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Abstract
The response of a low-frequency mode of climate variability, El Niño–Southern Oscillation,
to stochastic forcing is studied in a high-dimensional model of intermediate complexity,
the fully-coupled Cane–Zebiak model (Zebiak and Cane 1987), from the spectral analysis of
Markov operators governing the decay of correlations and resonances in the power spectrum.
Noise-induced oscillations excited before a supercritical Hopf bifurcation are examined by
means of complex resonances, the reduced Ruelle–Pollicott (RP) resonances, via a numerical
application of the reduction approach of the first part of this contribution (Chekroun et al.
2019) to model simulations. The oscillations manifest themselves as peaks in the power spec-
trum which are associated with RP resonances organized along parabolas, as the bifurcation
is neared. These resonances and the associated eigenvectors are furthermore well described
by the small-noise expansion formulas obtained by Gaspard (2002) and made explicit in the
second part of this contribution (Tantet et al. 2019). Beyond the bifurcation, the spectral gap
between the imaginary axis and the real part of the leading resonances quantifies the diffusion
of phase of the noise-induced oscillations and can be computed from the linearization of the
model and from the diffusionmatrix of the noise. In thismodel, the phase diffusion coefficient
thus gives a measure of the predictability of oscillatory events representing ENSO. ENSO
events being known to be locked to the seasonal cycle, these results should be extended to the
non-autonomous case. More generally, the reduction approach theorized in Chekroun et al.
(2019), complemented by our understanding of the spectral properties of reference systems
such as the stochastic Hopf bifurcation, provides a promising methodology for the analysis
of low-frequency variability in high-dimensional stochastic systems.
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1 Introduction

Complex and unpredictable behavior of trajectories is observed for many physical systems.
This can be due to interactions with many degrees of freedom which can be modeled
by a stochastic forcing or to nonlinear coupling resulting in chaotic trajectories. As a
result, prediction beyond a certain horizon is hopeless and one focuses instead on the
statistical evolution of the system. This loss of predictability manifests itself by the evo-
lution of an ensemble of trajectories becoming independent on its initial condition after
a given time, the mixing time. This notion of mixing in state space is in turn closely
linked to the correlation function of a pair of observables, which assigns to any positive
time lag the correlation between the first observable and the lagged version of the second,
and thus gives a measure of the statistical dependence of the observables as the system
evolves. The power spectrum, on the other hand, describes this evolution in frequency
domain.

Some chaotic or stochastic systems mix fast, in the sense that correlation functions decay
exponentially with time. As a result the corresponding power spectra are continuous. How-
ever, systems with easily excitable modes, such as associated with persistence [49], weakly
damped instabilities, or at the approach of an attractor crisis [35,50,51,55], exhibit resonant
behavior. This can be seen both from the relatively slow decay of correlations after a first
regime of fast decay associated with the non-resonant modes, and from peaks in the power
spectra standing against a continuous background [7].1 In turn, resonant phenomena may be
identified from such features in the correlation function and the power spectrum and even-
tually help better understand the physical mechanism responsible for them. It is essential
for models of these systems to resolve these resonances with appropriate time scale and fre-
quency since the latter may explain a large fraction of the variance of the system and result
in long term predictability.

The analysis of correlation functions and power spectra from observations or simulations
for the study of climate variability is a common practice. A particular important phenomenon
of interest is El Niño Southern Oscillation (ENSO) [39], an interannual variation in the
Pacific Ocean sea surface temperature (SST). The oscillatory nature of ENSO derives from
an instability of the coupled ocean-atmosphere system, where SST anomalies cause surface-
wind anomalies that in turn cause changes in surface ocean velocities. Through the associated
heat fluxes, SST is affected; in this way a positive feedback exists, the Bjerknes feedback [29].
The interannual time scale of ENSO is caused by an adjustment of the ocean circulation due
to equatorial-wave processes, which induce a negative feedback on the SST. The signature
of ENSO is clearly visible in the periodogram estimate of the power spectrum of the Niño
3.4 index [15, Fig. 5]. Indeed, a broad spectral peak centered around a period of 2 to 8 years
stands out of a continuous spectrum.

The Cane–Zebiak (CZ) model is a system of Partial Differential Equation (PDE) with
a 1.5 shallow-water ocean model coupled to a steady state atmosphere [62]. A math-
ematical description and analysis of the related Jin–Neelin model [30,31,38] is found
in [5]. The strength of the ocean-atmosphere interaction is controlled by a coupling
parameter. When the coupling exceeds a critical value, SST anomalies are amplified
and the background climate state of the Pacific is unstable. When the coupling strength
ξ exceeds a critical value ξc, a Hopf bifurcation occurs in the CZ model where a

1 If peaks in the power spectra are continuous, the decay of correlations may be slower at first but still be
exponentially fast for infinite times (as formalized by the Paley–Wiener theorem). In general, however, peaks
may be discontinuous and prevent the exponential decay of correlations. Such behavior is not visible in this
study.
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steady state loses stability to a limit cycle with a characteristic period close to the
observed period of ENSO. As such, it has been the first model to be able to sim-
ulate realistic ENSO events. Much of the theory developed for ENSO is based on
the analysis of simulation results of this model. Oscillations in the deterministic ver-
sion of the CZ model are perfectly periodic and thus do not explain why ENSO time
series are only pseudo-periodic, with a broad peak in the power spectrum. It has been
suggested by [42] that such behavior could be seen in these models when a stochas-
tic forcing representing fast atmospheric processes, such as westerly wind-bursts, is
added. Then noise-induced oscillations could occur before the deterministic bifurcation.
The same phenomenon has been described earlier by [60] for the van der Pol-Duffing
oscillator.

In the presence of noise, newdynamical phenomenamay occur, which are not explained by
deterministic bifurcation theory alone. Much can be learned about the dynamics of stochas-
tic systems from the power spectrum or the correlation function of some observables. For
instance, [59] study the effect of external noise on systems displaying nonlinear instabilities
of periodic orbits by associating peaks in the power spectrum to Floquet exponents. Yet, cor-
relation functions do not give a full description of the statistical evolution of the system. In
particular, the decay of correlations strongly depends on the choice of observables. Instead,
the statistical evolution of the system is governed by the semigroup of Markov operators,
which in turn can be used to compute correlation functions between any pair of observables. In
the low-dimensional case, these operators can be approximated frommany short simulations
or, in some cases, from a long time series. For high-dimensional systems, this procedure is
not tractable, due to the exponential increase with the number of dimensions of the number of
basis functions needed to discretize the operators. To cope with high-dimensional stochastic
problems, we have introduced in [8] projections of these operators on a reduced space and
showed that information on the spectrum of the full Markov operators could rigorously be
obtained.

In this study, we use this reduction method to analyse the spectrum of the Markov semi-
group, the Ruelle–Pollicott (RP) spectrum, for a stochastic version of the fully-coupled CZ
model. This analysis gives a new perspective on the phenomenon of noise-induced oscil-
lations as a potential explanation of the irregularity of ENSO events. It is found that the
structure of the RP resonances undergoes a smooth yet qualitative change as the Hopf bifur-
cation in the CZ model is passed. The RP resonances and the associated eigenvectors give
a description of the phenomenon of noise-induced oscillations as well as of the slowing
down of correlations at the approach of the bifurcation. As the stability of the determinis-
tic limit cycle increases, peaks in power spectra associated with resonances sharpen. Yet,
the phenomenon of phase diffusion associated with the stochastic forcing is responsible
for oscillations to be irregular, or not exactly periodic. The small-noise expansions devel-
oped in the second part of this contribution [52] provide a deeper understanding of this
phenomenon.

In Sect. 2, we summarize the theoretical properties of the Markov semigroup, focusing on
the relationshipof its spectrumwith thedecayof correlations and thepresenceof resonances in
power spectra. The reductionmethod used to approximate this RP spectrum is also presented.
We then present in Sect. 3 the result of the application of this method to the CZ model.
In Sect. 4, we apply small-noise expansions of the RP spectrum to interpret the results
obtained for the CZ model. The results are summarized in Sect. 5, where we also discuss the
implications of our results regarding the irregularity of ENSO events.
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2 Time Variability of Stochastic Systems and Ruelle–Pollicott
Resonances

The authors in [7] have introduced a new mathematical framework to (i) understand and
diagnose—through partial observations—the variability of turbulent flows, and (ii) to analyze
parameter sensitivity that may occur in the modeling of such observations. The framework
relied on the theory of Ruelle–Pollicott (RP) resonances introduced in the mid-80’s [41,
44] and that was known only by a little group of experts at the time of the publication of
[7] working in the field dynamical system theory and the mathematical study of scattering
resonances [63]. TheRP resonances characterize the nature of the dynamics as associatedwith
the spectrum of the underlying Liouville operator for deterministic systems or the Fokker-
Planck operator for stochastic systems [8,26,52], but are in general difficult to estimate
especially if the dimension of the state space is large.

The work [7] established new bridges between the theory of RP resonances and the theory
of Markov processes, once reduced state spaces are employed. These bridges allowed for
stretching new paths towards applications, especially regarding the analysis and diagnosis of
complex systems’ variability. Given an observable h of a complex system and an associated
reduced state space V in which the observations are collected, [7] have shown that the
eigenvalues of the dynamics’ transition matrix in V , called reduced RP resonances, may in
fact relate to RP resonances themselves and inform about the dynamics in the full state space,
once the reduced state space has been appropriately chosen.

For low-dimensional systems, Ulam’s method [13,54] is a well-known approximation
of the transition matrices on a truncated set of indicator functions, which may be used to
approximate the traditional RP resonances of dynamical systems. Ulam’s method led to
many interesting applications in dynamical systems theory [12,22,33], stochastic model-
ing [24], physical oceanography [14,23,25,56] and molecular dynamics [3,16,47]. Another
approach, the EDMD [53], relies on a linear regression between snapshots of observables,
making it an Extension of the Dynamic Mode Decomposition (DMD) [43,45]. This modal
decomposition, also based on estimates from multi-variate time series, has been thoroughly
studied by [61] who also showed applications to low-dimensional deterministic and stochas-
tic systems. Moreover, the link between Ulam’s method and the EDMD has been stressed
by [32], as well as the benefits and disadvantages from both methods. Recently, [50] applied
Ulam’s method to discuss the slowing down of the decay of correlations at the approach of
a global attractor crisis in the Lorenz flow in terms of stable and unstable RP resonances.
Together with the deterministic version of the reduction approach presented here, this work
helped [51] to analyse critical slowing down in a global attractor crisis of high-dimensional
climate model.

When the state space is high-dimensional, the reduced RP resonances, as learned within
a reduced state space of low-dimension, are typically less greedy in terms of data than direct
estimates in the original state space. However, the use of a reduced state space requires more
care in terms of interpretation. In certain cases, the geometric patterns formed by reduced
RP resonances in the complex plane nevertheless characterize the reduced dynamics well.
In that respect, [52] have shown that when the reduced RP resonances form parabolas in
the complex plane, they provide an unambiguous diagnosis of an oscillation present within a
stochastic or turbulent background; see also [2]. Of course for such a diagnosis to be revealed,
the signal-to-noise ratio needs to be in favor of the oscillation detection, i.e. the oscillation
should not be smearedwithin toomuch of noise or small-scale turbulent behavior. Section 2.1
below revisits the theory of RP resonances, and Sect. 2.2 introduces the theory of reduced
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RP resonances and discuss how to estimate and use them in practice to analyze dynamics
through partial observations.

2.1 Ruelle–Pollicott Resonances and the Decomposition of Correlation Functions
and Power Spectra

We communicate in this section the theoretical apparatus based on the theory of Ruelle–
Pollicott (RP) resonances and their numerical estimation from time series; see [7] for
deterministic systems and [8] for stochastic systems. We recall below the main ingredi-
ents of this theory, in particular regarding the fundamental role that RP resonances play in
the decomposition of power spectral density (PSD) and correlation functions.

The Cane–Zebiak (CZ) model [62] subject to stochastic perturbations is considered in
this study; the addition of noise appearing in the wind stress. In the deterministic setting, it
corresponds to a spectral discretization of a system of Partial Differential Equations (PDEs).
Assuming that time is continuous, i.e. before applying a time discretization scheme to the
model we are thus led to Stochastic Differential Equations (SDEs) of the form:

dX = F(X) dt + G(X) dWt , X ∈ R
p. (2.1)

Here Wt = (W 1
t , . . . ,Wq

t ) is an R
q -valued Wiener process (q not necessarily equal to p)

whose components are mutually independent standard Brownian motions.
In Eq. (2.1), the drift part is provided by a (possibly nonlinear) vector field F ofR

p which,
in this study, represents the CZ model. The stochastic diffusion in its Itô version, given by
G(X) dWt , has its i th-component (1 ≤ i ≤ p) given by

q∑

j=1

Gi j (X) dW j
t , q ≥ 1. (2.2)

It corresponds in our case to the stochastic wind forcing. In what follows we assume that the
vector field F and the matrix-valued function

G : R
p → MatR(p × q),

satisfy regularity conditions that guarantee the existence and the uniqueness ofmild solutions,
as well as the continuity of the trajectories; see, e.g. [6,20] for such conditions in the case of
locally Lipschitz coefficients.

It is well-known that the evolution of the probability density of the random R
p-valued

variable, Xt (solving Eq. (2.1)), is governed by the Fokker–Planck equation

∂tρ(X , t) = Aρ(X , t) = −div(ρ(X , t)F(X)) + 1

2
div∇(�(X)ρ(X , t)), X ∈ R

p,(2.3)

with �(X) = G(X)G(X)T . In weather forecasting and climate modelling where the use of
ensemble simulations is common, one may think of the Fokker–Planck equation to govern
the evolution of ensembles represented by probability densities.

What is less-known is that the spectral properties of the 2nd-order differential operator,
A, informs about fundamental objects such as the power spectra or correlation functions
computed typically along a stochastic path of Eq. (2.1). We briefly recall the main elements
hereafter and refer to [7,8] for more details.

First, given an observable h : R
p → R for the system (2.1), we recall that the power

spectrum Sh( f ) is obtained by taking the Fourier transform of the correlation functionCh(t),
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namely

Sh( f ) = Ĉh(t), with Ch(t) = lim
T→∞

1

T

∫ T

0
h(Xs+t )h(Xs) ds

−
(

lim
T→∞

1

T

∫ T

0
h(Xs) ds

)2

, (2.4)

where Xt is a stochastic process solving (2.1). Relying on the pointwise ergodic theorem,
the correlation function is defined here in terms of long time averages, which, in statistics,
are estimated with sample means or sample (Pearson) correlations.

As shown in [8], for a broad class of SDEs that possess an ergodic probability distribution
μ, the spectrum, σ(A), of the Fokker–Planck operator, A, is typically contained in the left-
half complex plane, {z ∈ C : Re(z) ≤ 0} and its resolvent R(z) = (zId − A)−1, is a
well-defined linear operator that satisfies

Sh( f ) =
∫

Rp
h(X)

[
R(i f )h

]
(X) dμ. (2.5)

In practice, the functional space in which h in (2.4) or (2.5) lies, and in which the eigenfunc-
tions of A, are considered plays a key role to rigorously define the spectrum σ(A). We refer
to [8] for the reader interested by these aspects.

The resolvent can be understood as the Laplace transform of the time evolution generated
by the Fokker–Planck operator. Its poles thus relate to the stability of the solutions of the
Fokker–Planck equation. In (2.5), the frequency f lies in the complex plane C, and the poles
of the resolvent R(i f )—which correspond to the RP resonances—introduce singularities into
Sh( f ).Once the power spectral density (PSD) is calculated, i.e. once |Sh( f )| is computedwith
f taken to be real, these poles manifest themselves as peaks that stand out over a continuous
background at the frequency f if the corresponding RP resonances with imaginary part f (or
nearby) are close enough to the imaginary axis. TheRP resonances are the isolated eigenvalues
of finite multiplicity of A; Although this is not the case in the applications considered here,
the spectrum of the infinite-dimensional operator A may contain a continuous part lying
typically in a sector {z ∈ C : Re(z) ≤ −γ } (for some γ > 0); see Fig. 1.

Denoting by λ j s, the Np poles of the resolvent R(z) of A, i.e. the RP resonances, and by
m1, . . . ,mN their corresponding orders, the correlation function, Ch(t), possesses then the
following expansion

Ch(t) =
Np∑

j=1

⎡

⎣
m j−1∑

k=0

τ k

k! (A − λ j Id)
k

⎤

⎦ a j (h)eλ j t + Q(t), (2.6)

where Q(t) exhibits typically a decay property associated with properties of the essential
spectrum of A (see [19], Chap. IV.1, for a definition). Even if the λ j ’s do not depend on
the observable h, the coefficients, a j (h)’s, in the expansion (2.6), do; see [8, Corollary 2.1].
More precisely, denoting byψ j the eigenfunctions associated with the λ j ’s (and byψ∗

j those
associated with the adjoint of A), we have

a j (h) = 〈ψ∗
j , h〉μ〈h, ψ j 〉μ, (2.7)

where 〈 f , g〉μ = ∫
H f (x)g(x)μ( dx), in which μ is the ergodic statistical equilibrium asso-

ciated with Eq. (2.1). In other words, μ is the measure giving the long-term averages of
observables. For conditions ensuring the existence of such a statistical equilibrium we refer
to [8, Sect. 2].
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Fig. 1 Schematic of the spectrum
ofA given in (2.3). The
Ruelle–Pollicott (RP) resonances
are the isolated eigenvalues of the
Fokker–Planck operator,A,
defined in (2.3); they are
represented by red dots (b) and
by black dots here. The rightmost
vertical line represents the
imaginary axis above which the
power spectrum lies; see Panel
(a) for another perspective. The
rate of decay of correlations is
controlled by the spectral gap τ ;
see [7,21]. [Courtesy of Maciej
Zworski.]

If we assume that Re(λ j ) < 0 for j > 0, each λ j is simple and the absence of an essential
spectrum for A, then the correlation Ch(τ ) in (2.6) takes the simpler form of a weighted
sum of complex exponentials, and the corresponding power spectrum Sh( f ) possesses itself
a similar decomposition in terms of Lorentzian functions, namely:

Sh( f ) = − 1

π

∞∑

j=1

a j (h)
Re(λ j )

( f − Im(λ j ))2 + Re(λ j )2
, f ∈ C. (2.8)

Asmentioned earlier, the RP resonances have been introduced by Ruelle [44] and Pollicott
[41] for discrete and continuous chaotic deterministic systems; see also [4] for the case of
Anosovflows. [8] have recently shown that the theory ofRP resonances extends to a stochastic
framework giving access to stochastic-analysis tools to justify decomposition formulas such
as (2.6) or (2.8) for a broad class of SDEs. These results are based on the theory of Markov
semigroups on one hand, and the spectral theory of semigroups, on the other; see also [18,26]
for complementary approaches.

All eigen-spectra considered here and in part II of this contribution are discrete and of finite
multiplicity, i.e. composed of RP resonances only. However, not all SDEs have a resonances
(see e.g. [1]) and not all SDEs have an essential spectrum (e.g. Ornstein-Uhlenbeck processes,
[40], Chap. 4). The resonances of the spectrum is associated with a (fast) exponential decay
of correlations. The essential part, associated with the term Q(t) in (2.6), may instead be
associated with an algebraic decay of correlations.

In summary, the decompositions (2.6) and (2.8) combined with Fig. 2 inform us about the
following features:

(i) Each RP resonance is associated with an exponential contribution to the decay of
correlation.

(ii) The closer an eigenvalue to imaginary axis, the slower the decay.
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Fig. 2 Schematic of the PSD as a combination of Lorentzian profiles associated with each RP resonance (pole)
in (2.8)

(iii) In the limit of purely imaginary eigenvalues, the associated contributions to the corre-
lation functions are purely oscillatory and prevent the decay of correlations.

(iv) The angular frequency at which each contribution oscillates is given by the imaginary
part of the associated eigenvalue.

(v) Eigenvalues close to the imaginary axis are associatedwith resonances (i.e. peaks) in the
power spectrum. The spectral peak is located at the frequency given by the imaginary
part of the eigenvalue and its width is proportional to the absolute value of the real part.

(vi) The contribution of each eigenvalue to a correlation function or a power spectrum is
weighted as in (2.7), corresponding to the projection of the observables h onto the
eigenfunctions of A and its adjoint.

2.2 Estimating Resonances and Diagnosing the Reduced Dynamics fromTime
Series: The Reduced RP Resonances

Because they are related to the Fokker–Planck operator,A, the RP resonances inform on the
structure of the underlying SDE. A natural question then arises: is it possible to infer the
“shape” of an SDE (i.e. F and G in (2.1)) from the observation of its solutions? The short
answer to this question is “No” in general, except in certain cases (see e.g. [10]), but as wewill
see, a reduced spectrum associated with the observation space and related to RP resonances,
can be estimated from time series. Depending on the geometric patterns that it forms in the
complex plane, this spectrummay inform us in turn about the sought structural ingredients, in
termsof reduced dynamics. In that respect, the approach of [7] paved a roadmap for addressing
this question from a practical viewpoint, while [8] analyzed in greater details its theoretical
foundations, and [52] providedgeneral understanding regarding the typeof geometric patterns
that RP resonances may exhibit in the case of the stochastic Hopf bifurcation.

In practice, only partial observations of the solutions to (2.1) are available, e.g. few solu-
tion’s components. Speaking roughly, [7, Theorem A] shows that from partial observations
of a complex system that lie in a reduced state space V and are taken at a sampling rate τ ,
a (reduced) Markov operator Tτ with state space V can be inferred from these observations
such that (i) Tτ characterizes the coarse-graining in V of the transition probabilities in the
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full state space, and (ii) the spectrum of Tτ relates to the RP resonances, at best in an aver-
aged sense; see also [8, Theorems 3.1 and 3.2] and [24,46]. The operator Tτ can be thought
as the operator that maximizes the likelihood of the evolution during a time τ of densities
in the reduced state space conditionned on information in the reduced phase space only. In
practice the dimension of V is kept low so that Tτ can be efficiently estimated from time
series via a maximum likelihood estimator (MLE). The reduced state space V should be also
chosen such that the observed dynamics in V carry relevant information on the low-frequency
variability of the system. For instance, in the case of the CZ model analyzed in Sect. 3, we
define a two-dimensional observable, h, from components given by the eastern sea surface
temperature, on one hand, and the western thermocline depth, on the other.

We detail below our estimation procedure and what (ii) means. First a bounded domainD
of V should be chosen large enough so that “most realizations” of the stochastic process Xt

solving Eq. (2.1) fall inside D after application of the observable h : R
p → V , i.e. D must

be chosen so that h(Xt ) belongs to D for many realizations of the noise in Eq. (2.1). This
domain is then discretized as the union of M disjoint boxes Bj , forming thus a partition.

In practice our observations are made out of the process Xt at discrete time instants t = tn ,
given as multiple of a sampling time τ , i.e. tn = nτ with 1 ≤ n ≤ N , with N assumed to
be large. These observations made in the observation space V are denoted by Yn = h(Xtn ).
As explained in the Supporting Information of [7], the Markov operator Tτ is approximated
by the M × M transition matrix Tτ whose entries are given by the transition-probability
estimates

(Tτ )i j =
#

{(
Yn ∈ Bj

)
∧

(
Yn+1 ∈ Bi

)}

#
{
Yn ∈ Bj

} , (2.9)

where the Bj ’s form a partition (composed of M disjoint boxes) of the aforementioned
domain D in V ; see e.g. [7,11,46]. In (2.9), the notation #{(Yn ∈ Bk)} gives the number of
observations Yn falling in the box Bk , and the logical symbol “∧” means “and.” The leading
eigenvalues of the transition matrix Tτ can then be computed with an iterative algorithm such
as ARPACK [34].

In practice, we are interested with the eigenvalues λk(τ ) obtained from the eigenvalues
ζk(τ ) of the Markov matrix Tτ , according to

λk(τ ) = 1

τ
log ζk(τ ) = 1

τ
(log |ζk(τ )| + i arg ζk(τ )) , 1 ≤ k ≤ M, (2.10)

where arg(z) (resp. log(z)) is the principal part of the argument (thatwe adopt to lie in [−π, π)

in this article) (resp. logarithm) of the complex number z. At a basic level, the motivation
behind (2.10) is that the eigenvalues of Tτ as the eigenvalues of a Markov matrix, lie within
the unit circle (representation that was adopted in [7]) whereas we want here to relate these
eigenvalues with the RP resonances associated with the original Fokker-Planck operator A.
Thus, the λk(τ )’s given by (2.10) lying naturally in the left half of the complex plane, offer
a direct comparison with the RP resonances.

The eigenvalues λk(τ ) are called hereafter the reduced RP resonances. The precise rela-
tionships between the λk(τ )’s and the actual RP resonances are non-trivial to characterize in
general. Nevertheless, in certain cases, the reduced RP resonances are very useful to diag-
nose and characterize important dynamical features such as nonlinear oscillations embedded
within a stochastic background.
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Indeed the rigorous result [8, Theorems 3.1] ensures that Tτ characterizes entirely the
coarse-grained probability transitions—imposed by the observation space V—of the actual
dynamics, and thus at an intuitive level if a dominant recurrent behavior occurs within an
irregular background, then Tτ must still “feel” this recurrent behavior within V , in case this
dominant behavior is reflected in V . As pointed out already in [7] such a recurrent behavior
is manifested by eigenvalues of Tτ distributed evenly along an inner circle typically close
to the unit circle, or forming a parabola in the complex plane if one look at the λk(τ )′s as
explained in details in [52].

Now the fact that Tτ characterizes the coarse-grained probability transitions and not the
actual probability transitions must be an important feature to keep in mind. For instance if
important dynamical features occur in part of the state space not included in V , then the
reduced RP resonances will not accurately reflect the actual RP resonances.

In fact, and as pointed out in [8, Sect. 3], even if the family of Markov matrices (Tτ )τ≥0

satisfies the semigroup property (i.e. Tτ+τ ′ = Tτ Tτ ′ ), the reducedRP resonances do notmatch
necessarily with the RP resonances. Nevertheless, in this case, the reduced RP resonances
relate to an averaged Fokker-Planck operator. Indeed, in the limit N , M → ∞, the family
of Markov operator (Tτ )τ≥0 satisfies Tτ+τ ′ = TτTτ ′ . Thanks to [8, Theorem 3.2], this
property can be used to infer that the reduced RP resonances (independent of τ in this case)
approximate the point spectrum σp(A) of the following averaged Fokker-Planck operator,
given formally for all Ψ sufficiently smooth by

AΨ (y) =
∫

x∈h−1({y})

(
− div(Ψ (y)F(x)) + 1

2
div∇(

�(x)Ψ (y)
))

dμy(x), (2.11)

Here we recall that �(x) = G(x)G(x)T (x ∈ R
p), and that μy is the disintegration of the

ergodic statistical equilibrium μ “above” y ∈ V ; see [8, Sect. 3] for more details. When
h is the projection onto V , the probability measure μy is the conditional probability of the
unobserved variables, contingent upon the value of the observed variable to be y.

Thus if the semigroup property is satisfied for the limiting family of Markov operator
(Tτ )τ≥0, the reducedRP resonances possess a dynamical interpretation as they relate, through
A, to the original drift and diffusion terms, F and G, respectively. Furthermore, the spectral
theory of semigroups applies to (Tτ )τ≥0 in this case and one can decompose using [8,
Theorem 2.5 and Corollary 2.1] correlation functions of the reduced state space V (not
correlations of the full state space) by using the spectral elements ofTτ . Such correlations are
for instance time-lagged cross-correlations between two components of Yn , if dim(V ) ≥ 2.

As a consequence, still denoting by λ j the eigenvalues of A, the correlation function
C f ,g(t) between two functions f , g : V → R (i.e. two observables of the reduced state
space V ) decomposes as

C f ,g(t) =
∞∑

j=1

eλ j tw j ( f , g) − 〈 f 〉m〈g〉m, (2.12)

where w j ( f , g) = 〈ψ∗
j , f 〉m〈g, ψ j 〉m, with ψ j denoting the corresponding eigenfunctions

of A (in the observed variables only); and 〈 f 〉m denotes the average of f with respect to m.
Here, m is the image by h of the ergodic statistical equilibrium μ on V . If h consists of the
projection onto V , then m corresponds to the marginal distribution of μ onto V .

Thus (2.12) shows that in the caseTτ+τ ′ = TτTτ ′ , any correlation function of the reduced
dynamics can be exactly decomposed in modes associated with each λk , characterizing thus
the mixing properties in the observation space V .
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To recap, one needs in practice well chosen reduced variables and that the reduced dynam-
ics encountered is not so intricate as to violate Tτ+τ ′ = TτTτ ′ . Because the checking of the
latter condition is not always possible (as it would require a very long temporal dataset),
it is instead very useful to compare in practice—based on (2.12)—correlation functions of
the reduced dynamics as estimated using standard correlation estimators, on one hand, and
reconstruction formulas involving the spectral elements of Tτ , on the other. Indeed if the
semigroup property holds, the spectral elements of Tτ must allow for a decomposition of
C f ,g(t) as in (2.12) only up to some discretization error related to the mesh size associated
with M , and the temporal length of the dataset given by N .

We describe next how to proceed with such a verification in practice. In that respect, we
first introduce some notations. The vector m with components given by

mi = #{Yn ∈ Bi }
#{Yn ∈ D} , (2.13)

provides, over the partition PM = {Bi , i = 1, . . . , M}, the discrete approximation of the
density ofm. It corresponds to the sojourn time density, i.e. the relative occupancy of a box by
the Yn’s, or histogram. The column vector u corresponds to the projection of some function
u on the function space generated by the partition PM , u∗ its conjugate transpose and u′
simply its transpose. Furthermore D(m) is the diagonal matrix with entries given by themi ’s
(1 ≤ i ≤ M), the matrix exponential, etΛτ , is the diagonal matrix with entries etλk (τ ), and
Ψ τ is the matrix whose columns are given by the eigenvectors of Tτ .

These notations being clarified, given two observables, f , g : V → R, we consider then
the function CM

f ,g(t) that corresponds to the discretization of the RHS of (2.12), namely

CM
f ,g(t) = (

f ′D(m)Ψ τ

)
etΛτ

(
Ψ ∗

τ
′D(m)g

) − (m′ f )(m′g). (2.14)

(2.14) is obtained by discretizing the RHS of (2.12), in which the inner products involved
therein in the weights, w j ( f , g), have been approximated over the partition PM . Therefore
assuming a sufficiently long dataset in time, if CM

f ,g(t) approximates C f ,g(t) (as estimated
from standard correlation estimators) such that the error shrinks as M increases, one can
reasonably infer that Tτ+τ ′ = TτTτ ′ , or at least that this semigroup holds, approximately.
This is due to the fact that (2.12) is a necessary condition for Tτ+τ ′ = TτTτ ′ to hold, for the
limiting family of Markov operator (Tτ )τ≥0.

The checking ofC f ,g(t) ≈ CM
f ,g(t) does not only nurture a theoretical understanding about

the reduced RP resonances as estimated from time series but has important consequences in
practice. For instance, the theory of [8, Sect. 3] shows that in this case (and if h is a projector),
there exists a reduced SDE that approximates (well) the reduced dynamics in V , and that this
SDE is given by

dy = F(y) dt + σ(y) dWV
t , (2.15)

with F(y) = ∫
F(x) dμy , WV

t is a Brownian motion in V , and σ(y) satisfies for 1 ≤ i, j ≤
dim(V ),

(σ (y)σ (y)T )i j =
q∑

k=1

Gik(x)G jk(x), (2.16)

where the Glm’s are the diffusion coefficients of the SDE (2.1), and (·) still denotes the
averaging operation with respect to the disintegrated measure μy ; see [8, Theorem 3.2].

In practice F and σ , as subordinated to the knowledge of μy , are out of reach except in
special cases (see [8, Sect. 4]), rendering at first sight difficult the efficient determination
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of the reduced SDE (2.15). This is where the analysis of the geometric pattern formed by
the reduced RP resonances in the complex plane comes into play to bypass this difficulty.
For instance if a geometric pattern is identified that corresponds to a specific SDE, then this
specific SDE gives actually the reduced SDE (2.15) itself, and thus reduced RP resonances
can be used as a diagnosis tool of reduced SDEs. In that respect, [52] have analyzed in details
the RP resonances associated with the normal form of a Hopf bifurcation subject to additive
noise, as a paragon of nonlinear oscillations in presence of noise.

Remark 2.1 Complimentary to the checking C f ,g(t) ≈ CM
f ,g(t) (in order to check Tτ+τ ′ =

TτTτ ′ ), one could also, given an observable f : V → R, look at a similar verification for the
power spectrum, S f , in terms of the sojourn time density m and the spectral elements of Tτ .
This operation consists of analyzing to which level of accuracy the following approximate
equality holds

S f (z) ≈ − 1

π

(
f ′D(m)Ψ τ

)
Γτ (z)

(
Ψ ∗

τ
′D(m) f

) − (m′ f )2, z ∈ C, (2.17)

where the matrix Γτ (z) is defined as the diagonal matrix with entries

(Γτ (z))kk = Re(λk(τ ))

((z − Im(λk(τ )))2 + Re(λk(τ ))2)
, 1 ≤ k ≤ n.

3 Results

We apply the reduction method (Sect. 2.2) to analyse the RP resonances in the stochastic
CZ model along the deterministic Hopf bifurcation. The CZ model and the introduction of a
stochastic forcing via the wind stress is first presented.

3.1 Stochastic Cane–Zebiak Model

The CZ model is composed of a 1.5-shallow-water ocean component with an embedded
mixed layer coupled to a steady-state linear shallow-water atmosphere, both on an equato-
rial beta plane (for a detailed description, see [62]). The domain, centered at the equator,
is rectangular with western and eastern boundaries at the position of Indonesia and Latin
America, respectively, while it is infinite in the meridional direction. With such boundary
conditions, the spatial fields, such as the Sea Surface Temperature (SST) and thermocline
depth, are expanded into spectral basis functions, with 30 Chebychev polynomials in the
zonal direction and 31 Hermite functions in the meridional direction, for a total of 930 vari-
ables per field. For this study, we use the fully-coupled version of the CZ model [57]. In this
version, not only the anomalies but also the mean fields of the ocean and atmosphere are
coupled, thus getting rid of spurious stable solutions that would otherwise exist [37]. On top
of an external wind-stress forcing (described below), the atmosphere responds to changes in
the SSTs, while the ocean in turns responds to the total wind-stress. As a consequence, the
long-term dynamics of this model are largely determined by the non-dimensional coupling
parameter ξ . For low values of ξ and a standard choice of the other parameters, only stable
stationary solutions exist. However, for a coupling larger than the critical value ξc ≈ 2.87, a
supercritical Hopf bifurcation occurs at which a periodic orbit emerges with a period of 3–4
years, reminiscent of ENSO.

As we have seen in the introduction, the impact of a stochastic wind forcing, represent-
ing fast atmospheric processes such as westerly wind-bursts, on tropical ocean-atmosphere
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(a) ξ = 2.85 (b) ξ = 2.90

Fig. 3 Trajectories projected in the (ESST, WH) plane of CZ model integrations without (plain blue line) and
with (dashed orange line) stochastic forcing for ξ = 2.85 (left, right before the bifurcation) and ξ = 2.90
(right, right after the bifurcation) (Color figure online)

dynamics, is of great interest for our understanding of ENSO. In particular, [42] have shown
that, in the CZ model, a stochastic wind-forcing is able to excite oscillations with a similar
period as ENSO before the criticality, i.e for ξ < ξc, in particular when the noise is red (see
also [17, Chapter 8]). Here, following the methodology of [42], a stochastic wind-forcing
is added to the deterministic wind-forcing in the CZ model. The wind-stress is composed
of a mean field to which is added a Wiener process with spatial patterns respectively given
by the mean and first Empirical Orthogonal Function (EOF) of observed pseudo wind-stress
anomalies [28]. As in [42], the seasonal cycle was removed from the observational records
as well as the regression of a linear contribution from observed SST anomalies [48].

We have chosen to model the noise by a Wiener process, i.e. with equal variance at all
frequencies. The level of the noise, calculated as the spatial average of the standard deviation
of the non-dimensional stochasticwind-forcing, was given a value of 0.01.Model simulations
of 6000 years were run with an integration time-step of 5 days, for different values of the
control parameter ξ . In this configuration butwithout noise, aHopf bifurcation is observed for
ξ ≈ 2.87. Deterministic and stochastic trajectories from the CZ model simulations projected
in the plane composed of time series of SST to the east of the basin (ESST) and of the
thermocline depth to the west of the basin (WH), both at the equator, are represented in
Fig. 3. For a coupling ξ of 2.85 (left panel), the deterministic trajectory (plain blue line)
converges to a stationary point, while the stochastic trajectory wanders erratically about this
point. For a coupling of 2.90 (right panel), the deterministic trajectory has converged to the
limit cycle, while the stochastic trajectory wanders about this cycle.

3.2 RP Resonances in the CZModel

Although the CZ model can be considered as a model of intermediate complexity compared
to the state of the art, it has nonetheless thousands of degrees of freedom. To analyze the
mixing dynamics in state space for the CZ model, we thus apply the reduction method of
Sect. 2.2. We define an observation operator h on a low-dimensional space V . Based on
the knowledge of the physics of the instability involved in the periodic dynamics (see e.g.
[57]), we choose a two-dimensional space, with as first component h1 the east-equatorial SST
(ESST) and as second component h2 the west-equatorial thermocline depth (WH). This plane
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is the same as the one of Fig. 3. This so-defined reduced state space is then discretized into
100-by-100 grid-boxes spanning a rectangle of [−4.5, 4.5]×[−4.5, 4.5] standard deviations.
The transition matrices Tτ for a transition lag τ of 4 years are estimated from 6000 year long
simulations of the model including the stochastic wind-forcing (with an integration time step
of 5 days and a spinup of 100 years removed) for several values of the coupling ξ .

The sampling of the time series, the domain, the number of grid-boxes and the lag τ are
key parameters for a proper estimation of the RP resonances. Here, they are chosen based
on robustness tests and so as for the spectral reconstructions of the correlations functions
and power spectral densities represented in Fig. 5 to closely fit to the sample estimates of
these objects. In particular, the lag τ is chosen as a trade-off between estimating the position
of the leading resonances well and capturing resonances further away from the imaginary
axis. The robustness to the sampling was tested by comparing eigenvalues estimated from
10 transition matrices estimated leaving one tenth of the original time series out. The 10
spectra being virtually identical (not shown here), the results can be considered robust to the
sampling. Moreover, the sampling frequency of the time series of 5 days was kept, while a
temporal smoothing may be needed in applications for which the physical phenomenon of
interest needs to be isolated from irrelevant fast processes. The convergence of the eigenvalues
estimates for an increasing number of grid boxes per dimension (from 10 to 200 with a step
of 10) and for an increasing lag (from 1 to 100 months with a step of 1 month) was also
tested. The number of grid boxes and the lag were chosen so as for the relative change in the
real parts of the first 10 eigenvalues from one step to the other to be less than 1%. For more
details on the estimation procedure, see [7,8,49,51].

Figure 4 represents histograms the sojourn time density m estimated from these time
series. The latter give an estimate of the marginal distribution m of μ on the reduced space.
For small values of the coupling (panels (a) and (b)), the histogram is spread about the
stationary point. This is expected from Fig. 3 where realizations fluctuate erratically around
the stationary point, never passing twice through the same point, with a large spread away
from the stationary point. Instead, as the coupling is increased (panels (c) and (d)), the system
enters an almost-periodic regime so that the histogram is spread about the deterministic limit
cycle.

In the left part of the left panels of Fig. 5, we represent the leading reduced RP resonances
calculated from transition matrices estimated following the methodology of Sect. 2.2, for the
same values of ξ as in Fig. 4.

The choice of a lag τ as large as 4 years may come as a surprise, as the oscillations in
the CZ model are between 3 and 4 years. Care should indeed be taken when computing the
imaginary part of generator eigenvalues (the resonances) from eigenvalues of a transition
matrix at a given lag τ by applying formula (2.10), since it involves taking the principal part
of the argument of the latter. This would result in clipping imaginary parts of true resonances
larger than ±π/τ (Nyquist angular frequency) and thus prevent estimating the harmonics in
the power spectra associated with these resonances. In order to avoid this aliasing effect, we
instead compute the reduced RP resonances from the ratio of the corresponding eigenvalues
of transition matrices at lags τ and τ +Δτ , with τ = 4 years and Δτ = 0.5 months. In other
words, we estimate the reduced RP resonances as

λk(τ ) = 1

Δτ
log

ζk(τ + Δτ)

ζk(τ )

= 1

Δτ

(
log

∣∣∣∣
ζk(τ + Δτ)

ζk(τ )

∣∣∣∣ + i arg
ζk(τ + Δτ)

ζk(τ )

)
, 1 ≤ k ≤ M . (3.1)
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(a) (b)

(c) (d)

Fig. 4 Histogram (shaded contours) in the (ESST, WH) plane (same as Fig. 3) for the stochastic CZ model
with a coupling ξ of a 2.80 (before the deterministic Hopf bifurcation), b 2.85 (right before the bifurcation),
c 2.90 (right after the bifurcation), d 2.95 (after the bifurcation). The stable stationary point and the limit
cycle from the deterministic version of the model and the same values of the coupling are also represented in
grey. The histogram coincides with the leading left eigenvector of the transition matrix Tτ . The scale changes
between (a, b) and (c, d) (Color figure online)

Doing so, the folding is limited to imaginary parts larger than ±2π months−1 and the tran-
sition lag may be chosen larger, so as for the real parts of the leading eigenvalues to be
better estimated. To pair eigenvalues of the transition matrices Tτ and Tτ+Δτ corresponding
to the same resonance, the distance between the associated eigenvectors is minimized. More-
over, the eigen-condition numbers κk’s (see caption) are used to assess the robustness of the
corresponding eigenvalues to numerical errors and filter out the least robust ones.

In addition, reconstructions of the power spectral density (right part of left panels) and
of the auto-correlation function (right panels) of the ESST are represented by a dashed
blue line. They are obtained from the leading eigenvalues and eigenvectors by applying
the spectral decompositions (2.17) and (2.14), respectively. The black lines instead give the
sample estimates [58] of these objects.

One can see that, for small values of the coupling ξ , panel (a), the reduced eigenvalues are
arranged in a triangular structure. For large values of ξ , panel (g), the reduced eigenvalues are
instead arranged in a parabolic structure. For intermediate values of the coupling, panels (c)
and (e), the reduced eigenvalues smoothly move from one arrangement to the other. A first
result is that, even for a low value of the coupling parameter, panels (a) and (b),—for which
only a stationary point would exist without noise—a broad power spectral peak associated
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Leading reduced RP resonances (left part of left panels), power spectral density SESST (right part of
left panels) and correlation function CESST (right panels) for the stochastic CZ model with a coupling ξ of
(a) 2.80 (before the deterministic Hopf bifurcation), (b) 2.85 (right before the bifurcation), (c) 2.90 (right
after the bifurcation), (d) 2.95 (after the bifurcation). The position of the eigenvalues λi is marked by a plus
with an overlapping disc indicating their relative weight wi , in logarithmic scale. Eigenvalue estimates with
an eigen-condition number κi = |〈ψ∗

j , ψ j 〉m|/(‖ψ∗
j ‖m‖ψ j‖m) exceeding 5 are deemed not robust and are

not represented. Here, ψk (τ ) and ψ∗
k (τ ) are respectively the right and left kth-eigenvectors of the transition

matrix Tτ and m (2.13) is the estimate of the marginal measure m. The spectral reconstructions of the power
spectral density and of the auto-correlation function of the ESST are represented by a dashed blue line, while
the black lines give their sample estimates (Color figure online)
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with oscillations in the correlation function is visible, reminiscent of that of the observational
record of ENSO. This peak is due to the presence of resonances with non-zero imaginary
part close to the imaginary axis, even below the deterministic bifurcation. This explains the
noise-induced oscillations identified by [42] in a similar configuration of the CZ model.

Importantly, as ξ is increased, the spectral gap between the eigenvalue zero and the leading
secondary eigenvalues decreases. This shrinkage of the spectral gap is responsible for the
slowing down of the decay of correlations (shown on the right panels, see below), as well
as for the sharpening of the power-spectral peaks (right part of left panels). The position of
these peaks coincide with the harmonics of the periodic orbit. As ξ is further increased, there
is both a reduction of the gap between the imaginary axis and the first line of eigenvalues
(i.e. the one passing through 0) and an increase of the gap between the latter and the second
line of eigenvalues, as visible from the transition from panel (c) to panel (e) (the second line
of eigenvalues is not visible in panel (g) since only the leading eigenvalues are represented in
order to filter out the high harmonics from the first line which are folded). These phenomena
may respectively be interpreted from the fact that, with the increase of the stability of the
limit cycle, diffusion along the limit cycle weakens and contraction towards the limit cycle
strengthens.

Moreover the spectral reconstructions of the power spectral density (right part of left
panel, dashed blue line) and the auto-correlation function (right panel, dashed blue line) of
the ESST from a single transition matrix at the chosen lag τ match relatively well with the
corresponding sample estimates (thin black line). This suggests that the slow dynamics in
the reduced state space considered here is little impacted by memory effects induced by
the reduction and that the semigroup property of the Markov semigroup is relatively well
preserved; see [9] for a discussion of the rolememory effects in reduced state space for ENSO
modeling.

The eigenvectors associated with the reduced RP resonances are also instructive. In Fig. 6,
we represent the 2nd, 4th and 6th eigenvectors (from left to right), for the same values of the
coupling as for Fig. 5 (from top to bottom). Because of the periodic character of the dynamics,
the modulus and the argument of these complex vectors are represented as filled contours
and line contours, respectively. This choice of representation differs from that used in part II
of this contribution [52] and is made to facilitate the lecture of radial variations. Moreover,
the 1st, 3rd and 5th eigenvectors are not represented because the 1st is always constant in
space and the 3rd and 5th are the complex conjugates of the 2nd and 4th eigenvectors.

Apart from the 4th eigenvector for ξ = 2.80 and the 6th eigenvector for ξ = 2.85
(panels b and f) which, being associated with a real eigenvalue, are real, the arguments
of the eigenvectors present wavelike patterns with a wavenumber increasing with the rank
of the associated eigenvalue (from wavenumber 1 to wavenumber 3). In agreement with
the pseudo-periodic dynamics, these wavenumbers correspond to the rank of the harmonics
given by the imaginary part of the associated eigenvalues. For example, for ξ = 2.90, the 2nd
eigenvector (panel g) shows a wavenumber 1 pattern and is associated with an eigenvalue
with imaginary part | Im(λ1)| = 2.00 rad/y, while the 4th (resp. 6th) eigenvector shows a
wavenumber 2 (resp. 3) pattern and is associated with an eigenvalue with imaginary part
| Im(λ3)| = 4.00 rad/y (resp. | Im(λ3)| = 6.00 rad/y).

Second, one can see that the contour shades are roughly concentric, so that the modulus’
of the eigenvectors increase in the radial direction. Moreover, the shrinking gap between
the contour lines indicates that the gradient in the modulus of the eigenvectors is sharper for
eigenvalues of increasing rank. Also, themodulus tends to flatten as the coupling is increased.

Finally, for large values of ξ , the isolines of phase are tilted concentric curves rather that
straight lines perpendicular to the limit cycle.

123



1466 A. Tantet et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6 Argument (line contours with a step of π/2) and modulus (shaded contours) of the second (left),
fourth (center) and sixth (right) reduced backward eigenvectors of the stochastic CZ, for a coupling of a–
c 2.80 (before the deterministic Hopf bifurcation), d–f 2.85 (right before the bifurcation), g–i 2.90 (right
after the bifurcation), j–l 2.95 (after the bifurcation). The stable stationary point and the limit cycle from the
deterministic version of the model and the same values of the coupling are also represented in grey. The scale is
changed between (a–f) and (g–l). The closed contour line in b and f indicate a change of sign in the amplitude
of the eigenvectors, which are in fact real (Color figure online)

4 Interpretation from Small-Noise Expansions

In this section, we build on small-noise expansions of the RP resonances for stationary points
and limit cycles to interpret the spectral results found in the previous Sect. 3.2 for the CZ
model. General small-noise expansions have been obtained by [26] for hyperbolic systems
(i.e. away from the bifurcation, in the case of a Hopf). Explicit formulas are derived in the
second part of this contribution [52] for the Hopf normal form subject to an additive white
noise, and the associated eigenvectors were also found. The analytical formulas for the RP
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resonances associated with a limit cycle forced by noise can be derived, to first orders in the
noise level, thanks to the small-noise expansion approach. To compute the terms of these
formulas for a given limit cycle, the Floquet analysis of the limit cycle is needed. In most
cases, this analysis needs to be done numerically, based on the continuation of the limit cycle
and on the computation of the corresponding fundamental matrix. In the case of the CZmodel
used here, this algorithm has not been implemented. However, the small-noise expansions
of the stochastic Hopf bifurcation from [52] already provide a number of key elements to
interpret the results of the previous Sect. 3.2.

4.1 Hopf Normal Formwith Noise

In [52], white noise is uniformly added to the system of ordinary differential equations of
the Hopf normal form in Cartesian coordinates. In polar coordinates, the resulting system of
SDEs is

dr =
(

δr − r3 + ε2

2r

)
dt + εdWr (4.1)

dθ = (γ − βr2)dt + ε

r
dWθ , (4.2)

whereWr andWθ are two independent Wiener processes with differentials interpreted in the
Îto sense. Here, δ controls the stability of the asymptotic solutions: a hyperbolic stationary
point at the origin for δ < 0, a hyperbolic limit cycle of radius

√
δ for δ > 0. The parameter

γ yields a constant contribution to the angular frequency of the periodic solution, while β

controls the dependence of the angular frequency on the radius. On the other hand, ε controls
the noise intensity. Small-noise expansions of the RP resonances and their eigenvectors have
been derived in [52] for the SDE (4.2) and for |δ| > 0 (i.e. away from the bifurcation). We
summarize these developments here and use them to interpret the results for the CZ model.

4.2 Before the Bifurcation

For δ < 0, There exists only one family of RP resonances associated with the hyperbolic
stationary point. They are given to first order in the noise intensity by

λln = (l + n)δ + i(n − l)γ + O(ε2), l, n ∈ N. (4.3)

The eigenvalues are thus arranged in a triangular structure to the left of the imaginary axis and
generated by linear combinations of the eigenvalues δ±iγ of the Jacobian of the deterministic
stationary point (i.e for ε = 0). In fact, to first order, the RP resonances coincide with those
of the deterministic case. The associated eigenfunctions are given by

ψln(r , θ) ≈

⎧
⎪⎨

⎪⎩

ei(n−l)θ
√

l!
n!

(√
− δ

ε2
r
)n−l

Ln−l
l (− δr2

ε2
), n ≥ l

ei(l−n)θ
√

n!
l!

(√
− δ

ε2
r
)l−n

Ll−n
n (− δr2

ε2
), n < l.

(4.4)

In other words, the eigenfunctions are the product of a harmonic function in θ with a Laguerre
polynomial Lα

n in r . The order of the harmonic function corresponds to the multiple of the
fundamental frequency given by the imaginary part of the eigenvalue (the higher the rank of
the harmonic, the larger the wavenumber). The degree of the polynomial corresponds to the
multiple of the stability coefficient δ giving the real part of the eigenvalue (the further the
eigenvalue from the imaginary axis, the higher the degree).
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These formulas explain several features of the results (Figs. 5, 6) obtained in Sect. 3.2
for the CZ model with ξ = 2.80, 2.85 (before the deterministic bifurcation), at least for the
leading resonances. The eigenvalues are arranged in a triangular structure with the imaginary
parts (resp. real parts) of the eigenvalues corresponding to harmonic functions of increasing
wave number (resp. nonlinear functions with an increasing number of changes of sign) in
the associated eigenvectors. The small-noise expansions also explain the approach of the
resonances to the imaginary axis with the decreasing stability of the stationary point, as
controlled by the parameters δ (normal form) and ξ (CZ).

4.3 After the Bifurcation

For δ > 0, two families of eigenvalues coexist. One is associated with the unstable stationary
point at the origin and is again arranged in a triangular structure, but this time with strictly
negative real parts. The other is associated with the deterministic limit cycle and is given by
the following small-noise expansions

λln =
{

− n2ε2(1+β2)
2δ + in(γ − βδ) + o(ε4), l = 0, n ∈ Z

−2lδ + in(γ − βδ) + O(ε2), l �= 0.
(4.5)

The eigenvalues are thus arranged in a series of parabolas such that the real parts of the
eigenvalues within a parabola increases with the imaginary part. The latter are again given
by multiples of the fundamental frequency. The first parabola passes through the eigenvalue
0, which is the only eigenvalue with zero real part. Interestingly, the distance of the other
eigenvalues from the imaginary axis scales bothwith the ratio ε2/(2δ) andwith the coefficient
1 + β2. We will see below, that this factor measures the phase diffusion, i.e. the diffusion in
the direction tangent to the limit cycle and responsible for the mixing along it. This factor
relates to the dependence of the angular velocity on the distance to the limit cycle through the
coefficient β. The other parabolas are separated by a gap given by a multiple of the Floquet
exponent −2δ of the deterministic limit cycle.

The eigenfunctions associated with the first row of eigenvalues are given by

ψln ≈
(
2kk!

)− 1
2

e
in

(
θ−β log r√

δ

)

Hl

(√
2δ

ε

(
r − √

δ
))

, l = 0. (4.6)

Once again, the eigenfunctions are the product of a harmonic functionwith a polynomial. The
latter are given by Hermite polynomials in r , centered at the deterministic limit cycle, and
scaled with the variance of the process about the cycle. The wavenumber is also increasing
with the harmonic corresponding to the imaginary part of the eigenvalue and the degree of the
polynomial with the distance of the eigenvalue from the imaginary axis. When β is different
from zero, the harmonic functions depend on the radius, so that the isolines of phase are
tilted. These lines correspond to the isochrons of the limit cycle (i.e. the foliation of its stable
manifold) [36]. In fact, it was shown in [52] that the noise field has to have a component
transverse to the isochrons for phase diffusion to occur.

Several features of the CZ-model results for a coupling of ξ = 2.90, 2.95 (after the
deterministic bifurcation, Figs. 5, 6) can be explained from these formulas. The resonances
are indeed found to be arranged in series of parabolic lines of eigenvalues. The gap between
the imaginary parts and the real parts of the resonances correspond to the wave number
and the number of changes of sign in the associated eigenvectors. Moreover, the leading
secondary resonances are indeed separated from the imaginary axis by a gap which could be
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explained by the phase diffusion quantified by (4.5), and the tilt in the isolines of phase of
the eigenvectors is also found in (4.6), for |β > 0|. Thus, in the case of a stable limit cycle
(after the Hopf bifurcation, here) and for a weak noise, the decay of correlations is primarily
governed by the phase diffusion along the orbit. This is different from the case of a stable
stationary point (before the Hopf bifurcation, here) for which the rate of decay of correlations
is dominated by the stability of this point, and forwhich the noise level and the phase diffusion
only play a secondary role. On the other hand, the skewness of the eigenvectors of the CZ
model is not explained by the small-noise expansion (4.6). In this case, we expect the Floquet
elements in the direction transverse to the limit cycle to play an important role [36].

4.4 General Formulas for Stationary Points and Limit Cycles

To go further in the interpretation of the spectral properties of the CZ model, we now discuss
the general formulas of the small-noise expansions derived by [26]. Although numerical
applications of these formulas require the computation of the Jacobian (resp. fundamental
matrix) of the deterministic stationary point (resp. limit cycle), which is beyond the scope of
this study, they provide further insights on the structure of the resonances of the CZ model.

The RP resonances associated with a hyperbolic stationary point in the presence of white
noise are given to first order in the noise intensity by

λln =
∑

Re(αi )<0

liαi −
∑

Re(α j )>0

n jα j + O(ε2), (4.7)

for li , n j = 0, 1, 2, . . . andwhere theαi , 1 ≤ i ≤ n are the eigenvalues of the Jacobianmatrix
of the stationary point. In the case of a hyperbolic stable stationary point, αi < 0 for all i . If
the first two αi ’s form a complex conjugate pair with a small real part, (4.7) yields a triangular
arrangement of RP resonances, as found for the CZ model in Fig. 5 for ξ = 2.80, 2.85. The
gap between the imaginary (resp. real) axis and the secondary resonances is thus given by
multiples of the real (resp. imaginary) part of the leading Jacobian eigenvalues.

While the first order of the expansion of the RP resonances associated with a stationary
point coincides with the ones of the deterministic problem [27], a new phenomena arises in
the case of the resonances of a stochastically perturbed hyperbolic limit cycle. The resonances
associated with a hyperbolic limit cycle in the presence of white noise of level ε are given to
first orders by

λln =
{

−Φn2 + inω + O(ε4) l = 0, n ∈ Z

−∑n−1
i=1 liνi + inω + O(ε2) l �= 0, n ∈ Z,

(4.8)

where the νi , 1 ≤ i ≤ n − 1 are the Floquet multipliers of the limit cycle with angular
frequency ω = 2π/T and period T . The coefficient Φ of phase diffusion is given by

Φ = −ε2ω2

2T

〈C(T )f, f〉
〈e, f〉 . (4.9)

It measures the amount of diffusion occurring along the limit cycle. Its effect is to push
eigenvalues—which in the deterministic case would be on the imaginary axis—away from
the imaginary axis. The phase diffusion coefficient is thus associated with the asymptotic
decay of correlations, or mixing in state space. In (4.9), f is left eigenvector of the Floquet
matrix in the direction of the flow (i.e. tangent to the limit cycle), e is the corresponding right
eigenvector and the matrix C(T ) is given by the matrix
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C(t) =
∫ t

0
M(t)M(−s)D(s)M(−s)∗M(t)∗ds, (4.10)

where the integral is taken over a full cycle on the limit cycle, M(t) is the map at time t of
the fundamental matrix of the limit cycle and D(s) is the evaluation at time t of the diffusion
matrix of the stochastic system.2

In the case of the stochastic Hopf bifurcation above, one has for δ > 0 that ω = γ − βδ

and ν1 = 2δ. The phase diffusion coefficient is given byΦ = ε2(1+β2)/(2δ). It is larger the
stronger the noise is with respect to the contraction to the limit cycle, but it is also affected
by the twist factor β. By twisting the isochrons, as apparent in Fig. 6, the amount of noise
in the radial direction which is transferred to the azimuthal direction by the deterministic
dynamics is increased [52]. In the case of the CZ model, for ξ = 2.90, 2.95, we thus expect
the gap observed between the leading secondary eigenvalues and the imaginary axis (Fig. 5)
to be in fact controlled by the phase diffusion coefficient (4.9) times the rank squared of the
harmonic associated with the resonance.

Finally, as the bifurcation is neared, e.g. for ξ = 2.85, 2.9, higher order terms in the noise
level than the ones given here may be necessary to explain the spectral properties of the
Cane–Zebiak model.

5 Conclusion

The response of a low-frequencymodeof climate variability, ElNiño–SouthernOscillation, to
stochastic forcing is studied in a model of intermediate complexity, the fully-coupled Cane–
Zebiak model, from the spectral analysis of the Markov semigroup. In this mathematical
framework, resonances in the power spectral density and the associated slow time-decay
of correlations are characterized by eigenvalues and eigenfunctions of Markov operators.
For such high-dimensional stochastic systems, extraction of partial information about these
operators is made possible by the reduction approach of [8], whereby transition matrices
corresponding to the projection of the Markov operators on a low-dimensional space are
estimated. Our interpretations of the numerical results are supported by the Hopf normal
form small-noise expansions derived in [52].

Without noise, the Cane–Zebiak model undergoes a Hopf bifurcation as the coupling
between the ocean and the atmosphere is increased. The addition of noise in the wind stress
leads to noise-induced oscillations, even before the critical value of the deterministic bifur-
cation [42]. Our results show that, as opposed to the deterministic case for which a sharp
bifurcation occurs at a specific value of the coupling, the noise is responsible for a smooth
transition of the RP resonances as the coupling is increased. Thus, it is not possible to define
a precise value at which the stochastic Hopf bifurcation occurs.

For low values of the coupling strength and in the presence of noise, our estimations
reveal the presence of a triangular structure of eigenvalues, or reduced RP resonances, in the
complex plane. The leading complex conjugate pair of eigenvalues is associated with power
spectral peaks reminiscent of that found from ENSO indices. The leading eigenvectors are
centered about the deterministic stationary point,with a phase resembling a harmonic function
with a wave number corresponding to the imaginary part of the eigenvalue, and a modulus
with an increasing number of sign changes for eigenvalues further from the imaginary axis.

2 The matrix C(t) is in fact the covariance matrix of a periodic Ornstein-Uhlenbeck process with a drift given
by the Jacobian matrix A(t) generating the fundamental matrix M(t) and with the diffusion matrix D(t), both
evaluated along the limit cycle.
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These results are well predicted by small-noise expansions of the RP spectrum for hyperbolic
stationary points with complex Jacobian eigenvalues.

As the critical value at which the deterministic bifurcation occurs is approached, the
spectral gap between the leading eigenvalues and the imaginary axis shrinks. This explains
(i) the sharpening of the peaks in the power spectral density associated with the fundamental
frequency of the system and its harmonics, (ii) the corresponding slowing down of the decay
of correlations and (iii) the triggering of oscillations by the noise. As the bifurcation is
passed, the leading eigenvalues are rearranged on successive parabolic curves. In the absence
of noise, the leading eigenvalues would lie on the imaginary axis, with their imaginary parts
corresponding to the harmonics of the limit cycle. Instead, in the presence of noise, mixing
in state space from phase diffusion is characterized by a the spectral gap between the leading
eigenvalues and the imaginary axis (with the exception of the zero eigenvalue). To first order
in the noise, the coefficient of phase diffusionmeasuring this gap can in fact be computed from
the Floquet analysis of the deterministic limit cycle [26,52]. The leading eigenvectors now
spread about the deterministic cycle. Their amplitude is constant and there phase resembles
harmonic functions of increasing wave number. Contrary to the case of the stationary point,
the isolines of phase, or isochrons, are twisted. In particular, it is shown in [52] that the noise
field has to have a component transverse to the isochrons for phase diffusion to occur. For
instance, the stronger the twist themore efficient the noise transfer from directions orthogonal
to the limit cycle to the direction tangent to it.

From a physical point of view, the study of the RP resonances allows one to better
understand how fast atmospheric perturbations may be responsible for the irregularity in
the recurrence of ENSO events. To first order, the sensitivity of ENSO—measured as the
amount of phase diffusion—would not only be determined by the intensity of the perturba-
tion, but also by the degree of the interaction of the stochastic forcing with the nonlinear
ENSO dynamics. In particular, if the ENSO evolution is found to depend on the ampli-
tude of ENSO events, then its future evolution may be particularly sensitive to atmospheric
perturbations and potentially less predictable.

In this study, the ENSOmodel considered is autonomous, so that the impact of the seasonal
cycle is not considered. Yet, it is known that the seasonal cycle is responsible for the phase
locking of ENSO events to peak aroundDecember/January and formaking predictions before
Spring particularly difficult [39]. To better understand the joint effect of the seasonal cycle
and stochastic forcing on ENSO, the ergodic theoretic framework presented in this study
needs to be extended.
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