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We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis

toolbox) open source software package for applying and combining modern methods of data

analysis and modeling from complex network theory and nonlinear time series analysis.

pyunicorn is a fully object-oriented and easily parallelizable package written in the language

Python. It allows for the construction of functional networks such as climate networks in climatol-

ogy or functional brain networks in neuroscience representing the structure of statistical interrela-

tionships in large data sets of time series and, subsequently, investigating this structure using

advanced methods of complex network theory such as measures and models for spatial networks,

networks of interacting networks, node-weighted statistics, or network surrogates. Additionally,

pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in

uni- and multivariate time series from a non-traditional perspective by means of recurrence quanti-

fication analysis, recurrence networks, visibility graphs, and construction of surrogate time series.

The range of possible applications of the library is outlined, drawing on several examples mainly

from the field of climatology. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934554]

Network theory and nonlinear time series analysis pro-

vide powerful tools for the study of complex systems in

various disciplines such as climatology, neuroscience,

social science, infrastructure, or economics. In the last

years, combining both frameworks has yielded a wealth

of new approaches for understanding and modeling the

structure and dynamics of such systems based on the sta-

tistical analysis of networks or uni- and multivariate time

series. The pyunicorn software package (available at

https://github.com/pik-copan/pyunicorn) facilitates the

innovative synthesis of methods from network theory and

nonlinear time series analysis in order to develop novel

integrated methodologies. This paper provides an over-

view of the functionality provided by pyunicorn, intro-

duces the theoretical concepts behind it, and provides

examples in the form of selected use cases mainly in the

field of climatology, but also including social networks

and infrastructure systems.

I. INTRODUCTION

Complex network theory1–5 and nonlinear time series

analysis6–8 provide two complementary perspectives on the

structure and dynamics of complex systems. Historically, the

investigation of complex networks has focussed on the struc-

ture of interactions (links or edges) between the possibly

large number of subsystems (nodes or vertices) of a complex

system, e.g., searching for universal properties like scaling

behavior or identifying specific classes of nodes such as bot-

tlenecks that are particularly important transmitters for flows

on the network. In contrast, nonlinear time series analysis

emphasized dynamical aspects such as predictability, chaos,

dynamical transitions, or bifurcations in the observed or

modeled time-dependent state variables of complex systems.

For a long time, these communities were mostly discon-

nected and, particularly, applied distinct software tools such

as igraph9 or networkx10 for analyzing complex net-

works and the classical TISEAN package for nonlinear time

series analysis.11

In the last several years, two strands of research have

taken advantage of the synergies obtained by combining

complex network theory and nonlinear time series analysis.

On the one hand, the analysis of functional networks put for-

ward in neuroscience12–14 and climatology15–20 as well as

other application areas, such as economics and finance,21

applies methods from linear and nonlinear time series analy-

sis to construct networks of statistical interrelationships

among a set of time series and, subsequently, studies the

resulting functional networks by means of methods froma)Electronic mail: donges@pik-potsdam.de
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complex network theory. On the other hand, network-based

time series analysis investigates the dynamical properties of

complex systems’ states based on uni- or multivariate time

series data using methods from network theory.22 Various

types of time series networks have been proposed for per-

forming this type of analysis, including recurrence networks

based on the recurrence properties of phase space trajecto-

ries,23–26 transition networks encoding transition probabil-

ities between different phase space regions,27 and visibility

graphs representing visibility relationships between data

points in a time series.28–30

The purpose of this paper is to introduce the Python soft-

ware package pyunicorn, which implements methods

from both complex network theory and nonlinear time series

analysis, and unites these approaches in a performant, modu-

lar and flexible way. Thereby, pyunicorn allows to easily

apply recently developed techniques combining these per-

spectives, such as functional networks and network-based

time series analysis. Furthermore, the software allows to

conveniently generate new syntheses of existing concepts

and methods from both fields that can lead to novel methodo-

logical developments and fruitful applications in the future.

While in this tutorial paper, the work flow of using pyuni-
corn is mainly illustrated drawing upon examples from cli-

matology, the package is applicable to all fields of study

where the analysis of (big) time series data is of interest,

e.g., neuroscience.14,31,32 In this paper, while we aim to give

a practical overview on the functionality and possibilities of

pyunicorn, we cannot provide a comprehensive reference

or handbook due to space constraints. For such a reference,

see the pyunicorn API documentation33 (see pyunicorn
website for newest version).

This article is structured as follows: After a general intro-

duction of pyunicorn and a discussion of the philosophy

behind its implementation, software structure and related

computational issues (Sec. I), pyunicorn’s capabilities

for analyzing and modeling complex networks are described

including general networks, spatial networks, networks

of interacting networks or multiplex networks, and node-

weighted networks (Sec. II). Building on this, Sec. III presents

methods for constructing and analyzing functional networks

from fields of multiple time series, including use cases dem-

onstrating the application of climate network and coupled cli-

mate network analysis. Section IV describes pyunicorn’s

methods for performing nonlinear time series analysis using

recurrence plots, recurrence networks, and visibility graphs.

Methods for generating surrogate time series, which are useful

for both functional network and network-based time series

analysis, are introduced in Sec. V. Finally, conclusions are

drawn and some perspectives for future development of pyu-
nicorn are outlined (Sec. VI).

A. Implementation philosophy

pyunicorn is intended as an integrated container for a

host of conceptionally related methods which have been devel-

oped and applied by the involved research groups for many

years. Its aim is to establish a shared infrastructure for scientific

data analysis by means of complex networks and nonlinear

time series analysis, and it has greatly taken advantage from the

backflow contributed by users all over the world. The code base

has been fully open sourced under the BSD 3-Clause license.

With a focus on complex network methods, this soft-

ware is a valuable complement to traditional nonlinear time

series analysis tools such as TISEAN.11 Its main mode of

operation is to import, generate, and export complex net-

works from time series or fields thereof, and to compute

appropriate measures on these networks in order to derive

insights into the causal structure and dynamical regimes of

underlying processes. While pyunicorn’s development

has mostly accompanied advances in climatology and paleo-

climatology, the generality of the network approach and its

implementation of extensions to standard complex networks

like spatio-temporal networks, node weighted measures,

coupled functional networks and recurrence networks render

the software widely applicable in numerous fields, e.g., med-

icine, neuroscience, sociology, economics, and finance.

Great care has been taken in linking to relevant publications

from the method descriptions contained in the code and API

documentation.33

As the name suggests, the language chosen for the

implementation is Python, which is very well established in

scientific computing.34,35 Due to the multiplicity of useful

combinations of methods, there are no executables in

pyunicorn, but the library is intended to be used by small

Python scripts. Its object-oriented software architecture

allows for clean and flexible code representing the logical

interrelationships and dependencies between the various

concepts and methods (Sec. I B). For example, the class

RecurrenceNetwork (Sec. IV A 2) inherits from both

the Network (Sec. II A) and RecurrencePlot classes

(Sec. IV A 1), thus reflecting the mathematical definition

and historical development of recurrence network analysis

(Fig. 1(a)). Following a similar reasoning behind

the implementation of a class hierarchy, the climate network

class MutualInfoClimateNetwork (Sec. III B) inherits

from the Network class via the intermediate parent

classes GeoNetwork (Sec. II B) and ClimateNetwork
(Sec. III B), additionally including several object composi-

tion relationships on the way (Fig. 1(b)).

FIG. 1. Examples for the software architecture of pyunicorn displayed as

a Unified Modeling Language (UML) diagram of class relationships: ances-

try of the (a) timeseries.RecurrenceNetwork (Sec. IV A 2) and

(b) climate.MutualInfoClimateNetwork classes (Sec. III B).

Inheritance (class B inherits from class A, solid arrows) and object composi-

tion relationships (class B contains class A, dashed arrows) are indicated.
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While ensuring accessibility and maintainability among

scientists in the disciplines mentioned above, this design facili-

tates fully flexible use of the package, from interactive local

sessions in IPython36 to massively parallel computations on

cluster architectures. For several years now, pyunicorn has

been successfully deployed on Linux, Mac OS X, and

Windows systems as well as UNIX high performance clusters.

Besides Numpy37 and Scipy,38 which are among

the most widely spread libraries for scientific computing

in Python, pyunicorn’s only hard dependency is the

igraph network analysis package.9 pyunicorn does not

possess its own graphical interface, but where visual

output is meaningful, helper methods exist for plotting with

matplotlib,39 which is especially convenient in

IPython. Interfaces to tools for advanced network visual-

ization focussing on spatial networks40 such as CGV41,42 are

provided via pyunicorn’s input-output capabilities.

Commented examples for typical use cases are provided by

the extensive software documentation.33

B. Software structure

The pyunicorn library is fully object-oriented, and its

inheritance and composition hierarchy reflects relationships

between the analysis methods in use (Fig. 1). It consists of

five subpackages (Table I):

core: This name space contains the basic building

blocks for general network analysis and modeling

and is accessible after calling import pyunicorn
(Sec. II). The backbone Network class provides

numerous standard and advanced complex network

statistics, measures and generative models as well as

import and export capabilities from and to

GraphML, GML, NCOL, LGL, DOT, DIMACS, and

other formats. Grid and GeoNetwork extend these

functionalities with respect to spatio-temporally

embedded networks, which can be imported from

and exported to ASCII and NetCDF files via the

Data class. InteractingNetworks provides

advanced methods designed for networks of net-

works (or multiplex networks), while ResNetwork
specializes in power grids and related infrastructure

networks.

funcnet: Advanced tools for construction and analysis

of general (non-climate) functional networks will be

accommodated here. So far, CouplingAnalysis
calculates cross-correlation, mutual information, mu-

tual sorting information, and their respective surrogates

for large arrays of scalar time series (Sec. III).

climate: Building on top of GeoNetwork and Data,

the ClimateNetwork class and its children facilitate

the construction and analysis of functional networks

representing the statistical interdependency structure

within a field of time series, based on similarity meas-

ures such as lagged linear Pearson or Spearman correla-

tion and mutual information (Sec. III B).

CoupledClimateNetwork extends this capability

to the study of interrelationships between two distinct

fields of observables (Sec. III C).

timeseries: This subpackage provides various tools for

the analysis of nonlinear dynamical systems and uni-

and multivariate time series (Sec. IV). Apart from

visibility graphs with time-directed measures

(VisibilityGraph class), the focus lies on

recurrence-based methods derived from the

RecurrencePlot class. These include joint, and

cross-recurrence plots as well as standard, joint, and

inter-system recurrence networks, supporting time-

delay embedding and, several phase space metrics and

common measures of recurrence quantification analy-

sis. Surrogates allow testing for the statistical sig-

nificance of similarity measures by generating

surrogate data sets under miscellaneous constraints

from observable time series (Sec. V).

utils: Currently, this includes MPI parallelization sup-

port and an experimental interactive network navigator.

C. General computational issues

Most network measures are defined as aggregates of

local information obtained from topology, node weights, and

link attributes. Since pyunicorn internally represents net-

works as sparse adjacency matrices, it can handle large data

sets. Until streaming algorithms are implemented for all

measures, the available amount of working memory (RAM)

limits the size of networks which can be processed.

TABLE I. Structure of the pyunicorn software package listing the most important classes belonging to each submodule (selection for brevity).

core funcnet climate timeseries utils

(Sec. II) (Sec. III) (Secs. III B and III C) (Secs. IV and V) (Sec. I)

Network CouplingAnalysis ClimateNetwork RecurrencePlot mpi

GeoNetwork CouplingAnalysisPure-
Python

CoupledClimateNetwork CrossRecurrencePlot Navigator

Interacting-
Networks

TsonisClimateNetwork JointRecurrencePlot

ResNetwork SpearmanClimateNetwork RecurrenceNetwork

Data MutualInfoClimateNetwork InterSystemRecurrence-
Network

Grid ClimateData JointRecurrenceNetwork

VisibilityGraph

Surrogates
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Presently, many advanced methods are defined only for

undirected networks. As sensible generalizations and appli-

cations come up, they are gradually incorporated into the

code base.

As is usually the case with Python libraries, pyuni-
corn is designed to provide simple interfaces and clear

architecture, while delegating the heavy lifting to specialized

tools for performance. Basic network measures and genera-

tive models are inherited from igraph. Wherever possible,

numerically intensive computations are expressed as combi-

nations of highly optimized linear algebra methods from

Numpy and Scipy, and otherwise implemented in embed-

ded Cython43 code. Thus all costly computations are per-

formed in compiled C, Cþþ, or FORTRAN code.

Parallelization is mostly not implemented on the algorithm

level, but can be achieved using the built-in MPI helper for

repetitive tasks, e.g., computing measures on recurrence net-

works for different time windows of an observable. As the

required RAM size is mostly dependent on the volume of

data to be analyzed, a modern laptop processor with a single

core suffices to perform most of the computations described

later on for currently typical data sets in a matter of seconds

to an hour. As an example, the recurrence network displayed

in Fig. 15 takes approximately 0.03 s to compute on a dual-

core Intel Core i5 CPU with 2.4 GHz running Mac OS X.

For illustration, a more systematic study of the performance

of recurrence network construction, a common case for using

pyunicorn, is displayed in Fig. 2. GPU computations are

currently not supported.

II. COMPLEX NETWORK ANALYSIS

pyunicorn provides methods for analyzing and mod-

eling various types of complex networks, including general

networks (Sec. II A), spatial networks (Sec. II B), networks

of interacting networks (Sec. II C), and node-weighted net-

works (Sec. II D). In the following, the corresponding classes

and methods are described together with a brief introduction

of the underlying theory. Selected use cases illustrate the

associated functionality of pyunicorn.

A. General complex networks

The class Network in the submodule core serves as a

parent to all other network-related classes in pyunicorn
(see, e.g., Fig. 1) and represents general undirected and

directed networks or graphs G¼ (V, E) consisting of a set of

nodes V ¼ {1,…, N} and a set of (directed) links E � V�V
without duplicates. Networks of this type can be described

by an adjacency matrix A with elements

Apq ¼
1 ðp; qÞ 2 E
0 otherwise:

�
(1)

Hence, Apq¼ 1 iff nodes p and q are connected by a (directed)

link and Apq¼ 0 iff they are unconnected. In pyunicorn,

instances of the Network class can be initialized using such

dense adjacency matrices, but also based on sparse matrices

or link lists. Link and node weights (see Sec. II D) can be

represented by link and node attributes and are accessible

through the Network.set_link_attribute and

Network.set_node_attribute methods, respectively.

Many standard complex network measures, network

models, and algorithms are supported, e.g., degree, closeness

and shortest-path betweenness centralities, clustering coeffi-

cients and transitivity, community detection algorithms and

network models such as Erd}os-R�enyi, Barabasi-Albert, or

configuration model random networks.4,5 Several of these

measures provided by pyunicorn can take into account

directed links and link weights (directed and weighted net-

works) if this information is present. However, the remainder

of this article focusses on undirected networks, reflecting the

current state of the pyunicorn implementation.

Moreover, a number of less common network statistics

such as Newman’s44 or Arenas’45 random walk betweenness

can be computed. Reading and saving network data from and

to many common data formats such as GraphML46 is possible

for storage and information exchange with other software for

network analysis and visualization40 such as networkx10 or

gephi.47

B. Spatially embedded networks

Many, if not most, complex networks of interest are spa-

tially embedded.48 Consider, for example, social networks,

infrastructure networks such as the internet, road, and other

transportation networks (Fig. 3), or functional networks in neu-

roscience and climatology (Fig. 8). pyunicorn includes

measures and models specifically designed for spatially em-
bedded networks (or simply spatial networks) via the

GeoNetwork class that inherits from the Network class

(Fig. 1(b)). Characteristics of the nodes’ spatial embedding,

such as all longitudinal and latitudinal coordinates, are stored

in the Grid class. In particular, this class then provides meth-

ods for computing and evaluating spatial distances between all

pairs of nodes via the methods Grid.angular_distance,

Grid.euclidean_distance and Grid.geometric_

FIG. 2. Dependence of computation time for constructing recurrence net-

works (represented by RecurrenceNetwork objects) of varying size N
constructed from state vectors randomly drawn from the Lorenz attractor

(see Fig. 15) on a dual-core Intel Core i5 CPU with 2.4 GHz running Mac

OS X (star symbols). For larger N, computation time is proportional to N2

(solid line) as expected for the straightforward algorithm implemented for

calculating the N�N recurrence matrix R. Note that fast neighbor search

algorithms, currently not implemented in pyunicorn, can reduce the num-

ber of required computations to OðN log NÞ or even OðNÞ under certain

conditions.11
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distance_distribution. Additionally, functionality for

loading and saving the grid from and to common file formats

such as ASCII is provided.

1. Measures and models for spatial networks

Measurements on the network’s spatial embedding are

performed by using the class GeoNetwork which is initial-

ized with an existing instance of the Grid class (Fig. 1(b)).

Generally, all standard network measures, like the degree or

clustering coefficient, can be computed in an area-weighted

variant taking into account the network’s spatial embedding

and, hence, avoiding biases caused by the potentially widely

different surface areas or volumes that nodes may represent

(see Sec. II D for details). In addition, the distribution of

the links’ spatial lengths is evaluated using the method

GeoNetwork.link_distance_distribution. For

each node in the network, the lengths of its emerging

links can be assessed via the methods GeoNetwork.
average_link_distance, GeoNetwork.total_
link_distance, and GeoNetwork.max_link_
distance which all give a notion of the spatial distance

between a specific node and its neighbors. In the application

to climate sciences, where links in the network typically rep-

resent interdependencies of statistical significance between

climate observables taken at different locations on the

Earth’s surface, the above mentioned measures are of crucial

importance when investigating the presence of long-ranging

teleconnections15,19,49 in the climate network (Sec. III B).

In addition to the evaluation of a spatially embedded

network’s topological structure, the GeoNetwork class also

provides random network models to construct spatially em-

bedded networks under the same spatial constraints, i.e.,

with the same spatial distribution of nodes, as the network

under study. These spatial network surrogates allow to assess

to what degree certain properties of an observed network are

consistent with those expected from a structural null model

that is encoded in the construction rules for the network

surrogates. In particular, the method GeoNetwork.set_
random_links_by_distance constructs a random net-

work in which the probability for the presence of a link

between two nodes decays exponentially with the geographi-

cal distance between them. Furthermore, three different

GeoModels are implemented in pyunicorn which con-

struct random network surrogates of a given network by

iteratively rewiring its links under different conditions:

(i) GeoModel1 (GeoNetwork.randomly_rewire_
geomodel_I) creates a random network with the same

global link-length distribution and degree sequence as the

one represented by the respective instance of GeoNetwork,

(ii) GeoModel2 (GeoNetwork.randomly_rewire_
geomodel_II) additionally preserves the local link-length

distributions for each node, and (iii) GeoModel3
(GeoNetwork.randomly_rewire_geomodel_III)

additionally sustains the degree-degree correlations (or

assortativity) of the original network.50

2. Use case: US interstate network

We illustrate the application of these random spatial

network models by constructing 100 surrogate networks

of the US interstate network51 utilizing GeoModel1 and

GeoModel2, respectively. One way to quantify how well

the network under study is represented by each of the two

models is to compute the probability that each of its links is

also present in the ensemble of random surrogates (Fig. 3).

We find that GeoModel1 already reproduces well many of

the original links in the US interstate network (Fig. 3(a)),

implying that its structure is already well determined by

its global link length distribution and degree sequence.

Additionally, preserving the local link length distributions

improves the results further: most links of the original net-

work are present in the surrogate networks with high proba-

bility (Fig. 3(b)).

C. Networks of interacting networks

The structure of many complex systems can be

described as a network of interacting or interdependent net-
works,52,53 e.g., the densely entangled infrastructures for

communication and energy distribution.54,55 Constituting a

specific but important subclass of multiplex or multilayer

networks,56 these networks of networks can be represented

by decomposing a network G¼ (V, E) into a collection of

M subnetworks Gi¼ (Vi, Eii) (Fig. 4). Here, Vi denote the

disjunct sets of nodes corresponding to each subnetwork

and the internal links sets Eii contain information on the

connections within a subnetwork such that [M
i¼1Vi ¼ V.

Additionally, disjunct sets of cross-links Eij connect nodes

in different subnetworks with [M
i;j¼1Eij ¼ E. Alternatively, a

network of networks (multiplex network) of this type can

be represented by a standard adjacency matrix A with block

structure.52 Depending on the problem at hand, the decom-

position into subnetworks can be given a priori, as in the

example of interdependent communication and electricity

FIG. 3. Effects of spatial embedding of nodes on network structure: (a)

Probability for links in the US interstate network to be also present under the

application of GeoModel1 computed over an ensemble of 100 surrogate net-

works using GeoNetwork.randomly_rewire_geomodel_I. (b) The

same under the application of GeoModel2 provided by GeoNetwork.
randomly_rewire_geomodel_II.
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grids, or may be obtained from solutions of a community

detection algorithm applied to a complex network of

interest.57–59

1. Measures and models for networks of networks

The InteractingNetworks class in the submodule

core provides a rich collection of network measures and mod-

els specifically designed for investigating the structure of net-

works of networks.52,53 Relevant examples include the cross-
link density of connections between different subnetworks

(InteractingNetworks.cross_link_density)

qij ¼
jEijj
jVijjVjj

; (2)

the cross-degree or number of neighbors of node v 2 Vi in

a different subnetwork Gj (InteractingNetworks.
cross_degree)

kij
v ¼

X
q2Vj

Avq; (3)

or the cross-shortest path betweenness (Interacting
Networks.cross_betweenness) defined for all nodes

w 2 V

bij
w ¼

X
p2Vi;q2Vj;p;q6¼w

rpq wð Þ
rpq

; (4)

quantifying the importance of nodes for mediating interac-

tions between different subnetworks, where rpq denotes the

total number of shortest paths from p 2 Vi to q 2 Vj and

rpq(w) counts the number of shortest paths between p and q
that include w. The InteractingNetworks class also

contains node-weighted versions of most of the provided sta-

tistical measures (see Sec. II D).

Surrogate models of interacting networks allow the

researcher to assess the degree of organization in the cross-

connectivity between subnetworks and its effects on other

network properties of interest such as (cross-) clustering and

(cross-) transitivity or shortest-path based measures such as

(cross-) average path length or (cross-) betweenness.52

Specifically, pyunicorn currently supports two types of

interacting network models that conserve (i) the number of

cross-links or the cross-link density between a pair of subnet-

works (InteractingNetworks.RandomlySetCross
Links), analogously to the Erd}os-R�enyi model60 for general

complex networks, and (ii) the cross-degree sequences

between a pair of subnetworks (InteractingNetworks.
RandomlyRewireCrossLinks), corresponding to the

configuration model for standard networks.2

In the context of time series analysis, the interacting

network representation has been applied for studying the

structure of statistical interrelationships between different

climatological fields with coupled climate networks52,62

(Sec. III C) as well as for detecting the direction of coupling

between complex dynamical systems using inter-system re-

currence networks63 (Sec. IV A).

2. Use case: Zachary karate club network

For illustrating interacting networks analysis based on a

simple and commonly studied example, we choose the classi-

cal Zachary karate club social network that describes friend-

ship relationships between 34 members of a karate club at a

US university.61 During the course of the study, a disagree-

ment developed between some of the members and the club

split up into two parts. Here, we represent the groups after fis-

sion by two subnetworks G1 (lead by individual 0) and G2

(lead by individual 33) with internal and cross-links set

according to the friendship ties revealed in the original study

(Fig. 5). The groups emerging after fission are clearly

reflected in the social network structure as was also found

using various community detection algorithms.57,58 The cross-

link density q12� 0.04 is significantly smaller than the inter-

nal link densities q11� 0.26 and q22� 0.24, underlining the

conceptual similarities between interacting network character-

istics such as cross-link densities or cross-degree sequences

and measures of modularity used for community detection.58

Furthermore, studying local interacting network measures

yields insights into the roles of nodes with respect to interac-

tions between the two groups. For example, nodes on the

interface between both groups such as individuals 2, 8, and 30

tend to have large cross-degree and cross-betweenness values

compared to other nodes on the groups’ peripheries, because

they serve as the important connectors between the groups

(Fig. 5). Focussing on the two group leaders, it is interesting

to note that individual 0 (the instructor) has a low cross-

degree (just one cross-link to G2, k1 2
0 ¼ 1) compared to indi-

vidual 33 (the administrator, k2 1
33 ¼ 3), while both leaders

have comparable first and second largest values of cross-

betweenness, b1 2
0 � 148 and b1 2

33 � 94, respectively. This ob-

servation indicates that cross-betweenness is a more reliable

indicator for leadership with respect to the groups’ interaction

structure in this case.

FIG. 4. A network of interacting networks consisting of three subnetworks

Gi that can be represented and analyzed using the class core.
InteractingNetworks. Nodes are represented by geometric symbols,

while internal and cross-links are indicated by solid and dashed lines,

respectively.
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D. Node-weighted networks and node-splitting
invariance

The nodes of many real-world networks, e.g., firms, coun-

tries, grid cells, brain regions, etc., are of heterogeneous size,

represent different shares of an underlying complex system, or

are of different prior relevance to the research question at

hand. As a specific example, in climate networks on regular

latitude-longitude grids (see below and Fig. 6), nodes in polar

regions represent a significantly smaller fraction of the Earth’s

surface than do nodes in the tropics. If this heterogeneity can

be expressed in a vector of node weights wv� 0 with v 2 V, a

node-weighted network analysis seems appropriate. Because

many complex systems allow for network representations of

different granularity, the results of such a node-weighted net-

work analysis should be consistent across scales.64 pyuni-
corn provides node-weighted variants of most standard and

many non-standard measures for networks (Network class)

as well as interacting networks (InteractingNetworks
class).

1. Measures for node-weighted networks

The theory of node-splitting invariant (n.s.i.) network

measures53,64–72 has derived variants of many classical net-

work measures that take into account node weights in a consist-

ent way. For example, the n.s.i. adjacency matrix Aþpq, degree
k�v , local and global clustering coefficients C�v ; C� are defined as

Aþpq ¼ Apq þ dpq; C�v ¼

X
p;q2V

AþvpwpAþpqwqAþqv

k�vð Þ2
;

k�v ¼
X
p2V

Aþvpwp; C� ¼
X
v2V

wvC�v=
X
v2V

wv: (5)

In contrast to their unweighted counterparts, these and all

other n.s.i. measures have the following consistency prop-

erty: When a node v and its weight wv are split into two inter-

linked nodes v0; v00 with weights wv0 þ wv00 ¼ wv that are

connected to the same nodes as v was, then all n.s.i. measures

of nodes other than v, v0, and v00 remain unchanged (e.g., the

n.s.i. clustering coefficient of some neighbour p of v remains

unchanged while the ordinary clustering coefficient of p
would increase). This scale consistency comes at the price

that in the special case where all weights are equal to unity,

wv� 1, n.s.i. measures do not simply reduce to their

unweighted counterparts but return slightly different values.

For this reason, there exist also corrected n.s.i. measures that

additionally take into account an overall typical weight

x� 0 and have the property that in the special case where all

node weights equal x, the corrected n.s.i. measure equals its

unweighted counterpart.64 For example, the corrected n.s.i.
degree k�xv and local clustering coefficient C�xv are

k�xv ¼
k�v
x
� 1; C�xv ¼

X
p;q2V

AþvpwpAþpqwqAþqv � 3k�xv � 1

k�xv k�xv � 1ð Þ
: (6)

In pyunicorn, n.s.i. measures are available in the

Network and InteractingNetworks classes (method

prefix nsi_), e.g.,

nsi_arenas_betweenness,
nsi_average_neighbors_degree,
nsi_average_path_length,
nsi_betweenness,
nsi_closeness,
nsi_degree.

Their syntax is the same as that of their unweighted counter-

parts, and some have an additional optional keyword

FIG. 5. Visualization of the Zachary

karate club network with node colors

indicating the two groups emerging af-

ter fission that were lead by individuals

0 (subnetwork G1, red nodes) and 33

(subnetwork G2, blue nodes), respec-

tively (note that the original node num-

bering of Zachary61 can be obtained by

adding 1 to these indices). Node size is

scaled according to the (a) cross-

degree and (b) cross-betweenness (log-

scale) measures of interacting net-

works analysis. Internal links are col-

ored in red and blue, while cross-links

are displayed in violet.
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parameter typical_weight via which the corrected n.s.i.

measures can be requested. To use these methods, one has to

provide node weights before, either manually via the

Network property node_weights, the keyword parame-

ter node_weights of the class constructor, or automati-

cally via the keyword parameter node_weight_type of

the constructor of the derived class GeoNetwork.

2. Use case: Spatial network structures in polar region

Figure 6 presents an application of n.s.i. degree and

local clustering coefficient to the functional climate network

of surface air temperature dynamics in the northern polar

region.64 A ClimateNetwork object net was generated

as described in Sec. III B, with nodes placed on a regular

latitude-longitude grid on the Earth’s surface. To reflect

that grid’s varying node density depending on latitude,

the node weights were set to the cosine of latitude by using

the ClimateNetwork constructor’s keyword parameter

node_weight_type¼“surface” (inherited from

GeoNetwork, see Fig. 1(b)). Then all nodes’ n.s.i. degree

and local clustering coefficient were computed via

kstarvector ¼ net.nsi_degree()
Cstarvector ¼ net.nsi_local_clustering()

and plotted using the package matplotlib. When com-

paring the resulting node-weighted measures (Figs. 6(c) and

6(d)) to the unweighted degree and local clustering coeffi-

cient (Figs. 6(a) and 6(b)), one realizes that the latter

measures’ high values around the pole (dark spots) are

actually artifacts of the relatively higher node density, an

effect that is compensated for in the n.s.i. measures.

III. FUNCTIONAL NETWORKS: CONSTRUCTION AND
ANALYSIS

Functional networks provide a powerful generalization

of standard methods of bi- and multivariate time series anal-

ysis by allowing to study the dynamical relationships

between subsystems of a high-dimensional complex system

based on spatio-temporal data and using the tools of net-

work theory. pyunicorn provides classes for the construc-

tion and analysis of functional networks representing the

statistical interdependency structure within and between

sets (fields) of time series using various similarity measures

such as lagged Pearson correlation and mutual information

(Sec. III A). Building on these similarity measures, climate

networks allow for the analysis of single fields of climato-

logical time series, e.g., surface air temperature observed on

a grid covering the Earth’s surface (Sec. III B). Moreover,

coupled climate networks focus on studying the interrela-

tionships between two or more fields of climatological

time series, e.g., sets of time series capturing sea surface

temperature and atmospheric geopotential height variability

(Sec. III C). Functional network analysis is illustrated draw-

ing upon several examples from climatology, including the

detection of spatio-temporal regime shifts in the atmosphere

and ocean. While pyunicorn provides some functionality

FIG. 6. Comparison of unweighted and

weighted (n.s.i.) versions of degree

((a) and (c)) and local clustering coeffi-

cient ((b) and (d)) in the northern polar

region (Lambert equal area projection)

of a global climate network represent-

ing correlations in temperature dynam-

ics. The high values at the pole in (a)

and (b) turn out to be an artifact of the

increasing grid density toward the

pole, as demonstrated in (c) and (d).

Reproduced with permission from J.

Heitzig et al., Eur. Phys. J. B 85, 38

(2012). Copyright 2012 European

Physical Society and Springer-

Verlag.64
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specific to climate data (such as the climate.Climate
Data class), the methods for general functional network

analysis can also be applied to other sources of time se-

ries such as general fluid dynamical and pattern forma-

tion systems,73 neuroscience (e.g., functional magnetic

resonance imaging, fMRI, and electroencephalogram

[EEG] data; Ref. 14) or finance (e.g., stock market indi-

ces; Ref. 21).

A. Coupling analysis

The timeseries.CouplingAnalysis class pro-

vides methods to estimate matrices of (optionally lagged)

statistical similarities S between time series including the

linear Pearson product-moment correlation and measures

from information theory such as mutual information and

extensions thereof. These matrices can be thresholded to

obtain directed or undirected adjacency matrices for further

network analysis with pyunicorn, e.g., as input to the

climate.ClimateNetwork (Sec. III B) and climate.
CoupledClimateNetwork (Sec. III C) classes. The simi-

larity values can also be used in link-weighted network

measures such as those provided by the Network class.

1. Similarity measures for time series

While standard measures such as the classical linear

Pearson product-moment correlation are only briefly dis-

cussed, this section focusses on more innovative measures

based on information theory that are provided by the

CouplingAnalysis class. The latter include bivariate

mutual information as well as extensions such as bivariate

transfer entropy (Fig. 7(a)) allowing to reduce the effects of

the common history of two processes X, Y (X and Y represent

time series at nodes p and q, respectively.

All methods share the parameters tau_max, the

maximum time lag, and lag_mode, which can be set to

“all” to obtain a 3-dimensional Numpy array of shape

ðN; N; tau maxþ1Þ containing lagged similarities between

all pairs of nodes, or to “max” to return two ðN; NÞ Numpy
arrays indicating the lag positions and values of the absolute

similarity maxima.

a. Lagged cross-correlation. The lagged Pearson
product-moment correlation coefficient (CC) of two zero-

mean time series variables X, Y, implemented in Coupling
Analysis.cross_correlation, is given by

qXY sð Þ ¼ hXt�s; Yti
rXrY

; (7)

which depends on the covariance hXt�s; Yti and standard

deviations rX, rY. Lags s> 0 correspond to the linear associ-

ation of past values of X with Y, and vice versa for s< 0. In

analogy, the auto-correlation is defined as qYY (s) for s> 0.

The choice lag_mode¼“max” returns the value and lag at

the absolute maximum for each ordered pair (i, j), which can

be positive or negative. CC is computed using the standard

sample covariance estimator. It can be estimated for compa-

rably small sample sizes. However, by definition, it does not

allow to quantify nonlinear associations between time series

and can produce misleading results in the presence of

strongly nonlinear relationships.

b. Lagged mutual information. Information theory74

provides a genuine framework to capture also nonlinear

associations. While Shannon entropy75 is a measure of the

uncertainty about outcomes of one process, mutual informa-
tion (MI) is a measure of its reduction if another process is

known. The Shannon-type MI can be expressed as

IðX; YÞ ¼ HðYÞ � HðYjXÞ ¼ HðXÞ � HðXjYÞ; (8)

i.e., as the difference between the uncertainty in Y and the

remaining uncertainty if X is already known (and vice versa).

MI is symmetric in its arguments, non-negative and zero iff X
and Y are statistically independent. The lagged cross-MI for

two time series, implemented in CouplingAnalysis.
mutual_information, is given by

FIG. 7. (a) Process graph and (b) matrix of lag functions for similarity meas-

ures MI, ITY, and MIT (the latter two with past-history parameter p¼ 1) for

a realization of an example process (Eq. (15)). All methods implemented in

CouplingAnalysis have a parameter lag_mode, which can be set to

“all” to return all lagged similarities between all pairs of nodes (shape

ðN; N; taumax þ 1Þ, or to “max” to return two ðN; NÞ-matrices of the value

at the absolute maximum of each panel and the corresponding lags. Note

that this results in an asymmetric matrix which can be symmetrized by

taking the maximum of each pair (i, j) and (j, i) with the method

CouplingAnalysis.symmetrize_by_absmax.

113101-9 Donges et al. Chaos 25, 113101 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

91.65.67.168 On: Wed, 04 Nov 2015 20:04:43



IMI
XYðsÞ ¼ IðXt�s; YtÞ: (9)

For s> 0, one measures the information in the past of X that

is contained in Y, and vice versa for s< 0. Correspondingly,

the auto-MI is defined as I(Yt–s; Yt) for s> 0.

Three different estimators are provided reflecting differ-

ent trade-offs between number of samples required, bias and

variance of the estimator, and computational requirements:

• estimator¼“binning”: A very simple method is to

quantize or partition the observation space into a set of

bins (parameter bins). Here, we use equi-quantile bins

where the bin intervals are chosen such that the marginal

distributions are uniform.76 While this estimator is consist-

ent for infinite sample size, for common sample sizes of

the order 103, many bins are not populated sufficiently

resulting in heavily biased values of MI.77 For example,

for independent time series, the estimated MI values do

not center around zero.
• estimator¼“knn”: A more advanced estimator for

continuously valued variables, recommended here, is

based on nearest-neighbor statistics.78 This estimator is

discussed in its conditional form below.
• estimator¼“gauss”: If only the linear part of an

association is desired, assuming a bivariate Gaussian dis-

tribution, the MI is simply given by

IGauss
XY sð Þ ¼ � 1

2
ln 1� qXY sð Þ2
� �

; (10)

where qXY (s) is again the Pearson correlation coefficient.

c. Lagged information transfer. While lagged MI can be

used to quantify whether information in Y has already been

present in the past of X, this information could also stem

from the common past of both processes and, therefore, is

not necessarily a sign of a transfer of unique information

from X to Y. A first step towards a notion of directionality

(the more demanding causality problem is discussed at the

end of this section) is to assess a bivariate notion of informa-
tion transfer between two time series79,80 in order to exclude

this common past. Here, we consider two measures to

achieve this goal, implemented in CouplingAnalysis.
information_transfer. These are based on condi-
tional mutual information (CMI) defined as

IðX; YjZÞ ¼ HðYjZÞ � HðYjX; ZÞ; (11)

which can be phrased as the mutual information between X
and Y that is not contained in a third, possibly multivariate

variable Z. CMI shares the properties of MI and is zero iff X
and Y are independent conditionally on Z.

Following Runge et al.,79 the bivariate information
transfer to Y (ITY), obtainable via the parameter cond_
mode¼“ity,” is defined as

IITY
X!YðsÞ ¼ IðXt�s; YtjYt�1;…; Yt�pÞ: (12)

It excludes the past of the “driven variable” Y up to a maxi-

mum lag p (parameter past). ITY can be seen as a lag-

specific transfer entropy.81 A more rigorous way to exclude

commonly shared past is to additionally condition out the

past of the “driver” variable X. The bivariate momentary in-
formation transfer (MIT), called via cond_mode¼“mit,”
can be defined as

IMIT
X!YðsÞ ¼ IðXt�s; YtjYt�1;…; Yt�p;Xt�s�1;…;Xt�s�pÞ:

(13)

The attribute momentary82 is used because MIT measures

the information of the “moment” t� s in X that is transferred

to Yt. MIT can also be interpreted as a measure of causal

strength as discussed in Ref. 79, where the multivariate ver-

sions of ITY and MIT are defined. On the downside, it is

higher-dimensional resulting in a larger bias for the nearest-

neighbor estimator.

Two estimators are available:

• estimator¼“gauss”: Like in Eq. (10), the CMI for

multivariate Gaussians can be expressed in terms of the

partial correlation, where the Pearson correlation qXY is

replaced by qXYjZ.
• estimator¼“knn”: A nearest-neighbor CMI estimator

has been developed by Frenzel and Pompe.83 This estima-

tor is computed by choosing a parameter k (knn) as the

number of neighbors in the joint space of (X, Y, Z) around

a sample at time t. The maximum-norm distance to the k-

th nearest neighbor then defines a hypercube of length 2�t

for each joint sample. Then the numbers of points kz,t, kxz,t,

and kyz,t in the subspaces with distance less than �t are

counted, and the CMI is estimated as

Î X; YjZð Þ ¼ w kð Þ þ 1

T

XT

t¼1

w kz;tð Þ � w kxz;tð Þ � w kyz;tð Þ
� �

;

(14)

where w is the Digamma function and T is the number of

samples. Smaller values of k result in smaller cubes and,

since the estimator’s derivation assumes the density is

approximately constant inside these, the estimator has a low

bias. Conversely, for large k the bias is stronger, but the var-

iance is smaller. Note, however, that for independent proc-

esses the bias is approximately zero, i.e., ÎðX; YjZÞ � 0, and

large k are therefore better suited for (conditional) independ-

ence tests, e.g., on whether a link exists between two time

series.

2. Use case: Coupled stochastic processes

Consider the following simple four dimensional process

to illustrate the different measures (Fig. 7(a)):

X1ðtÞ ¼ 0:8X1ðt� 1Þ þ g1ðtÞ
X2ðtÞ ¼ 0:8X2ðt� 1Þ þ 0:5X1ðt� 2Þ þ g2ðtÞ
X3ðtÞ ¼ 0:7X1ðt� 1Þ þ g3ðtÞ
X4ðtÞ ¼ 0:7X1ðt� 2Þ þ g4ðtÞ ; (15)

where gi are independent zero-mean and unit variance

Gaussian innovations. Here, X1,2 are auto-correlated and X1
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drives X2 at a lag of 2, X3 at a lag of 1, and X4 at a lag of 2.

Figure 7(b) shows the lag functions for all pairs of variables.

We illustrate in the following, how the different measures

MI (similar to CC), ITY, and MIT can be used to reconstruct

an adjacency matrix of a functional network. Regarding a

directed link between X1 and X2, both directions X1 ! X2

and X2 ! X1 have non-zero MI values, making it hard to

conclude on a direction. Further, the peak of the MI function

in X1 ! X2 is at lag s¼ 4, even though the driving lag is

only 2. The ambiguity in interpreting the value of MI is dis-

cussed in Ref. 79, and the problem that coupling delays can-

not be properly inferred with MI because the peak of the lag

function is shifted for strong auto-correlations is analyzed by

Runge et al.84 These shortcomings can be overcome with

ITY and MIT. Both measures feature a much sharper peak at

the correct lag s¼ 2. The value of MIT is smaller, because it

also excludes the effect due to the auto-correlation of the

driving variable.

Still, all these bivariate lagged measures show non-zero

values even if NO physical coupling is present in Eq. (15),

e.g., in the lower two rows in Fig. 7(b) from X3 and X4 to the

other processes. These artifacts are due to indirect links and

common drivers (Fig. 7(a)), e.g., X1 driving X3, and X4 lead-

ing to a spurious peak at X3! X4. MI and the bivariate ver-

sions of ITY and MIT discussed here are also not able to

reliably identify the correct coupling lags when multiple lags

are present.

3. Discussion and extensions

Generally, networks reconstructed from bivariate simi-

larity measures can be used to study statistical properties of

“associations” between time series, but cannot be interpreted

in a causal context. Based purely on observational data, a

notion of a causal network can be defined within the frame-

work of time series graphs,85,86 which can be efficiently esti-

mated by causal discovery algorithms in a linear framework

with partial correlation84,87 or with non-parametric informa-

tion-theoretic estimators as implemented in the causal algo-

rithm proposed by Runge et al.86 Based on these causal

graphs, multivariate versions of ITY and MIT can be used to

quantify the links’ strength at the correct causal lag.79 These

methods are available in the software package tigramite,

which can be obtained from the website http://tocsy.pik-pots

dam.de/tigramite.php as a complement to pyunicorn.

Note, however, that reliable causal analyses, especially with

information-theoretic estimators, require much more samples

than classical bivariate analysis, which typically restricts

their applicability to much smaller networks.88 An alterna-

tive to classical path-based network measures is discussed by

Runge et al.89 and Runge,90 and introduces quantifiers of in-

formation transfer through causal pathways.

B. Climate networks

As a typical application of functional networks, climate
network analysis is a versatile approach for investigating

climatological data and can be seen as a generalization and

complementary method to classical techniques from multi-

variate statistics such as eigen analysis (e.g., empirical

orthogonal function or maximum covariance analysis).20 It

has been already successfully used in a wide variety of appli-

cations, ranging from the complex structure of teleconnec-

tions in the climate system,15,18,49 including backbones and

bottlenecks,19,89 to dynamics and predictability of the El

Ni~no-Southern Oscillation (ENSO).66,92,93

Climate networks (class climate.ClimateNetwork)

represent strong statistical interrelationships between time se-

ries and are typically reconstructed by thresholding the matrix

of a statistical similarity measure S (Fig. 8) such as those

derived from coupling analysis (Sec. III A)

Apq ¼
HðSpq � bÞ if p 6¼ q;

0 otherwise;

(
(16)

where H(	) is the Heaviside function, b denotes a threshold

parameter, and App¼ 0 is set for all nodes p to exclude self-

loops. The threshold parameter can be fixed following con-

siderations of statistical significance given a prescribed null

hypotheses (ClimateNetwork.set_threshold), set

individually to bpq for each pair of time series or chosen to

achieve a desired link density in the resulting climate net-

work (ClimateNetwork.set_link_density).

Certain types of time series preprocessing such as calcu-

lation of climatological anomaly values (by subtracting

phase averages to reduce the first-order effects of the annual

cycle) are provided by the climate.ClimateData class

included in ClimateNetwork. The classes derived

from ClimateNetwork (Fig. 1(b)) apply different types of

similarity measures for network construction, e.g., Tsonis
ClimateNetwork for linear Pearson correlation at zero

lag or MutualInfoClimateNetwork for nonlinear

mutual information at zero lag. Note that for climate network

analysis of large data sets with more than 1� 106 time series,

the par@graph software94 can be used, offering methods

and measures comparable to that of the TsonisClimate
Network class.

In the following, we present two use cases of studying

fields of single climatological observables using climate net-

works (Secs. III B 1 and III B 2) and one use case of investi-

gating the coupling structure between two climatological

fields using coupled climate networks (Sec. III C).

1. Use case: Climate networks for detecting climate
transitions

Climate networks (CNs) based on spatial correlations of

time series have recently been introduced to develop early

warning indicators for climate transitions. Two types of CNs

have mainly been used: Pearson Correlation Climate

Networks (PCCNs), where the Pearson correlation (Eq. (7))

is applied to measure connectivity in the network, and

Mutual Information Climate Networks (MICNs), where mu-

tual information (Eq. (8)) is applied.95 PCCNs and MICNs

can be reconstructed by the pyunicorn classes climate.
TsonisClimateNetwork and climate.MutualInfo
ClimateNetwork, respectively.

One climate transition of crucial interest is the possible

collapse of the Atlantic Meridional Overturning Circulation
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(MOC)96,97 as is occurring in simulations of the Fast Met

Office/UK Universities Simulator (FAMOUS) climate

model.98 Figure 9(a) shows time series of annual mean

Atlantic MOC strength for both the control simulation (black

curve) and the hosing simulation (red curve), at the location

where the maximum MOC occurs (at latitude 26
N and

1000 m depth). The hosing simulation performed using the

FAMOUS model is a freshwater-perturbed experiment, in

which the freshwater influx over the extratropical North

Atlantic is increased linearly from 0.0 Sv to 1.0 Sv (1 Sv

¼ 106 m3 s�1) over 2000 a.98 One can see that the MOC val-

ues of the control simulation are statistically stationary over

the 2000-a integration period, while the MOC values for the

hosing simulation show a rapid decrease between the years

800 and 1050. Based on a threshold criterium, it was found

that the MOC collapses at sc¼ 874 a,97 as is shown by the

green line in Fig. 9(a).

In Ref. 97, PCCNs were reconstructed from the MOC

field of the FAMOUS model using a 100-a sliding

window (with a time step of one year). It was found that

the kurtosis Kd of the climate network’s degree distribution

(TsonisClimateNetwork.degree_distribution)

is a useful early warning indicator for the collapse. The

values of Kd for the hosing simulation (red curve) and for the

control simulation (black curve) are plotted in Fig. 9(b). For

the hosing simulation, there is indeed a strong increase of Kd

significantly exceeding the values for the control simulation

at 738 a. The classical critical slowdown indicators like var-

iance and lag-1 auto-correlation based on the same MOC

data (using the same sliding window) do not show any early

warning signal of the MOC transition before the collapse

time sc.
97

To see why the kurtosis Kd of the degree distribution of

PCCNs is an effective indicator for the Atlantic MOC col-

lapse, we show in Fig. 10 the mean MOC fields ((a) and (b)),

the degree fields of the PCCNs ((c) and (d)), and the degree

distribution ((e) and (f)) for two 100-a windows (years

591–690 and years 671–770) near the transition. Although

the MOC is gradually weakening with the freshwater inflow,

the changes in the MOC pattern are relatively minor.

However, the changes in the degree field are substantial and

when the freshwater inflow is increased, high degrees in the

network appear at nodes in the deep ocean (at about 1000 m

depth) at mid-latitudes, especially in the South Atlantic. The

histograms of the degree fields (the degree distributions) for

these windows (Figs. 10(e) and 10(f)) show a tendency

FIG. 8. Workflow of functional net-

work analysis illustrated for climate

networks (modified from Ref. 91). In

step 1, a discretized time series repre-

sentation fxvðtÞgN
v¼1 of the climatologi-

cal field(s) of interest is chosen that is

usually prescribed by the available

gridded or station data. Step 2 includes

time series preprocessing and the com-

putation of similarity measures Sij for

quantifying statistical interdependen-

cies between pairs of climatological

time series. In step 3, the construction

of a climate network from the similar-

ity matrix S typically involves some

thresholding criterion (see Nocke

et al.40 and Tominski et al.42 for details

on the climate network shown here

that was visualized using the software

CGV41). In step 4, the obtained climate

network is investigated drawing on the

tools of complex network theory.

Finally, in step 5, the results of this

analysis need to be interpreted in terms

of the underlying dynamical Earth

system.
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towards high degree, which is successfully captured by the

kurtosis Kd.

The collapse of the Atlantic MOC has been identified as

one of the important tipping points in the climate system,99

as it will lead to a significantly reduced northward heat trans-

port.100,101 With the tools of pyunicorn, we have provided

a novel early warning indicator based on climate networks.

The particular advantage of such an indicator, in contrast to

the indicators based on a single-point time series, is that it

reflects spatial correlations. When applied to data from the

FAMOUS model, our results show that this kurtosis indicator

Kd provides a strong early warning signal at least 100 a

before the transition.

2. Use case: Seasonal and evolving climate network
analysis of monsoon variability

Temporal and spatial variability of climate, and thus cli-

mate network structure, are of increasing interest considering

ongoing environmental changes. Functional climate net-

works evolving in time are a promising and useful tool for

analyzing spatial and temporal transitions in climate and var-

ious other climatic phenomena.66,102,103 In particular, evolv-

ing climate networks have been used to study seasonal and

annual variability of the Indian Monsoon system as one of

the major global climatic subsystems affecting life and pros-

perity of 1/4th of the world’s human population.104–106 On

seasonal time scales, it is crucial to identify spatial structures

of synchronicity of extreme rainfall events over the Indian

monsoon domain, as extreme rainfall events are the main

cause of devastating floods on the subcontinent. On annual

time scales, variability of the surface air temperature (SAT)

field is of great interest, as it influences the total amount of

rainfall and its spatial distribution during the monsoon

season.

a. Data and methodology for network construction. In

order to study seasonal extreme rainfall variability, we used

observational satellite daily rainfall data for the period

1998–2012 (TRMM 3B42V7107,108 with a spatial resolution

of 0.25
 � 25 km, extracted for the South Asian region

(62.375–97.125
E, 5.125–39.875
N)). First, we defined

time series of extreme rainfall events by considering daily

precipitation above the 90th-percentile for each rainfall time

series as extreme. Then, we constructed seasonal climate net-

works for three time periods: pre-monsoon (March–May),

monsoon (June–September), and post-monsoon seasons

(October–December) using event synchronization—109,110

a measure of synchronicity of extreme rainfall events

between a pair of geographical locations (climate.Event
SynchronizationClimateNetwork class).

For the analysis of annual SAT variability over the

Asian monsoon domain, we used daily temperature anomaly

data (NCEP/NCAR reanalysis111 for the Asian monsoon

region (57.5–122.5
E, 2.5–42.5
N)) and constructed yearly

climate networks for the period 1970–2010 based on Pearson

correlation at zero lag using the climate.Tsonis
ClimateNetwork class. We consider a set of 40 static net-

works obtained from thresholded correlation matrices as one

time evolving temporal climate network of the Asian

Monsoon domain.

b. Temporal network measures. For analyzing the annual

variability of climate networks of the Asian monsoon do-

main, we use standard network measures2 for quantifying

changes in time evolving networks,112 as described by

Radebach et al.66 and Tupikina et al.106 Specifically, we cal-

culate average path length L (TsonisClimateNetwork.
average_path_length) and transitivity T (Tsonis
ClimateNetwork.transitivity) for each time step

in the temporal climate network.

c. Results. Analysis of seasonal networks of extreme

rainfall events revealed two key regions, North Pakistan

and the Eastern Ghats, which influence the distribution and

propagation of extreme rainfall over the Indian subconti-

nent (Fig. 11). The Eastern Ghats region was previously

known by climatologists as an area influencing rainfall over

the Indian subcontinent due to its topography, causing

FIG. 9. (a) Time series of the annual mean MOC (in Sv, 1 Sv ¼ 106 m3 s�1) at 26
N and 1000 m depth in the Atlantic for the control simulation (black curve)

and the hosing simulation (red curve) of the FAMOUS model. The green line indicates the collapse time sc¼ 874 a. (b) The kurtosis indicator Kd gives an early

warning signal of the collapse at 738 a and lasts for 44 a. The blue diamond marker shows the Kd value for the window of years 591–690 as indicated by blue

dashed lines in panel (a), and the cyan marker shows Kd for years 671–770 as indicated by cyan dashed lines in panel (a).
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orographic rainfall. However, the complex climate network

approach allows us to obtain new insights into the climatol-

ogy of extreme rainfall events and to detect a previously

unknown influential region: North Pakistan. This finding

pinpoints the strong influence of climatological phenomena

such as Western Disturbances on extreme rainfall events

over the Indian subcontinent. It opens new possibilities to

account for North Pakistan as a key region for inferring

interactions between the Indian Summer Monsoon system

and Western Disturbances, and based on this information,

to improve the forecasting of extreme rainfall events over

the Indian subcontinent.105

Analysis of the annual variability of the evolving Asian

monsoon SAT climate network allows us to conclude that a

highly non-random, general deterministic structure is present

in the network on which the inter-annual variability is

imprinted.66,67,106 The annual climate network variability could

be explained by a dominant influence of the topography of the

FIG. 10. (a) and (b) Mean MOC stream function pattern over two 100 year windows (years 591–690 and years 671–770). (c) and (d) Degree field of the

Pearson Correlation Climate Network (PCCN) constructed from the MOC data over each window using a threshold value of b¼ 0.5. (e) and (f) Degree fre-

quency distribution for both cases.
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region on the climate network as well as regular monsoon

effects, or by dominant climatic events such as El Ni~no or La

Ni~na.16,103,113 Observing the changes in temporal climate net-

work properties such as average path length L and transitivity

T allows to investigate this question further (Fig. 12). Most of

the peaks of L correspond to big El Ni~no (EN) years, while

troughs of T correspond to La Ni~na years according to classifi-

cation of EN in Ref. 114. This coincides well with results con-

cerning the annual variability of global temporal climate

networks66 and indicates the presence of teleconnections

between El Ni~no and Indian Monsoon region.

d. Conclusions. Understanding the variability and evolu-

tion of the Indian monsoon and its interactions with ENSO

remains one of the most vital questions in climatology.

Using the pyunicorn toolbox, we were able to analyze

these phenomena and their interactions from a climate net-

work perspective. Following this approach revealed the

influence of Western Disturbances and westerlies on the syn-

chronicity, spatial structure, and seasonal dynamics of

extreme rainfall events over the Indian subcontinent and

yielded insights into the annual evolution of temperature cli-

mate networks over the Indian monsoon domain, and the

influence of ENSO on the Indian monsoon system.

C. Coupled climate networks

Coupled climate networks52,115 generalize climate net-

work analysis to the statistical interdependency structures

between two or more fields of climatological observables as a

network of interacting networks (Fig. 4) and, hence, provide a

complementary approach and generalization of classical meth-

ods of eigen analysis such as maximum covariance analysis.20

pyunicorn provides the functionality to construct and ana-

lyze coupled climate networks via the CoupledClimate
Network class, which inherits from ClimateNetwork and

InteractingNetworks. In accordance with the n.s.i.

framework (Sec. II D), weighted versions of all measures are

also available in these classes, allowing for, e.g., an area-

weighted computation of all interacting network measures.53

This is particularly useful when studying coupled climate net-

works that cover areas close to the poles, as in most cases the

density of nodes in these areas varies strongly due to the regular

gridding of many climate data sets (e.g., Fig. 6).

The coupled climate networks framework has been

applied to study ocean-atmosphere interactions in the

Northern hemisphere based on the monthly HAD1SST sea-

surface temperature (SST)116 and the 500 mbar geopotential

height (HGT) fields from the ERA40 reanalysis project117

for all nodes northward of 30
N latitude and using the linear

Pearson correlation coefficient at zero lag.62

Local interacting network measures allow for the detec-

tion of regions in one field that couple with the other field and

additionally provide a notion of the resulting coupling strength

and structure (Fig. 13). The n.s.i. cross-degree density

jij�
v ¼

1

Wj

X
q2Vj

wqAþvq (17)

¼ 1

Wj
kij�
v (18)

FIG. 11. Maps of the number of outgoing undirected links (indicated by color scale) from a set of 153 reference grid points (green rectangles), representing

synchronization of extreme rainfall events, and the mean surface wind vector (seasonal, 1998–2012), the latter indicated by blue arrows. The reference regions

are: North Pakistan (top panels) and the Eastern Ghats (bottom panels).
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measures the weighted share of nodes in another subnetwork

Vj that each node v 2 Vi is connected with. It is obtained by

normalizing the n.s.i. cross-degree kij�
v (Interacting

Networks.nsi_cross_degree) by the sum over all

node weights in the opposite subnetwork Wj ¼
P

q2Vj
wq

such that its values range between 0 and 1. Thus, high values

indicate a strong localized coupling between the fields or cli-

mate subnetworks. Figure 13(a) shows the n.s.i. cross-degree

density jsi�
v � ji�

v for nodes in the SST field (subnetwork

index s). We find several localized areas in the Atlantic as

FIG. 12. Evolving average path length L (a) and transitivity T (b) network measures calculated for each yearly time step in the temporal climate network con-

structed for the period (1970–2010). Most of the peaks of L correspond to big El Ni~no (EN) years (red vertical bars), troughs of T correspond to La Ni~na

events (blue vertical bars) where color intensity of the bar corresponds to EN event strength. The data have spatial resolution 2.5
 � 2.5
 covering the area

between 2.5
S to 42.5
N and 57.5
E to 122.5
E, i.e., 468 nodes.

FIG. 13. Coupled climate network analysis of ocean-atmosphere interactions northward of 30
N: N.s.i. cross-density (a) for nodes in the sea surface tempera-

ture field and (b) for nodes in the geopotential height field at 500 mbar. (c) and (d) The same for the n.s.i. local cross-clustering coefficient.
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well as the Pacific that show strong coupling with the HGT

field (subnetwork index i). In contrast, the n.s.i cross-degree

density jis�
v � js�

v for nodes in the HGT field shows large

areas of pronounced coupling with the SST field (Fig. 13(b)).

It should be noted, however, that this measure by definition

does not contain any information on the interactions within

each of the fields.

Additionally, the n.s.i. local cross-clustering coefficient

Cij�
v ¼

X
p;q2Vj

AþvpwpAþpqwqAþqv

kij�
v

� �2
(19)

indicates whether two neighbors in subnetwork Vj of a

considered node v 2 Vi are also mutually connected

and, hence, measures the weighted share of triangular

structures between both subnetworks. It is computed using

the method InteractingNetworks.nsi_cross_
local_clustering. We note that generally the n.s.i.

local cross-clustering coefficient takes lower values for

nodes in the SST field (Csi�
v � Ci�

v , Fig. 13(c)) than for

nodes in the HGT field (Cis�
v � Cs�

v , Fig. 13(d)) implying

that nodes in the SST field couple preferably with nodes in

the HGT field, which are themselves dynamically dissimi-

lar and, hence, disconnected.

In fact, it was found that the ocean-to-atmosphere inter-

action in the Northern hemisphere follows a hierarchical

structure,118 meaning that larger areas of dynamically similar

nodes in the SST field couple with several dynamically dis-

similar areas in the HGT field.62

IV. NETWORK-BASED TIME SERIES ANALYSIS

Network-based methodologies provide valuable novel

approaches to nonlinear time series analysis that have mani-

fold applications ranging from studying the detailed geomet-

rical structure of a dynamical system in phase space to

detecting critical transitions or tipping points in observatio-

nal time series.22,23 While time series networks can reflect

the dynamical properties of time series obtained from a

complex system in a smorgasbord of different ways,

pyunicorn focusses on two complementary approaches:

(i) Recurrence networks,24,25 an approach closely related to

recurrence quantification analysis of recurrence plots,

are random geometric graphs26,119 representing proximity

relationships (links) of state vectors (nodes) in phase space

(Sec. IV A). (ii) Visibility graphs encode visibility relations

between data points in the one-dimensional time domain

(Sec. IV B; Refs. 28 and 29). Hence, while recurrence net-

works allow to investigate geometric properties of the sys-

tem such as the transitivity dimension,120 visibility graphs

can be applied to investigate purely temporal features such

as long-range correlations121 or time-reversal asymmetry.30

Network-based time series analysis is demonstrated by dis-

cussing two use cases from paleoclimatology that aim at

detecting regime shifts or tipping points in climate dynamics

on longer time-scales.

A. Recurrence analysis

Recurrence is a fundamental property of many dy-

namical systems and is used by several approaches in

order to investigate a system’s dynamics. A basic tool of

nonlinear time series analysis is the binary recurrence
matrix122

RpqðeÞ ¼ Hðe� jjxðpÞ � xðqÞjjÞ; (20)

where x(p) is a state vector at time p¼ 1,…, N, N is the num-

ber of states, H(	) is again the Heaviside function, and e is

the recurrence threshold. A graphical representation, the

recurrence plot (Fig. 14), provides visual, qualitative impres-

sions about the dynamics of even high-dimensional systems.

Quantitative approaches based on this matrix have been

developed for studying different aspects of complex systems,

particularly based on univariate and multivariate time series

data.122 Recurrence quantification analysis (RQA) and recur-

rence network analysis (RNA) allow to classify different dy-

namical regimes in time series and to detect regime shifts,

dynamical transitions or tipping points, among many other

applications.123 Bivariate methods such as joint recurrence

plots/networks, cross-recurrence plots, or inter-system recur-

rence networks can be used to investigate the coupling struc-

ture between two dynamical systems based on their time

series, including methods to detect the directionality of cou-

pling.63,124,125 Recurrence analysis is applicable to general

time series data from many fields such as climatology, medi-

cine, neuroscience, or economics.126 These applications

range from using recurrence analysis as a classifier for moni-

toring health states in medicine and engineering127 to detect-

ing continental-scale nonlinear regime shifts in the Asian

monsoon system during the Holocene.128

1. Recurrence quantification analysis

Recurrence of a dynamical system is usually studied in

phase space. A standard approach is to use time-delay

embedding for reconstructing the appropriate phase space

representation from a measured time series.129

The class timeseries.RecurrencePlot can be

used to generate recurrence plots and perform recurrence

quantification analysis. The parameters dim and tau can be

used to set the parameters of the time-delay embedding,

whereas threshold or recurrence_rate as well as

metric configure the recurrence criteria (i.e., used recur-

rence norm and threshold e). The method Recurrence
Plot.embedding can be used to get the reconstructed

phase space vectors resulting from the specified embedding

parameters. For example, a recurrence plot can be computed

from a given scalar time series x(t) using the following

code:

rp¼RecurrencePlot(x,recurrence_rate¼0.05,
dim¼3, tau¼30)

The recurrence matrix R (Eq. (20)) can be extracted

as the property RecurrencePlot.R and can be plotted

(Fig. 14), e.g., using matplotlib, or used for subsequent

analysis.
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The simplest quantifier in recurrence analysis is the

probability that any recurrence will occur, i.e., the fraction

positive entries in R, called recurrence rate (Recurrence
Plot.recurrence_rate). However, information about

dynamical properties of the system is represented by the

diagonal and vertical lines apparent in the recurrence

plot. The line length distributions are, thus, the foundation

for statistical, quantitative analysis of the recurrence matrix

R (Eq. (20)), called recurrence quantification analysis.122

Moreover, the empty vertical spaces in R, apparent as white

vertical lines in the recurrence plot, correspond to recurrence

times. Several measures of complexity using these line distri-

butions (diagonal, vertical, and white lines) are available

as methods in the RecurrencePlot class, e.g., maximal

diagonal line length (max_diaglength), determinism

(determinism), laminarity (laminarity), diagonal line

entropy (diag_entropy), or mean recurrence time (mean_
recurrence_time). The distributions of diagonal and

vertical lines (diagline_dist and vertline_dist)

can be useful for further quantifications, e.g., by looking at

the scaling behavior, which is related to the K2 entropy.122

Resampled instances of both types of line distributions can

be generated using the methods resample_diagline_
dist and resample_vertline_dist for estimating

confidence bounds for RQA measures following the

permutation-based method proposed in Ref. 131.

pyunicorn furthermore supports multivariate exten-

sions of RQA such as joint (timeseries.Joint
RecurrencePlot) and cross recurrence plots (time
series.CrossRecurrencePlot) that both inherit

from the RecurrencePlot class.

2. Recurrence network analysis

The striking similarity of the binary square recurrence

matrix (Eq. (20)) with the adjacency matrix (Eq. (1)) of an

unweighted and undirected network has lead to a comple-

mentary kind of recurrence analysis by measures from com-

plex network studies.24,25 More formally, the recurrence
networks (Fig. 15) defined in this way by their adjacency

matrix

ApqðeÞ ¼ RpqðeÞ � dpq; (21)

where dpq is Kronecker’s delta introduced to avoid self-loops

in the networks, can be understood as random geometric

graphs (Fig. 15) that capture rich information on the geomet-

rical structure of a dynamical system’s invariant density in

phase space.26,119 The nodes in a recurrence network repre-

sent state vectors and the links indicate proximity relation-

ships between them. Recurrence networks are represented by

the timeseries.RecurrenceNetwork class inheriting

from Network and RecurrencePlot (Fig. 1(a)).

This approach opens up the wealth of measures, models,

and algorithms from complex network theory for time series

analysis. Network measures such as average path length

(Network.average_path_length), global clustering

coefficient (Network.global_clustering), transitivity

(Network.transitivity), or assortativity (Network.
assortativity) characterize the geometrical properties

of the dynamical system trajectories in phase space and can

be used to differentiate between dynamical regimes, e.g., per-

iodic and chaotic.24,25,132 In particular, the transitivity

T eð Þ ¼

X
v;p;q2V

Avp eð ÞApq eð ÞAvq eð Þ
X

v;p;q2V

Avp eð ÞAvq eð Þ
(22)

is appropriate because it can be linked to the geometry of the

phase space trajectory.91,120 Specifically, it can be logarith-

mically transformed to yield the single-scale transitivity
dimension

DT eð Þ ¼ log T eð Þ
log 3=4ð Þ ; (23)

FIG. 14. Recurrence plot of a time series generated by the Lorenz’63 system

in a chaotic regime.130

FIG. 15. Recurrence network as a random geometric graph generated from

N¼ 750 state vectors (red filled circles) drawn from the invariant density of

the Lorenz’63 system in a chaotic regime.130 In this example, state vectors

(nodes) with a distance smaller than e¼ 2 according to the supremum norm

are connected by a link.

113101-18 Donges et al. Chaos 25, 113101 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

91.65.67.168 On: Wed, 04 Nov 2015 20:04:43



a global dimension-like measure of the geometric organiza-

tion of the available set of state vectors in phase space

(RecurrenceNetwork.transitivity_dim_single_
scale). Analogously, a transformed local clustering coeffi-

cient yields a local dimension-like measure that is defined

on every node or state vector (RecurrenceNetwork.
local_clustering_dim_single_ scale).

Analogously to multivariate RQA (Sec. IV A 1), multivar-

iate extensions of recurrence network analysis have been

applied to investigate directions of coupling between dynami-

cal systems63 and complex synchronization scenarios including

generalized synchronization.133 The corresponding methodolo-

gies are represented by the classes timeseries.Inter
SystemRecurrenceNetwork and timeseries.Joint
RecurrenceNetwork, respectively.

3. Use case: Identification of transitions in
paleoclimate variability

A relevant application of recurrence analysis is the

detection of dynamical transitions in complex systems cap-

tured by model or observational time series.24,134 Detecting

such dynamical transitions, regime shifts, or tipping

points99,135 is of great interest in studying past climate vari-

ability to gain a deeper understanding of the Earth’s climate

system also on geological time scales.128,136 Here, we dis-

cuss a typical example from paleoclimate research follow-

ing Marwan and Kurths123 that focusses on investigating

interactions between SST and the dynamics of specific cli-

mate subsystems, such as the Asian monsoon system or the

Atlantic thermohaline circulation, as well as regime shifts

therein.

Diverse types of geological archives are used in paleo-

climatology to reconstruct and study climate conditions of

the past, such as lake137 and marine sediments134,136,138 or

speleothems.128,139 Alkenone remnants in the organic frac-

tion of marine sediments, produced by phytoplankton, can be

used to reconstruct SSTs of the past (alkenone paleother-

mometry), which allows to investigate past oceanic tempera-

ture variability.140,141 In this use case, we analyze an SST

reconstruction for the South China Sea covering the past

3 Ma that is derived from alkenone paleothermometry of the

Ocean Drilling Programme (ODP) site 1143 drill core141

(Fig. 16(a)). The South China Sea is strongly connected to

the East Asian Monsoon (EAM) system encompassing a

winter monsoon season with strong winds and a summer

monsoon season with particularly high precipitation.

We generate RecurrenceNetwork objects and

compute the measures determinism DET (Recurrence
Network.determinism) and transitivity T (Recurrence
Network.transitivity) for sliding windows of length

410 ka (containing a varying number of data points due to

the time series’ irregular sampling) and a step size of

20 ka (Fig. 16(b)). For reconstructing the phase space by

time-delay embedding,129 we select an embedding dimen-

sion of 6 (as suggested by the false nearest neighbors crite-

rion142). The selection of the time-delay parameter is guided

by the auto-correlation function. As a result, it is approxi-

mated as 20 ka for all time windows based on the median

sampling time within each window. The recurrence thresh-

old is chosen to preserve a prescribed recurrence rate of

7.5%.122,136

During the past 3 Ma, several major and many smaller

climate changes occurred on regional, but also global scales.

Particularly pronounced climate shifts have been related to

Milankovich cycles143–145 and major changes in ocean circu-

lation patterns.146 Following a transition towards obliquity-

driven climate variability with a 41 ka period around 3.0 Ma

BP (before present), a long period of globally warm climate

ended and Northern hemisphere glaciations started after

2.8–2.7 Ma BP.138,143,145 This transition is revealed by a sig-

nificant increase of DET and T between 2.8 and 2.2 Ma sig-

nifying an increased regularity of SST dynamics during this

period. From the detailed studies of loess sediments, it is

known that around 1.25 Ma BP, the intensity of the EAM

winter monsoon season started to be strongly coupled to

global ice-volume change.145 Around this time also marking

the beginning of a transition phase towards glacial-

interglacial cycles of 100 ka period (eccentricity-dominated

period of the Milankovich cycles), DET and T increase

markedly again. Dominance of the 100 ka period was well

established after 0.6 Ma and is clearly indicated by increased

DET and T values between 0.6 and 0.2 Ma BP.147 It is also

known from loess sediments that the EAM summer monsoon

weakened between 2.0 and 1.5 Ma BP and around 0.7 Ma

BP. During these periods, DET and T assume lower values

and, hence, more irregular SST variability, than during the

previously discussed epochs.

In this way, recurrence analysis by means of the meas-

ures DET and T confirms earlier findings of strong links

between the EAM and Milankovich cycles. Furthermore, the

analysis of recurrence properties allows for deeper insights,

such as that dominant Milankovich cycles and periods of

major climate transitions from one to another regime go

along with increased and reduced regularity in the (regional)

climate dynamics in the East Asian Monsoon system (as

FIG. 16. Studying dynamical transitions in paleoclimate data using recur-

rence analysis: (a) Alkenone paleothermometry based SST estimates for the

South China Sea and (b) corresponding sliding-window determinism DET

and transitivity T .
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reflected by the South China Sea SST and for the considered

time scales).

B. Visibility graphs

Visibility graph (VG) methods represent an alternative

approach for transforming time series into complex net-

works,28 which draws upon analogies between height pro-

files in physical space and the profile of a time series graph.

Originally utilized in fields like architecture and robot

motion planning, VGs are based on the existence or non-

existence of lines of sight between well-defined objects.

1. Visibility graphs from time series: Theory

In a time series context, the nodes of a VG are the sam-

pling points of a (univariate) time series, which are uniquely

characterized by pairs (tv, xv) with xv¼ x(tv). From a practical

perspective, we can identify each node v of a standard visi-
bility graph with a given time point tv. For tv< tp (and,

hence, v< p), a link between the nodes v and p exists iff

xq < xv þ
xp � xv

tp � tv
tq � tvð Þ 8 v < q < p: (24)

Put differently, the topological properties of VGs are closely

related to the roughness of the underlying time series profile.

As a notable algorithmic variant, horizontal visibility
graphs (HVGs) facilitate analytical investigations of the

graph profile.148 In this case, Eq. (24) is replaced by the sim-

pler condition

xq < minfxv; xpg 8 v < q < p: (25)

One easily convinces oneself that the latter condition is more

restrictive, and that the link set of a HVG is a subset of that

of the standard VG. In turn, the classical VG is invariant

under arbitrary affine transformations of a time series,

whereas the HVG retains this invariance only for uniform

translations and rescaling of the original data.

In pyunicorn, VGs and HVGs can be generated from any

time series via the timeseries.VisibilityGraph class.

The decision on which of the two variants is used is medi-

ated via the Boolean parameter horizontal, which can be

set to False (standard VG, default value) or True (HVG).

Additional information on the timings of individual observa-

tions as well as missing values can be provided via supple-

mentary optional parameters.

The distinctively different construction mechanism of

(H)VGs in comparison to recurrence networks (Sec. IV A 2)

implies a completely different interpretation of the resulting

networks. First, recurrence networks are equally applicable

to uni- and multivariate time series, whereas VGs are tai-

lored for applications to univariate records. So far, there is

no way to unambiguously generalize the VG concept to bi-

or multivariate time series.

Second, both types of time series networks are spatial

networks (Sec. II B) in an abstract sense—recurrence net-

works’ nodes being characterized by the positions of the

associated state vectors in the dynamical system’s phase

space, and those of VGs being fixed along the time axis

representing some abstract one-dimensional space. This fact

implies strong restrictions to the resulting graph properties,29

including potentially severe biases of (especially path-based)

network properties due to the absence of information prior

to the first, as well as after the last sampling point of the

time series. To this end, simplified functionalities correcting

for such effects have been implemented for the case of

degree and closeness centrality measures (boundary_
corrected_degree and boundary_corrected_
closeness, respectively). An improved treatment is

planned for future releases of pyunicorn, but still requires

further analytical understanding of the VG properties.

Third, while power-law degree distributions of recur-

rence networks are related with specific singularities of the

probability density of states,149 they are a widely observable

feature of VGs that arises from the presence of long-range

correlations.121,150 Specifically, under the assumption of a

fractional Brownian motion or related stochastic processes,

the characteristic scaling exponent of the degree distribution

of a VG can be directly related with the Hurst exponent of

the series, whereas there are no similar unique relationships

for recurrence networks.149 However, given the multiplicity

of existing estimators of the latter quantity, the practical

advantage of using VGs and HVGs for this purpose has not

yet been convincingly demonstrated.

Finally, given the direct association between nodes and

time points, VGs and HVGs provide a means to discrimi-

nate the statistical properties of a graph when looking

forward and backward in time, respectively, from a given

observation point. This gives birth to a new class of time

series irreversibility tests,30,151 which allow to evaluate

the null hypothesis of linearity since irreversibility is a

common hallmark of nonlinear dynamics.152 Specifically,

local (node-wise) graph properties can be decomposed into

contributions from either past or future observations

(retarded (backward) vs. advanced (forward)), as well as

such combining information from past and future (trans).

Corresponding features are implemented in pyunicorn
for a variety of network properties, including degree

(retarded_degree vs. advanced_degree), local

clustering coefficient (retarded/advanced_local_
clustering), closeness (retarded/advanced_
closeness), and betweenness (retarded/advanced/
trans_betweenness).

2. Use case: Time irreversibility in glacial-deglacial
dynamics

VG-based tests for time series irreversibility have been

successfully applied to discriminate between different dy-

namical regimes in EEG recordings from healthy and epilep-

tic patients.30 It is instructive to also apply this methodology

to study regime shifts in paleoclimate dynamics,154 particu-

larly for investigating in depth the important differences

between interglacial and glacial climate variability and the

nature of the transitions between those regimes.91 As an

example, we study the 2 m resolution d18O isotope record

from the GISP2 ice core from Greenland153 covering both

the Holocene and the last glacial period (Fig. 17). The
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boundary between the last glacial and the Holocene is

defined by the Younger Dryas-Preboreal transition at about

11.65 ka BP.153

We apply the test for time irreversibility proposed in

Ref. 30, which is based on comparing the distributions of

time-directed degree (VisibilityGraph.retarded/
advanced_degree)

kr
v ¼

X
p2V:p<v

Avp; (26)

ka
v ¼

X
p2V:p>v

Avp (27)

and time-directed local clustering coefficient (Visibility
Graph.retarded/advanced_local_clustering)

Cr
v ¼

kr
v

2

 !�1 X
p;q2V:p;q<v

AvpApqAqv; (28)

Ca
v ¼

ka
v

2

 !�1 X
p;q2V:p;q>v

AvpApqAqv; (29)

using the Kolmogorov-Smirnov test. To ensure the robust-

ness of the results, a k-leave-out cross-validation is con-

ducted by generating ensembles of 100 realizations for each

record by bootstrapping 80% of the data points without

changing their time ordering and, subsequently, performing

the test for each ensemble member. Following this protocol

for the Holocene and the last glacial period time series seg-

ments separately, we find that the null hypothesis of revers-

ibility can be quite safely rejected for the last glacial,

whereas this is not the case for the Holocene (Table II).

Since the conditions for the deposition of ice and snow at the

drilling site are argued to have remained more or less con-

stant throughout the entire time span covered by the record,

these results point at a strong signature of nonlinear climate

dynamics during the last glacial, which is not detected for

the Holocene, consistently with results for Holocene speleo-

them records.91 One visually directly accessible piece of

evidence for the indicated irreversible dynamics during the

last glacial period are the frequently occurring Dansgaard-

Oeschger events that are characterized by rapid warming

(change towards more positive d18O values) and subsequent

slower cooling (change towards more negative d18O values)

of Greenland climate (Fig. 17). Note that the sampling times

increase with age for the GISP2 as for all ice core proxy

records (in GISP2, the average sampling time is 14.2 6 6.3 a

for the Holocene, while it is 175.8 6 119.6 a during the last

glacial period), because the ice column is compressed by ice

and snow deposited on top of it over the years. It remains to

be tested in future research whether this nonstationarity in

the sampling has a strong impact on the results of the VG

test for time irreversibility.

V. SURROGATE TIME SERIES

As mentioned in several contexts above and analogously

to random network models (see, e.g., Sec. II B on random

surrogate models for spatial networks and Sec. II C on surro-

gate models for networks of networks), surrogate time series
are a useful methodology for testing the statistical signifi-

cance of observed time series properties such as those

derived from functional networks or network-based time se-

ries analysis based on various null hypotheses.155 The idea

behind this approach is to generate surrogate time series that

conserve certain properties of observed time series such as

the amplitude distribution or auto-correlation function, but

are random otherwise. pyunicorn can be used to generate

several commonly used types of time series surrogates

(timeseries.Surrogates class): white noise surro-
gates, Fourier surrogates, amplitude adjusted Fourier trans-
form surrogates,155 or twin surrogates.156 White noise

surrogates correspond to randomly shuffled copies of a time

series x(t) and, hence, retain only the amplitude distribution

of the original data (Surrogates.white_noise_
surrogates). In contrast, Fourier surrogates are generated

by randomizing the phase components of x(t) in Fourier

space and conserve the time series’ power spectrum (and

thus also its linear auto-correlation function via the Wiener-

Khintchine theorem), but not the amplitude distribution

(Surrogates.correlated_noise_surrogates).

This potential drawback is addressed by amplitude adjusted

FIG. 17. Visibility graph of the GISP2

ice core d18O record (2 m resolution)

from Greenland during the last gla-

cial.153 Black dots indicate observa-

tions (nodes). Links are added between

mutually visible observations (gray

lines).

TABLE II. Results of the visibility graph-based tests for time irreversibility

of the GISP2 ice core d18O record from Greenland.153 The number of data

points in each time series segment is denoted by M, while qk and qC give the

rate of rejection for the null hypothesis of time reversibility (at a 95% signif-

icance level) during a k-leave-out cross-validation for degree and clustering-

based tests, respectively.

Period Time span (ka BP) M qk qC

Last glacial 110.98–11.65 566 0.93 0.82

Holocene 11.65–today 824 0.00 0.00
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Fourier transform (AAFT) surrogates that only approximate

the power spectrum but conserve the amplitude distribution

(Surrogates.AAFT_surrogates). An even closer

match is provided by iteratively refined AAFT surrogates

(Surrogates.refined_AAFT_surrogates). Finally,

twin surrogates approximate the recurrence structure of the

original time series and, hence, have the potential to addi-

tionally conserve certain nonlinear properties of x(t) such as

the auto-mutual information function (Surrogates.
twin_surrogates). Note that the surrogate types sup-

ported by pyunicorn only conserve certain properties of

single time series, whereas multivariate surrogate methods155

conserving properties of pairs of time series such as the lin-

ear cross-correlation function are currently not implemented.

When computing functional networks, surrogate time

series can be used to include links in the network based on a

fixed significance level instead of a fixed threshold or link

density in terms of the considered similarity measure from

coupling analysis (see, e.g., Ref. 157). In network-based

time series analysis, surrogate time series provide a means to

test the statistical significance of results obtained for the data

at hand based on a hierarchy of null hypotheses, for example,

when searching for dynamical transitions and regime

shifts134,136 or when studying the directionality of coupling

or synchronization between time series.63,133

VI. CONCLUSIONS AND PERSPECTIVES

In this article, we have described the pyunicorn soft-

ware package, which facilitates the study of various types of

complex networks as well as a detailed investigation of time

series data using modern methods of functional network and

network-based nonlinear time series analysis. pyunicorn
is written in the programming language Python and, hence,

is conveniently applicable to research domains in science

and society as different as neuroscience, infrastructure, and

climatology. Most computationally demanding algorithms

are implemented in fast compiled languages on sparse data

structures, allowing the performant analysis of large net-

works and time series data sets. The software’s modular and

object-oriented architecture enables the flexible and parsimo-

nious combination of data structures, methods, and algo-

rithms from different fields. For example, combining

complex network theory (core.Network class) and

recurrence plots (timeseries.RecurrencePlot class)

yields recurrence network analysis (timeseries.
RecurrenceNetwork class), a versatile framework that

opens new perspectives for nonlinear time series analysis

and the study of complex dynamical systems in phase space.

Another example is climate networks (climate.Climate
Network class), an approach bringing together ideas and

concepts from complex network theory and classical eigen

analysis of climatological data (e.g., empirical orthogonal

function analysis).20

Along these lines, pyunicorn has the potential to

facilitate future methodological developments in the fields of

network theory, time series analysis, and complex systems

science by synthesizing existing elements and by adding new

methods and classes that interact with or build upon

preexisting ones. Nonetheless, we urge users of the software

to ensure that such developments are theoretically well-

founded and explicable as well as motivated by well-posed

and relevant research questions to produce high-quality

research.
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