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Abstract As we all know, “Nothing in biology makes sense except in the light
of evolution” Dobzhansky (Am Biol Teach 35(3):125–129, 1973). Among the
challenges of modeling complex biological systems is to determine the relevant
parameters. The common practice is to extract parameters from the literature, or to
determine them from ongoing experiments, or by collectively fitting the parameters
to the experimental results the model tries to explain. Doing so ignores, or at
least does not exploit, Dobzhansky’s wisdom. In this perspective paper, we argue
and demonstrate the importance of using evolutionary methods to derive relevant
parameters. We show that by doing so, we can debug experimental and modeling
artifacts.

1 Introduction

The holy grail of systems biology is to match experimental and modeling results.
In pursuing this lofty goal, one should keep in mind that wet experiments and dry
in silico modeling face different opportunities and limitations to the challenge of
unraveling complex biological systems. A common heuristic for experiments is to
keep conditions as constant as possible, and limiting the variability of the biological
material, e.g., by working with clonal populations, or preferring males over females
in medical research because of less hormonal variation. This way a simplest “input-
output” system is approached, without accounting for the (variable) state, i.e.,
considering an < I,O,� > dynamical system (defined in terms of a set of inputs
(I ), a set of outputs (O), and a function linking input and output (�)) instead of a
full < I,O, S,�,� > dynamical system, in which in addition the internal state
(S) and internal state changes (�) are considered. In contrast, modeling approaches
do focus on state changes of the system and use either the full system specification
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< I,O, S,�,� > or simplify it to < S,� > considering fixed external conditions
(no input beyond initial condition) and observing state changes as outputs.

In silico modeling requires full specification of processes and parameters. An
often used heuristic is to compose a very simple model, in which it is possible to
survey the full parameter space. This way the result takes the form “the observed
in vivo or in vitro behavior is possible within the proposed model”. In such simple
models, the parameters are often composites of potentially measurable quantities
and often not validated beyond the fact that they produce the observed behavior. On
the other hand, large-scale models try to integrate measurements of many different
experiments, often having to add “reasonable” values for unknown parameters, and
determine whether these parameters and inferred interactions incorporated in the
model indeed produce particular experimental results.

In both cases, one should keep in mind the warning signal put up by James
Watson (as quoted by Francis Crick 1988, pp. 59–60 Crick, 1988) “no good model
ever accounted for all the facts, since some data was bound to be misleading if not
plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do
so and would thus be open to suspicion.”

The relevance of this warning signal is preeminently exposed in the history of
the study of the lactose operon (lac operon). Both models and experiments agreed
for a long time that the lac operon coded for a bistable switch, (e.g., Griffith, 1968;
Novick & Weiner, 1957; Ozbudak et al., 2004), although this notion was challenged
early on on theoretical grounds by Savageau (1999). This conclusion is now on
theoretical and experimental grounds falsified, (e.g., Afroz et al., 2014; Ozbudak
et al., 2004; Rao & Koirala, 2014; Savageau, 2011; Van Hoek & Hogeweg, 2006,
2007; Zander et al., 2017). Here we will relate how evolutionary systems theory
contributed to this reversed conclusion.

2 Case Study: The lac Operon and Bistability

We will use the lac operon to illustrate the power of evolutionary modeling to
understand the “how and why” of a particular well-studied regulatory circuit. To
this end, we will review an earlier published model and results (Van Hoek &
Hogeweg, 2006, 2007), emphasizing the methodology, from a conceptual as well as
from a “hands-on” point of view. For details of the model, quantitative results, and
mathematical analysis, the reader is referred to the original publications (Van Hoek
& Hogeweg, 2006, 2007).

2.1 Background: “State of the Art”

The lac operon has been seen for many years as the prototype example of a
bistable switch. Indeed the very concept of gene regulation was discovered by Jacob



Tackling the Parameter Curse Through Evolution 21

and Monod (1961) by the observation of population heterogeneity and hysteresis
when E. coli was grown at different concentrations of an inducer. An artificial, not
metabolized, inducer was used, in order to be able to create constant conditions for
the experiment. These and subsequent experimental results were soon supported by
a simple theoretical model, showing that the positive feedback loop of the import
of an inducer on the internal inducer concentration was sufficient to explain the
bistability (Novick & Weiner, 1957). This model is taught in many “introduction
to biological modeling” courses. Such a so-called mini-model shows that for some
parameters, the model can account for the observed behavior and therewith that such
a positive feedback is potentially sufficient to explain the observations. For such a
compact mini-model, there are only a few parameters; these parameters can be fitted
to match the experimental results but cannot be measured in a model-independent
way.

Subsequent experimental results elucidated many details of the structure of the
lac operon and its regulation by a combination of the inducer (lactose or an artificial
substitute (IPTG or TMG)) and the preferred resource glucose (see scheme in
Fig. 1). A shorthand description is the lac operon is an AND gate: it is ON when
there is lactose and no glucose and OFF otherwise.

Subsequent large-scale modeling (e.g., Wong et al., 1997; Yildirim & Mackey,
2003) incorporated this accumulated experimental knowledge. Consequently these
models contain many parameters, which were taken from the literature or estimated
as “reasonable”. Also these models concluded that yes indeed the lac operon of
E. coli encodes a bistable switch. However, close scrutiny of the parameters used
revealed large differences between those used in different models. Moreover some
parameters were adjusted in order to ensure bistability.

Finally, the notion that the lac operon encoded a bistable switch was also rein-
forced by an evolutionary mini-model which showed bistability to be advantageous
(e.g., Thattai & Van Oudenaarden, 2004).

Although the agreement between models, experiments, and optimization consid-
eration may seem conclusive, the parameter uncertainties and their adjustments to
match experimental outcomes suggest that we should heed Watson’s warning quoted
above.

Our research was triggered by a then recent paper of (Setty et al., 2003) which
reported direct measurements of the transcription rate of the operon (by coupling a
GFP reporter to the operon) for many combinations of the artificial inducer IPTG
and cAMP (high cAMP concentrations correspond to low glucose concentration;
see scheme of the lactose operon in Fig. 1). The resulting promoter function is not
a simple AND gate (ON for high inducer and high cAMP (i.e., low glucose) and
OFF otherwise) but shows distinct (non-zero) expression levels for, respectively,
low inducer high cAMP, high inducer low cAMP, and low inducer low cAMP (see
Fig. 3b).

They fitted the data to a phenomenological promoter function (see Fig. 1) and
obtained a good fit. However, they also showed that this function is quite sensitive
to its parameters. They concluded that “the promoter is selected to perform an
elaborate computation in setting the transcription rate” (Setty et al., 2003).
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Fig. 1 Overview of the model, which includes the intracellular as well as the intercellular
interactions. On the left, the intracellular metabolism and gene regulation related to lactose and
glucose utilization are shown as implemented in the model. Expression of the lac operon is
regulated by the concentration of allolactose (A) and cAMP (C). Allolactose is derived from
lactose, and cAMP is inhibited by the influx of glucose in the cell. The expression of the operon
is needed for the production of allolactose. It codes for the pump to get lactose into the cell, as
well as the enzyme β-galactosidase which transforms lactose to allolactose. Because allolactose
induces the lac operon, by inhibiting LacI (which inhibits the operon), and needs the expression
of the operon to be produced, there is a positive feedback loop which might lead to bistability.
On the upper right, the form of the promoter function, dependent on allolactose (A) and cAMP
(C), is given as fitted to experimental data by Setty et al. (2003). The V parameters are functions
of the following physiological parameters: RNA polymerase and its dissociation constant for
binding to the free promoter site and to the site when occupied by CRP (the cAMP-associated
transcription factor), as well as its transcription rate dependent on the site occupancy (α and β);
the “leakage” of the promoter (γ ), i.e., its expression when not induced; the concentration of LacI
and its dissociation constant; and the CRP concentration and its dissociation constant. It are these
(more physiological) parameters which are subject to mutation and selection in the model; see
main text. Finally, in the lower right, the “ecosystem” is depicted, showing the local variation of
the external concentration of glucose and lactose and the presence of the cells at arbitrary point in
time. For details, see Van Hoek and Hogeweg (2006)

Heeding Dobzhansky’s dictum (Dobzhansky, 1973) we wondered if we could
“make sense” of the form of the promoter function from an evolutionary point of
view, i.e.:

1. Should we expect such a promoter function to evolve given the known and/or
hypothesized details of the metabolic pathways involved?

2. What is the functionality that is in fact being selected?

To answer these questions, we used an evolutionary systems biology approach.
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3 Eco-evolutionary Model of the lac Operon

We constructed a multilevel agent-based eco-evolutionary model. The model
includes the within-cell physiological dynamics related to the lac operon, cell
growth, and reproduction and competition between cells in a spatially explicit
environment, which is modified by the cell metabolism (see Fig. 1).

The model for cell-level physiological dynamics is adapted from the model of
(Wong et al., 1997), using their parameter values. However, the promoter function
of (Setty et al., 2003) was incorporated, and its parameters were subjected to
evolution. The rationale for using fixed parameters for all processes except those
of the promoter function was that we wanted to study how the promoter function
evolved, given the constraints set by the rest of the system. Important, for example,
are the relatively slow protein dynamics.

Thus the model includes the following components (Fig. 1):

• A promoter function. We used the same (phenomenological) function that (Setty
et al., 2003) used to (successfully) fit their experimental data (see Fig. 1). The
parameters of the function were subject to evolution, i.e., subjected to mutation
and selection. Importantly, after initial trials in which “nothing happened” (i.e.,
no evolutionary adaptation was observed), we realized we should not use the
dimension (parameter) reduction used to simplify the model fitting, but the
underlying binding reactions instead. This increases the number of parameters
from the 7 shown in Fig. 1 to 11 more physiological parameters (see the legend
of Fig. 1). Thus we create a redundant genotype-to-phenotype (GP) mapping.
Such a redundant GP mapping has been shown to strongly improve evolutionary
search. (For a recent extensive review on the role of GP maps in evolution, see
Manrubia et al., 2020.)

• Intracellular molecular interactions, including protein expression and degrada-
tion, transport into the cell of lactose and glucose, and ATP production, as
modeled by (Wong et al., 1997). In addition, the cells grow as a function of ATP
production, causing dilution of the protein concentrations. When a cell reaches a
certain predefined size, it can divide.

• Ecology: the cells are embedded on a spatial grid. Resources, i.e., lactose and
glucose, flux into the medium and are taken up by the cells. The cells compete
for the resources as well as empty grid cells. Cells divide after reaching a certain
size and die with a probability which depends on the global cell density.

The aim of this evolutionary model is to alleviate the “parameter curse,”
inherent in detailed models. Paradoxically, but unavoidably, extra (semi-arbitrary)
parameters have to be set in the evolutionary model, in this case, for example, the
cost (in terms of ATP) of protein expression and the definition of the environment
in which the evolution takes place. The latter involves relative changes in external
and internal resource concentration when resources are consumed, as well as the
temporal changes of the influx of the resources into the environment. Fortunately, for
the environmental parameters, we could use an “adequacy” criterion, i.e., in order
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Fig. 2 Coverage of the state space, i.e., the conditions the cells experience over time. On the
left, the external conditions, i.e., the concentrations of glucose and lactose, encountered. On the
right, the realized internal conditions which directly impact on the expression of the lac operon,
i.e., the concentrations of cAMP and allocatose. Because of the dynamics of the model, all these
concentrations cannot be directly manipulated as input but are the result of the model dynamics.
Glucose and lactose were influxed in independently Poisson-distributed blocks of certain duration
and concentration. We tuned frequency and amount of influx in such a way that all circumstances
were encountered regularly, as shown in the pictures

to select for the full operon function, all combinations of concentrations of glucose
and lactose as well as the resulting internal concentrations of allolactose and cAMP
should be regularly encountered by the cells. As these concentrations are not directly
imposed, but result from the consumption and metabolism, we tuned the timing and
amount of influx of glucose and lactose in such a way that this requirement is met
(see Fig. 2 for the resulting coverage of the state space).

3.1 Analysis of the Eco-evolutionary Dynamics of the Model

Darwin distinguished “natural selection” from “artificial selection”, where the latter
referred to selection by breeders for certain properties preferred by them. The above
described eco-evolutionary model of the lac operon (artificial as it is) incorporates
in this sense “natural selection”: no a priori fitness criterion is defined. Instead the
environmental conditions are constantly shifting, not only due to fluctuating external
influx of glucose and lactose but importantly also through the current population
of cells and the variation of the promoter functions of neighboring cells which
defines their uptake of the resources, and therefore the local resource conditions.
(Indeed recent experiments have shown the importance of micro-scale gradients in
the functioning and evolution of bacterial colonies Dal Co et al., 2019; Van Vliet
et al., 2017). These local conditions determine the immediate fitness. Long-term
integration of immediate fitness will determine, in the long run, what evolves. This
is indeed what evolution is about. However, it makes life harder for the modeler,
because there is not one obvious observable (fitness) to evaluate whether or not the
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Fig. 3 First observations on the evolutionary dynamics of the model. (a) The evolution through
time of individual parameters does not show any clear trend. (b) Depicts the evolution over time
of some phenotypic features, namely, the promoter activity the evolving promoter function would
have when encountering the four extremes of high and low cAMP and allolactose concentration
(although the circumstances in which it finds itself are different). The phenotypic features show a
somewhat clearer evolutionary trend, although they also do not convincingly show that anything
other than drift occurs

model is actually evolving something. As shown in Fig. 3a, b, looking at changes in
the parameter values over time is hardly informative, although looking at the change
over time of some selected phenotypic features indicates something beyond neutral
drift might be happening. However, further analysis and experiments with the model
are needed to establish this, as discussed below.

There is at all times plenty of variation in the population. To get a more detailed
understanding of what is evolving, we extracted the last common ancestor of the
population at the end of the simulation. This cell obviously was most successful in
producing surviving offspring, thus, in hindsight, being per definition the fittest. This
works quite well (as shown below), but one should keep in mind that the success of
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Fig. 4 Similarity of the shape of the promoter function of the best evolved common ancestor (b)
with the promoter function of Setty et al. (2003); see panel (a). Shown is the activity in the state
space as experienced by the cells (compare Fig. 3), which is not the same in both cases

the last common ancestor could be caused simply by chance or importantly by later
occurring mutations. Several independent evolutionary runs were performed. To
select the “best” evolved promoter function, we pairwise competed the last common
ancestors of the various runs and selected the one which won most often. This best
promoter function is depicted in Fig. 4 alongside the promoter function of (Setty
et al., 2003) as fitted to their measured data. The similarity is striking, especially
realizing that no fitting was involved in setting up the model.

So far so good: apparently the shape of the promoter function as determined in
the experiment, with the “fine-tuned parameter values” noted by Setty et al. (2003),
is explained by the “natural selection” in our eco-evolutionary model, given the
background metabolic processes as modeled previously (Wong et al., 1997). But
why? We can now study its behavior in different external resource concentrations.
The results are given in Fig. 5a for various concentrations of external lactose, either
with high or low glucose concentrations. In contrast to the common expectation that
the natural promoter function of the lac operon of E. coli codes for a bistable switch,
the promoter function evolved in our eco-evolutionary model does not, despite its
similarity to the measured promoter function. What is wrong?

3.2 Internal Validation of the Model

It turns out that nothing is wrong with the model and that, indeed, the lac operon
of E. coli does not encode a functional bistable switch. This insight is first of all
obtained from the model itself. Realizing that experiments were almost always done
with artificial inducers (IPTG or TMG), which are not metabolized, we tested our
promoter function by stimulating it with IPTG, adjusting the model accordingly. As
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Fig. 5 The best evolved promoter function does not code for a bistable switch in its natural
environment and the model, i.e., when it is induced by lactose (a). However, when studied with
an artificial inducer (IPTG) as commonly done in the lab, it does code for a bistable switch (b).
Solid line, low glucose concentration; dotted line, high glucose concentration (Reproduced from
Van Hoek and Hogeweg, 2006)

seen in Fig. 5b, the model with the evolved promoter function in that case recovers
a strong bistable switch, both for low and for high concentrations of external
glucose. The difference in behavior is due to the fact that artificial inducers are
not metabolized, whereas lactose is. This is in fact the advantage of using these
artificial inducers in experiments, as it allows to control the conditions. However,
because they are not metabolized, the positive feedback loop is strengthened,
causing bistability under a much wider set of circumstances than is the case for
lactose, which is metabolized (Díaz-Hernández & Santillán, 2010). In other words,
we conclude that the common notion that the lac operon is coding a bistable
switch is an experimental artifact, derived from the preference to do experiments
in controlled conditions. As mentioned above, in our eco-evolutionary model, as in
nature, conditions are extremely non-controlled.

3.3 Experimental Validation of the Model Results

Currently, the consensus opinion has shifted away from considering the lac operon
as a bistable switch. Although the model results described above, in my opinion,
support this conclusion strongly, the communis opinio is based on more recent, more
conventional systems biology experiments as well as wet evolutionary experiments.
Strikingly, the paper entitled “Multistability in the lactose utilization network
of Escherichia coli” mentions in passing in the supplementary material “During
induction with lactose, as opposed to IPTG, TMG. . . . . . .the steady state distribution
after 4 hours of growth is always uni-modal, and we never observe hysteresis”
(Ozbudak et al., 2004). Strikingly, despite its title, this paper is frequently cited
as evidence for the gradual response instead of bistability.
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A combined experimental and modeling paper (Zander et al., 2017) confirmed in
their carefully parameterized model that the lac operon is not bistable. However,
they showed in the model and in experiments that overexpression of LacI (the
repressor of the operon which is repressed by the inducer (allolactose or artificial
inducer)) does induce bistability. In fact, their results show that the wild-type
promoter function is only just not bistable. Similarly, in our model, we see that over
evolutionary time some individuals of the variable population do show bistability for
lactose. Moreover, we see that when, as we did, evolution starts off with a bistable
promoter, it evolves away from bistability by increasing the default expression of
the operon without induction (the γ parameter (see Fig. 3a top panel)). Note that
decreasing LacI expression implies less repression of the operon and therewith an
increase of leakage (i.e., γ ). Indeed we showed analytically that the occurrence of
bistability (i.e., a Hopf bifurcation) depends primarily on a low enough value of
γ (Van Hoek & Hogeweg, 2006). These results suggest that long-term evolution
avoids bistability but minimizes the (costly) expression of the operon when not
induced as much as possible without becoming bistable.

Interestingly, LacI is in fact itself also regulated by the lac operon (Semsey et al.,
2013). This autoregulation leads to a further smoothing of the response. This is
another indication that avoidance of bistability is an evolved feature.

Also interesting are the results of the evolutionary experiments of (Quan et al.,
2012). They evolved E. coli cells on four different media, only glucose, only lactose,
glucose and lactose, and alternating glucose and lactose, and studied the bistability
of the evolved lac operons, using artificial inducer (TMG). Even with artificial
inducer, they only observed bistability consistently in the glucose-only medium and
in a subset of cases in the lactose-only medium. These results, counterintuitive as
they may seem at first sight, can be understood in terms of the above discussion.
On glucose-only medium, the operon should never be expressed. Therefore, the
“leakage” expression without inducer should be low. When this is low enough,
bistability is even seen with lactose as inducer (see also Fig. 6b).

Conversely, if they evolved on lactose only, the operon should be active all
the time. Whether or not it is bistable under other circumstances is irrelevant.
Hence, in some replicates, it remains bistable for artificial inducer as it was the
initial wild type, and in other cases, bistability is lost by neutral evolution. In the
other two cases, a graded response is observed even for TMG. In contrast to our
eco-evolutionary model, where we tuned the parameters so that all environmental
conditions were experienced regularly, these evolutionary experiments severely
limited the environmental conditions experienced by the cells. Therefore, the cells
adapted quickly to the subset of conditions encountered. Likewise when we varied
the environmental conditions or internal parameters (e.g., cost of gene expression)
and only a subset of conditions occurred, different promoter functions evolved
(Van Hoek & Hogeweg, 2006).

Finally I mention the study of (Afroz et al., 2014), who studied bistability for
a number of carbon sources. They report no bistability for the lac operon, but do
find bistability for others, e.g., L-arabinose. It would be interesting to see whether
the modeling methodology we used here would for L-arabinose indeed predict
bistability.
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Fig. 6 (a) Delay in activation of the lac operon when external lactose becomes available,
dependent on un-induced activity level: delays longer than average division time of E. coli for un-
induced values compatible with bistability. (b) Evolved promoter activity dependent on internal
allolactose in various replicates. Dotted line, initial bistable promoter. Dashed and solid line,
evolved promoters in, respectively, the deterministic and the stochastic model. The stochastic
model evolves even farther from bistability by increased un-induced expression (Reproduced from
Van Hoek and Hogeweg, 2006, 2007)

3.4 Why Avoid Bistability?

The theoretical and experimental results discussed so far show that bistability is
evolutionary avoided. But why? When some phenotypic feature evolves, this does
not automatically imply that it has an adaptive benefit, as it may be produced by
neutral drift. Indeed neutral drift can generically lead to well-defined, apparently
nonrandom phenomena which are attractors of the stochastic dynamical system
defined by the mutational operators employed, a striking example of which is shown
in (Cordero & Hogeweg, 2006). The fact that an evolutionary model and empirical
data converge to the same outcome, as is the case in both (Cordero & Hogeweg,
2006) and the current model, also does not preclude a neutral explanation. For
example, the avoidance of bistability simply could be due to the fact that a larger
part of parameter space generates a graded response, rather than bistability, which
is indeed so for the natural system with lactose as inducer, whereas the parameter
space leading to bistability is much larger in the case of artificial inducer (as shown
here and argued in Savageau, 1999, 2011). Apart from neutral drift, another non-
adaptive explanation of an evolved phenotypic feature might be that it is a side
effect of the positive selection acting on an apparently unrelated feature, when the
same mutations affect both. The above mentioned bistability of the lac operon when
evolved on glucose medium is a nice example of this. Important for the discussion
here is that whether or not the studied feature is generated by adaptive or neutral
evolution, or as a side effect, does not affect the main conclusion of this paper, i.e.,
that an evolutionary perspective is very helpful to debug matching theoretical and
experimental results.
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In the present case, we see a clearly adaptive signature in the outcome. First of
all, competition experiments mentioned above clearly show the fitness advantage
of the evolved promoter function, in the type of environment in which it evolved
(but note that in competition experiments, the environment unavoidably differs
from the native environment because of the presence of the competitor). Another
indication of the adaptive relevance of the evolved promoter function is that under
different environmental circumstances, clearly different promoter functions evolve,
as discussed above in this model as well as in experiments (Quan et al., 2012).

Moreover we can pinpoint why a sufficiently high value of γ and therewith
the avoidance of bistability give an evolutionary advantage. In Fig. 6a, we show
the onset of mRNA and protein production when external lactose becomes available.
For promoters with very low activity when no external lactose is available, the
delays are very long, in fact longer than the average division time of E. coli.
Obviously such long delays are detrimental. Cells which avoid such delays consume
the external lactose earlier, leaving less resource for cells with longer delays. Slow
protein dynamics plays an important role in these long delays. This underscores the
importance of using the large-scale parameterized model for the cell metabolism
in our eco-evolutionary model. Note that bistability, and therewith hysteresis,
would even further aggravate the delays. We conclude that it is the transient, non-
equilibrium situation which determines the long-term evolutionary outcome.

In contrast, an earlier evolutionary model “explained” the advantages of bista-
bility (Thattai & Van Oudenaarden, 2004). In their mini-model, instantaneous
switching was assumed. In addition, their model was stochastic. Bistability ensured
heterogeneity in the population, so that some cells were pre-adapted to a changing
environment. This raises the question whether it is the lack of stochasticity in
gene expression in our model which prevents evolution to exploit the advantages
of bistability. We modified the model to incorporate stochastic gene expression
(Van Hoek & Hogeweg, 2007) and conducted a similar set of experiments in the
stochastic model. Figure 6b shows that the stochastic model evolved even farther
away from bistability by increasing the expression in the absence of lactose (i.e., γ ).
Indeed, again the explanation is in terms of delays, which are even more severe in the
stochastic model (Van Hoek & Hogeweg, 2007). Moreover, the stochasticity only
marginally increases the heterogeneity of the population, relative to the genetic and
environmental heterogeneity prevalent in the eco-evolutionary model (Van Hoek &
Hogeweg, 2007). Likewise through metagenomic analysis, extreme heterogeneity is
commonly observed in natural bacterial populations at a micro-scale (e.g., Preheim
et al., 2011; Vetsigian et al., 2011).

4 Discussion

The evolutionary systems biology approach discussed in this paper proved to be
surprisingly powerful. We showed that the measured promoter function (Setty
et al., 2003) was evolutionary favored, which was our original aim. The modeling
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was moreover rich in “results++”. i.e., in unexpected novel insights. Foremost
the insight emerged that the assumption of bistability of the lac operon, which
was supported by experiments, mini-models, large-scale models, and evolutionary
optimization models, is in fact incorrect. How could this false notion be sustained for
so many years? The need for well-defined conditions in experiments, and therewith
the use of artificial inducer, clearly was the primary cause, combined with the
construction of models and the setting of parameters such that the model results
match the experimental results. In contrast, we used an unsupervised modeling
approach and observed a striking match to some experimental results, namely, the
shape of the promoter function together with the totally unexpected evolutionary
trend away from bistability. Moreover, we could determine that bistability was
avoided in order to avoid delays in activation and therewith gain a competitive
edge. Our results also indicate that examining monomorphic, clonal populations
in experiments or models may lead to artifacts, in the sense that it does not reflect
what happens in natural populations.

Having argued that the lac operon does not encode a bistable switch, we should
reflect on what we mean with such a statement. Bacteria, including E. coli, adapt
to a prevailing environment very quickly, as shown in evolutionary experiments,
e.g., those of (Quan et al., 2012) discussed above, and stressed by (e.g., Dekel and
Alon, 2005). This we also see in our model: if the environment switches too fast,
regulation is largely lost, as only an average environment is experienced by the cells.
As another example, when cost of protein expression is set very high, bistability may
evolve but occurs at very high glucose concentrations, which were very seldom if
ever encountered. In such a case, like in the glucose-only environment of (Quan
et al., 2012), bistability occurs as a side effect which does not harm the system.
Thus, indeed as stated by Setty et. al., the promoter function can be fine-tuned easily.
It is therefore even more remarkable that, given that a full set of environmental
conditions is encountered (which is not the case in the abovementioned examples),
evolution of wild-type E. coli and the model converge to an unequivocal solution.

In the eco-evolutionary model discussed here, we only evolved some of the
large number of parameter values which needed to be specified, and for which
the experimental evidence is not unequivocal. However, because of the evolution
of the parameters determining the phenomena of interest, their precise value might
not matter too much and certainly was not tuned/fitted for the results obtained. In
that sense, the parameter curse which encumbers large-scale models was somewhat
alleviated. This was enough to debug the results obtained from models in which
parameters were fitted or tuned to match the experimental results.

Finally I like to note that the general approach advocated here, i.e., non-
supervised, multilevel eco-evolutionary modeling, can be generalized beyond evolv-
ing parameters in a fixed model structure as done here. Giving the models many
degrees of freedoms to adjust model structure, we have repeatedly seen surprising
convergence to biological systems, leading to novel insights in their functioning as
well as novel insights in evolution itself (e.g., Cuypers & Hogeweg, 2012, 2014; van
Dijk et al., 2019; Van Hoek & Hogeweg, 2009).
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