ϵ2 = 1, see Figure 6e), only in
the mesopores (ϵ1 = 1 and ϵ2 = 0, see Figure 6f), or only in the
micropores (ϵ1 = 0 and ϵ2 = 1, see Figure 6g). In the following,
we shall use the notation

ϕ ϕ ϕ ϕ= ϵ + ϵ − μ[1 ]m mp 1 2 (40)

for the volume fraction of all the pores that may receive some
loading. This volume fraction is equal to ϕm, (1 − ϕm)ϕμ or ϕm
+ (1 − ϕm)ϕμ depending on the values of ϵ1 and ϵ2.
Because the patches are statistically independent from the

meso- and micropores, the volume fraction of the loading is
calculated as ϕl = ϕLϕp. In order to calculate the electron
correlation function χρ(r) via eq 16, the correlation function of
the loading χl(r) has to be calculated. Exploiting the statistical
independence of L(x), starting from eq 39 one finds the
following expression
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and the cross-correlation function defined by eq 14 is

ϕ ϕ ϕ χ ϕ ϕ
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For obtaining these equations, we have assumed that the
micropores have a characteristic length much smaller than the
patch function L(x), so that approximations similar to eq 12
apply. Using these expressions in eq eq 16 leads to the
following expression for the electron density correlation
function
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The Fourier transform of this equation has to be calculated to
estimate the intensity scattered by a structure such as Figure
6e−g.
The Fourier transform of every term in eq 43 corresponds to

the scattering by a particular element of the overall hierarchical
structure. The first and fourth terms correspond to the
scattering by the grains as if they were homogeneous and by
the micropores, respectively. The second term gives rise to a
scattering term similar to the second line of eq 36 in the case of
the mesopore-loading model: it accounts for the scattering by
the mesopore structure with the square bracket being the
relevant average contrast. The term on the third line is
mathematically similar, only the corresponding structure factor
has a different peak width, because it is determined by the
characteristic size of the patches (via χL) rather than of the
grains (via Ωg); we shall write the latter structure factor as
ZL′(q). The term on the last line is the scattering by the patches
themselves. The final expression for the scattered intensity is
the following
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where we have used the notation IL(q) for the Fourier
transform of χL(r). Similar to our discussion of the mesopore-
filling model eq 36 it is useful to think of the first four terms in
eq 44 as of deformations of the SAXS of the empty material
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further to contrast matching corrections and to the last term as
the additional scattering by the loading material itself.
In order to gain an intuitive understanding of eq 44 it is

useful to analyze the corresponding integrated intensity in
analogy with eq 4, as we did for the mesopore-filling model.
The integrated intensity Q is obtained by evaluating χρ(0) in eq
43, which leads to

π θ
ϕ ϕ ρ ρ ϕ

ϕ ρ ϕ

ϕ ρ ρ ϕ ρ ϕ ϕ

ϕ ρ ϕ ϕ ϕ

ϕ ϕ ρ

ϕ ρ ρ ϕ ϕ

= − − +

+ − −

+ ϵ − ϵ − −

− + −

+ − −

+ − ϵ −

μ

μ

μ μ

μ μ

Q
V(2 )

[(1 )(1 ) ]

{(1 )[ (1 )]

[ (1 )] }

(1 ) [ ] (1 )

(1 ){(1 )[ ]

[ ] } (1 )

m s l l

L s

L l l s m

m l p L L

m L s

L s l

3
g g

2

2

1 2
2

2

2

2
2

(45)

In this expression, each term between square brackets is the
electron density contrast relevant to a given region of space at a
given length scale. The first term is similar to eq 38, and it
corresponds to the scattering by the grain as a whole. The
second term is the integrated intensity from both the second
and third lines in eq 44: it corresponds to the scattering by the
mesopore structure. That term is best viewed as the sum of the
scattering by the mesopores falling outside and inside the
loading patches, respectively. The former occupy the fraction 1
− ϕL of space, and the electron density contrast is between 0 in
the mesopores and ρs (1 − ϕμ) in the complementary

micropore region. The latter occupy the fraction ϕL of space,
and the electron density there is between ϵ1 ρl in the loaded
mesopores and ϵ2 ρl + (1 − ϕμ)ρs outside. The third term is the
scattering by the patches themselves, seen as uniform regions
with average electron density ρlϕp + (1 − ϕm) (1 − ϕμ)ρs
contrasted with a background electron density (1 − ϕm) (1 −
ϕμ)ρs, corresponding to unloaded micro/mesoporous solid.
The relevant contrast is therefore ρlϕp. Finally, the last term in
eq 45 is the scattering from the micropore structure. It
comprises the contributions of the regions inside and outside
the patches, with weighting factors ϕL and 1 − ϕL. The terms
between square brackets are the relevant electron density
contrasts.
Before eq 44 can be used to fit the SAXS data, a specific

model has to be chosen for the loading patch L(x). In the case
of the SAXS data of Cu/S, however, the actual model is not
critical because only a q−4 Porod scattering is observed below q
≃ 0.05 Å−1 with no leveling off at lower values of q. This
suggests that the characteristic length of the patches is larger
than the lower resolution limit of the SAXS, so that a Porod
approximation is sufficient for IL(q), namely

π
=I q

S
q

( )
2

L
L

4
(46)

where SL is the surface area of the patches per unit volume of
the entire material. This is mathematically identical to eq 18
used to account for the scattering of the grains.
For the scattering, the structure of the patches also intervenes

via the structure factor ZL′(q), the width of the peaks of which is
controlled by the size of the patches in the direction

Figure 8. Fitting of the SAXS data of nitrate-loaded Cu/S (a1−a3) as well as of metal-loaded Cu/S(N2) (b1−b3) and Cu/S(NO) (c1−c3) with the
patch model (model 2) corresponding to eq 44. The symbols are the data, and the solid red line is the least-squares fit with the all-pore filling (ϵ1 = 1
and ϵ2 = 1, top row), mesopore-filling (ϵ1 = 1 and ϵ2 = 0, middle row), and micropore-filling (ϵ1 = 0 and ϵ2 = 1, bottom row). The components of
the best fits are shown in the insets on double logarithmic scales: scattering by the loading material itself (green) and by the porous support with
contrast-matching corrections (blue). For comparison, the SAXS of the empty support is shown in black. In b1 and b2, the blue and black curves are
indistinguishable at the scale of the figure, pointing at insignificant contrast-matching effects.
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perpendicular to the mesopores. Based on Figure 1a, we shall
assume that the loading patches have the same cylindrical
symmetry as the mesopores, i.e., that the patch correlation
function depends only on the distance orthogonal to the
mesopores r⊥. Incidentally, that particular symmetry was
implicit in Figure 6. The small-distance behavior of χL(r),
relevant to the Porod scattering, has the following form

χ ϕ ϕ= − − + ···⊥
⎛
⎝⎜

⎞
⎠⎟

r
l

r( ) (1 ) 1L L L
C (47)

where lC is the correlation length that is relevant to the size-
broadening of ZL′(q). The corresponding structure factor can
therefore be calculated as Zg′(q,lC) using eq 53 of the Appendix.
Moreover, the parameters lC and SL are not independent: given
the cylindrical symmetry the two are related via34,35

π
ϕ ϕ

=
−

S
l
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L

L L
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Assuming statistically isotropic patches, rather than with a
cylindrical symmetry, would result in the same expression with
the factor π replaced by 4. Globally, the SAXS data can be
analyzed with the patch models using ϕL and lC as only fitting
parameters.
The best fits of the SAXS data with the three patch models

all-pore loading (ϵ1 = ϵ2 = 1), mesopore loading (ϵ1 = 1, ϵ2 =
0), micropore loading (ϵ1 = 0, ϵ2 = 1)are shown in Figure 8.
The corresponding parameters of the model are gathered in
Table 2. Because too small values of lC would hardly be
compatible with the observation of a Porod scattering pattern
over the entire measured q-range, the correlation length lC was
not allowed to become smaller than 5 nm for the fit. The
striking fact about Figure 8 is that the patch model with all-pore
loading is the only one to describe accurately the SAXS of the
nitrate-loaded sample Cu/S. Interestingly, the model proves
inappropriate to describe the data if the nitrate is not allowed in
the mesopores or in the micropores as testified by the large
errors reported in Table 2. If nitrate is allowed in the
mesopores only, the model cannot account for the scattering
peak in the data due to a contrast-matching phenomenon
(Figure 8a2). If nitrate is allowed in the micropores only, the
model predicts a very strong peak due to a contrast-
enhancement phenomenon. Moreover, the fit of the SAXS
data leads to value of ϕl close to the lowest possible value. This
suggests that the copper nitrate fills densely the pores. Finally,
the relatively small value of lC points to a rough surface of the
nitrate patches.

Although the patch model was designed specifically for the
nitrate-loaded sample Cu/S (with a q−4 background scattering)
we also applied it to the metal-loaded samples Cu/S(N2) and
Cu/S(NO). Visually, the fits are reasonably good (see Figure
8b1−b3 and c1−c3), but the fitting errors are slightly larger
than for the mesopore-filling model (see Table 2). It is
interesting to note that the patch model with mesopore loading
is equivalent to the mesopore-filling model, only with a very
strong correlation. This is visible in Figure 6f, in which loaded
mesopores are bound to form compact clusters. The larger
errors resulting from using this model for Cu/S(N2) and Cu/
S(NO) therefore mean that correlation effects are extremely
weak in the latter two metal-loaded samples.
Although it is beyond the scope of the present paper to

analyze the mechanisms of formation of the different structures
in Figure 9, it is interesting to imagine physicochemical
mechanisms that would naturally lead to them. The starting
point of the three materials is SBA-15 with all pores filled with a
concentrated copper nitrate solution. Upon drying, the solution
becomes progressively more concentrated (retracting menisci),
and a heterogeneous nucleation process is to be expected, by
which nitrate crystal nuclei would form on the silica surface.
From a statistical point of view, those nuclei are likely to be
located in the micropores, which hold most of the surface area.
The confined growth of copper nitrate in porous silica has
never been studied per se. In the case of cobalt nitrate,
however, there is evidence that the crystals grow by invading
progressively all the pore space available and engulfing the solid
support.61 Should this happen with copper nitrate too, it would
naturally lead to the type of dense patch structure evidenced by
SAXS. Based on what seems to be the case from microscopy
(Figure 1) we assumed cylindrical patches aligned with the
mesopores. The scattering data, however, can equally be fitted
assuming statistically isotropic patches (not shown). This is
done by replacing the factor π in eq 48 by a factor 4, which has
marginal influence on the fits. Therefore, from the strict
perspective of scattering the shape of the patches is unknown,
but they are always found to extend over both micro- and
mesopores.
The mechanisms involved during the subsequent heat

treatment are better understood.23 In the presence of NO,
the nitrate decomposes into copper oxide via a
Cu2(OH)3(NO3) intermediate species, which shows very little
mobility hence preserving the nonuniform metal distribution
obtained after drying. By contrast, under medium-to-high flow
of pure N2, decomposition of the copper nitrate into copper
oxide happens with anhydrous Cu(NO3)2 as an intermediate

Figure 9. Realizations of the models that best describe the SAXS data of nitrate-loaded Cu/S (left, loading patches), as well as of metal-loaded Cu/
S(N2) (middle, mesopore filling) and Cu/S(NO) (right, mesopore filling). In the latter two models, the transparency is a reminder that the
mesopore-filling phase is not dense copper.
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species, the high surface mobility of which is responsible for the
well-nigh homogeneous spatial distribution of the copper
species over the support. In both cases, the SAXS analysis
suggests that the fraction of copper nitrate that was initially in
the micropores is pushed into the mesopores when it is
converted to copper oxide. Such a dewetting phenomenon is to
be expected based on the much stronger interactions of copper
nitrate with silica compared to copper oxide.23

■ DISCUSSION AND CONCLUSIONS
The main contribution of the present paper is the development
of a general modeling methodology to analyze small-angle
scattering patterns from hierarchical materials characterized by
a variety of length scales. This was done mathematically by
generalizing an approach introduced in earlier works,16,21

namely by assuming that each structural level has a distinctive
length scale and is statistically independent from the others.
This leads to realistic structural models that are nevertheless
mathematically simple enough to be of practical interest.
Small-angle scattering has often been used to analyze

nanostructures with multiple scales, such as nanocomposites,62

organic gels,63 and porous materials,64−66 among others. In
most works, however, the contribution of each scattering level
is described using Guinier or Porod empirical models,67 with
the prefactors considered as fitting parameters with no clear
structural significance. The strength of our approach is that it
enables one to produce comprehensive structural models that
encompass all the relevant length scales of the material. This
leads to mathematical expressions for the SAXS intensity with
relatively few fitting parameters, all of which have a precise
structural significance.
The complex combination of the various structural levels into

the scattered intensity is well illustrated by the various
expressions that we have obtained for the integrated intensity
Q. All contributions to eqs 17, 38, and 45 can be intuitively
understood in terms of the classical expression (ρA − ρB)

2ϕAϕB,
applied to specific regions of the materials at specif ic length
scales. The same type of expressions were obtained for the
integrated intensity scattered by semicrystalline polymers;68 our
approach enables one to derive these intuitive expressions in a
systematic and mathematically rigorous way.
We have illustrated our general data analysis methodology

with the SAXS of copper-loaded SBA-15 ordered mesoporous
silica. For that purpose, we have developed a comprehensive
model of the SBA-15 structure, accounting for the meso-
porosity, for the microporosity, as well as for the large-scale
grain structure of the material. That model is best summed up
by the particular realization shown in Figure 5. Because every
parameter in the model has a precise structural significance, we
incorporate in the scattering data analysis independent
structural information on the material. In particular, our
model of SBA-15 is in quantitative agreement with the
experimental SAXS pattern as well as with the specific surface
area and mesopore volume measured by nitrogen adsorption.
We then generalized the model to allow some loading

materials into the pores, in order to analyze the spatial
distribution of copper nitrate as well as of metallic copper in
two supported catalysts. Our approach enabled us to
discriminate the situations in which the loading is present
only in the mesopores (the metallic copper in sample Cu/
S(N2) and Cu/S(NO)) or both in the meso- and micropores
(the copper nitrate in sample Cu/S). Moreover, the modeling
of the SAXS data predicts that the distribution of the metal in

the mesopores in more homogeneous in the catalyst heat-
treated in nitrogen flow, in perfect agreement with earlier
electron tomography work.21 The overall results of the SAXS
analysis of is summed up by Figure 9. These are realizations of
the models that best fit the SAXS data.
Figure 9 displays particular realizations of the models used to

fit the SAXS data, which should not be confused with the
models themselves. In our probabilistic approach, the models
are defined by the statistical rules used to generate the
structure. For example, in the case of the mesoporore-filling
model one such rule consisted in filling randomly each
mesopore with a given probability ⟨Λ⟩. It has to be stressed
that the mathematical expressions that we have derived for the
SAXS intensity (e.g., eq 36 and eq 44) capture both the average
structure and the structure variability within the entire volume
of material probed by the X-rays. In that respect, it is useful to
remind that a typical amount of material sampled by a SAXS
experiment is 10−3 g, while while the approximate mass of the
volumes shown in Figure 9 is 10−15 g. The use of a probabilistic
approach is therefore central to bridge the 12-decade sampling
gap between the macroscopic scattering experiment and the
nanometer-scale structure of the materials.
The present work has ramifications beyond the study of

active phase dispersion in supported catalysts; it is in principle
relevant to any small-angle scattering study on porous materials
for which mesoscopic-scale heterogeneity may play a role. A
few examples among many others are the stability of ordered
mesoporous materials, which become heterogeneous during
hydrothermal treatment,69 the SAXS characterization of porous
nanocomposites,70 one component of which can be treated
formally as if it were a loading phase, and naturally the study of
confined phase equilibria. In the latter field in particular, most
in situ scattering studies of adsorption in SBA-15 assume a
single density profile that applies to all mesopores.15,71−73 In a
few studies, the variability of the filling from one mesopore to
the next is analyzed.60 The authors are not aware of any
scattering work analyzing the variability of the filling along the
mesopores, which would be needed to analyze such important
effects as capillary bridge formation and cavitation.45 Although
the specific models used in the present work also assume
homogeneous structures along the mesopores, the general
correlation function eq 16 can be particularised to models
suitable for that type of studies.
The models can also be generalized to other types of porous

materials. Equations 36 and 44 hold true for other types of
ordered mesoporous materials, besides SBA-15. In the case of,
say SBA-16,74 Z(q) would have to be replaced by the structure
factor of a cubic lattice and F(q) by the form factor of spherical
pores, but the general expression of the SAXS intensity would
remain valid. Moreover, it is interesting to note that the upper
and lower pore size limits of mesopores (50 and 2 nm
according to IUPAC31) incidentally coincide with the upper
and lower resolution limits of most SAXS experiments.
Therefore, the Porod and Guinier approximations for the
scattering by large-scale (eq 18) and small-scale (eq 19)
structures are expected to be applicable to the SAXS analysis of
a wide array of micro/meso/macroporous materials.
Finally, the ramifications of our work extend beyond porous

materials. Materials with hierarchical structures in the nano-
meter range are extremely common in biological settings75 and
also in synthetic polymers.76 The general methods that we have
introduced, assuming that each structural level has a distinct
characteristic scale and is statistically independent from the
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others, can in principle be applied to the SAXS analysis of any
hierarchical structure. Another field of application would be the
joint analysis of small-angle and wide-angle scattering scattering
patterns (SAXS/WAXS). It is, in principle, possible with our
general approach to produce practical mathematical models to
perform a SAXS-like analysis of the shape of crystallographic
Bragg peaks.77 We hope that the present work will help
researchers interested in all those fields take full advantage of
the rich structural information contained in small-angle
scattering data.

■ APPENDIX

Structure Factors of the 2D Hexagonal Lattice
There is some confusion in the literature about the absolute
value of the lattice factor Z(q) for 2D hexagonal lattices. In
most cases, this is not problematic because it is used to analyze
only the relative values of the various scattering
peaks.26,40,48,65,71,73,78,79 However, In the present case the
structural information about the spatial distribution of the
confined material lies entirely in the relative intensities of
various contributions to the small-angle scattering. It is
therefore important to use the accurate absolute value of the
lattice factor.
We shall start here with the generalized definition of the

lattice factor given by eq 37. The equation can be written
equivalently as

∑= − ·Z g dq( ) ( )e
n

n
iq d

g
n

(49)

where the sum is over all the possible vectorial distances
between the points of the hexagonal lattice, including d = 0.
Because the 2D hexagonal lattice lies in a plane, the structure
factor only depends on the 2D projection of the 3D scattering
vector, which we called q⊥ in the main text. Unless specified
differently, the vector q has strictly to be understood in the
present appendix as q⊥, and q as |q⊥|.
Although we shall eventually assumes an exponential form

for the function g(d), we assume for now that it is any 2D
integrable radial function. Equation 49 can be understood as
the 2D Fourier transform of the product of two factors, namely
the function g(d) and an infinite sum of Dirac functions. Using
the 2D convolution theorem, Zg(q) can therefore be written as

∑= + | − |Z
a

G q
a

Gq q q( )
2
3

( )
2
3

( )
hk

hkg 2 2
(50)

where G(q) is the Fourier transform of g(d), the sum is now
over the nodes of the reciprocal lattice (referred to via their
Miller indices hk), and the factor √3a2/2 is the area of a
hexagonal unit cell in real space.
Because we are eventually interested in fitting powder

scattering patterns, Zg(q) has to be averaged over all possible
orientations of the hexagonal lattice. The situation is sketched
in Figure 10: the averaging is equivalent to the following
integration over a circle or radius q centered on the origin

∫∑
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+ | − |

Z q
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G q

a q
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hk circle q hk

g 2

2
(51)

where the factor 2π q is the perimeter of the circle. Although
the calculation presents no conceptual difficulty it does not lead

to any closed analytical form. We therefore adopted the
simplification shown in Figure 10, whereby the circle
integration is approximated by a line integration. This
approximation is legitimate whenever G(|q − qhk|) is a function
that decreases sufficiently rapidly toward 0.
In the case of an exponential function of the type of eq 34,

g(d) = exp(−d/lC), the 2D Fourier transform is

π
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+
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[1 ( ) ]
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2
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(52)

Using that expression in eq 51 and approximating the circle
integration by the line integration eventually leads to
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(53)

where mhk is the multiplicity of the scattering peak at qhk. For
the hexagonal lattice, the positions qhk and multiplicities mhk of
the peaks are given by26,27

π= + +q
a

h k hk
4

3hk
2 2

(54)

with integer values of h and k, and the corresponding
multiplicities are

=
=
=
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⎨⎪
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h k
h k

6 for all h and 0
6 for

12 for
hk

(55)

Figure 11 shows that eq 53 is very accurate, even for values of lC
as low as a/2, for which the accuracy of the line-integration
approximation was not guaranteed. For low values of lC/a,
however, the tails of the first scattering peak extend so far as the
origin of q. In that case, the factor 1/q in eq 53 leads to a
spurious divergence of Zg(q). This situation can be improved
by replacing the factor 1/q by 1/qhk. This was done for the
values plotted in Figure 11.
Equation 53 shows that the shape of the scattering peaks is

exactly a Lorentzian in the case of an exponential g(d).
However, it is often desirable to use a more general function to
describe the scattering peaks. Replacing the normalized

Figure 10. Sketch of the rotation average calculation in reciprocal
space: the solid circles are iso-value lines of G(|q − qhk|) where only
one node of the reciprocal lattice is shown. The rotation average is
equivalent to integrating that function over the dashed circle. The
calculation may be approximated by the integration over the dashed
line, provided G ≃ 0 wherever the line and the circle are far away from
each other.
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Lorentzian by another normalized peaked function L() leads to
the following expression

∑π′ = −Z q
a

m
q

L q q( )
4
3

( )
hk

hk
hk2

(56)

In the main text, we used the same function L() as Förster et
al.,27 which has two parameters ν and δ controlling the shape of
the peaks (from Lorentzian to Gaussian) and their width,
respectively. Another popular choice is the pseudo-Voigt
function, equal to a weighted sum of a Lorentzian and a
Gaussian.
For the purpose of fitting experimental data, some disorder is

introduced in the lattice via a Debye−Waller procedure,38,56

which results in the following substitution

→ − +σ−Z q Z q e( ) ( ( ) 1) 1q1/2( )a
2

(57)

where σa is the random deviation of each lattice point from its
ideal position.
It has to be stressed that the factor 4π/(√3a2) in eq 56

differs from values found in the literature. In particular, it is
larger than the value used by Sundblom et al.80 by a factor as
large as 2π. It is also unclear what space dimension has to be
used in eq 23 of the paper of Förster et al.27 to recover eq 56. In
addition to being a direct consequence of the definition of
Zg(q) through eq 53, the value of the prefactor in eq 56 can also
be justified by the requirement that Z (q) should converge to 1
for large values of q. This can be written more accurately as

∫ =
→∞

+

dq
Z q qlim

1
( )d 1

q q

q dq

(58)

for infinitesimally small values of dq. The integral between q
and q + dq of the sum in eq 56 is equal to the number of nodes
of the reciprocal lattice in a ring of area 2 π q dq, which
converges therefore to

π π⎡
⎣⎢

⎤
⎦⎥a

2 qdq/
(2 )

3 /2

2

2
(59)

for large values of q, where the term between brackets is the
area of the reciprocal unit cell of the hexagonal lattice.27,53

From that value, it is apparent that the factor used in eq 56 is
indeed correct if eq 58 is to be satisfied.

Simplified Orientation-Averaging Procedure
In order to use mathematical expressions like eq 24 or eq 26 to
analyze powder scattering patterns, their average value has to be
calculated, over all possible orientations of the grain. The
averaging procedure can be significantly simplified in the case
where the height H of the pores (identical to the height of the
grain) is much larger than their lateral dimensions. In this case
all the scattered intensity takes non-vanishing values only
within a thin layer in reciprocal space centred on qz = 0 with
thickness of the order of 1/H, and they have azimuthal
symmetry in that plane. If we write c(q⊥,qz) any function having
that type of cylindrical symmetry, its orientation average c (q)
can be approximated as

α
̅ = = =⊥c q

qH
c q q q( )

2
( , 0)z (60)

where α is a numerical factor that has yet to be specified.
Equation(60) comes from the observation that c (q) is the
average value of c(q⊥, qz) on the surface of a sphere in
reciprocal space centred on the origin with radius q. The
fraction of the surface of the sphere that is within the 1/H-thick
layer is 1/(2qH); in that region the value of c is close to c(q⊥ =
q,qz = 0) and it vanishes elsewhere.
We introduced the yet unknown factor α to make the

averaging rule eq 60 more accurate. It seems legitimate to chose
for α the particular value that preserves exactly the integrated
intensity Q in the particular case where c(q) = |F(q) |2, with F()
given by eq 26. It results from the definition of F() as the
Fourier transform of a cylinder, and from Parseval’s theorem
that

∫ π π=F dV R Hq( ) (2 )q
2 3 2

(61)

where π R2H is the volume of the cylinder. Imposing that the
integral of the rotationally averaged quantity ∫ 0

∞F2 (q) 4 π q2 dq
takes the same value, one finds that the adequate value is α =
2π. This is the value that we use in the rest of the paper. In
other words, the rotational average is done by setting qz = 0,
replacing q⊥ by q = |q| and by multiplying the term by π/(q H).
Volume Fraction and Surface Area of Boolean Models
Models of penetrable spheres are used on several instances in
the main text, notably to generate the realisations of the
microporous structure of SBA-15 in Figure 5 and of the nitrate
patches in Figure 9. Models of fully penetrable spheres are also
referred to as Boolean models in more mathematically-oriented
literature. Many of their statistical properties have been known
for a long time,34,37,81,82 and they serve as building blocks for
more elaborate models of random structures.33 We recall here
the theoretical results needed to generate the realisations of
penetrable-sphere model based on their volume fraction ϕs and
surface area Ss.
The two-point correlation function of the 3D penetrable

spheres (of 2D penetrable disks) with radius R is calculated
using the general formulae of Boolean models as34,37

ϕ ϕ= − + − θ ΩP r e( ) 2 1 (1 )ss s s
r2 ( )s s (62)

where θs is the density of the underlying Poisson point process,
corresponding to the average number of spheres per unit
volume (disks per unit area), and Ωs(r) is the autocorrelation
function of the spheres (of the disks). The two-point function
Pss(r) has the same meaning as in eq 9: it is the probability that
two points at a distance r from one another are both inside a

Figure 11. Structure factor Zg(q,lC) for various values of lC/a. The dots
are the direct evaluation of eq 49 and the blue line is eq 53. In the case
of lC/a = 1/2 the central component of the scattering is shown in red,
together with the lattice factor Zg′ from which the central scattering has
been subtracted.
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sphere (independently of whether it is the same sphere or two
distinct spheres).
The function Ωs(r) is the volume (area) of the intersection of

two identical spheres (disks) the centres of which are at a
distance r from one another. For 3D spheres of radius R, the
function is

πΩ = − +⎜ ⎟ ⎜ ⎟
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⎝

⎞
⎠
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⎝
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3

1
2

2
2s

3
2

(63)

for r ≤ 2R, and 0 otherwise. For 2D disks, the value is
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for r ≤ 2R, and 0 otherwise.
The volume fraction is obtained as ϕs = Pss(0), and the

surface area is obtained from the derivative of Pss(r) as

α=
=

⎡
⎣⎢

⎤
⎦⎥S

P
r

d
ds

ss

r 0 (65)

where α = 4 or α = π for 3D and 2D structures,
respectively.28,34,35 In the case spheres, the volume fraction
and surface area are given by
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(66)

Note that in the limit of low density (for θs → 0) these
expression converge to ϕs → θs 4/3 π R3 and Ss →θs 4 π R2, as
expected if the overlapping of spheres is negligible. In the case
of disks, the result is

ϕ θπ

θπ θ π

= − −

= −

R

S R R

1 exp( )

exp( ) 2

s s

s s s

2

2
(67)

Equations 66 and 67 can be inverted to find the density θs and
the radius R of spheres (disks) corresponding to any given
volume fraction ϕs and specific surface area Ss. This is how the
realizations in Figures 5 and 9 were obtained.
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Masson: Paris, 1967.
(33) Jeulin, D. Random texture models for material structures. Stat.
Comput. 2000, 10, 121−132.
(34) Serra, J. Image Analysis and Mathematical Morphology; Academic
Press: London, 1982; Vol. 1.
(35) Torquato, S. Random Heterogeneous Materials; Springer: New
York, 2000.
(36) Frisch, H. L.; Stillinger, F. H. Contribution to the statistical
geometric basis of radiation scattering. J. Chem. Phys. 1963, 38, 2200−
2207.
(37) Sonntag, U.; Stoyan, D.; Hermann, H. Random set models in
the interpretation of small-angle scattering data. Phys. Stat. Sol. A 1981,
68, 281−288.
(38) Guinier, A. X-Ray Diffraction; Freeman: San Francisco, 1963.
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