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In recent years, the Greenland ice sheet has been losing 

mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; An-

dersen et al. 2015). Part of this mass loss was due to increases 

in melt, reducing the surface mass budget (Enderlin et al. 

2014). Also, the acceleration of many marine-terminating 

outlet glaciers increased the dynamic mass loss (Rignot et 

al. 2008). Both mass-loss mechanisms are linked to recent 

increases in atmospheric and oceanic temperatures (Dut-

ton et al. 2015). For instance, in summer 2012 Greenland 

experienced exceptionally warm atmospheric conditions, 

causing nearly the entire ice-sheet surface to melt for two 

periods of several days (Nghiem et al. 2012) and contrib-

uting to the largest annual ice-sheet mass loss on record 

(Khan et al. 2015). This is in contrast to a return to more 

average conditions in 2015 (Tedesco et al. in press).

 In 2007 the Programme for Monitoring of the Green-

land Ice Sheet (PROMICE) was initiated to monitor both 

the surface mass budget and dynamic contributions to 

mass change. For the monitoring, c. 20 automatic weather 

stations were distributed over eight regions of the Green-

land ice sheet (Fig. 1), primarily in the ablation area where 

surface melting is most prominent (Van As et al. 2011). 

These stations record a suite of meteorological and radia-

tive variables that allow for surface-energy budget closure, 

and reveal the relative importance of the different energy 

fluxes contributing to melting. Each station also monitors 

ablation by sonic height rangers, pressure transducers and 

ablation stakes (Fausto et al. 2012).

 Table 1 shows that the 2015 melt season yielded ablation 

totals below the PROMICE average (i.e. reduced surface 

mass loss) in all regions except the two northernmost ones: 

KPC and THU. Along the south-western ice sheet margin 

the 2015 ablation anomalies appear to be one third below av-

erage. However, what has to be accounted for in the interpre-

tation is that the PROMICE observational period contained 

several warm years and summers. Figure 2 illustrates that 

there have been considerable fluctuations in atmospheric 

temperatures at Greenland coastal sites with continuous 

records dating back to the 19th century. The PROMICE 

observational period distinctly classifies as one with above-

average temperatures, both in the relatively warm south and 

colder north (Fig. 2). This is also likely to imply above-av-

erage ablation, and thus biased PROMICE ablation anoma-

lies. It is therefore more insightful to evaluate recent abla-

tion measurements in the context of a more representative 
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Fig. 1. Map of Greenland with 2015 ablation anomaly values referenced to 

the 1961–1990 period at the lower (suffix L) PROMICE weather station 

sites. Black dots indicate DMI weather stations selected for this study.
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climate. Greenland studies often use the 1961–1990 period, 

during which the ice sheet is assumed to have been in near-

steady state (e.g. Braithwaite et al. 1992; Rignot et al. 2008). 

The main aim of this study is to reference PROMICE-meas-

ured ablation to this 1961–1990 ‘climate normal’.

Present-day temperatures in a multi-
decadal perspective
In order to determine the 1961–1990 reference climate, we 

need observational records spanning that period and recent 

years. The only continuous and (on these time scales) rel-

evant Greenland data series that exist have been recorded 

in coastal areas, by weather stations of the Danish Me-

teorological Institute (DMI). For this study we selected 

those DMI time series that were gathered closest to the 

PROMICE weather station sites and were initiated before 

1961 (Fig. 1). The earliest measurements (primarily of air 

temperature) were taken in the 1700s; several continuous 

records date back to the mid to late 1800s (Fig. 2).

 

Ice sheet surface melting occurs predominantly in summer, 

so for the purpose of this study we calculated the average 

June–July–August (JJA) temperature for each year, follow-

ing e.g. Braithwaite et al. (1992). Temperature anomalies 

were calculated by subtracting the 1961–1990 JJA average. 

We obtained monthly average data from the DMI techni-

cal report 15-04 (Cappelen 2015) and supplemented these 

with 2015 data.

 Table 1 shows that at all selected DMI sites the JJA 

temperature during the PROMICE observational period is 

higher than in the reference period. The smallest difference 

is found at Qaqortoq in South Greenland (0.8°C), and the 

largest at Ittoqqortoormiit in the east (2.4°C). For the years 

with PROMICE annual ablation values (2008–2015), only 

three out of a total of 64 station years (5%) had negative 

JJA temperature anomalies indicative of conditions colder 

than during the reference period, emphasising the need for 

a well-defined context.

Measurements of ice ablation along the 
ice-sheet margin
The first PROMICE weather stations were established in 

2007 (Van As et al. 2011), thus providing annual net-abla-

tion values since 2008 (i.e. end of melt season 2007 until 

end of melt season 2008). At any given site five to eight 

years’ worth of ablation data exist. In this study we only 

make use of the eight weather stations that are located clos-

est to the ice-sheet margin (all with suffix ‘L’ for ‘lower’). 

At these elevations, summer ablation is much larger than 

winter accumulation, resulting in stronger correlations be-

tween net ablation and atmospheric temperature anomalies 

than higher on the ice sheet where ablation becomes an 

increasingly small contributor to the surface-mass budget. 

Selecting the ‘lower’ PROMICE stations provides us with 

a total of 56 ablation years.

Table 1. Temperature and ablation statistics for the PROMICE weather station sites

Temperature JJA 1961–1990 (°C) 1.7 2.7 5.5 6.5 5.5 9.2 4.1 3.9

Temperature JJA 2008–2015 (°C) 2.8 5.0 6.7 7.3 7.5 10.5 6.3 5.3

Annual net ablation PROMICE (m ice eq.) 2.2 3.2 3.6 6.4 5.5 3.8 2.6 1.8

2015 ablation anomaly ref. to the PROMICE average (%) 7 –1 –14 –20 –31 –34 –12 30

Annual net ablation 1961–1990 (m ice eq.) 1.4 2.7 2.7 5.1 4.4 3.1 1.5 0.8

Temperature sensitivity (line slope) (m ice eq. °C–1) 0.71 0.25 0.79 1.23 0.64 0.63 0.55 0.89

Correlation of linear fit (r) 0.59 0.50 0.60 0.75 0.83 0.71 0.81 0.94

RMSD* of linear fit (m ice eq.) 0.5 0.3 0.6 0.9 0.6 0.5 0.3 0.2

Uncertainty ablation calculation (m ice eq.) 0.6 0.4 0.7 0.9 0.6 0.6 0.5 0.4

2015 ablation anomaly referenced to 1961–1990 (%) 67 ± 40 20 ± 15 14 ± 25 –1 ± 18 –13 ± 15 –18 ± 19 56 ± 31 184 ± 43

 KPC_L SCO_L TAS_L QAS_L NUK_L KAN_L UPE_L THU_L

* RMSD: root mean squared differences
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Fig. 2. Annual (dots) and five-year (lines) running-mean temperatures 

at the three longest-running DMI measurement sites used in this study. 

Arrows indicate the 1961–1990 reference period and the PROMICE pe-

riod (2007–present).
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We supplement the PROMICE data with older ablation 

observations gathered in close proximity to the current 

station locations, at identical elevations, and covering 

the entire ‘hydrological’ year, i.e. referenced to the end of 

the melt season. At four station sites, such measurements 

from before 2008 exist, namely at QAS_L for 2001–2007 

(e.g. Podlech et al. 2004), at NUK_L for 1981–1987 (e.g. 

Braithwaite et al. 1992), at KAN_L since 1991 (Van de 

Wal et al. 2012) and at THU_L in 1954 (Schytt 1955). 

These 40 historical measurements bring our grand total to 

96 ablation years. 

Present-day ablation in a multi-decadal 
perspective
In this study we relate annual net-ablation values to JJA 

temperatures following e.g. Braithwaite et al. (1992), but 

without precipitation due to lacking DMI data. Besides, 

differences in precipitation at the DMI and PROMICE 

sites can be large due to spatial heterogeneity. In Fig. 3 we 

plotted the annual net-ablation values against the tempera-

ture anomalies calculated from DMI weather stations in 

the region. At all sites, the ablation totals typically increase 

with temperature, as indicated by the linear least-squares 

fit lines. The slopes of these lines are the regional tempera-

ture sensitivities, which is relatively low at the SCO_L site 

with 0.25 m ice equivalent (eq.) °C–1, and high for QAS_L 

where roughly an additional 1.2 m of ice would ablate for 

every degree JJA temperature increase (Table 1). We find 

an average temperature sensitivity of the ice-marginal area 

of 0.71 ± 0.28 m ice eq. °C–1 (standard deviation given), 

rather similar to the value of 0.5 m water eq. °C–1  men-

tioned in e.g. Braithwaite et al. (1992).

 

A key element in this study is the ablation value at which 

the fitted lines intercept the 0°C temperature anomaly line, 

which for some sites requires extrapolation. The intercept 

values represent net ablation in the reference climate. Most 

PROMICE ablation values exceed the intercept values spe-

cific to their sites: ablation is larger in recent years than in 

the reference period. Table 1 shows that the largest relative 

increase is found at THU_L, where we estimate annual net 

ablation to have increased by c. 120%. The reference period 

adjustment for PROMICE ablation values is substantial at 

all sites (0.6–1.2 m ice eq., Table 1).

 We need to be cautious in the interpretation of these re-

sults as the number of data points is still rather small. Fur-

thermore, one cannot expect a perfect correlation between 

ablation and temperature because: (1) melt is the result of 

a surplus in energy at the ice-sheet surface, of which only 

part is provided by atmospheric heat content, (2) the hori-

zontal and vertical distances between the DMI and PRO-

MICE observation sites are considerable, and (3) winter 

accumulation is part of the net ablation signal but not a 

function of JJA temperatures. As a measure of uncertainty 

of reference-period ablation due to the above, we calculate 

the root mean squared differences (RMSD) between the 

measured and calculated values. These range from 0.2 to 

0.9 m ice eq. (Table 1). To this we add a conservatively cho-

sen measurement uncertainty in the annual net-ablation 

values of 0.3 m ice eq. (Fausto et al. 2012), resulting in total 

uncertainties ranging from 0.4 to 0.9 m ice eq. The largest 

uncertainty is found for QAS_L, likely due to interannual 

variability in winter accumulation and the station’s posi-

tioning in an irregular, crevassed terrain prior to its 1.5 km 

relocation in 2009.

 Through the above re-referencing procedure the 2015, 

ablation anomalies become considerably larger (Table 

1, Fig. 1). After reference adjustment, we find positive 
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Fig. 3. Measured annual net ablation from PROMICE (dots) and other 

projects (circles) plotted against the regional temperature anomaly refer-

enced to the 1961–1990  period. Lines illustrate linear least-squares fits.
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Fig. 4. Estimated yearly (dots) and five-yearly (lines) net ablation for 

sites currently instrumented by PROMICE.
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2015 anomalies for all sites except QAS_L, NUK_L and 

KAN_L, though these do not exceed their uncertainty 

ranges. The largest anomaly still occurs at THU_L, but 

is 184 ± 43% when referenced to the 1961–1990 climate, 

six times larger than the 30% value when referenced to the 

PROMICE average.

Approximating past ablation
The relations found between JJA temperature and annual 

net ablation in Fig. 3 can be used to estimate ablation from 

temperature in any year. In Fig. 4 we used these functions 

for all summers for which DMI temperature data are availa-

ble – though some of the earlier data were discarded to main-

tain continuity. We assume the uncertainties listed in Table 

1 to apply for these calculations as well, although it should 

be noted that the derived functions are less well constrained 

in the range with negative temperature anomalies (Fig. 3).

 We conclude that at our study sites annual net ablation is 

likely to be larger in recent years than during any previous 

period in the instrumental era, covering up to 150 years. 

Especially at the more northern locations we find that abla-

tion increases in recent years are large. Yet Fig. 4 suggests 

that in southern Greenland ablation peaked significantly 

around 1930. While most of Greenland underwent rela-

tively warm (summer) conditions in the 1930s (Cappelen 

2015), this was most notable at the more southern locations, 

resulting in amplified ablation values according to our es-

timates. JJA temperatures were higher in 1928 and 1929 

than in any other year of the Qaqortoq record, both at-

taining values of 9.2°C. This suggests that ablation in those 

years may have exceeded the largest net ablation measured 

on the Greenland ice sheet (9.3 m ice eq. at QAS_L in 

2010), although this is not beyond the uncertainty that ac-

counts for important factors such as winter accumulation.
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