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a b s t r a c t

The synthesis of a bicyclic tripeptide that mimics the ABC ring system of vancomycin is described by
using a ring closing metathesis (RCM) – peptide coupling – ruthenium-catalyzed azide-alkyne cycloaddi-
tion (RuAAC) strategy.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cyclic peptides are increasingly important and serve as relevant
lead structures and bioactive molecules in medicinal chemistry
and drug design since they offer a plethora of biological activities
and are especially interesting for the modulation of protein-protein
interactions.1 Their (total) synthesis, however, is still a highly chal-
lenging task and the development of novel and efficient cyclization
approaches is an active field of research.1f Within this class,
multicyclic as well as side-chain knotted cyclic peptides,
including the conotoxins and cyclotides,2 lantibiotics,3 and gly-
copeptide antibiotics,4 are of special interest since they combine
extreme potency with shape persistent folding of the peptide back-
bone. The most classical and outstanding example of the effects of
macrocyclization and side-chain knotting is found in the heptapep-
tide vancomycin.5 These lead to an almost absolute control of
shape and folding of this glycopeptide antibiotic and allows for a
very strong binding of the rather flexible natural target �Lys-D-
Ala-D-Ala-OH.6

Over the years we have been inspired by cyclized peptides such
as vancomycin as well as nisin and have explored alternative
approaches for peptide cyclization, among others, Sonogashira
cross-coupling,7 ring closing metathesis,8 and Cu+ as well as Ru2+

catalyzed azide-alkyne cycloadditions,9 to obtain highly con-
strained side-chain to side-chain knotted peptides. Previously, we
have shown that alkyne-, alkene- and triazole-tethered cyclic tri-,
hexa- and heptapeptides could be synthesized that mimic van-
comycin by binding �Lys-D-Ala-D-Ala-OH and �Lys-D-Ala-D-Lac-
OH. To further increase the rigidity of these mimics, we were look-
ing for complementary cyclization approaches for introducing an
additional cyclic constraint to control the sequence of cyclization
and thereby the folding topology of the peptide backbone. So far,
most vancomycin mimics, including our own, have focused mainly
on the CDE-ring system.10 However, the ABC-ring system probably
provides the additional needed rigidity in the form of a lid, making
vancomycin more of a clam to hold �Lys-D-Ala-D-Ala-OH more
permanently by reducing the off-rate. Herein, we describe our
efforts toward effective mimicry of the ABC-ring system,10 h,11,12

which ultimately combined with DE-mimicry should lead to
potent vancomycin mimics.
Results and discussion

Previously, we have reported the synthesis of triazole-contain-
ing vancomycin mimics like 14 (Fig. 1).9b Despite their bicyclic
framework these structures are still relatively flexible, since
mimics such as 14 do bind Ac-Lys(Ac)-D-Ala-D-Ala-OH albeit with
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Fig. 1. Design of vancomycin mimics.
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a lower affinity than vancomycin as judged by isothermal
microcalorimetry (ITC). In order to include the AB-ring system,11

we wished to apply RCM, which we and others have successfully
reported on several occassions.13 This led to the target bicyclic
tripeptide 10. Retrosynthesis showed that bicycle 10 might be
accessible through two consecutive macrocyclization steps starting
from 12 (Fig. 1). Since the preferred order of the macrocyclization
steps, by RCM or RuAAC,14 was not known (vide infra), precursor
dipeptide 7 was proposed, in order to optimize the RCM in the
presence of an azide moiety (Fig. 1).

TMS-protected alkyne 3 was conveniently accessible from com-
mercially available 4-hydroxy-D-phenylglycine (Scheme 1). After
protection of the amine group, conversion of the phenolic hydroxy
group to a methyl ether and preparation of the methyl ester, amino
acid derivative 1 was subjected to iodination, according to Nico-
laou and co-workers,15 to give mono-iodo compound 2 in high
yield (90%). After saponification of the methyl ester, the alkyne
was installed by a Pd-catalyzed Sonogashira cross-coupling reac-
tion to give protected phenylglycine building block 3 in an accept-
able yield of 57%.16

The synthesis of the required RCM-precursor 7 is shown in
Scheme 2. To this end 2-allylaniline 4 was obtained by a Claisen
rearrangement according to Brucelle and Renaud.17 In a first
attempt to couple aniline 4 to azido acid 5,18 BOP/DIPEA as a cou-
pling reagent did not afford anilide 6. Therefore, DCC in pyridine
was used to form the anilide 6 in 54% yield since this combination
of coupling reagent/solvent was effective in the coupling of the
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poor nucleophile 4-nitroaniline with amino acids.19 After depro-
tection of anilide 6 by treatment with TFA, Boc-D-Alg-OH was cou-
pled using BOP/DIPEA, and bisalkene dipeptide 7 was obtained in
92% yield over two steps.

As RCM precursor peptide 7 contained an azide moiety, the
first20 and second21 generation Grubbs catalysts could not be used
since the tricyclohexylphosphine ligands would likely reduce the
azide into an amine via a Staudinger reduction.22 Therefore, the
second generation Hoveyda-Grubbs catalyst23 was used in reflux-
ing CH2Cl2 and macrocyclic peptide 8 was isolated in 55% yield
as a mixture of the E/Z diastereoisomers, as shown in Scheme 3
(8a (Z):8b (E) = 1:2.3). After Boc removal both diastereoisomers
8a, b could be separated by preparative HPLC and were character-
ized by NMR and LC-(HR)MS.

In its protected form, both diastereoisomers (Rt 32.97 and
33.36 min) of macrocycle 8 could not be separated (see, ESI
Fig. SI-18). However, when an aliquot of 8 was treated with TFA
to remove the Boc functionality, this resulted in a base line separa-
tion of both diastereoisomers 8a, b (Rt 22.24 and 22.98 min, Fig. SI-
19). The 1H NMR spectrum of diastereoisomer 8a gave broad peaks
at 25 �C; fortunately at higher temperature, peak splitting was
observed and at 80 �C a well-defined J coupling of the olefinic pro-
tons could be derived (Fig. SI-11). This value, �8 Hz, corresponded
to the Z-configuration of the double bond. The proton spectrum of
diastereoisomer 8b had resulted already at 25 �C in a well-defined J
coupling of �13 Hz for the alkene bond indicating an E-geometry
of 8b (Fig. SI-12).24
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Thus, macrocycle 8 was treated with TFA and the resulting free
a-amine coupled to alkyne derivative 3 in the presence of BOP/
DIPEA to afford the protected click precursor 9 in 54% overall yield
(Scheme 3). Then, tripeptide 9 was treated with TBAF to remove
the TMS functionality, and the unprotected alkyne which was iso-
lated in 95% yield after column chromatography, subjected to
RuAAC in THF/MeOH at 80 �C under microwave irradiation in the
presence of 10 mol% [Cp*RuCl]4. Bicyclic tripeptide 10 was isolated
in 22% yield after column chromatography as a mixture of E/Z
diastereoisomers. Heating at 80 �C under microwave irradiation
in the absence of [Cp*RuCl]4 did not lead to any conversion. To
improve the yield of cyclization, lower and higher catalyst loadings
(5 and 15 mol%, respectively) were used which turned out to be
ineffective since incomplete conversion of the starting material
(at 5 mol%) or extensive formation of baseline compounds (at 15
mol%) were observed. As a control experiment, the unprotected
alkyne was also subjected to regular CuAAC25 in the presence of
either CuI or [Cu(CH3CN)4]PF6 as the Cu+ species; these reaction
conditions did not lead to the formation of bicyclic tripeptide 10.
This experiment showed that a 1,5-triazole moiety with a curved
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geometry was essential for ring closure since the more linear
geometry of the 1,4-triazole was clearly incompatible with the
topology of the bicyclic framework of tripeptide 10. Similar to
macrocycle 8, the individual diastereoisomers of bicyclic tripeptide
11 (Z-11a and E-11b, respectively) could be obtained after Boc
removal of 10 and purification by preparative HPLC. It is interest-
ing to note that the Z:E ratio during the conversion of 8a, b into
11a, b shifted from 1:2.3 to 2:1, an indication that the Z-geometry
of the alkene was favored in the bicyclic tripeptide topology.

Since bicyclic tripeptide 11 can be used as a versatile building
block in the synthesis of tricyclic heptapeptides to mimic the
side-chain to side-chain connectivity pattern of vancomycin,
hydrogenation of the double bond to an alkane bridge would be
desirable to obtain a single isomer instead of an E/Z mixture of
diastereoisomers. Therefore, several hydrogenation conditions in
the presence of Pd/C, Raney Ni, and Pd(OH)2 were investigated,
unfortunately all were unsuccessful.

Two reverse reaction sequences to arrive at the desired bicyclic
tripeptide 10 were also investigated, both starting from linear
dipeptide 7 (Scheme 4). As the first step, Boc-protected 7 was trea-
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Table 1
The binding affinity as measured using ITC.

Compound Ligand Ka (M�1)a

VM Ac-Lys(Ac)-D-Ala-D-Ala-OH (3.95 ± 0.41) � 105

VM Ac-Lys(Ac)-D-Ala-D-Lac-OH (2.38 ± 0.23) � 103

11a Ac-Lys(Ac)-D-Ala-D-Ala-OH (2.35 ± 0.36) � 103

11a Ac-Lys(Ac)-D-Ala-D-Lac-OH (2.17 ± 0.30) � 103

11b Ac-Lys(Ac)-D-Ala-D-Ala-OH (4.06 ± 0.84) � 103

11b Ac-Lys(Ac)-D-Ala-D-Lac-OH (1.21 ± 0.86) � 103

a Measured in a Na-citrate/citric acid buffer (0.02 M, pH 5.1), VM: vancomycin.
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ted with TFA and the resulting amine coupled to alkyne derivative
3 in the presence of BOP/DIPEA to afford tripeptide 12 in 69% yield
after purification by column chromatography. RCM of precursor
peptide 12 in the presence of second generation Hoveyda-Grubbs
catalyst in CH2Cl2 or 1,2-dichloroethane did not result in the for-
mation of alkene-bridged macrocycle 9. The progress of the reac-
tion was monitored by LCMS, and although starting material had
disappeared, the desired bicyclic peptide 9 could not be observed.
In hindsight, it was assumed that the desired ene-ene RCM path-
way was possibly overrun by the thermodynamically favored
ene-yne reactivity to yield 2-silyl-substituted 1,3-dienes, which,
however, were not identified.26 Alternatively, TMS-protected pre-
cursor peptide 12 was treated with TBAF and subsequently sub-
jected to RuAAC to install the triazole moiety as the cyclic
constraint. Via this route, macrocycle 13 was obtained in an
improved 41% yield compared to the above preparation of 10
(Scheme 3). Unfortunately, RCM of 13 did not result in the success-
ful isolation of bicyclic tripeptide 10. TLC analysis indicated that
conversion of the starting compound was incomplete and some
baseline material was present, additionally the formation of bicyc-
lic tripeptide 10 could not be observed by LCMS.

The structures of bicyclic tripeptides 11a (as the Z-diastereoiso-
mer) and 11b (as the E-diastereoisomer) were energy minimized
using the simulated annealing protocol employing the AMBER99
force field using the YASARA Structure 10.5.2.1 software package.27

The peptides were superimposed with the left half of the van-
comycin-related balhimycin antibiotic comprising the ABC-ring
system.28 An RMSD of 0.76 and 0.58 Å over seven atoms was calcu-
lated (see Scheme 3 for atom numbering) of the superimpositions
of 11a and 11b, respectively (Fig. 2). To evaluate if this structural
Fig. 2. Superimposition of balhimycin (in red) with bicyclic tripeptide 11a (left) and
11b (right), respectively. The carbon atoms aC1, aC2, aC3, arom-C4, triazole-C5, N6,
benzylic-C7 have been used as fixed coordinates for superimposition.
resemblance correlates with binding affinity toward Ac-Lys(Ac)-

D-Ala-D-Ala-OH and Ac-Lys(Ac)-D-Ala-D-Lac-OH, isothermal
microcalorimetry (ITC) was performed, as shown in Table 1.29,30

Based on these data, mimics 11a and 11b still bind Ac-Lys(Ac)-D-
Ala-D-Ala-OH appreciably, considering that a large part of the
’clam’ is missing, albeit at least 100-fold less compared to van-
comycin. Bicycle 11b is somewhat more active than 11a, while
binding toward Ac-Lys(Ac)-D-Ala-D-Lac-OH was comparable for
all three receptor molecules. This was in line with the MIC-values
obtained from a growth inhibition assay31 of the Staphylococcus
aureus ATCC 49320 strain, where values of 300 lg/mL (11b),
>300 lg/mL (11a) and 2 lg/mL (VM) were found, respectively.
Although a reasonable structural resemblance was found, not
unexpectedly, for efficient binding (and activity) some extra factors
need to be addressed such as the proper alignment of hydrogen
bonding and further rigidification, possibly in attempts to combine
the ABC and CDE-ring systems.9b

Conclusion

In conclusion, bicyclic tripeptide 10 as a mimic of the ABC-ring
system was successfully synthesized starting from precursor
dipeptide 7 following an RCM-coupling-RuAAC strategy. Mimics
of this part of the vancomycin structure are less explored as only
a single hydrogen bond contributes to the binding of Ac-Lys(Ac)-

D-Ala-D-Ala-OH via the carbonyl oxygen of the lysine residue. The
mixture of double bond isomers could be separated by HPLC to
give each individual E/Z diastereoisomer as the free amine as
judged by NMR and LC-MS. Bicyclic tripeptide 10 represents an
important building block to ultimately arrive at a series of tricyclic



4546 X. Yang et al. / Tetrahedron Letters 58 (2017) 4542–4546
heptapeptides for possible effective mimicry of vancomycin in
which ruthenium-based cyclization approaches will be used to
control the topology and rigidity of the peptide backbone.
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