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Effective spin-orbit gaps in the s and p orbital bands of an artificial honeycomb lattice
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Muffin-tin methods have been instrumental in the design of honeycomb lattices that show, in contrast to
graphene, separated s and in-plane p bands, a p orbital Dirac cone, and a p orbital flat band. Recently, such
lattices have been experimentally realized using the two-dimensional electron gas on Cu(111). A possible next
avenue is the introduction of spin-orbit coupling to these systems. Intrinsic spin-orbit coupling is believed to open
topological gaps and create a topological flat band. Although Rashba coupling is straightforwardly incorporated
in the muffin-tin approximation, intrinsic spin-orbit coupling has only been included either for a very specific
periodic system, or only close to the Dirac point. Here, we introduce effective intrinsic and Rashba spin-orbit
terms in the Hamiltonian for both periodic and finite-size systems. We observe a strong band opening over the
entire Brillouin zone between the p orbital flat band and the Dirac cone hosting a pronounced edge state, robust
against the effects of Rashba spin-orbit coupling.
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I. INTRODUCTION

Ever since the prediction of the quantum spin Hall effect in
graphene as a result of intrinsic spin-orbit coupling by Kane
and Mele [1], efforts have been made to observe the predicted
state. Not only would the intrinsic spin-orbit coupling turn
graphene into a bulk insulator, it would also create conducting
edge modes that would be protected from scattering by the
topology of the system [1]. Unfortunately, the gap turned out
to be too small for practical applications [2]. Although efforts
have been made to enhance the intrinsic spin-orbit coupling
[3,4], no convincing method has been found so far. An al-
ternative pathway to create lattices with robust quantum spin
Hall edge states would be to lithographically pattern quantum
wells from heavy element semiconductor compounds, such as
GaAs [5] and GaInAs [6]. However, these lattices still suffer
from geometric disorder. Meanwhile, the effects of intrinsic
spin-orbit coupling can be studied in artificial lattices, created
by placing energy barriers on top of a (heavy) metal with a
two-dimensional (2D) electronic surface gas using a scanning
tunneling microscope. This method was pioneered by Gomes
et al. [7] using CO molecules as energy barriers on top of
Cu(111), to create a triangular array of scatterers, resulting
in an effective honeycomb potential for the surface state elec-
trons. The potential landscape can be thought of as an artificial
lattice of coupled quantum corrals, i.e., artificial atoms, that
have one s and two (in-plane) p orbitals. If s-p hybridization
is absent, the coupling between the sites in the lattice results
in an s orbital Dirac cone and four p bands (four because of A
and B sublattices, px and py). In Ref. [7], only the lowest two
bands were considered, forming a Dirac cone (cf. the bands
derived from the 2pz orbitals in graphene). Later, Gardenier
et al. [8] extended the method: The size of the atomic sites

was increased to bring the p band system in the accessible
energy window of the Cu(111) surface state [9]. Additionally,
by using CO rosettes instead of single COs, s-p hybridization
could be avoided to a large extent, resulting in two s and four
p orbital bands. The p orbital bands include a Dirac cone and
a flat band [8], which was described by tight-binding methods
[10–15].

The system of in-plane p orbital bands is of high interest
to study the effects of intrinsic spin-orbit coupling. Not only
is the effect of the coupling shown to be larger in these sys-
tems [12,15,16] because it is on site instead of next-nearest
neighbor, as would be the case for s and pz orbitals, but
it is also predicted to generate topological flat bands [13].
Flat bands are particularly interesting to study interactions,
as the kinetic energy is quenched. Thus, interaction driven
phenomena like superconductivity and charge density waves
become accessible. Moreover, flat bands can be even more
interesting when they are topological [17]. Thus, introducing
intrinsic spin-orbit coupling in artificial electron lattices could
open up exciting new possibilities for the field.

Patterned lattices are usually described as a two-
dimensional (2D) free-electron gas confined to the lattice
using a modulated (muffin-tin) potential. This muffin-tin
method has yielded remarkably accurate predictions for effec-
tively spinless systems, and has proven to be a vital tool in the
design of artificial electronic lattices [6,8,18–22]. For these
systems, the muffin-tin approach is often more convenient
than the tight-binding method because there are only a few
parameters involved, namely the potential landscape V (x, y)
and the electron effective mass. These parameters only have
to be determined once for a material and patterning technique,
whereas the tight-binding approach requires new fitting for
each design. The muffin-tin method has the additional advan-

2475-9953/2021/5(11)/116001(8) 116001-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3201-7301
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.5.116001&domain=pdf&date_stamp=2021-11-18
https://doi.org/10.1103/PhysRevMaterials.5.116001


J. J. VAN DEN BROEKE et al. PHYSICAL REVIEW MATERIALS 5, 116001 (2021)

tage that it does not require any assumption about the orbital
character of the system. It can be complemented with a tight-
binding parametrization, enabling one to understand which
lattice orbitals are involved in the band formation. Besides
this, the muffin-tin method is also well suited for finite-size
calculations, and thus very useful for the study of edge states
in practical systems.

Unfortunately, the inclusion of spin-orbit coupling in
muffin-tin models is not straightforward. This is because the
spin-orbit effect depends on the atomic core potentials of the
substrate material, which is no longer present in the muffin-tin
approximation, where the substrate is accounted for using
an effective mass parameter. The theoretical approaches pro-
posed so far vary substantially [16,23], and are only valid for
a specific setup or only describe the physics near the Dirac
point. In addition, these techniques are not easily extended to
finite-size calculations.

Here, we propose a heuristic method that starts from the
relativistic spin-orbit coupling originating from the Dirac
equation, and considers both out-of-plane potential change
contributions, resulting in a Rashba term, and in-plane poten-
tial changes due to the (artificial) lattice potential, resulting
in an effective intrinsic spin-orbit term. Both these terms are
effective representations; their magnitude can be adapted to fit
experimental reality, similar to the effective mass parameter in
the original muffin-tin model. We reproduce the defining fea-
tures of other approaches that use ab initio derived expressions
to account for spin-orbit coupling. Additionally, this method
allows for calculations on finite-size systems, crucial for the
study of protected edge states. However, it is important to
keep in mind that due to the effective nature of the model,
its predictive power is limited. The technique is intended to
be used as a tool alongside experimental results.

The outline of this paper is the following: in Sec. II, we
review the muffin-tin model and adapt it to incorporate Rashba
and intrinsic spin-orbit coupling. We then investigate the in-
fluence of spin-orbit coupling on a honeycomb toy model in
Sec. III, and present our conclusions in Sec. IV.

II. MODEL

Let us consider an artificial lattice, created by adatoms
arranged to form an antilattice confining the surface state elec-
trons into the honeycomb geometry. These confined electrons
can be described by the one-electron time-independent 2D
Schrödinger equation,

(−h̄2

2m∗ ∇2 + V

)
� = E�, (1)

where m∗ is the effective mass and V is the potential created
by the adatoms patterning the surface. Thus, the only freedom
in the input parameters is in the shape of the potential. When
modeling a patterned potential V (x, y) as a collection of disk
shaped protrusions, also called a muffin-tin potential, only two
parameters remain, namely the disk height and the disk width.

In order to study the effect of spin-orbit coupling in ar-
tificial lattices, we start with the spin-orbit coupling that
originates from the Dirac equation as a relativistic correction

FIG. 1. The gold surface state, calculated as a free electron gas
(a) without and (b) with Rashba spin-orbit coupling. Here, an ef-
fective mass of 0.25 em and α1 = 6.02 × 104 m/ s were used, as
measured in Ref. [30].

to the Schrodinger equation [24], given by

HSO = h̄

4m2c2
(∇V ∗ × p) · σ, (2)

where m is the real electron mass, V ∗ is the full potential, p is
the vector momentum, σ is the vector of Pauli matrices, and
c is the speed of light. Here, we see that spin-orbit coupling
is proportional to the gradient of the potential V ∗. We first
investigate the effect of a potential change in the direction
perpendicular to the surface state. The asymmetry of the po-
tential at the surface of a material leads to Rashba splitting.
As inversion symmetry is not present, spin degeneracy is not
required and indeed broken. To fully understand this effect,
one would need to consider the full atomic potential and the
orbital symmetry of the lattice sites in the surface region:
due to the electric field perpendicular to the surface, the or-
thogonality of the pz and px, py orbitals is broken, resulting
in additional cross terms [25–27]. For the artificial lattices
considered here, we have made an abstraction of the real
atoms and only took into account “orbitals” of the artificial
lattice sites. This has proven to be very accurate [8,20] for
artificial lattices. As our goal here is to describe the disturbing
effects of the Rashba coupling on topological band openings
by the intrinsic spin-orbit coupling (see below), we have used
a constant perpendicular electric field and a free parameter to
vary the strength of the Rashba term [28,29]. The resulting
addition to the Hamiltonian from this approximation is

HR = α1(pxσy − pyσx ). (3)

Here, pi (i = x, y) is the momentum component, σi are the
Pauli matrices, and α1 is the effective strength of the Rashba
coupling. As a check, we add this term to Eq. (1), and use
α1 and m∗ as experimentally measured in Ref. [30] for the
Au(111) surface state, which is known to have a large Rashba
splitting. It can be seen that our calculation reproduces the
previously observed Rashba splitting of 0.26 nm−1 between
the two parabola minima [30], as shown in Fig. 1. Therefore,
the muffin-tin method can accurately describe the Rashba
spin-orbit coupling in the absence of scatterers by including
HR in Eq. (1). When scatterers are present, this can potentially
locally change the derivative of the potential in the z direction.
However, this effect is expected to be negligible.

Next, we consider the changes of the potential in the plane
of the artificial lattice. This results in an effective intrinsic
spin-orbit coupling, which is a consequence of the coupling
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between the orbital angular momentum and the spin of the
electron. In atomic systems, the intrinsic spin-orbit term HI

scales supralinear with the atomic number [31]. Thus, HI

tends to be much larger for heavier elements. In the case of the
muffin-tin technique, however, the substrate is approximated
as a 2D electron gas with an effective mass m∗ and a scattering
potential originating from the patterned adatoms. Thus, details
on the precise potential landscape, like the size of the nuclei in
the substrate, that give rise to the intrinsic spin-orbit coupling,
are lost. Here, we propose a heuristic solution to this issue that
maps the intrinsic spin-orbit coupling coming from Eq. (2) to
the muffin-tin calculations by assuming an effective coupling
α2 between the patterned muffin-tin potential and the spin-
orbit term,

HI = α2(∇V × p) · σ. (4)

Note that p represents the momentum operator acting on the
envelope wave functions of the electrons in the 2D muffin-tin
model. By allowing the effective parameter α2 to be system
dependent, Eq. 4 can be used for any type of artificial lat-
tice. Additionally, because of the relative simplicity of this
approach, it easily translates to both finite and periodic cal-
culations, which is highly convenient when working with
topological materials. Please note that α1 and α2 do not have
the same units and HR ≈ HI does not mean that α1 ≈ α2, as
the potential derivative is only absorbed in α1, cf. Eqs. (3) and
(4).

As the electrons are confined to the x, y plane, only the
z component of the cross product survives, and the intrinsic
spin-orbit contribution becomes

HI = α2

(
∂V

∂x
py − ∂V

∂y
px

)
σz. (5)

With appropriate fitting for the effective parameter α2,
Eq. (5) should yield adequate predictions for spin-orbit cou-
pling in an artificial lattice. Indeed, as shown in the next
section, Eq. (5) reproduces the main features found using
other methods. Adding HR and HI to Eq. (1), the full time-
independent one-electron Schrödinger equation becomes

[−h̄2

2m
∇2 − ih̄α2

(
∂V

∂x

∂

∂y
− ∂V

∂y

∂

∂x

)
σz

− ih̄α1

(
∂

∂x
σy − ∂

∂y
σx

)
+ V

]
�σ = E�σ . (6)

For finite-size systems, solving this equation is not much
different from solving the spinless system. Nevertheless, there
is one important point to consider. Due to the presence of a
derivative of the potential, the precise shape of the potential
becomes important. For the muffin-tin potential, we would
encounter infinities in the spin-orbit term. We solve this by
using Gaussian potentials instead. As shown in Appendix A,
a change in potential shape from muffin-tin to Gaussian does
not yield significantly different results in the case without
spin-orbit coupling, and is therefore an appropriate approxi-
mation.

In the case of a periodic system, careful Fourier transfor-
mation is required to incorporate the spin-orbit couplings. We

first Fourier transform the wave function,

�σ (x) = 1√
A

∑
k

eik·x�σ (k), (7)

where A = L2 is the system size in which the wave function
is periodic, and k = 2π

L (lx, ly), with li ranging from −∞ to
∞. Meanwhile, we also Fourier transform the potential V .
However, as V has the unit cell periodicity we have

V (x) =
∑

K

eiK·xVK, (8)

where K are the reciprocal lattice vectors. Applying these
transformations to Eq. (6), the resulting equation also has to
hold for a single Fourier component q,

h̄2

2m
q2�σ (q) − h̄α1(qyσx − qxσy)�σ (q)

−ih̄α2

∑
K

V−K(Kxqy − Kyqx )σz�σ (q + K)

+
∑

K

V−K�σ (q + K) = Eq�σ (q). (9)

Only wave functions of the shape �(q) and �(q + K) appear
in this equation. We can therefore apply a shift q → q + K′
and K → K − K′ to obtain a coupled system of equations for
each q in the Brillouin zone,

h̄2

2m
(q + K′)2�σ (q + K′)

−h̄α1[(qy + K ′
y)σx − (qx + K ′

x )σy]�σ (q + K′)

−ih̄α2

∑
K

VK′−K[(Kx − K ′
x )qy − (Ky − K ′

y)qx

+KxK ′
y − KyK ′

x]σz�σ (q + K)

+
∑

K

VK′−K�σ (q + K) = Eq+K′�σ (q + K′). (10)

In principle, Eq. (10) is an infinite set of equations, one for
each K′, and can therefore not be solved. However, we are
only interested in the lowest bands. As VK becomes expo-
nentially small for large values of K2 for both Gaussian and
muffin-tin potentials (see also Appendix A), we can introduce
a cutoff in the values of K′ that we consider. We can then solve
the system of equations for arbitrary q in the Brillouin zone.
In this work, a square grid iK1 + jK2 with K1,2 the reciprocal
primitive vectors and i and j integers ranging from −4 to 4,
was used.

III. HONEYCOMB STRUCTURES

In order to see the effect of the spin-orbit terms introduced
above on the band structure of artificial lattices, it is instructive
to first investigate a test system. For this, we will consider
a honeycomb lattice, as spin-orbit coupling has been exten-
sively studied in graphenelike lattices through other methods
[1,3,13]. As a starting point, the first artificial graphene lat-
tice realized by Gomes et al. [7] using CO on the copper
(111) surface might appear as a good choice. However, more
elaborate designs of honeycomb lattices have recently been
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FIG. 2. Periodic system calculations, using Cu (111) parameters
as a test case (effective mass m∗ = 0.42 em, CO molecules as Gaus-
sians with a height of 0.45 eV and a full width at half maximum
(FWHM) of 0.6 nm). (a) Arrangement of CO molecules on Cu (111)
in the reference system realized experimentally in Ref. [8] without
spin-orbit coupling. The unit cell with the two lattice sites A and B is
indicated. The band structure with s and p orbital bands plotted in red
and blue, respectively, are shown (b) without any spin-orbit coupling;
(c) with only Rashba spin-orbit coupling (α1 = 1.6 × 104 m/s);
(d),(e) with only intrinsic spin-orbit coupling (α2 = 0.8 × 1015 s/kg,
α2 = 2 × 1015 s/kg), and (f) with both Rashba and intrinsic spin-
orbit coupling (α1 = 1.6 × 104 m/s, α2 = 2 × 1015 s/kg).

shown to lead to interesting features, like the appearance of
a flat p band [8]. Additionally, for patterned quantum wells,
intrinsic spin-orbit coupling is predicted to open a larger band
gap between these higher bands than at the Dirac cone of
the lower (i.e., predominantly s orbital) energy bands [16].
We therefore use the system described in Ref. [8] as a refer-
ence system. This system also uses CO molecules on copper
(111), but instead of positioning single CO molecules in a
triangular lattice as in Ref. [7], clusters of CO molecules are
used. The clusters consist of two highly symmetrical rings.
This added structure gives more confinement to the surface
electrons without breaking the symmetry, which leads to a
clear energy separation of s and p orbitals and the appearance
of not only s bands, as in Ref. [7], but also (nearly flat) p bands
and a p orbital Dirac cone. The cluster arrangement of the CO
molecules on the Cu (111) surface is shown in Fig. 2(a). In
Ref. [8], a muffin-tin potential with a height of 0.9 eV and
a diameter of 0.6 nm is used. When switching to Gaussians,
the choice was made for Gaussians with a full width at half
maximum of 0.6 nm. With an adjustment of the potential
height to 0.45 eV, this setup fully reproduces the muffin-tin
results from Ref. [8], as shown in Appendix A.

The bare band structure of the reference system is shown in
Fig. 2(b). Here, we see the two lowest energy bands forming
the well known Dirac cone at the K point, like in graphene.
The p bands start with a (nearly) flat band, connected to two
bands forming a p orbital Dirac cone at the K point, which is
connected to a fourth p orbital band. Upon inclusion of the
Rashba coupling, spin degeneracy is lifted everywhere except
at the � point, as shown in Fig. 2(c). This result is analogous
to that of previous tight-binding studies on single-orbital hon-
eycomb lattices [32,33]. Additionally, the splitting of Dirac
cones under the influence of Rashba spin-orbit coupling [32]
is recovered, as shown in Appendix B. The value of α1 was
set to a quarter of the value we found for Au(111). This
allows for the effects of the Rashba term to still be clearly
seen on the band structure. Note that in principle the Au(111)
surface state can also be used to construct artificial lattices. If
only the intrinsic spin-orbit coupling is included, as shown in
Figs. 2(d) and 2(e), the spin degeneracy remains, and instead
we see gaps opening up between the original band touching
points. Indeed, this is also the result of intrinsic spin-orbit
coupling in numerous other theoretical studies on honeycomb
systems [12,13,16,23,32–34]. There is both theoretical and
experimental evidence for these gaps to be topological and
harbor protected edge states [12,13,15,16,23,34]. Notably, the
gap opening up between the first two p orbital bands at the �

point is much larger than the gaps opening up at the K points.
In previous works, a similar trend of larger gaps between the
p orbital bands than between the s orbital ones is observed
as a consequence of the same intrinsic spin-orbit coupling
[12,16,34]. This effect can be explained by the angular mo-
mentum of p orbitals, making intrinsic spin-orbit coupling an
on-site effect. In s orbitals that have no angular momentum,
the spin-orbit coupling can only emerge through next-nearest-
neighbor coupling, which connects the same sublattice in a
honeycomb geometry. On the other hand, for p orbitals the
intrinsic spin-orbit coupling can couple px and py orbitals
on the same site, thus rendering the effect more robust [12].
Additionally, we see an unexpected effect, namely, if α2 is
large enough, the p orbital flat band is no longer isolated
as in Fig. 2(d), but the gap between the s and p type bands
seemingly closes to form a Dirac cone at the � point, as
shown in Fig. 2(e). However, a small gap can be observed
between the two bands. A zoom in on the gap can be found
in Appendix C. This phenomenon is interesting and it has not
been observed before, as far as the authors are aware. Finally,
we can also include both Rashba and intrinsic spin-orbit cou-
pling, as shown in Fig. 2(f). Here, we see that the Rashba
coupling can close the gaps opened by the intrinsic spin-orbit
coupling, diminishing the protection of possible topological
states. However, the gap between the first two p orbitals is
remarkably robust to the Rashba coupling. Additionally, the
isolated flat band in Fig. 2(d) remains isolated in the presence
of Rashba coupling, as shown in Appendix D. This robustness
against Rashba spin-orbit coupling is of high importance in
applications of topological materials, as Rashba spin-orbit
coupling is to a certain degree always present in devices based
on 2D materials.

In order to further study the topological nature of band
gaps opened by the intrinsic spin-orbit coupling, we calculated
the local density of states (LDOS) of the finite lattice. For
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FIG. 3. Finite-size system calculations using Cu (111) parame-
ters as a test case as in Fig. 2. Here, a spectral broadening of 40 meV
realistic for the CO on Cu (111) system has also been included.
(a) The locations of CO molecules (red) on the Cu (111) grid (gray).
Along the top edge, the locations of lattice sites, edge bridge sites
and subedge bridge sites have been indicated with purple crosses,
yellow disks, and open disks respectively. (b) The spectra calculated
for the spots indicated in (a). The top and bottom curves correspond
to the system without and with intrinsic spin-orbit coupling (α2 =
2 × 1015 s/kg), respectively. (c),(d) A map of the calculated LDOS
on the energy indicated by a vertical line in (b) at E = 0.027 eV
without and with intrinsic spin-orbit coupling, respectively.

this, we solved Eq. (6) on a finite grid with eight points per
nm, and included a square border of 2.56 nm with V = 0
surrounding the design. At the edge of the simulation box,
periodic boundary conditions were imposed to mimic an in-
finite surrounding surface state. A Lorentzian broadening of
40 meV was included in the numerical solutions, to account
for the experimental broadening resulting from the scattering
of surface electrons to the bulk, as described in more detail
in Ref. [20]. The solution for a finite honeycomb domain is
essential, as it allows for characterization of the in-gap state
localized at the edge; see Fig. 3. The design used for the
finite-size system is shown in Fig. 3(a). We study two types
of locations here, on-site locations indicated by the pink dot,
and bridge locations, indicated by the green dot for the bulk
and blue dot for the edge. Along the top edge, on-site edge
locations have been marked with purple crosses, and edge and
subedge bridge sites have been marked with yellow and open
circles, respectively. This design is different from the periodic
case only at the boundary, where blocker potentials have been
placed to separate the lattice from the surrounding 2D electron
gas. The introduction of these blockers is crucial as without
them there would be no clear boundary and therefore it would
not be possible to study edge states. The location of blocking
potentials is nontrivial, as the introduction of out of lattice
potentials can change the on-site energy of nearby sites. They
have, therefore, been chosen in such a way as to not shift the
LDOS spectra at the edge sites with respect to the bulk, as can
be seen by comparing the blue and green lines in the top graph

of Fig. 3(b). A triangular design was chosen to optimize the
distance between the boundaries and at the same time have
edges as uniform as possible, given the small system size.
The system was studied without and with intrinsic spin-orbit
coupling. The LDOS spectra of the two systems are mostly
similar in the bulk, as shown in Fig. 3(b). The pink and
green spectra representing the bulk both with and without
spin-orbit coupling display two peaks from the s orbitals at
≈ −0.3 and ≈ −0.2 eV, and both show a peak corresponding
to the flat p band around 0 eV. These peak locations are
inline with the band structure in Figs. 2(b) and 2(e). However,
some differences are visible. In the case without spin-orbit
coupling [Fig. 3(b) top], there is very little mixing between
the s and p orbitals resulting in an on-site (pink) dip at the
flat band energy due to negative interference between the p
orbitals in the flat band. In the intrinsic spin-orbit case, there
is more mixing, as evidenced by the band touching between
the highest s and lowest p orbital in Fig. 2(e). Therefore, there
is some on-site density of state in this case, as evidenced by
a pink peak around 0 eV [Fig. 3(b) bottom]. At a slightly
higher energy (0–0.06 eV) we see a dip in the bulk spectra
of the intrinsic spin-orbit case. This corresponds to the band
gap between the first two p orbitals in Fig. 2(e) from 0 to
0.05 eV. Notably, the edge bridge site where the spectrum was
calculated (blue) has an increased LDOS in this range (the
shoulder is a signature of an additional peak, which cannot
be separated from the flat band one), signaling a possible
edge state. Indeed, if we look at LDOS maps at 0.027 eV,
we see a state clearly localized on the (sub)edge bridge sites
of the system indicated in Fig. 3(a) for the intrinsic spin-orbit
system, as shown in Fig. 3(d), whereas none is present for the
system shown in Fig. 3(c), without spin-orbit coupling. Thus,
as expected, intrinsic spin-orbit coupling results in a strong
decrease in the DOS over the entire bulk of the finite system
in the gap between the third and fourth band, accompanied
with an increase in the intensity at the bridge sites at the
system edge, pointing to a protected edge state. The intensity
is maximal on the bridge sites, in accordance with the p
orbital bands. We cannot test the precise topological nature
of the edge state within the present muffin tin model; but
an atomistic tight-binding study on a semiconductor system
showed that this state is a helical quantum spin Hall state [13].

IV. CONCLUSION

We have presented an effective muffin-tin model by intro-
ducing the intrinsic and Rashba spin-orbit coupling into the
Schrödinger equation and tested the adequacy of the model
by comparison with established results. Then, we have studied
the effect of spin-orbit coupling on a honeycomb system with
separated s and p orbital bands, which allows us to study
p orbital physics in the honeycomb system. Besides the ex-
pected band openings at the Dirac points, intrinsic spin-orbit
coupling shifts the p orbital flat band downwards, causing
hybridization with the s bands. As a result, a broad gap arises
between the third and fourth bands of the system; our results
on a finite lattice show the emergence of an edge state in this
gap. We see that Rashba spin-orbit coupling reduces the spin-
orbit gaps at the K and K ′ points of the Brillouin zone, but the
broad gap between the third and fourth band remains robust.
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FIG. 4. Finite-size system comparison. Top images are made us-
ing Gaussians with a full width at half maximum (FWHM) of 0.6 nm
and a heigth of 0.45 eV and the bottom images were created using
a classical muffin-tin calculation with a diameter of 0.6 nm and a
height of 0.9 eV.

We should also remark that the model that we developed can
be used to study the effects of spin-orbit coupling on any type
of artificial lattice, including honeycomb patterns in semicon-
ductor quantum wells. However, due to the effective nature of
the model, its parameters must be appropriately adjusted and
its validity experimentally verified for each system.

Experimentally, strong spin-orbit coupling might be real-
ized in artificial lattices by using a metallic surface state on
a heavy element metal such as rhenium, lead, or bismuth,
and/or using heavy adatoms as potential barriers or attractive
sites for the surface electrons. A similar concept has been
reported for graphene, by placing In and Tl atoms in the
hollow sites of a graphene monolayer [3]. Real devices, appli-
cable in electronics, can be achieved by nanoscale patterning
of heavy-element semiconductor quantum wells, such as Ge,
GaAs, and InSb, with a honeycomb or another geometry of
interest [5,6,35].

FIG. 5. Relation between the height of the Gaussians and their
full width at half maximum (FWHM) that reproduce the muffin-tin
results.

FIG. 6. Band structure of double ring design calculated using
(a) muffin-tin and (b) Gaussian shaped potentials. The position of
CO molecules on a copper lattice is shown in Fig. 2(a).
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APPENDIX A: GAUSSIAN POTENTIALS

Recent works have been modeling the experimental results
of artificial lattices built using CO on copper (111) by using
a muffin-tin calculation. Here, the Schrödinger equation is
solved in two dimensions for a potential landscape where
the CO molecules are modeled as positive disk shaped pro-
trusions. This approach is convenient in Fourier space, as
the Fourier transformed form of this potential is analytically
known.

However, the intrinsic spin-orbit coupling term contains a
derivative with respect to the potential, making the muffin-tin
approach less ideal. We therefore turn to modeling the CO
molecules as Gaussian potential barriers. We find that this
reproduces the muffin-tin results. Furthermore, there appears
to be a lot of freedom in choosing the width of the Gaussians,
as long as the height is adjusted as well (the broader the
Gaussian, the lower it should be). The classical muffin-tin
results, along with the results for a Gaussian potential land-
scape, are shown in Fig. 4. The relation between the width of
the Gaussian and its height in order to reproduce the classical
muffin-tin results is shown in Fig. 5.

In the case of a periodic system, we run into another impor-
tant point, which is that the Gaussian potentials are not zero at
the unit cell boundaries, but have a nonzero tail. However, we

FIG. 7. A zoom in on the s orbital Dirac cone in Fig. 2(c). The
location of the zoom is indicated in (a); (b) shows the zoomed in
image.
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FIG. 8. A zoom in on the apparent Dirac cone between the s and
p bands in Fig. 2(e) of the main text. The location of the zoom is
indicated in (a); (b) shows the zoomed in image.

can approximate the Fourier transform of the Gaussian in the
unit cell as an infinite Fourier transform. The error is minimal,
as the Gaussian potential exponentially decreases away from
the center and is thus very small outside of the unit cell. We
have

VK = 1

A

∫
unitcell

e−a|x|2 e−iK·xdx

≈ 1

A

∫ ∞

−∞
e−a|x|2 e−iK·xdx, (A1)

where A is the unit cell surface. The integral on the right is a
known integral, and thus we get

VK ≈ π

a
e−|K|2/4a. (A2)

Indeed, the potential becomes exponentially small for large K,
thus making it possible to introduce a cutoff on the K values
included in Eq. (10) to calculate the band structure.

In classical muffin-tin calculations, the potential is fully
periodic and the Fourier transformed potential is analytically
known,

VK = πd

A|K|J1

(
|K|d

2

)
V0. (A3)

Here, d is the diameter of the muffin-tin potential disks, V0

is the height of the potentials, and J1 is the Bessel function.
Just as for the Gaussian potential, VK becomes small for
large K.

FIG. 9. Rashba coupling with intermediate intrinsic spin-orbit
coupling. The band structure was obtained with α1 = 1.6 × 104 m/s
and α2 = 0.8 × 1015 s/kg, the remaining parameters were the same
as in Fig. 2(d).

When the spin-orbit coupling is tuned to zero, the muffin-
tin and Gaussian potentials can be compared. Using the same
parameters as before, we indeed see the same band structures
for both potentials. This is shown in Fig. 6.

APPENDIX B: RASHBA MODIFIED DIRAC POINT

As mentioned in the main text, the Rashba coupling creates
additional Dirac cones around the s orbital Dirac cone in
the muffin-tin method, as shown in Fig. 7. This is in agree-
ment with tight-binding calculations for Rashba coupling in
graphene [32].

APPENDIX C: “DIRAC” POINT BETWEEN s AND p BANDS

In Fig. 2(e) the s and p bands seem to hybridize to form
a Dirac cone. However upon close inspection we see that the
gap between the bands does not close, as shown in Fig. 8.

APPENDIX D: RASHBA COUPLING AND AN ISOLATED
FLAT BAND

In Fig. 2(d), it was shown that an isolated flat band can be
obtained with the right α2. The isolation of the band is robust
against Rashba coupling, as shown in Fig. 9.
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