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Climate network stability measures of El Ni~no variability
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One of the crucial aspects that is currently limiting the success of El Ni~no predictions is the

stability of the slowly varying Pacific climate state. This property determines whether or not sea

surface temperature perturbations will be amplified by coupled ocean-atmosphere feedbacks. The

so-called Bjerknes stability index has been developed for this purpose, but its evaluation is severely

constrained by data availability. Here, we present new network based measures of the stability of

the Pacific climate state. These measures can be evaluated by using only sea surface temperature

data and efficiently indicate whether positive feedbacks of perturbations to the climate state will

occur. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971784]

The El Ni~no phenomenon is a key mode of variability in

the Earth System. One of the crucial aspects in predic-

tions of El Ni~no variability is the stability of the Pacific

climate state. Here, we develop and explore the perfor-

mance of new network based measures monitoring this

stability property. The great advantage of the measures

is that they are easily computed using only sea surface

temperature data.

I. INTRODUCTION

The El Ni~no-Southern Oscillation (ENSO) in the equa-

torial Pacific Ocean is the most pronounced mode of interan-

nual climate variability involving coupled ocean-atmosphere

processes. The observed development of the equatorial

Pacific sea surface temperature (SST) during the years

2014–2015 has highlighted the challenges in predicting

strong El Ni~no events at lead times beyond six months.

The eastern Pacific equatorial upper ocean heat content

anomalies were very large during March–May 2014, and

models predicted strong El Ni~no conditions by the end of

2014 (http://www.cpc.ncep.noaa.gov/). However, the atmo-

spheric response to the associated SST anomalies did not

involve any strong feedback. As a consequence, equatorial

Pacific SST anomalies remained relatively small in

December 2014. The peak of the NINO3.4 index (the area-

averaged SST anomalies over the region 120�W–170�W
� 5�S–5 �N) in December 2014 even did not exceed 1.0 �C.

Early in 2015, warming conditions appeared near the date-

line leading to weak El Ni~no conditions. In March 2015, the

models predicted that the NINO3.4 index would not exceed

1.0 �C by the end of 2015. By mid-May, this model estimate

had increased to 1.5 �C, but in reality, the NINO3.4 index

even exceeded 3.0 �C at the end of November 2015 associ-

ated with one of the strongest events ever measured.1

After more than thirty years of active research and with

a good understanding of the basic ENSO processes since the

1990s, the prediction skill (with a lead time of 6 months or

more) of the models in 2014–2015 appears disappointing.

Since ENSO has large effects on the regional weather in

large parts of the world with severe impacts on nature and

society, it is important to understand the factors influencing

this prediction skill.

Much of the theory of ENSO was elucidated using the

Zebiak and Cane (ZC) model,2 which is thought to capture

the basic processes of ENSO development. Many studies

using this model have led to the recharge-discharge oscillator

view of ENSO, where positive Bjerknes feedbacks are

responsible for the amplification of SST anomalies and

ocean adjustment provides a negative delayed feedback.3,4

The strength of these feedbacks is measured by a coupling

strength, here indicated by l, which is proportional to the

change in wind stress due to a change in SST.

In the ZC model, the (steady or seasonal) background

Pacific climate, e.g., provided by observations, becomes

unstable when the strength of the coupled processes exceeds

a critical value. The critical boundary l ¼ lc is, in dynami-

cal systems theory language, a Hopf bifurcation (steady

background state) or a Neimark-Sacker bifurcation (seasonal

background state). When l > lc, the oscillatory motion devel-

ops spontaneously5,6 and the spatial pattern of the resulting var-

iability is usually referred to as the ENSO mode. The critical

boundaries lc have been explicitly calculated for ZC-type mod-

els7,8 and shown to involve the same oscillatory ENSO mode

for both annual mean and seasonal background states.

When conditions are such that l < lc, the ENSO mode

is damped and can only be excited by noise.9,10 This noise is

a representation of unresolved processes, such as westerly

wind bursts in the central Pacific.11 While these processes

may actually depend on the large scale SST patterns of the

Pacific12 and hence the noise may be state dependent, many

of the studies with ZC-type models have focussed on addi-

tive noise in the wind-stress field.13 The coupled ocean-

atmosphere behavior described in these studies qualitatively

resembles that of a stochastic Hopf bifurcation, where the

ENSO variability is dependent on the noise amplitude below

criticality. Hence, although the noise driven and sustained

ENSO variability views are sometimes considered to be twoa)Electronic mail: Q.Feng@uu.nl
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different ENSO mechanisms, both are easily reconcilable:14

it just depends on whether the background climate is stable

(l < lc) or unstable (l > lc).

A complication arises because both the background state

and the growth/decay of the ENSO mode are controlled by

similar coupled processes.8 In addition, the background cli-

mate is also affected by processes outside of the Pacific basin

such as those at midlatitudes and in the equatorial Indian

Ocean and Atlantic Ocean.15 Together with slow changes in

the external radiative forcing, the background state has a

strong non-stationary component on decadal-to-interdecadal

time scales. Hence, in more realistic Global Climate Models,

such as those used in the CMIP5 project,16 the critical

boundary separating stable and unstable background states is

not easy to identify.

A measure used to quantify the stability of the Pacific

climate is the Bjerknes stability (BJ) index,16–18 which is

based on the recharge-discharge oscillator framework.19

However, the calculation of the BJ index requires a compre-

hensive dataset of the mean ocean currents, the mean ocean

upwelling, and the zonal and vertical gradients of the mean

upper ocean temperature. Moreover, determining the linear

correlations between variables in the BJ index formulation

requires relatively long time series. Thus, the BJ index can-

not be used in cases when only SST observations (such as in

the period before the TAO/TRITON array) are available or

when observational time series are relatively short. Because

SST is the crucial quantity connecting atmosphere and ocean

dynamics, this field should contain enough information to

determine the stability of the Pacific climate.

Diagnosing the stability of the Pacific climate is key to

improve the skill in future ENSO predictions,20–22 and a

more practical measure (than the BJ index) of the stability of

the background state based on only SST data is urgently

needed. In this paper, we develop new measures of the stabil-

ity of the Pacific climate. We build on the success of Climate

Network (CN) approaches to efficiently monitor changes in

spatial correlations of the atmospheric surface tempera-

ture.23–26 The central two elements of this approach are CN

reconstruction and subsequent CN analysis.27,28 Efficient

software packages, such as Pyunicorn29 and Par@graph,30

are now available for this task. Network approaches have

been used for studying past ENSO behavior,31 to develop

improved methods for ENSO prediction32 and to analyse

projected changes in ENSO over the next century.33

Our strategy is to use the ZC model as a reference model

because the stability boundary lc (and the BJ index) can be

determined precisely for this model. In Section II, the recon-

struction methods of two different types of climate networks,

correlation and recurrence networks, and the network mea-

sures used are described. These measures are applied in

Section III to the output of the ZC model to test their perfor-

mance and subsequently applied to observations. A summary

and discussion of the results concludes the paper (Section IV).

II. MODEL, DATA, AND NETWORK METHODS

In this section, we briefly describe the main elements of

the Zebiak-Cane model, the observational and CMIP5 model

data which we analysed, and the methods of network recon-

struction and analysis used.

A. The Zebiak and Cane model

This model is a representation of the coupled ocean-

atmosphere flow on the equatorial b-plane in the Pacific with

planetary vorticity gradient b0. The ocean is bounded by

meridional walls at the west (x¼ 0) and the east (x¼ L)

coast. The ocean component of the model consists of a well-

mixed surface layer of mean depth H1 embedded in a

shallow water layer of mean depth H ¼ H1 þ H2 having a

constant density q. Only long wave motions are considered

and the deep ocean (having a constant density qþ Dq) is

assumed to be at rest.

We here provide only the main equations and a brief

description; details of the model formulation can be found in

Zebiak and Cane.2 The equations for the shallow-water layer

flow are2,34

@u

@t
þ amu� b0yvþ g0

@h

@x
¼ sx

qH
; (1a)

b0yuþ g0
@h

@y
¼ 0; (1b)

@h

@t
þ amhþ c2

0

@u

@x
þ @v
@y

� �
¼ 0; (1c)

where u and v are the horizontal velocities and h is the thick-

ness of the layer. In these equations, sx is the zonal wind

stress, g0 ¼ gDq=q is the reduced gravity, c0 ¼
ffiffiffiffiffiffiffiffi
g0H
p

is the

phase speed of the first oceanic baroclinic Kelvin mode, and

am is a linear damping coefficient. The boundary conditions

at the zonal boundaries areð1
�1

uð0; y; tÞ dy ¼ 0; uðL; y; tÞ ¼ 0; (2)

and all variables are bounded in the meridional (y) direction.

The equations for the surface layer velocities ðus; vsÞ are

asus � b0yvs ¼
H2

H

sx

qH1

; (3a)

asvs � b0yus ¼ 0; (3b)

where as is a linear damping coefficient.

The evolution of the sea surface temperature T is

described by

@T

@t
þ aT T � T0ð Þ þ w1

H1

H w1ð Þ T � Ts hð Þð Þ

þ u1

@T

@x
þ v1

@T

@y
¼ 0; (4)

where aT is a linear damping coefficient, u1 ¼ us þ u; v1

¼ vs þ v and w1 ¼ ws þ w; H are the Heaviside functions,

and T0 is the radiation equilibrium temperature. The subsur-

face temperature Ts depends on the vertical temperature dis-

tribution and hence on the thermocline depth h according to
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Ts hð Þ ¼ Ts0 þ T0 � Ts0ð Þtanh
hþ h0

Ĥ

� �
; (5)

where h0 and Ĥ represent control parameters for the steep-

ness and the offset of the Ts profile, and Ts0 is the characteris-

tic temperature being upwelled into the surface layer.

The ocean model is coupled to a Gill atmosphere

model35 with zonal and meridional velocities ðua; vaÞ, geopo-

tential height /, and a linear damping coefficient Am. The

atmosphere is driven by heat fluxes from the ocean that

depend linearly on the anomalies of sea surface temperature

T with respect to the radiation equilibrium temperature T0,

with proportionality constant aT. The governing equations of

the atmosphere model are

@ua

@t
þ Amua � b0yva �

@/
@x
¼ 0; (6a)

@va

@t
þ Amva þ b0yua �

@/
@y
¼ 0; (6b)

@/
@t
þ Am/� c2

a

@ua

@x
þ @va

@y

� �
¼ aT T � T0ð Þ; (6c)

where ca is the phase speed of the atmospheric Kelvin wave.

The zonal wind stress sx is decomposed into an external

and a coupled contribution8

sx ¼ sx
ext þ sx

c: (7)

The coupled part of the wind stress is assumed to be propor-

tional to the zonal wind field ua, i.e., sx
c ¼ qHcsua, with cs a

constant coefficient. The external wind stress sx
ext does not

depend on the coupled feedbacks within the basin and can be

thought of to represent the easterly stress component due the

Hadley circulation and it is assumed constant in the zonal

direction.36 In the meridional direction, the external wind

stress is assumed to be symmetric with respect to the equa-

tor, having the form8

sx
ext ¼ �s0e

�1
2

y
Lað Þ

2
� �

; (8)

where s0 is a typical amplitude of the external wind stress

and La is the atmospheric Rossby deformation radius.

In order to obtain the proper climatology of the present-

day Pacific together with realistic ENSO variability, the stan-

dard parameter values as in Table I are used. The coupling

parameter l0 is a dimensionless product of the dimensional

parameters and is given by

l0 ¼ l
aTcsDTL2

c2
oc2

a

; (9)

where DT is a typical SST difference over the basin, here

taken as DT ¼ 1 �C. The dimensionless parameter l is used

below to control the strength of the coupling.

To solve the model equations numerically, variables are

expanded into spectral basis functions, with Chebychev pol-

ynomials in the zonal direction and Hermite functions in the

meridional direction.8 The solutions are then obtained by a

collocation method with the Nx collocation point in the zonal

direction and Ny in the meridional direction. All results in

Section III A were computed using Nx¼ 30 and Ny¼ 31

which gives sufficiently accurate solutions.8

B. Observational and CMIP5 model data

For the observational data, we used the Hadley Centre

Sea Ice and Sea Surface Temperature (HadISST) dataset37

over the period December 1951–November 2015. The data

were interpolated on a 31� 30 grid within the domain (140
�E, 280 �E)� (20 �S, 20 �N).

The CMIP5 (5th Coupled Model Intercomparison Project)

is an internationally coordinated activity to perform climate

model simulations for a common set of experiments across all

the world’s major climate modelling centres.38 In this paper,

we use data of historical and Representative Concentration

Pathway (RCP) scenario simulations, as discussed in Kim

et al.,16 from five different CMIP5 models: Coupled Physical

Model version 3 (GFDL-CM3) and the Earth System Model

(GFDL-ESM2M) provided by the Geophysical Fluid

Dynamics Laboratory, ModelE/Russell coupled atmosphere-

ocean model (GISS-E2-R) by the NASA Goddard Institute for

Space Studies, Norwegian Earth System Model (NorESM1-

ME) by the Norwegian Climate Centre, and the Community

Earth System Model version 4 (CCSM4) by the National

Center for Atmospheric Research.

C. Climate network reconstruction and analysis

Climate scientists have been long interested in studying

the statistical correlation between climatological variables

for gaining a good understanding of the large-scale dynamics

of the climate system.39 By investigating the correlation

structures of global or regional fields of observables, such as

surface air temperature, pressure, or geopotential height, a

better view on spatial as well as temporal patterns accounting

for a large fraction of the fields’ variance could be given. A

correlation Climate Network (CN) based on statistical corre-

lation offers a complementary analysis by applying the mea-

sures and techniques of complex network theory to the study

of climate dynamics.40,41 There are generally three steps of

this methodology: first, create a network from gridded

climate data; then, build links from correlations of the time

series; next, investigate the dynamics of the climate system

through the properties of the network.

There are many measures for quantifying the correla-

tions between two time series. For example, in a Pearson

TABLE I. Values of dimensional parameters used in the ZC model.

L¼ 1:5� 107 (m) c0¼ 2 (m/s)

ca¼ 30 (m/s) H¼ 200 (m)

H1¼ 50 (m) H2¼ 150 (m)

T0¼ 0.01 [Pa] Ts0 ¼ 23.0 (�C)

am¼ 1:3� 10�8 (s�1) T0¼ 30.0 (�C)

as¼ 5:0� 10�6 (s�1) Ĥ ¼ 40 (m)

aT¼ 9:25� 10�8 (s�1) h0¼ 20 (m)

Am¼ 2:5� 10�6 (s�1) b0¼ 2:2� 10�11 (ms)�1

g0 ¼ 0.02 (ms�2) La¼ 1:5� 106 (m)

aT¼ 5:4� 10�3 (m2 s�3 K�1) cs ¼ 6:5� 10�6 (s�1)
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Correlation Climate Network (PCCN), the Pearson correla-

tion is used to quantify the correlations of time series,

whereas in a Mutual Information Climate Network (MICN),

the mutual information is used;42 in this paper, we only use

PCCNs. Suppose that the observables like SST, either from

observations or model simulations, are gathered at N grid

points. In this way, the data can be described by an n�N
matrix F, in which each column vector pi ¼ ðpiðt1Þ;…;
piðtnÞÞT at a grid point (i ¼ 1;…;N) contains a time series of

length n. To reconstruct a PCCN, the linear Pearson correla-

tion coefficient is used to determine the correlation between

the time series of observables at two grid points i and j. The

elements RC
ij of the correlation matrix RC are given by

RC
ij ¼

Pn
k¼1

pi tkð Þpj tkð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

p2
i tkð Þ

� � Pn
k¼1

p2
j tkð Þ

� �s : (10)

Each grid point is seen as a node in a network, and the

link between a pair of nodes (i, j) is determined by RC
ij . In a

PCCN, two nodes i and j have an unweighted link if the

absolute value of their correlation coefficient RC
ij is above a

certain threshold value �C, which gives a statistical signifi-

cance above the 95% level. All links are then represented in

the N�N adjacency matrix AC, which can be determined

from the correlation matrix RC using

AC
ij ¼ HðjRC

ij j � �CÞ � dij; (11)

where dij is the Kronecker delta introduced to avoid self-

loops in the network and H is the Heaviside function.

By reconstructing a PCCN, the (linear) correlation struc-

ture of climate observables is mapped into a graph. The

underlying dynamics of the climate system can be analysed

through network properties (see e.g., Table 4.2 in Donges

(2013)41). For example, a measure of the connectivity of a

node i in a graph with adjacency matrix A is given by the

degree di, with

di ¼
XN

j¼1

Aij: (12)

When a node has a high degree it means that it is con-

nected to a larger amount of other nodes in the network; a

low degree node is “isolated” in the network.

Recurrence is a fundamental property of a dynamical

system’s phase space, and recurrence properties can be easily

visualized by the so-called recurrence plots obtained from a

single scalar property of a trajectory of a dynamical sys-

tem.43,44 The recurrence plot based techniques are very use-

ful for the analysis of short and non-stationary data45 and

have been used to detect climate transitions.46

Suppose the time series of an observable, for example,

the NINO3.4 index, is represented by x(t). One then uses an

m-dimensional time delay embedding of x(t) with delay s to

generate the m� dimensional trajectory47 xðmÞðtkÞ ¼ ðxðtkÞ;
xðtk þ sÞ; :::; xðtk þ ðm� 1ÞsÞÞ; k ¼ 1; :::;N: The binary

recurrence matrix RR is then defined through

RR
ij ¼ Hð�R � jjxðtiÞ � xðtjÞjjÞ; (13)

where H is the Heaviside function, jj � jj denotes a suitable

norm in the embedded phase space, and �R is a recurrence

threshold. Like the adjacency matrix (Eq. (11)) which is the

basis of complex network analysis, the binary recurrence

matrix (Eq. (13)) is also square, binary, and symmetric. This

striking similarity has led to the definition of a recurrence

network45,47 which has an adjacency matrix

AR
ij ¼ RR

ij � dij: (14)

In the context of climate studies, such networks are

referred to as Recurrence Climate Networks (RCNs).

The nodes in an RCN represent state vectors, and the

links indicate the proximity relationship between them. Due

to the natural interpretation of nodes and links, many topo-

logical characteristics of an RCN closely capture the funda-

mental phase space properties of the climate system.47 A

measure for the density of recurrence points in an RCN is

the recurrence rate (qR) given by

qR ¼
1

N2

XN

i;j¼1

AR
ij : (15)

Many network properties of recurrence networks (skewness,

kurtosis, etc.) have been used to analyse time series.48 Here,

we use a measure for the continuity of phase space density in

an RCN, i.e., the assortativity aR, showing the preference for

the nodes to attach to others that are similar in degree. The

assortativity can be quantified by the Pearson correlation

coefficient of the degree between pairs of linked nodes,49

i.e.,

aR ¼

1

l

X
j>i

didjAi;j �
1

l

X
j>i

1

2
di þ djð ÞAi;j

" #2

1

l

X
j>i

1

2
d2

i þ d2
j

� �
Ai;j �

1

l

X
j>i

1

2
di þ djð ÞAi;j

" #2
; (16)

where l is the total number of links in the RCN. It turns out

(see Section III) that the different ENSO behavior can be

most efficiently distinguished in the two-dimensional plane

spanned by the assortativity (rather than using the skewness)

and the recurrence rate.

III. RESULTS

We will first consider the network measures for the

Zebiak-Cane model (Section III A) and then apply them to

observations and CMIP5 data (Section III B).

A. The ZC model

In the deterministic ZC model, with the parameters as in

Table I, a Hopf bifurcation occurs at l ¼ lc ¼ 3:0. When

the coupling strength is smaller than lc, for example,

l ¼ 2:7, the system is in the subcritical regime where it

exhibits a damped ENSO oscillation when no noise is
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present. This is shown in the behavior of the NINO3.4 index

(red curve) in Fig. 1(a). When the coupling strength is

increased to just above the critical value (l ¼ 3:02 > lc),

the system will enter the supercritical regime where the

NINO3.4 index displays an interannual oscillation (red curve

in Fig. 1(c)) and the spectrum shows a peak at about 4 years

(red curve in Fig. 1(d)).

Next, an additive red noise product is used for the zonal

wind-stress forcing.13 The extended reconstructed sea sur-

face temperature (ERSST) over the Pacific Ocean for the

period of 1978–200450 and the Florida State University

pseudo-wind-stress data for the same period51 are used to

calculate the residual of the wind stress. The zonal wind

stress anomalies that are linearly related to NINO3.4 anoma-

lies are subtracted from the zonal wind-stress anomalies. The

resulting residual is decomposed into its empirical orthogo-

nal functions (EOFs), and the first and second EOFs and their

principal components (PCs) are shown in Fig. 2. The first

EOF (Fig. 2(a)) represents the residual zonal wind response

in the eastern Pacific. The second EOF (Fig. 2(b)) captures

the pattern of westerly wind bursts which are generally

located west of the date line.11 For example, the second PC

(PC2) shows (Fig. 2(d)) a strong westerly wind event in

March 1997, in agreement with other analyses.11,52

The stochastic component of the zonal wind-stress forc-

ing sx
n can then be written as

sx
nðx; yÞ ¼ a1E1ðx; yÞ þ a2E2ðx; yÞ; (17)

where the Ei; i ¼ 1; 2 are the patterns of the first and second

EOF and the ai are determined from the fit of an autoregres-

sive model (AR1) xi;t to the PCi time series using

xi;tþ1 ¼ aixi;t þ ri�i;t: (18)

Here, each ai is the lag-1 autocorrelation of PCi, and the term

ri�i;t represents white noise with a variance ri. This stochas-

tic component is added to the deterministic zonal wind stress

(Eq. (8)), and the response of the ZC model is shown as the

black curves in Figs. 1(a) and 1(b) (subcritical) and 1(c) and

1(d) (supercritical). In the subcritical regime, the red noise

forcing is necessary to excite the ENSO variability, while in

the supercritical regime, the red noise forcing simply causes

FIG. 1. The response of the Zebiak and Cane (ZC) model. Red curves are for the deterministic model, and black curves are for the stochastic model with red

noise wind-stress forcing. (a) The NINO3.4 index at a coupling strength l ¼ 2:7, and (b) the amplitude spectrum for (a), (c) same as (a) but at l ¼ 3:02, and

(d) the amplitude spectrum for (c).
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a higher amplitude of ENSO variability; these results are

similar to those provided by Roulston and Neelin.13

Next, the ZC-model output of 11 simulations, 540

months (45 years) each, at different values of the coupling

strength l (2.70, 2.80, 2.90, 2.95, 2.98, 3.00, 3.02, 3.10,

3.15, 3.25, and 3.40) was generated. The PCCNs recon-

structed for each value of l have 30 (longitude)� 31 (lat-

itude)¼ 930 nodes within the domain (140 �E, 280 �E)� (20
�S, 20 �N). Here, the threshold value �C ¼ 0:5 was used

which guarantees that the links in the PCCN are based on

significant (p< 0.05) correlations. The degree fields of the

PCCNs reconstructed for four values of l are shown in Figs.

3(a)–3(d). When the coupling strength l is increased from

the subcritical l < lc to the supercritical regime l > lc,

more nodes in the region between 220 �E and 280 �E get a

higher degree. When the critical boundary lc is approached,

the spatial pattern of the anomalies is perhaps more reminis-

cent of the ENSO mode, leading to large-scale coherence

which is efficiently captured by the network degree field.

Another distinct change of the degree fields (Figs. 3(a)–3(d))

is that the patterns of equatorially symmetric Rossby waves

are becoming more prominent when the background state

enters the supercritical regime.

Histograms of the degree fields (the degree distribu-

tions) for two different values of l are plotted in Figs. 4(a)

and 4(b). For l ¼ 2:7 < lc (Fig. 4(a)), the degree distribu-

tion is bimodal, where the first peak represents the low

degree nodes in Fig. 3(a) and the second peak (located near a

degree of 250) represents the high degree nodes. When l is

increased (Fig. 4(b)), a peak at a degree of 400 occurs repre-

senting the higher degree nodes in Fig. 3(c), because the

ENSO mode becomes more dominant in the SST anomalies

when the background climate moves into the supercritical

regime.53,54

The changes in the degree distributions with l can be

effectively measured by the skewness of the degree distribu-

tion Sd. When the mass of the distribution is concentrated

more to the right like in Fig. 4(b), this results in a lower

skewness value. Hence, Sd is monotonically decreasing with

increasing l, as shown as the blue curve in Fig. 4(c). There

is also a good correlation between Sd and the variance of the

NINO3.4 index (VarNINO3:4, green curve) as shown in Fig.

FIG. 2. (a) The first empirical orthogonal function (EOF) of the zonal wind-stress residual, accounting 11.9% of the variance. (b) The same as (a) but the sec-

ond EOF, accounting for 11.6% of the variance. (c) The first principal component (PC1) of the wind stress residual. (d) The same as (c) but the second princi-

pal component (PC2).
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4(c). Note, however, that at high values of Sd (stable

climate, l < lc), the amplitude of NINO3.4 depends on the

noise.

For these ZC-model results, the BJ index was also com-

puted in a way as described in supplementary material. The

BJ index (the black curve in Fig. 4(d)) is monotonously

increasing with increasing l and crosses the zero line at

about l ¼ 3:1 which is close to lc. This indicates that the BJ

index reasonably (but not perfectly) monitors the stability of

the background state.19 The values of different terms in the

BJ index (also shown in Fig. 4(d)) indicate that the thermo-

cline feedback is dominant (cf. supplementary material) in

destabilizing the background state. It has been shown in

models16,18 and reanalysis data16 that this feedback has been

dominant during past ENSO events. Therefore, when the

background Pacific climate is such that it is close to the criti-

cal boundary, long-range correlations between SST time

series occur (Fig. 3(c)). These correlations are caused by the

amplification of SST anomalies, mainly by the thermocline

feedback, and can be measured by the PCCN degree field

based index Sd (Fig. 4(c)).

We next turn to the RCNs using the NINO3.4 index at

each value of l for the same ZC-model output. We choose a

time interval of 10 years of the monthly NINO3.4 index as a

window to reconstruct the RCNs. All results below are for an

embedding dimension m¼ 2, an embedding delay s¼ 1

(month), and a recurrence threshold �R ¼ 0:5. The results are

robust when using values of m¼ 2, 3, s ¼ 1; 2, and �R in the

range 0:4� 0:6. By implementing a sliding-window strategy

with a shift of one month, we calculated the value ranges of

the recurrence rate and assortativity at different l values,

indicated by the mean values and error bars, as shown in

Figs. 5(a) and 5(b). When the coupling strength l is increas-

ing, the recurrence rate decreases (Fig. 5(a)) and the assorta-

tivity increases (Fig. 5(b)).

Both topological characteristics of the RCNs are plotted

in the space spanned by the recurrence rate and the assortativ-

ity in Fig. 5(c) for different values of l. The subcritical

regime (blue circles, l ¼ 2:7 < lc) and the supercritical

regime (black dots, l ¼ 3:4 > lc) can be clearly distin-

guished in Fig. 5(c). The separation of the regimes is even

more clear by marking the value ranges in the recurrence rate

FIG. 3. (a) Degree field of the PCCN using a threshold �C ¼ 0:5 reconstructed from the ZC model data at a coupling strength l ¼ 2:7. (b) Same as (a) but at

l ¼ 2:9. (c) Same as (a) but at l ¼ 3:0. (d) Same as (a) but for l ¼ 3:4.

035801-7 Q. Y. Feng and H. A. Dijkstra Chaos 27, 035801 (2017)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.4971784/14614480/035801_1_online.pdf

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-001791
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-27-001791


and the assortativity space (Fig. 5(d)). In the subcritical

regime, the RCNs have a high recurrence rate and low assor-

tativity, taking up the right lower part of the space. The super-

critical regime is characterized by a low recurrence rate and a

high assortativity.

B. CMIP5 model output and observations

From the PCCN analysis of the ZC model results, we

have proposed a network measure Sd which monitors the sta-

bility of the Pacific background state. In addition, we have

shown from the same model results that, in particular, the

recurrence rate qR of an RCN can distinguish subcritical

from supercritical regimes. In this section, we will first use

the CMIP5 model data (for which the BJ index can be com-

puted) to demonstrate that Sd is correlated well to the BJ

index. Next, we will investigate whether the information

from Sd and qR provides the consistent information in SST

observations and whether we can clearly distinguish noise

driven from self-sustained El Ni~no events.

In Kim et al.,16 the BJ index is computed from the

CMIP5 model ensemble for the RCP8.5 greenhouse warming

scenario. We reconstructed PCCNs from an ensemble of five

CMIP5 GCMs (CCSM4, GFDL-CM3, GFDL-ESM2M,

GISS-E2-R, and NorESM1-M) from the BEST916 models

(in terms of their performance of historical ENSO behavior)

under historical forcing (1910–2005) and the RCP8.5 sce-

nario (2006–2100). We first removed the trends from the

data with a 10-year sliding window and then used the same

size of a sliding window of 50 years as used in Kim et al.16

for the BJ index to calculate Sd values. The results are shown

in Fig. 6 and robust to changes in the parameters used in the

network reconstruction (i.e., the threshold �C). The Pearson

correlations (cor) between Sd indices (blue curves) and the BJ

indices (green curves) are significant (p< 0.05) with cor
¼ �0:857 in CCSM4, cor ¼ �0:148 in GFDL-CM3, cor
¼ �0:486 in GFDL-ESM2M, cor ¼ �0:879 in GISS-E2-R,

FIG. 4. (a) Degree distribution of the PCCN using a threshold �C ¼ 0:5 reconstructed from the ZC model data at the coupling strength l ¼ 2:7. (b) Same as (a)

but at l ¼ 3:0. (c) The degree skewness index Sd (blue) and the variance of NINO3.4 index VarNINO3:4 (green) from the ZC model as a function of l; the red

dashed line indicates the stability boundary lc ¼ 3:0. (d) The values of Bjerknes stability (BJ) index (cf. supplementary material) and its components from the

ZC model at different l: mean advection and upwelling (MA, red), thermal damping (TD, cyan), zonal advection feedback (ZAF, dark blue), Ekman pumping

feedback (EF, green), thermocline feedback (TF, magenta), and total BJ index (BJ, black).
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cor ¼ �0:689 in NorESM1-M, and cor ¼ �0:868 in the

ensemble mean. The ensemble mean result in Fig. 6(f) clearly

shows the anti-correlation between the Sd index and the BJ

index. From 1910 to around 1960, Sd slightly increases and at

the same time the BJ index decreases, which means that the

stability of Pacific climate increases. From 1980 to around

2020, the Sd index drops to the lowest level, while the BJ

index reaches its maximum, both indicating that the Pacific

climate becomes quite unstable. From around 2040 to 2100,

the Sd index increases and BJ index decreases, which indi-

cates that the Pacific climate becomes more stable, in accor-

dance with results in Kim et al.16

We also calculated the Fisher weighted mean correlation

coefficient of the Sd and BJ indices in these five CMIP5

CGCMs. First, the cor values are transformed to z values

using the transformation55

z ¼ 1

2
ln

1þ corð Þ
1� cor

	 

: (19)

Next, the Fisher weighted mean correlation coefficient �r56 is

computed by

�r ¼ e�z � e��z

e�z þ e��z
; (20)

where �z is the mean value of z in these five CMIP5 GCMs.

The final result is �r ¼ �0:684 which shows that the Sd index

is significantly anti-correlated with the BJ index. The reason

for this good anti-correlation is that a high value of Sd indi-

cates stability of the Pacific climate state which is also mea-

sured by a low value of the BJ index (and vice versa).

Next, we calculated the network measures from observa-

tions of SST from the HadISST dataset over the period

December 1951–November 2015. As the background state

varies on decadal time scales, one has to resort to a sliding-

window strategy. A window of 5 years is certainly too short

as a full ENSO cycle is 4 years on average. However, a win-

dow of 20 years appears too long as the background from

which El Ni~no’s develop may be different from such an aver-

aged state. Hence, we reconstructed a PCCN for every 10

years of monthly SST data and computed the value of Sd

for this network. Different window lengths in the range of

8–15 years were taken, and the results are robust for these

window sizes.

FIG. 5. (a) The mean values (with error bars indicating the range) of the recurrence rate of the RCNs reconstructed from 10-year windows of ZC model output

at different coupling strengths l. (b) Same as (a) but for the assortativity. (c) The scatter plot of the recurrence rate versus assortativity of the RCNs at the cou-

pling strength l ¼ 2:7 (blue circles), l ¼ 2:9 (green circles), l ¼ 3:0 (red dots), and l ¼ 3:4 (black dots). (d) The mean values (with error bars indicating the

range) of the recurrence rate and assortativity of the RCNs for different coupling strengths l.
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By implementing the sliding-window strategy with a

shift of one month, we obtained a time series of Sd (black

curve in Fig. 7(c)), showing the variation of the stability of

the Pacific background climate over the last 60 years. The

3-month running mean of the NINO3.4 index of the same

period is plotted as the green curve in Fig. 7. We also marked

the Sd values at the onset (January–March) of the 1968,

1982, 1992, 1997, and 2015 El Ni~no events in Fig. 7. In

1968, the January–March averaged Sd value is Sd ¼ 0:28, the

one in 1982 is Sd ¼ 0:03, the one in 1992 is Sd ¼ �0:18,

the one in 1997 is Sd ¼ �0:35, and the one in 2015 is

Sd ¼ �0:03. The relatively high value of Sd in early 1968

FIG. 6. The 50-year sliding window degree skewness index Sd (blue) and the BJ index (green) in Kim et al.16 from the historical runs over the period

1910–2005 and the RCP8.5 simulations over the period 2006–2100 of the CMIP5 GCMs (a) CCSM4, (b) GFDL-CM3, (c) GFDL-ESM2M, (d) GISS-E2-R, (e)

NorESM1-M, and (f) ensemble mean. The Pearson correlations (cor) between Sd and the BJ index stated in the subtitle are all significant (p< 0.05).
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indicates that the Pacific background climate in 1968 was

quite stable, and the noise must have had a large influence on

the development of the 1968 El Ni~no event. To verify this

statement, the PC2 of the wind stress residual from National

Centers for Environmental Prediction (NCEP) wind stress

data57 is also plotted as the magenta curve in Fig. 7, which

can be considered as representing the westerly wind

bursts;11,52 see Section III A and Fig. 2. One can see that

high-noise variability occurred during early 1968. On the

contrary, the 1992 El Ni~no event would be considered as a

sustained case, because of the relatively low value of Sd and

low noise variability in early 1992. Actually, the value of Sd

was overall low (less stable Pacific background state) during

the early 1990s with a global minimum just before 1997.

Subsequently, we studied the 1968 and 1992 events

from the RCN point of view using the HadISST dataset over

the same period of December 1951–November 2015. To be

consistent with previous results, we reconstructed RCNs

using the same 10-year windows and the same monthly

sliding-window strategy as for the PCCNs, and then calcu-

lated the recurrence rate and assortativity for each RCN. The

averaged recurrence plots of the RCNs over the 1968 El

Ni~no (Fig. 8(a)) and the 1992 El Ni~no (Fig. 8(b)) clearly

show the differences between these two events with much

higher recurrence rates for the 1968 event. The “trajectories”

of the events in the ðqR; aRÞ plane show a very different

behavior (Figs. 8(c) and 8(d)). Over the period 1967–1969

(Fig. 8(c)), this trajectory mainly stays in the high recurrence

rate–low assortativity range. Based on the ZC model results,

this would indicate a development in the subcritical regime.

For 1992 (Fig. 8(d)), the trajectory stays in a low recurrence

rate–high assortativity range indicating a development in the

supercritical regime. The results in Figs. 8(c) and 8(d) are

consistent with the information provided by the Sd index.

The El Ni~no event in 1968 was a typical noise driven ENSO

with a relatively stable Pacific background climate, while the

El Ni~no event in 1992 was a typical sustained case because

of the unstable Pacific background climate.

Regarding the stability of the background state, the 1968

and 1992 events are the easiest to distinguish. However, it is,

of course, interesting to also determine the trajectories in the

ðqR; aRÞ plane of the large amplitude El Ni~no events in the

last few decades. In Fig. 9, these trajectories are plotted for

the 1982, 1997, and 2015 events. Although the paths are

quite different from each other, they all started at a low

recurrence rate–high assortativity range and hence this indi-

cates unstable background conditions. The background state

of the El Ni~no event in 1982 (Fig. 9(a)) eventually moved to

the subcritical regime, while the one in 1997 gradually

moved towards the supercritical regime. This may explain

why the 1997 event was followed by a relatively strong La

Ni~na and the 1982 event was not.

IV. SUMMARY AND DISCUSSION

The Zebiak-Cane model is an intermediate complexity

climate model that adequately simulates many aspects of El

Ni~no/Southern Oscillation (ENSO) development.2 Clearly,

in this model, ENSO variability arises through an instability

of the background climate state (a Hopf bifurcation) through

coupled feedbacks.58 In reality, this background state is,

apart from seasonally varying, non-stationary due to long-

term changes on decadal time scales5 and it is difficult to

determine its stability properties. The BJ index was designed

for this task, but it cannot be computed from sole SST obser-

vations and it needs data over a long time window (see sup-

plementary material).

In this paper, we have proposed new measures to moni-

tor the stability of the background equatorial Pacific climate

state using Pearson Correlation Climate Networks

(PCCNs)27,59 and Recurrence Climate Networks (RCNs)44

of only sea surface temperature (SST) data. The index Sd

FIG. 7. The 10-year sliding window degree skewness index Sd (black curve), the 3-month running mean NINO3.4 index (green curve) from the observed SST

of Dec. 1951 to Nov. 2015, and the second principal component (PC2) of the wind-stress residual (magenta curve) from the NCEP zonal windstress data of the

same period. The x-axis indicates the end time of the sliding window. The brown disk indicates the mean Sd value of the window ending at January–March

1968, the brown left triangle indicates that of January–March 1982, the brown diamond indicates that of January–March 1991, the brown right triangle indi-

cates that of January–March 1997, and the brown square indicates that of January–March 2015.
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measures the skewness of the degree distribution of a PCCN

reconstructed from significant correlations between the SST

anomalies in the equatorial Pacific. The recurrence rate qR

measures the density of recurrence points in an RCN recon-

structed from the NINO3.4 index.

We used the Sd index derived from the stochastic ZC

model wherein a Hopf bifurcation has been found.13 The

index Sd is anti-correlated with the variance of the NINO3.4

index (under a fixed wind-stress noise amplitude), so a high

(low) value of Sd indicates a high (low) stability of the back-

ground state. Additional support that Sd monitors the stability

of the background state comes from the anti-correlated

behavior (cf. Fig. 6) with the BJ index as determined for an

ensemble of five CMIP5 CGCMs for the RCP8.5 scenario

from the BEST9 models used in Kim et al.16 Hence, our

measure is consistent with the BJ index from these models

and provides the same information on the possible intensifi-

cation/weakening of future ENSO events.

Another network measure to analyse the stability prop-

erties of the background state was obtained from the recon-

struction of recurrence networks. For the ZC model results

(cf. Fig. 5), it is found that subcritical (supercritical) regimes

are characterized by the high (low) recurrence rate qR and

low (high) assortativity aR. Therefore, the recurrence rate

and assortativity of a recurrence plot based CN can provide

additional information on the stability of the background

state. Fortunately, the information of this measure is consis-

tent with that of Sd for the SST record since 1950. Based on

these measures, there appear to be typical events which are

purely noise driven (such as in 1968) or purely sustained

(such as in 1992).

A great advantage of the network based measures is that

these are far more easy to compute than the BJ index19 and

hence they are more widely applicable. Moreover, since

these measures do not require defining the thermocline

or mixed layer depth, they can serve as an easier model

inter-comparison tool than the BJ index. However, the disad-

vantage of the network measures is that it is impossible to

precisely determine the boundary between subcritical and

supercritical regimes. For example, one can only determine

that a background state with a smaller value of Sd is more

unstable than one with larger Sd, not at which value of Sd,

FIG. 8. (a) The averaged recurrence plot of the Recurrence Climate Networks over the time period January 1967 to December 1969. (b) Same as (a) but from

January 1990 to December 1992. (c) The scatter plot of recurrence rate versus assortativity of the recurrence networks, and the colored circles highlight the

development of the El Ni~no event in 1968, starting from January 1967 to December 1969. (d) Same as (a) but showing the development of the El Ni~no event in

1992, starting from January 1990 to December 1992. The recurrence networks are reconstructed from a 10-year sliding window of the HadISST data.
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the background state becomes unstable. This holds also for

the BJ index which needs at least 20 years of data and hence

will include several events.

The results in Fig. 7 nicely indicate the problems which

are faced regarding El Ni~no predictions. Noise, here through

westerly wind bursts, is important to induce SST anomalies,

but whether an El Ni~no will develop depends on the Pacific

climate stability that varies on decadal time scales. One can

have an El Ni~no when noise is large even with a stable back-

ground (as in 1968), and also an El Ni~no when background

stability is low even without high noise variability (such as

in 1992). The lower stability and higher noise variability

might be one of the reasons that the 1997 event developed

into the “El Ni~no of the 20th century.”

From Fig. 7, it is also interesting to see that the Sd index

is relatively high at the beginning of the year 2014, indicat-

ing that the Pacific climate state is relatively stable. This is

consistent with the fact that although large subsurface tem-

perature anomalies developed in March 2014, there was no

growth of SST anomalies because the thermocline feedback

was weak and no strong El Ni~no event could develop.

However, at the beginning of the year 2015, both the Sd

index and the recurrence rate decreased, the system was

pushed into the supercritical regime and a strong El Ni~no

event developed in 2015.

With this work, we have added to the number of

studies31–33 that indicate that climate network based prop-

erties can be very useful analysis tools in ENSO dynam-

ics and prediction. Here, easily calculable measures from

PCCNs and RCNs were developed to diagnose the stabil-

ity of the Pacific background state. We hope that these

measures will be used in future studies and will eventu-

ally help to improve the skill of predictions of El Ni~no

events over the next decades.

FIG. 9. (a) The scatter plot of the recurrence rate versus assortativity of the RCNs reconstructed from observed SST. A low (high) recurrence rate and high

(low) assortativity indicate an unstable (stable) Pacific climate state. The colored circles highlight the development from January 1981 to December 1983. (b)

Same as (a) but from January 1996 to December 1998. (c) Same as (a) but from January 2014 to November 2015. The recurrence networks are reconstructed

from a 10-year sliding window of the HadISST data.
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SUPPLEMENTARY MATERIAL

See supplementary material for the BJ index calculation

for the ZC-model results.
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